• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 
27 #include <linux/iversion.h>
28 
29 /* Radix tree tags for incore inode tree. */
30 
31 /* inode is to be reclaimed */
32 #define XFS_ICI_RECLAIM_TAG	0
33 /* Inode has speculative preallocations (posteof or cow) to clean. */
34 #define XFS_ICI_BLOCKGC_TAG	1
35 
36 /*
37  * The goal for walking incore inodes.  These can correspond with incore inode
38  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
39  */
40 enum xfs_icwalk_goal {
41 	/* Goals directly associated with tagged inodes. */
42 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
43 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
44 };
45 
46 static int xfs_icwalk(struct xfs_mount *mp,
47 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
48 static int xfs_icwalk_ag(struct xfs_perag *pag,
49 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 
51 /*
52  * Private inode cache walk flags for struct xfs_icwalk.  Must not
53  * coincide with XFS_ICWALK_FLAGS_VALID.
54  */
55 
56 /* Stop scanning after icw_scan_limit inodes. */
57 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
58 
59 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
60 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
61 
62 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
63 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
64 					 XFS_ICWALK_FLAG_UNION)
65 
66 /*
67  * Allocate and initialise an xfs_inode.
68  */
69 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)70 xfs_inode_alloc(
71 	struct xfs_mount	*mp,
72 	xfs_ino_t		ino)
73 {
74 	struct xfs_inode	*ip;
75 
76 	/*
77 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
78 	 * and return NULL here on ENOMEM.
79 	 */
80 	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
81 
82 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
83 		kmem_cache_free(xfs_inode_zone, ip);
84 		return NULL;
85 	}
86 
87 	/* VFS doesn't initialise i_mode or i_state! */
88 	VFS_I(ip)->i_mode = 0;
89 	VFS_I(ip)->i_state = 0;
90 
91 	XFS_STATS_INC(mp, vn_active);
92 	ASSERT(atomic_read(&ip->i_pincount) == 0);
93 	ASSERT(ip->i_ino == 0);
94 
95 	/* initialise the xfs inode */
96 	ip->i_ino = ino;
97 	ip->i_mount = mp;
98 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
99 	ip->i_afp = NULL;
100 	ip->i_cowfp = NULL;
101 	memset(&ip->i_df, 0, sizeof(ip->i_df));
102 	ip->i_flags = 0;
103 	ip->i_delayed_blks = 0;
104 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
105 	ip->i_nblocks = 0;
106 	ip->i_forkoff = 0;
107 	ip->i_sick = 0;
108 	ip->i_checked = 0;
109 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
110 	INIT_LIST_HEAD(&ip->i_ioend_list);
111 	spin_lock_init(&ip->i_ioend_lock);
112 
113 	return ip;
114 }
115 
116 STATIC void
xfs_inode_free_callback(struct rcu_head * head)117 xfs_inode_free_callback(
118 	struct rcu_head		*head)
119 {
120 	struct inode		*inode = container_of(head, struct inode, i_rcu);
121 	struct xfs_inode	*ip = XFS_I(inode);
122 
123 	switch (VFS_I(ip)->i_mode & S_IFMT) {
124 	case S_IFREG:
125 	case S_IFDIR:
126 	case S_IFLNK:
127 		xfs_idestroy_fork(&ip->i_df);
128 		break;
129 	}
130 
131 	if (ip->i_afp) {
132 		xfs_idestroy_fork(ip->i_afp);
133 		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
134 	}
135 	if (ip->i_cowfp) {
136 		xfs_idestroy_fork(ip->i_cowfp);
137 		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
138 	}
139 	if (ip->i_itemp) {
140 		ASSERT(!test_bit(XFS_LI_IN_AIL,
141 				 &ip->i_itemp->ili_item.li_flags));
142 		xfs_inode_item_destroy(ip);
143 		ip->i_itemp = NULL;
144 	}
145 
146 	kmem_cache_free(xfs_inode_zone, ip);
147 }
148 
149 static void
__xfs_inode_free(struct xfs_inode * ip)150 __xfs_inode_free(
151 	struct xfs_inode	*ip)
152 {
153 	/* asserts to verify all state is correct here */
154 	ASSERT(atomic_read(&ip->i_pincount) == 0);
155 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
156 	XFS_STATS_DEC(ip->i_mount, vn_active);
157 
158 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
159 }
160 
161 void
xfs_inode_free(struct xfs_inode * ip)162 xfs_inode_free(
163 	struct xfs_inode	*ip)
164 {
165 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
166 
167 	/*
168 	 * Because we use RCU freeing we need to ensure the inode always
169 	 * appears to be reclaimed with an invalid inode number when in the
170 	 * free state. The ip->i_flags_lock provides the barrier against lookup
171 	 * races.
172 	 */
173 	spin_lock(&ip->i_flags_lock);
174 	ip->i_flags = XFS_IRECLAIM;
175 	ip->i_ino = 0;
176 	spin_unlock(&ip->i_flags_lock);
177 
178 	__xfs_inode_free(ip);
179 }
180 
181 /*
182  * Queue background inode reclaim work if there are reclaimable inodes and there
183  * isn't reclaim work already scheduled or in progress.
184  */
185 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)186 xfs_reclaim_work_queue(
187 	struct xfs_mount        *mp)
188 {
189 
190 	rcu_read_lock();
191 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
192 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
193 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
194 	}
195 	rcu_read_unlock();
196 }
197 
198 /*
199  * Background scanning to trim preallocated space. This is queued based on the
200  * 'speculative_prealloc_lifetime' tunable (5m by default).
201  */
202 static inline void
xfs_blockgc_queue(struct xfs_perag * pag)203 xfs_blockgc_queue(
204 	struct xfs_perag	*pag)
205 {
206 	struct xfs_mount	*mp = pag->pag_mount;
207 
208 	if (!xfs_is_blockgc_enabled(mp))
209 		return;
210 
211 	rcu_read_lock();
212 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
213 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
214 				   &pag->pag_blockgc_work,
215 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
216 	rcu_read_unlock();
217 }
218 
219 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
220 static void
xfs_perag_set_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)221 xfs_perag_set_inode_tag(
222 	struct xfs_perag	*pag,
223 	xfs_agino_t		agino,
224 	unsigned int		tag)
225 {
226 	struct xfs_mount	*mp = pag->pag_mount;
227 	bool			was_tagged;
228 
229 	lockdep_assert_held(&pag->pag_ici_lock);
230 
231 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
232 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
233 
234 	if (tag == XFS_ICI_RECLAIM_TAG)
235 		pag->pag_ici_reclaimable++;
236 
237 	if (was_tagged)
238 		return;
239 
240 	/* propagate the tag up into the perag radix tree */
241 	spin_lock(&mp->m_perag_lock);
242 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
243 	spin_unlock(&mp->m_perag_lock);
244 
245 	/* start background work */
246 	switch (tag) {
247 	case XFS_ICI_RECLAIM_TAG:
248 		xfs_reclaim_work_queue(mp);
249 		break;
250 	case XFS_ICI_BLOCKGC_TAG:
251 		xfs_blockgc_queue(pag);
252 		break;
253 	}
254 
255 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
256 }
257 
258 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
259 static void
xfs_perag_clear_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)260 xfs_perag_clear_inode_tag(
261 	struct xfs_perag	*pag,
262 	xfs_agino_t		agino,
263 	unsigned int		tag)
264 {
265 	struct xfs_mount	*mp = pag->pag_mount;
266 
267 	lockdep_assert_held(&pag->pag_ici_lock);
268 
269 	/*
270 	 * Reclaim can signal (with a null agino) that it cleared its own tag
271 	 * by removing the inode from the radix tree.
272 	 */
273 	if (agino != NULLAGINO)
274 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
275 	else
276 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
277 
278 	if (tag == XFS_ICI_RECLAIM_TAG)
279 		pag->pag_ici_reclaimable--;
280 
281 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
282 		return;
283 
284 	/* clear the tag from the perag radix tree */
285 	spin_lock(&mp->m_perag_lock);
286 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
287 	spin_unlock(&mp->m_perag_lock);
288 
289 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
290 }
291 
292 static inline void
xfs_inew_wait(struct xfs_inode * ip)293 xfs_inew_wait(
294 	struct xfs_inode	*ip)
295 {
296 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
297 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
298 
299 	do {
300 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
301 		if (!xfs_iflags_test(ip, XFS_INEW))
302 			break;
303 		schedule();
304 	} while (true);
305 	finish_wait(wq, &wait.wq_entry);
306 }
307 
308 /*
309  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
310  * part of the structure. This is made more complex by the fact we store
311  * information about the on-disk values in the VFS inode and so we can't just
312  * overwrite the values unconditionally. Hence we save the parameters we
313  * need to retain across reinitialisation, and rewrite them into the VFS inode
314  * after reinitialisation even if it fails.
315  */
316 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)317 xfs_reinit_inode(
318 	struct xfs_mount	*mp,
319 	struct inode		*inode)
320 {
321 	int			error;
322 	uint32_t		nlink = inode->i_nlink;
323 	uint32_t		generation = inode->i_generation;
324 	uint64_t		version = inode_peek_iversion(inode);
325 	umode_t			mode = inode->i_mode;
326 	dev_t			dev = inode->i_rdev;
327 	kuid_t			uid = inode->i_uid;
328 	kgid_t			gid = inode->i_gid;
329 
330 	error = inode_init_always(mp->m_super, inode);
331 
332 	set_nlink(inode, nlink);
333 	inode->i_generation = generation;
334 	inode_set_iversion_queried(inode, version);
335 	inode->i_mode = mode;
336 	inode->i_rdev = dev;
337 	inode->i_uid = uid;
338 	inode->i_gid = gid;
339 	return error;
340 }
341 
342 /*
343  * Carefully nudge an inode whose VFS state has been torn down back into a
344  * usable state.  Drops the i_flags_lock and the rcu read lock.
345  */
346 static int
xfs_iget_recycle(struct xfs_perag * pag,struct xfs_inode * ip)347 xfs_iget_recycle(
348 	struct xfs_perag	*pag,
349 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
350 {
351 	struct xfs_mount	*mp = ip->i_mount;
352 	struct inode		*inode = VFS_I(ip);
353 	int			error;
354 
355 	trace_xfs_iget_recycle(ip);
356 
357 	/*
358 	 * We need to make it look like the inode is being reclaimed to prevent
359 	 * the actual reclaim workers from stomping over us while we recycle
360 	 * the inode.  We can't clear the radix tree tag yet as it requires
361 	 * pag_ici_lock to be held exclusive.
362 	 */
363 	ip->i_flags |= XFS_IRECLAIM;
364 
365 	spin_unlock(&ip->i_flags_lock);
366 	rcu_read_unlock();
367 
368 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
369 	error = xfs_reinit_inode(mp, inode);
370 	if (error) {
371 		bool	wake;
372 
373 		/*
374 		 * Re-initializing the inode failed, and we are in deep
375 		 * trouble.  Try to re-add it to the reclaim list.
376 		 */
377 		rcu_read_lock();
378 		spin_lock(&ip->i_flags_lock);
379 		wake = !!__xfs_iflags_test(ip, XFS_INEW);
380 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
381 		if (wake)
382 			wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
383 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
384 		spin_unlock(&ip->i_flags_lock);
385 		rcu_read_unlock();
386 
387 		trace_xfs_iget_recycle_fail(ip);
388 		return error;
389 	}
390 
391 	spin_lock(&pag->pag_ici_lock);
392 	spin_lock(&ip->i_flags_lock);
393 
394 	/*
395 	 * Clear the per-lifetime state in the inode as we are now effectively
396 	 * a new inode and need to return to the initial state before reuse
397 	 * occurs.
398 	 */
399 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
400 	ip->i_flags |= XFS_INEW;
401 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
402 			XFS_ICI_RECLAIM_TAG);
403 	inode->i_state = I_NEW;
404 	spin_unlock(&ip->i_flags_lock);
405 	spin_unlock(&pag->pag_ici_lock);
406 
407 	return 0;
408 }
409 
410 /*
411  * If we are allocating a new inode, then check what was returned is
412  * actually a free, empty inode. If we are not allocating an inode,
413  * then check we didn't find a free inode.
414  *
415  * Returns:
416  *	0		if the inode free state matches the lookup context
417  *	-ENOENT		if the inode is free and we are not allocating
418  *	-EFSCORRUPTED	if there is any state mismatch at all
419  */
420 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)421 xfs_iget_check_free_state(
422 	struct xfs_inode	*ip,
423 	int			flags)
424 {
425 	if (flags & XFS_IGET_CREATE) {
426 		/* should be a free inode */
427 		if (VFS_I(ip)->i_mode != 0) {
428 			xfs_warn(ip->i_mount,
429 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
430 				ip->i_ino, VFS_I(ip)->i_mode);
431 			return -EFSCORRUPTED;
432 		}
433 
434 		if (ip->i_nblocks != 0) {
435 			xfs_warn(ip->i_mount,
436 "Corruption detected! Free inode 0x%llx has blocks allocated!",
437 				ip->i_ino);
438 			return -EFSCORRUPTED;
439 		}
440 		return 0;
441 	}
442 
443 	/* should be an allocated inode */
444 	if (VFS_I(ip)->i_mode == 0)
445 		return -ENOENT;
446 
447 	return 0;
448 }
449 
450 /* Make all pending inactivation work start immediately. */
451 static bool
xfs_inodegc_queue_all(struct xfs_mount * mp)452 xfs_inodegc_queue_all(
453 	struct xfs_mount	*mp)
454 {
455 	struct xfs_inodegc	*gc;
456 	int			cpu;
457 	bool			ret = false;
458 
459 	for_each_online_cpu(cpu) {
460 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
461 		if (!llist_empty(&gc->list)) {
462 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
463 			ret = true;
464 		}
465 	}
466 
467 	return ret;
468 }
469 
470 /*
471  * Check the validity of the inode we just found it the cache
472  */
473 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)474 xfs_iget_cache_hit(
475 	struct xfs_perag	*pag,
476 	struct xfs_inode	*ip,
477 	xfs_ino_t		ino,
478 	int			flags,
479 	int			lock_flags) __releases(RCU)
480 {
481 	struct inode		*inode = VFS_I(ip);
482 	struct xfs_mount	*mp = ip->i_mount;
483 	int			error;
484 
485 	/*
486 	 * check for re-use of an inode within an RCU grace period due to the
487 	 * radix tree nodes not being updated yet. We monitor for this by
488 	 * setting the inode number to zero before freeing the inode structure.
489 	 * If the inode has been reallocated and set up, then the inode number
490 	 * will not match, so check for that, too.
491 	 */
492 	spin_lock(&ip->i_flags_lock);
493 	if (ip->i_ino != ino)
494 		goto out_skip;
495 
496 	/*
497 	 * If we are racing with another cache hit that is currently
498 	 * instantiating this inode or currently recycling it out of
499 	 * reclaimable state, wait for the initialisation to complete
500 	 * before continuing.
501 	 *
502 	 * If we're racing with the inactivation worker we also want to wait.
503 	 * If we're creating a new file, it's possible that the worker
504 	 * previously marked the inode as free on disk but hasn't finished
505 	 * updating the incore state yet.  The AGI buffer will be dirty and
506 	 * locked to the icreate transaction, so a synchronous push of the
507 	 * inodegc workers would result in deadlock.  For a regular iget, the
508 	 * worker is running already, so we might as well wait.
509 	 *
510 	 * XXX(hch): eventually we should do something equivalent to
511 	 *	     wait_on_inode to wait for these flags to be cleared
512 	 *	     instead of polling for it.
513 	 */
514 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
515 		goto out_skip;
516 
517 	if (ip->i_flags & XFS_NEED_INACTIVE) {
518 		/* Unlinked inodes cannot be re-grabbed. */
519 		if (VFS_I(ip)->i_nlink == 0) {
520 			error = -ENOENT;
521 			goto out_error;
522 		}
523 		goto out_inodegc_flush;
524 	}
525 
526 	/*
527 	 * Check the inode free state is valid. This also detects lookup
528 	 * racing with unlinks.
529 	 */
530 	error = xfs_iget_check_free_state(ip, flags);
531 	if (error)
532 		goto out_error;
533 
534 	/* Skip inodes that have no vfs state. */
535 	if ((flags & XFS_IGET_INCORE) &&
536 	    (ip->i_flags & XFS_IRECLAIMABLE))
537 		goto out_skip;
538 
539 	/* The inode fits the selection criteria; process it. */
540 	if (ip->i_flags & XFS_IRECLAIMABLE) {
541 		/* Drops i_flags_lock and RCU read lock. */
542 		error = xfs_iget_recycle(pag, ip);
543 		if (error)
544 			return error;
545 	} else {
546 		/* If the VFS inode is being torn down, pause and try again. */
547 		if (!igrab(inode))
548 			goto out_skip;
549 
550 		/* We've got a live one. */
551 		spin_unlock(&ip->i_flags_lock);
552 		rcu_read_unlock();
553 		trace_xfs_iget_hit(ip);
554 	}
555 
556 	if (lock_flags != 0)
557 		xfs_ilock(ip, lock_flags);
558 
559 	if (!(flags & XFS_IGET_INCORE))
560 		xfs_iflags_clear(ip, XFS_ISTALE);
561 	XFS_STATS_INC(mp, xs_ig_found);
562 
563 	return 0;
564 
565 out_skip:
566 	trace_xfs_iget_skip(ip);
567 	XFS_STATS_INC(mp, xs_ig_frecycle);
568 	error = -EAGAIN;
569 out_error:
570 	spin_unlock(&ip->i_flags_lock);
571 	rcu_read_unlock();
572 	return error;
573 
574 out_inodegc_flush:
575 	spin_unlock(&ip->i_flags_lock);
576 	rcu_read_unlock();
577 	/*
578 	 * Do not wait for the workers, because the caller could hold an AGI
579 	 * buffer lock.  We're just going to sleep in a loop anyway.
580 	 */
581 	if (xfs_is_inodegc_enabled(mp))
582 		xfs_inodegc_queue_all(mp);
583 	return -EAGAIN;
584 }
585 
586 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)587 xfs_iget_cache_miss(
588 	struct xfs_mount	*mp,
589 	struct xfs_perag	*pag,
590 	xfs_trans_t		*tp,
591 	xfs_ino_t		ino,
592 	struct xfs_inode	**ipp,
593 	int			flags,
594 	int			lock_flags)
595 {
596 	struct xfs_inode	*ip;
597 	int			error;
598 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
599 	int			iflags;
600 
601 	ip = xfs_inode_alloc(mp, ino);
602 	if (!ip)
603 		return -ENOMEM;
604 
605 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
606 	if (error)
607 		goto out_destroy;
608 
609 	/*
610 	 * For version 5 superblocks, if we are initialising a new inode and we
611 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
612 	 * simply build the new inode core with a random generation number.
613 	 *
614 	 * For version 4 (and older) superblocks, log recovery is dependent on
615 	 * the i_flushiter field being initialised from the current on-disk
616 	 * value and hence we must also read the inode off disk even when
617 	 * initializing new inodes.
618 	 */
619 	if (xfs_has_v3inodes(mp) &&
620 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
621 		VFS_I(ip)->i_generation = prandom_u32();
622 	} else {
623 		struct xfs_buf		*bp;
624 
625 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
626 		if (error)
627 			goto out_destroy;
628 
629 		error = xfs_inode_from_disk(ip,
630 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
631 		if (!error)
632 			xfs_buf_set_ref(bp, XFS_INO_REF);
633 		xfs_trans_brelse(tp, bp);
634 
635 		if (error)
636 			goto out_destroy;
637 	}
638 
639 	trace_xfs_iget_miss(ip);
640 
641 	/*
642 	 * Check the inode free state is valid. This also detects lookup
643 	 * racing with unlinks.
644 	 */
645 	error = xfs_iget_check_free_state(ip, flags);
646 	if (error)
647 		goto out_destroy;
648 
649 	/*
650 	 * Preload the radix tree so we can insert safely under the
651 	 * write spinlock. Note that we cannot sleep inside the preload
652 	 * region. Since we can be called from transaction context, don't
653 	 * recurse into the file system.
654 	 */
655 	if (radix_tree_preload(GFP_NOFS)) {
656 		error = -EAGAIN;
657 		goto out_destroy;
658 	}
659 
660 	/*
661 	 * Because the inode hasn't been added to the radix-tree yet it can't
662 	 * be found by another thread, so we can do the non-sleeping lock here.
663 	 */
664 	if (lock_flags) {
665 		if (!xfs_ilock_nowait(ip, lock_flags))
666 			BUG();
667 	}
668 
669 	/*
670 	 * These values must be set before inserting the inode into the radix
671 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
672 	 * RCU locking mechanism) can find it and that lookup must see that this
673 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
674 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
675 	 * memory barrier that ensures this detection works correctly at lookup
676 	 * time.
677 	 */
678 	iflags = XFS_INEW;
679 	if (flags & XFS_IGET_DONTCACHE)
680 		d_mark_dontcache(VFS_I(ip));
681 	ip->i_udquot = NULL;
682 	ip->i_gdquot = NULL;
683 	ip->i_pdquot = NULL;
684 	xfs_iflags_set(ip, iflags);
685 
686 	/* insert the new inode */
687 	spin_lock(&pag->pag_ici_lock);
688 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
689 	if (unlikely(error)) {
690 		WARN_ON(error != -EEXIST);
691 		XFS_STATS_INC(mp, xs_ig_dup);
692 		error = -EAGAIN;
693 		goto out_preload_end;
694 	}
695 	spin_unlock(&pag->pag_ici_lock);
696 	radix_tree_preload_end();
697 
698 	*ipp = ip;
699 	return 0;
700 
701 out_preload_end:
702 	spin_unlock(&pag->pag_ici_lock);
703 	radix_tree_preload_end();
704 	if (lock_flags)
705 		xfs_iunlock(ip, lock_flags);
706 out_destroy:
707 	__destroy_inode(VFS_I(ip));
708 	xfs_inode_free(ip);
709 	return error;
710 }
711 
712 /*
713  * Look up an inode by number in the given file system.  The inode is looked up
714  * in the cache held in each AG.  If the inode is found in the cache, initialise
715  * the vfs inode if necessary.
716  *
717  * If it is not in core, read it in from the file system's device, add it to the
718  * cache and initialise the vfs inode.
719  *
720  * The inode is locked according to the value of the lock_flags parameter.
721  * Inode lookup is only done during metadata operations and not as part of the
722  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
723  */
724 int
xfs_iget(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,uint flags,uint lock_flags,struct xfs_inode ** ipp)725 xfs_iget(
726 	struct xfs_mount	*mp,
727 	struct xfs_trans	*tp,
728 	xfs_ino_t		ino,
729 	uint			flags,
730 	uint			lock_flags,
731 	struct xfs_inode	**ipp)
732 {
733 	struct xfs_inode	*ip;
734 	struct xfs_perag	*pag;
735 	xfs_agino_t		agino;
736 	int			error;
737 
738 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
739 
740 	/* reject inode numbers outside existing AGs */
741 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
742 		return -EINVAL;
743 
744 	XFS_STATS_INC(mp, xs_ig_attempts);
745 
746 	/* get the perag structure and ensure that it's inode capable */
747 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
748 	agino = XFS_INO_TO_AGINO(mp, ino);
749 
750 again:
751 	error = 0;
752 	rcu_read_lock();
753 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
754 
755 	if (ip) {
756 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
757 		if (error)
758 			goto out_error_or_again;
759 	} else {
760 		rcu_read_unlock();
761 		if (flags & XFS_IGET_INCORE) {
762 			error = -ENODATA;
763 			goto out_error_or_again;
764 		}
765 		XFS_STATS_INC(mp, xs_ig_missed);
766 
767 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
768 							flags, lock_flags);
769 		if (error)
770 			goto out_error_or_again;
771 	}
772 	xfs_perag_put(pag);
773 
774 	*ipp = ip;
775 
776 	/*
777 	 * If we have a real type for an on-disk inode, we can setup the inode
778 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
779 	 */
780 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
781 		xfs_setup_existing_inode(ip);
782 	return 0;
783 
784 out_error_or_again:
785 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
786 		delay(1);
787 		goto again;
788 	}
789 	xfs_perag_put(pag);
790 	return error;
791 }
792 
793 /*
794  * "Is this a cached inode that's also allocated?"
795  *
796  * Look up an inode by number in the given file system.  If the inode is
797  * in cache and isn't in purgatory, return 1 if the inode is allocated
798  * and 0 if it is not.  For all other cases (not in cache, being torn
799  * down, etc.), return a negative error code.
800  *
801  * The caller has to prevent inode allocation and freeing activity,
802  * presumably by locking the AGI buffer.   This is to ensure that an
803  * inode cannot transition from allocated to freed until the caller is
804  * ready to allow that.  If the inode is in an intermediate state (new,
805  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
806  * inode is not in the cache, -ENOENT will be returned.  The caller must
807  * deal with these scenarios appropriately.
808  *
809  * This is a specialized use case for the online scrubber; if you're
810  * reading this, you probably want xfs_iget.
811  */
812 int
xfs_icache_inode_is_allocated(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,bool * inuse)813 xfs_icache_inode_is_allocated(
814 	struct xfs_mount	*mp,
815 	struct xfs_trans	*tp,
816 	xfs_ino_t		ino,
817 	bool			*inuse)
818 {
819 	struct xfs_inode	*ip;
820 	int			error;
821 
822 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
823 	if (error)
824 		return error;
825 
826 	*inuse = !!(VFS_I(ip)->i_mode);
827 	xfs_irele(ip);
828 	return 0;
829 }
830 
831 /*
832  * Grab the inode for reclaim exclusively.
833  *
834  * We have found this inode via a lookup under RCU, so the inode may have
835  * already been freed, or it may be in the process of being recycled by
836  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
837  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
838  * will not be set. Hence we need to check for both these flag conditions to
839  * avoid inodes that are no longer reclaim candidates.
840  *
841  * Note: checking for other state flags here, under the i_flags_lock or not, is
842  * racy and should be avoided. Those races should be resolved only after we have
843  * ensured that we are able to reclaim this inode and the world can see that we
844  * are going to reclaim it.
845  *
846  * Return true if we grabbed it, false otherwise.
847  */
848 static bool
xfs_reclaim_igrab(struct xfs_inode * ip,struct xfs_icwalk * icw)849 xfs_reclaim_igrab(
850 	struct xfs_inode	*ip,
851 	struct xfs_icwalk	*icw)
852 {
853 	ASSERT(rcu_read_lock_held());
854 
855 	spin_lock(&ip->i_flags_lock);
856 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
857 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
858 		/* not a reclaim candidate. */
859 		spin_unlock(&ip->i_flags_lock);
860 		return false;
861 	}
862 
863 	/* Don't reclaim a sick inode unless the caller asked for it. */
864 	if (ip->i_sick &&
865 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
866 		spin_unlock(&ip->i_flags_lock);
867 		return false;
868 	}
869 
870 	__xfs_iflags_set(ip, XFS_IRECLAIM);
871 	spin_unlock(&ip->i_flags_lock);
872 	return true;
873 }
874 
875 /*
876  * Inode reclaim is non-blocking, so the default action if progress cannot be
877  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
878  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
879  * blocking anymore and hence we can wait for the inode to be able to reclaim
880  * it.
881  *
882  * We do no IO here - if callers require inodes to be cleaned they must push the
883  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
884  * done in the background in a non-blocking manner, and enables memory reclaim
885  * to make progress without blocking.
886  */
887 static void
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag)888 xfs_reclaim_inode(
889 	struct xfs_inode	*ip,
890 	struct xfs_perag	*pag)
891 {
892 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
893 
894 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
895 		goto out;
896 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
897 		goto out_iunlock;
898 
899 	if (xfs_is_shutdown(ip->i_mount)) {
900 		xfs_iunpin_wait(ip);
901 		xfs_iflush_abort(ip);
902 		goto reclaim;
903 	}
904 	if (xfs_ipincount(ip))
905 		goto out_clear_flush;
906 	if (!xfs_inode_clean(ip))
907 		goto out_clear_flush;
908 
909 	xfs_iflags_clear(ip, XFS_IFLUSHING);
910 reclaim:
911 	trace_xfs_inode_reclaiming(ip);
912 
913 	/*
914 	 * Because we use RCU freeing we need to ensure the inode always appears
915 	 * to be reclaimed with an invalid inode number when in the free state.
916 	 * We do this as early as possible under the ILOCK so that
917 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
918 	 * detect races with us here. By doing this, we guarantee that once
919 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
920 	 * it will see either a valid inode that will serialise correctly, or it
921 	 * will see an invalid inode that it can skip.
922 	 */
923 	spin_lock(&ip->i_flags_lock);
924 	ip->i_flags = XFS_IRECLAIM;
925 	ip->i_ino = 0;
926 	ip->i_sick = 0;
927 	ip->i_checked = 0;
928 	spin_unlock(&ip->i_flags_lock);
929 
930 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
931 
932 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
933 	/*
934 	 * Remove the inode from the per-AG radix tree.
935 	 *
936 	 * Because radix_tree_delete won't complain even if the item was never
937 	 * added to the tree assert that it's been there before to catch
938 	 * problems with the inode life time early on.
939 	 */
940 	spin_lock(&pag->pag_ici_lock);
941 	if (!radix_tree_delete(&pag->pag_ici_root,
942 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
943 		ASSERT(0);
944 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
945 	spin_unlock(&pag->pag_ici_lock);
946 
947 	/*
948 	 * Here we do an (almost) spurious inode lock in order to coordinate
949 	 * with inode cache radix tree lookups.  This is because the lookup
950 	 * can reference the inodes in the cache without taking references.
951 	 *
952 	 * We make that OK here by ensuring that we wait until the inode is
953 	 * unlocked after the lookup before we go ahead and free it.
954 	 */
955 	xfs_ilock(ip, XFS_ILOCK_EXCL);
956 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
957 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
958 	ASSERT(xfs_inode_clean(ip));
959 
960 	__xfs_inode_free(ip);
961 	return;
962 
963 out_clear_flush:
964 	xfs_iflags_clear(ip, XFS_IFLUSHING);
965 out_iunlock:
966 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
967 out:
968 	xfs_iflags_clear(ip, XFS_IRECLAIM);
969 }
970 
971 /* Reclaim sick inodes if we're unmounting or the fs went down. */
972 static inline bool
xfs_want_reclaim_sick(struct xfs_mount * mp)973 xfs_want_reclaim_sick(
974 	struct xfs_mount	*mp)
975 {
976 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
977 	       xfs_is_shutdown(mp);
978 }
979 
980 void
xfs_reclaim_inodes(struct xfs_mount * mp)981 xfs_reclaim_inodes(
982 	struct xfs_mount	*mp)
983 {
984 	struct xfs_icwalk	icw = {
985 		.icw_flags	= 0,
986 	};
987 
988 	if (xfs_want_reclaim_sick(mp))
989 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
990 
991 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
992 		xfs_ail_push_all_sync(mp->m_ail);
993 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
994 	}
995 }
996 
997 /*
998  * The shrinker infrastructure determines how many inodes we should scan for
999  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1000  * push the AIL here. We also want to proactively free up memory if we can to
1001  * minimise the amount of work memory reclaim has to do so we kick the
1002  * background reclaim if it isn't already scheduled.
1003  */
1004 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,unsigned long nr_to_scan)1005 xfs_reclaim_inodes_nr(
1006 	struct xfs_mount	*mp,
1007 	unsigned long		nr_to_scan)
1008 {
1009 	struct xfs_icwalk	icw = {
1010 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1011 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1012 	};
1013 
1014 	if (xfs_want_reclaim_sick(mp))
1015 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1016 
1017 	/* kick background reclaimer and push the AIL */
1018 	xfs_reclaim_work_queue(mp);
1019 	xfs_ail_push_all(mp->m_ail);
1020 
1021 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Return the number of reclaimable inodes in the filesystem for
1027  * the shrinker to determine how much to reclaim.
1028  */
1029 long
xfs_reclaim_inodes_count(struct xfs_mount * mp)1030 xfs_reclaim_inodes_count(
1031 	struct xfs_mount	*mp)
1032 {
1033 	struct xfs_perag	*pag;
1034 	xfs_agnumber_t		ag = 0;
1035 	long			reclaimable = 0;
1036 
1037 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1038 		ag = pag->pag_agno + 1;
1039 		reclaimable += pag->pag_ici_reclaimable;
1040 		xfs_perag_put(pag);
1041 	}
1042 	return reclaimable;
1043 }
1044 
1045 STATIC bool
xfs_icwalk_match_id(struct xfs_inode * ip,struct xfs_icwalk * icw)1046 xfs_icwalk_match_id(
1047 	struct xfs_inode	*ip,
1048 	struct xfs_icwalk	*icw)
1049 {
1050 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1051 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1052 		return false;
1053 
1054 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1055 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1056 		return false;
1057 
1058 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1059 	    ip->i_projid != icw->icw_prid)
1060 		return false;
1061 
1062 	return true;
1063 }
1064 
1065 /*
1066  * A union-based inode filtering algorithm. Process the inode if any of the
1067  * criteria match. This is for global/internal scans only.
1068  */
1069 STATIC bool
xfs_icwalk_match_id_union(struct xfs_inode * ip,struct xfs_icwalk * icw)1070 xfs_icwalk_match_id_union(
1071 	struct xfs_inode	*ip,
1072 	struct xfs_icwalk	*icw)
1073 {
1074 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1075 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1076 		return true;
1077 
1078 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1079 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1080 		return true;
1081 
1082 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1083 	    ip->i_projid == icw->icw_prid)
1084 		return true;
1085 
1086 	return false;
1087 }
1088 
1089 /*
1090  * Is this inode @ip eligible for eof/cow block reclamation, given some
1091  * filtering parameters @icw?  The inode is eligible if @icw is null or
1092  * if the predicate functions match.
1093  */
1094 static bool
xfs_icwalk_match(struct xfs_inode * ip,struct xfs_icwalk * icw)1095 xfs_icwalk_match(
1096 	struct xfs_inode	*ip,
1097 	struct xfs_icwalk	*icw)
1098 {
1099 	bool			match;
1100 
1101 	if (!icw)
1102 		return true;
1103 
1104 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1105 		match = xfs_icwalk_match_id_union(ip, icw);
1106 	else
1107 		match = xfs_icwalk_match_id(ip, icw);
1108 	if (!match)
1109 		return false;
1110 
1111 	/* skip the inode if the file size is too small */
1112 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1113 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1114 		return false;
1115 
1116 	return true;
1117 }
1118 
1119 /*
1120  * This is a fast pass over the inode cache to try to get reclaim moving on as
1121  * many inodes as possible in a short period of time. It kicks itself every few
1122  * seconds, as well as being kicked by the inode cache shrinker when memory
1123  * goes low.
1124  */
1125 void
xfs_reclaim_worker(struct work_struct * work)1126 xfs_reclaim_worker(
1127 	struct work_struct *work)
1128 {
1129 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1130 					struct xfs_mount, m_reclaim_work);
1131 
1132 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1133 	xfs_reclaim_work_queue(mp);
1134 }
1135 
1136 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1137 xfs_inode_free_eofblocks(
1138 	struct xfs_inode	*ip,
1139 	struct xfs_icwalk	*icw,
1140 	unsigned int		*lockflags)
1141 {
1142 	bool			wait;
1143 
1144 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1145 
1146 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1147 		return 0;
1148 
1149 	/*
1150 	 * If the mapping is dirty the operation can block and wait for some
1151 	 * time. Unless we are waiting, skip it.
1152 	 */
1153 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1154 		return 0;
1155 
1156 	if (!xfs_icwalk_match(ip, icw))
1157 		return 0;
1158 
1159 	/*
1160 	 * If the caller is waiting, return -EAGAIN to keep the background
1161 	 * scanner moving and revisit the inode in a subsequent pass.
1162 	 */
1163 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1164 		if (wait)
1165 			return -EAGAIN;
1166 		return 0;
1167 	}
1168 	*lockflags |= XFS_IOLOCK_EXCL;
1169 
1170 	if (xfs_can_free_eofblocks(ip, false))
1171 		return xfs_free_eofblocks(ip);
1172 
1173 	/* inode could be preallocated or append-only */
1174 	trace_xfs_inode_free_eofblocks_invalid(ip);
1175 	xfs_inode_clear_eofblocks_tag(ip);
1176 	return 0;
1177 }
1178 
1179 static void
xfs_blockgc_set_iflag(struct xfs_inode * ip,unsigned long iflag)1180 xfs_blockgc_set_iflag(
1181 	struct xfs_inode	*ip,
1182 	unsigned long		iflag)
1183 {
1184 	struct xfs_mount	*mp = ip->i_mount;
1185 	struct xfs_perag	*pag;
1186 
1187 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1188 
1189 	/*
1190 	 * Don't bother locking the AG and looking up in the radix trees
1191 	 * if we already know that we have the tag set.
1192 	 */
1193 	if (ip->i_flags & iflag)
1194 		return;
1195 	spin_lock(&ip->i_flags_lock);
1196 	ip->i_flags |= iflag;
1197 	spin_unlock(&ip->i_flags_lock);
1198 
1199 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1200 	spin_lock(&pag->pag_ici_lock);
1201 
1202 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1203 			XFS_ICI_BLOCKGC_TAG);
1204 
1205 	spin_unlock(&pag->pag_ici_lock);
1206 	xfs_perag_put(pag);
1207 }
1208 
1209 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1210 xfs_inode_set_eofblocks_tag(
1211 	xfs_inode_t	*ip)
1212 {
1213 	trace_xfs_inode_set_eofblocks_tag(ip);
1214 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1215 }
1216 
1217 static void
xfs_blockgc_clear_iflag(struct xfs_inode * ip,unsigned long iflag)1218 xfs_blockgc_clear_iflag(
1219 	struct xfs_inode	*ip,
1220 	unsigned long		iflag)
1221 {
1222 	struct xfs_mount	*mp = ip->i_mount;
1223 	struct xfs_perag	*pag;
1224 	bool			clear_tag;
1225 
1226 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1227 
1228 	spin_lock(&ip->i_flags_lock);
1229 	ip->i_flags &= ~iflag;
1230 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1231 	spin_unlock(&ip->i_flags_lock);
1232 
1233 	if (!clear_tag)
1234 		return;
1235 
1236 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1237 	spin_lock(&pag->pag_ici_lock);
1238 
1239 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1240 			XFS_ICI_BLOCKGC_TAG);
1241 
1242 	spin_unlock(&pag->pag_ici_lock);
1243 	xfs_perag_put(pag);
1244 }
1245 
1246 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1247 xfs_inode_clear_eofblocks_tag(
1248 	xfs_inode_t	*ip)
1249 {
1250 	trace_xfs_inode_clear_eofblocks_tag(ip);
1251 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1252 }
1253 
1254 /*
1255  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1256  * then we can bail out quickly, but otherwise we must back off if the file
1257  * is undergoing some kind of write.
1258  */
1259 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip)1260 xfs_prep_free_cowblocks(
1261 	struct xfs_inode	*ip)
1262 {
1263 	/*
1264 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1265 	 * possible the inode was fully unshared since it was originally tagged.
1266 	 */
1267 	if (!xfs_inode_has_cow_data(ip)) {
1268 		trace_xfs_inode_free_cowblocks_invalid(ip);
1269 		xfs_inode_clear_cowblocks_tag(ip);
1270 		return false;
1271 	}
1272 
1273 	/*
1274 	 * If the mapping is dirty or under writeback we cannot touch the
1275 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1276 	 */
1277 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1278 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1279 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1280 	    atomic_read(&VFS_I(ip)->i_dio_count))
1281 		return false;
1282 
1283 	return true;
1284 }
1285 
1286 /*
1287  * Automatic CoW Reservation Freeing
1288  *
1289  * These functions automatically garbage collect leftover CoW reservations
1290  * that were made on behalf of a cowextsize hint when we start to run out
1291  * of quota or when the reservations sit around for too long.  If the file
1292  * has dirty pages or is undergoing writeback, its CoW reservations will
1293  * be retained.
1294  *
1295  * The actual garbage collection piggybacks off the same code that runs
1296  * the speculative EOF preallocation garbage collector.
1297  */
1298 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1299 xfs_inode_free_cowblocks(
1300 	struct xfs_inode	*ip,
1301 	struct xfs_icwalk	*icw,
1302 	unsigned int		*lockflags)
1303 {
1304 	bool			wait;
1305 	int			ret = 0;
1306 
1307 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1308 
1309 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1310 		return 0;
1311 
1312 	if (!xfs_prep_free_cowblocks(ip))
1313 		return 0;
1314 
1315 	if (!xfs_icwalk_match(ip, icw))
1316 		return 0;
1317 
1318 	/*
1319 	 * If the caller is waiting, return -EAGAIN to keep the background
1320 	 * scanner moving and revisit the inode in a subsequent pass.
1321 	 */
1322 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1323 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1324 		if (wait)
1325 			return -EAGAIN;
1326 		return 0;
1327 	}
1328 	*lockflags |= XFS_IOLOCK_EXCL;
1329 
1330 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1331 		if (wait)
1332 			return -EAGAIN;
1333 		return 0;
1334 	}
1335 	*lockflags |= XFS_MMAPLOCK_EXCL;
1336 
1337 	/*
1338 	 * Check again, nobody else should be able to dirty blocks or change
1339 	 * the reflink iflag now that we have the first two locks held.
1340 	 */
1341 	if (xfs_prep_free_cowblocks(ip))
1342 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1343 	return ret;
1344 }
1345 
1346 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1347 xfs_inode_set_cowblocks_tag(
1348 	xfs_inode_t	*ip)
1349 {
1350 	trace_xfs_inode_set_cowblocks_tag(ip);
1351 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1352 }
1353 
1354 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1355 xfs_inode_clear_cowblocks_tag(
1356 	xfs_inode_t	*ip)
1357 {
1358 	trace_xfs_inode_clear_cowblocks_tag(ip);
1359 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1360 }
1361 
1362 /* Disable post-EOF and CoW block auto-reclamation. */
1363 void
xfs_blockgc_stop(struct xfs_mount * mp)1364 xfs_blockgc_stop(
1365 	struct xfs_mount	*mp)
1366 {
1367 	struct xfs_perag	*pag;
1368 	xfs_agnumber_t		agno;
1369 
1370 	if (!xfs_clear_blockgc_enabled(mp))
1371 		return;
1372 
1373 	for_each_perag(mp, agno, pag)
1374 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1375 	trace_xfs_blockgc_stop(mp, __return_address);
1376 }
1377 
1378 /* Enable post-EOF and CoW block auto-reclamation. */
1379 void
xfs_blockgc_start(struct xfs_mount * mp)1380 xfs_blockgc_start(
1381 	struct xfs_mount	*mp)
1382 {
1383 	struct xfs_perag	*pag;
1384 	xfs_agnumber_t		agno;
1385 
1386 	if (xfs_set_blockgc_enabled(mp))
1387 		return;
1388 
1389 	trace_xfs_blockgc_start(mp, __return_address);
1390 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1391 		xfs_blockgc_queue(pag);
1392 }
1393 
1394 /* Don't try to run block gc on an inode that's in any of these states. */
1395 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1396 					 XFS_NEED_INACTIVE | \
1397 					 XFS_INACTIVATING | \
1398 					 XFS_IRECLAIMABLE | \
1399 					 XFS_IRECLAIM)
1400 /*
1401  * Decide if the given @ip is eligible for garbage collection of speculative
1402  * preallocations, and grab it if so.  Returns true if it's ready to go or
1403  * false if we should just ignore it.
1404  */
1405 static bool
xfs_blockgc_igrab(struct xfs_inode * ip)1406 xfs_blockgc_igrab(
1407 	struct xfs_inode	*ip)
1408 {
1409 	struct inode		*inode = VFS_I(ip);
1410 
1411 	ASSERT(rcu_read_lock_held());
1412 
1413 	/* Check for stale RCU freed inode */
1414 	spin_lock(&ip->i_flags_lock);
1415 	if (!ip->i_ino)
1416 		goto out_unlock_noent;
1417 
1418 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1419 		goto out_unlock_noent;
1420 	spin_unlock(&ip->i_flags_lock);
1421 
1422 	/* nothing to sync during shutdown */
1423 	if (xfs_is_shutdown(ip->i_mount))
1424 		return false;
1425 
1426 	/* If we can't grab the inode, it must on it's way to reclaim. */
1427 	if (!igrab(inode))
1428 		return false;
1429 
1430 	/* inode is valid */
1431 	return true;
1432 
1433 out_unlock_noent:
1434 	spin_unlock(&ip->i_flags_lock);
1435 	return false;
1436 }
1437 
1438 /* Scan one incore inode for block preallocations that we can remove. */
1439 static int
xfs_blockgc_scan_inode(struct xfs_inode * ip,struct xfs_icwalk * icw)1440 xfs_blockgc_scan_inode(
1441 	struct xfs_inode	*ip,
1442 	struct xfs_icwalk	*icw)
1443 {
1444 	unsigned int		lockflags = 0;
1445 	int			error;
1446 
1447 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1448 	if (error)
1449 		goto unlock;
1450 
1451 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1452 unlock:
1453 	if (lockflags)
1454 		xfs_iunlock(ip, lockflags);
1455 	xfs_irele(ip);
1456 	return error;
1457 }
1458 
1459 /* Background worker that trims preallocated space. */
1460 void
xfs_blockgc_worker(struct work_struct * work)1461 xfs_blockgc_worker(
1462 	struct work_struct	*work)
1463 {
1464 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1465 					struct xfs_perag, pag_blockgc_work);
1466 	struct xfs_mount	*mp = pag->pag_mount;
1467 	int			error;
1468 
1469 	trace_xfs_blockgc_worker(mp, __return_address);
1470 
1471 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1472 	if (error)
1473 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1474 				pag->pag_agno, error);
1475 	xfs_blockgc_queue(pag);
1476 }
1477 
1478 /*
1479  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1480  * and cowblocks.
1481  */
1482 int
xfs_blockgc_free_space(struct xfs_mount * mp,struct xfs_icwalk * icw)1483 xfs_blockgc_free_space(
1484 	struct xfs_mount	*mp,
1485 	struct xfs_icwalk	*icw)
1486 {
1487 	int			error;
1488 
1489 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1490 
1491 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1492 	if (error)
1493 		return error;
1494 
1495 	xfs_inodegc_flush(mp);
1496 	return 0;
1497 }
1498 
1499 /*
1500  * Reclaim all the free space that we can by scheduling the background blockgc
1501  * and inodegc workers immediately and waiting for them all to clear.
1502  */
1503 void
xfs_blockgc_flush_all(struct xfs_mount * mp)1504 xfs_blockgc_flush_all(
1505 	struct xfs_mount	*mp)
1506 {
1507 	struct xfs_perag	*pag;
1508 	xfs_agnumber_t		agno;
1509 
1510 	trace_xfs_blockgc_flush_all(mp, __return_address);
1511 
1512 	/*
1513 	 * For each blockgc worker, move its queue time up to now.  If it
1514 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1515 	 * left.
1516 	 */
1517 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1518 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1519 				&pag->pag_blockgc_work, 0);
1520 
1521 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1522 		flush_delayed_work(&pag->pag_blockgc_work);
1523 
1524 	xfs_inodegc_flush(mp);
1525 }
1526 
1527 /*
1528  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1529  * quota caused an allocation failure, so we make a best effort by including
1530  * each quota under low free space conditions (less than 1% free space) in the
1531  * scan.
1532  *
1533  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1534  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1535  * MMAPLOCK.
1536  */
1537 int
xfs_blockgc_free_dquots(struct xfs_mount * mp,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int iwalk_flags)1538 xfs_blockgc_free_dquots(
1539 	struct xfs_mount	*mp,
1540 	struct xfs_dquot	*udqp,
1541 	struct xfs_dquot	*gdqp,
1542 	struct xfs_dquot	*pdqp,
1543 	unsigned int		iwalk_flags)
1544 {
1545 	struct xfs_icwalk	icw = {0};
1546 	bool			do_work = false;
1547 
1548 	if (!udqp && !gdqp && !pdqp)
1549 		return 0;
1550 
1551 	/*
1552 	 * Run a scan to free blocks using the union filter to cover all
1553 	 * applicable quotas in a single scan.
1554 	 */
1555 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1556 
1557 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1558 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1559 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1560 		do_work = true;
1561 	}
1562 
1563 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1564 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1565 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1566 		do_work = true;
1567 	}
1568 
1569 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1570 		icw.icw_prid = pdqp->q_id;
1571 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1572 		do_work = true;
1573 	}
1574 
1575 	if (!do_work)
1576 		return 0;
1577 
1578 	return xfs_blockgc_free_space(mp, &icw);
1579 }
1580 
1581 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1582 int
xfs_blockgc_free_quota(struct xfs_inode * ip,unsigned int iwalk_flags)1583 xfs_blockgc_free_quota(
1584 	struct xfs_inode	*ip,
1585 	unsigned int		iwalk_flags)
1586 {
1587 	return xfs_blockgc_free_dquots(ip->i_mount,
1588 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1589 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1590 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1591 }
1592 
1593 /* XFS Inode Cache Walking Code */
1594 
1595 /*
1596  * The inode lookup is done in batches to keep the amount of lock traffic and
1597  * radix tree lookups to a minimum. The batch size is a trade off between
1598  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1599  * be too greedy.
1600  */
1601 #define XFS_LOOKUP_BATCH	32
1602 
1603 
1604 /*
1605  * Decide if we want to grab this inode in anticipation of doing work towards
1606  * the goal.
1607  */
1608 static inline bool
xfs_icwalk_igrab(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_icwalk * icw)1609 xfs_icwalk_igrab(
1610 	enum xfs_icwalk_goal	goal,
1611 	struct xfs_inode	*ip,
1612 	struct xfs_icwalk	*icw)
1613 {
1614 	switch (goal) {
1615 	case XFS_ICWALK_BLOCKGC:
1616 		return xfs_blockgc_igrab(ip);
1617 	case XFS_ICWALK_RECLAIM:
1618 		return xfs_reclaim_igrab(ip, icw);
1619 	default:
1620 		return false;
1621 	}
1622 }
1623 
1624 /*
1625  * Process an inode.  Each processing function must handle any state changes
1626  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1627  */
1628 static inline int
xfs_icwalk_process_inode(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_perag * pag,struct xfs_icwalk * icw)1629 xfs_icwalk_process_inode(
1630 	enum xfs_icwalk_goal	goal,
1631 	struct xfs_inode	*ip,
1632 	struct xfs_perag	*pag,
1633 	struct xfs_icwalk	*icw)
1634 {
1635 	int			error = 0;
1636 
1637 	switch (goal) {
1638 	case XFS_ICWALK_BLOCKGC:
1639 		error = xfs_blockgc_scan_inode(ip, icw);
1640 		break;
1641 	case XFS_ICWALK_RECLAIM:
1642 		xfs_reclaim_inode(ip, pag);
1643 		break;
1644 	}
1645 	return error;
1646 }
1647 
1648 /*
1649  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1650  * process them in some manner.
1651  */
1652 static int
xfs_icwalk_ag(struct xfs_perag * pag,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1653 xfs_icwalk_ag(
1654 	struct xfs_perag	*pag,
1655 	enum xfs_icwalk_goal	goal,
1656 	struct xfs_icwalk	*icw)
1657 {
1658 	struct xfs_mount	*mp = pag->pag_mount;
1659 	uint32_t		first_index;
1660 	int			last_error = 0;
1661 	int			skipped;
1662 	bool			done;
1663 	int			nr_found;
1664 
1665 restart:
1666 	done = false;
1667 	skipped = 0;
1668 	if (goal == XFS_ICWALK_RECLAIM)
1669 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1670 	else
1671 		first_index = 0;
1672 	nr_found = 0;
1673 	do {
1674 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1675 		int		error = 0;
1676 		int		i;
1677 
1678 		rcu_read_lock();
1679 
1680 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1681 				(void **) batch, first_index,
1682 				XFS_LOOKUP_BATCH, goal);
1683 		if (!nr_found) {
1684 			done = true;
1685 			rcu_read_unlock();
1686 			break;
1687 		}
1688 
1689 		/*
1690 		 * Grab the inodes before we drop the lock. if we found
1691 		 * nothing, nr == 0 and the loop will be skipped.
1692 		 */
1693 		for (i = 0; i < nr_found; i++) {
1694 			struct xfs_inode *ip = batch[i];
1695 
1696 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1697 				batch[i] = NULL;
1698 
1699 			/*
1700 			 * Update the index for the next lookup. Catch
1701 			 * overflows into the next AG range which can occur if
1702 			 * we have inodes in the last block of the AG and we
1703 			 * are currently pointing to the last inode.
1704 			 *
1705 			 * Because we may see inodes that are from the wrong AG
1706 			 * due to RCU freeing and reallocation, only update the
1707 			 * index if it lies in this AG. It was a race that lead
1708 			 * us to see this inode, so another lookup from the
1709 			 * same index will not find it again.
1710 			 */
1711 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1712 				continue;
1713 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1714 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1715 				done = true;
1716 		}
1717 
1718 		/* unlock now we've grabbed the inodes. */
1719 		rcu_read_unlock();
1720 
1721 		for (i = 0; i < nr_found; i++) {
1722 			if (!batch[i])
1723 				continue;
1724 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1725 					icw);
1726 			if (error == -EAGAIN) {
1727 				skipped++;
1728 				continue;
1729 			}
1730 			if (error && last_error != -EFSCORRUPTED)
1731 				last_error = error;
1732 		}
1733 
1734 		/* bail out if the filesystem is corrupted.  */
1735 		if (error == -EFSCORRUPTED)
1736 			break;
1737 
1738 		cond_resched();
1739 
1740 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1741 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1742 			if (icw->icw_scan_limit <= 0)
1743 				break;
1744 		}
1745 	} while (nr_found && !done);
1746 
1747 	if (goal == XFS_ICWALK_RECLAIM) {
1748 		if (done)
1749 			first_index = 0;
1750 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1751 	}
1752 
1753 	if (skipped) {
1754 		delay(1);
1755 		goto restart;
1756 	}
1757 	return last_error;
1758 }
1759 
1760 /* Walk all incore inodes to achieve a given goal. */
1761 static int
xfs_icwalk(struct xfs_mount * mp,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1762 xfs_icwalk(
1763 	struct xfs_mount	*mp,
1764 	enum xfs_icwalk_goal	goal,
1765 	struct xfs_icwalk	*icw)
1766 {
1767 	struct xfs_perag	*pag;
1768 	int			error = 0;
1769 	int			last_error = 0;
1770 	xfs_agnumber_t		agno;
1771 
1772 	for_each_perag_tag(mp, agno, pag, goal) {
1773 		error = xfs_icwalk_ag(pag, goal, icw);
1774 		if (error) {
1775 			last_error = error;
1776 			if (error == -EFSCORRUPTED) {
1777 				xfs_perag_put(pag);
1778 				break;
1779 			}
1780 		}
1781 	}
1782 	return last_error;
1783 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1784 }
1785 
1786 #ifdef DEBUG
1787 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)1788 xfs_check_delalloc(
1789 	struct xfs_inode	*ip,
1790 	int			whichfork)
1791 {
1792 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
1793 	struct xfs_bmbt_irec	got;
1794 	struct xfs_iext_cursor	icur;
1795 
1796 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1797 		return;
1798 	do {
1799 		if (isnullstartblock(got.br_startblock)) {
1800 			xfs_warn(ip->i_mount,
1801 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1802 				ip->i_ino,
1803 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1804 				got.br_startoff, got.br_blockcount);
1805 		}
1806 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1807 }
1808 #else
1809 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1810 #endif
1811 
1812 /* Schedule the inode for reclaim. */
1813 static void
xfs_inodegc_set_reclaimable(struct xfs_inode * ip)1814 xfs_inodegc_set_reclaimable(
1815 	struct xfs_inode	*ip)
1816 {
1817 	struct xfs_mount	*mp = ip->i_mount;
1818 	struct xfs_perag	*pag;
1819 
1820 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1821 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1822 		xfs_check_delalloc(ip, XFS_COW_FORK);
1823 		ASSERT(0);
1824 	}
1825 
1826 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1827 	spin_lock(&pag->pag_ici_lock);
1828 	spin_lock(&ip->i_flags_lock);
1829 
1830 	trace_xfs_inode_set_reclaimable(ip);
1831 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1832 	ip->i_flags |= XFS_IRECLAIMABLE;
1833 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1834 			XFS_ICI_RECLAIM_TAG);
1835 
1836 	spin_unlock(&ip->i_flags_lock);
1837 	spin_unlock(&pag->pag_ici_lock);
1838 	xfs_perag_put(pag);
1839 }
1840 
1841 /*
1842  * Free all speculative preallocations and possibly even the inode itself.
1843  * This is the last chance to make changes to an otherwise unreferenced file
1844  * before incore reclamation happens.
1845  */
1846 static void
xfs_inodegc_inactivate(struct xfs_inode * ip)1847 xfs_inodegc_inactivate(
1848 	struct xfs_inode	*ip)
1849 {
1850 	trace_xfs_inode_inactivating(ip);
1851 	xfs_inactive(ip);
1852 	xfs_inodegc_set_reclaimable(ip);
1853 }
1854 
1855 void
xfs_inodegc_worker(struct work_struct * work)1856 xfs_inodegc_worker(
1857 	struct work_struct	*work)
1858 {
1859 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1860 						struct xfs_inodegc, work);
1861 	struct llist_node	*node = llist_del_all(&gc->list);
1862 	struct xfs_inode	*ip, *n;
1863 
1864 	ASSERT(gc->cpu == smp_processor_id());
1865 
1866 	WRITE_ONCE(gc->items, 0);
1867 
1868 	if (!node)
1869 		return;
1870 
1871 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1872 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1873 
1874 	WRITE_ONCE(gc->shrinker_hits, 0);
1875 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1876 		xfs_iflags_set(ip, XFS_INACTIVATING);
1877 		xfs_inodegc_inactivate(ip);
1878 	}
1879 }
1880 
1881 /*
1882  * Expedite all pending inodegc work to run immediately. This does not wait for
1883  * completion of the work.
1884  */
1885 void
xfs_inodegc_push(struct xfs_mount * mp)1886 xfs_inodegc_push(
1887 	struct xfs_mount	*mp)
1888 {
1889 	if (!xfs_is_inodegc_enabled(mp))
1890 		return;
1891 	trace_xfs_inodegc_push(mp, __return_address);
1892 	xfs_inodegc_queue_all(mp);
1893 }
1894 
1895 /*
1896  * Force all currently queued inode inactivation work to run immediately and
1897  * wait for the work to finish.
1898  */
1899 void
xfs_inodegc_flush(struct xfs_mount * mp)1900 xfs_inodegc_flush(
1901 	struct xfs_mount	*mp)
1902 {
1903 	xfs_inodegc_push(mp);
1904 	trace_xfs_inodegc_flush(mp, __return_address);
1905 	flush_workqueue(mp->m_inodegc_wq);
1906 }
1907 
1908 /*
1909  * Flush all the pending work and then disable the inode inactivation background
1910  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1911  * coordinate changes in the inodegc_enabled state.
1912  */
1913 void
xfs_inodegc_stop(struct xfs_mount * mp)1914 xfs_inodegc_stop(
1915 	struct xfs_mount	*mp)
1916 {
1917 	bool			rerun;
1918 
1919 	if (!xfs_clear_inodegc_enabled(mp))
1920 		return;
1921 
1922 	/*
1923 	 * Drain all pending inodegc work, including inodes that could be
1924 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1925 	 * threads that sample the inodegc state just prior to us clearing it.
1926 	 * The inodegc flag state prevents new threads from queuing more
1927 	 * inodes, so we queue pending work items and flush the workqueue until
1928 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1929 	 * here because it does not allow other unserialized mechanisms to
1930 	 * reschedule inodegc work while this draining is in progress.
1931 	 */
1932 	xfs_inodegc_queue_all(mp);
1933 	do {
1934 		flush_workqueue(mp->m_inodegc_wq);
1935 		rerun = xfs_inodegc_queue_all(mp);
1936 	} while (rerun);
1937 
1938 	trace_xfs_inodegc_stop(mp, __return_address);
1939 }
1940 
1941 /*
1942  * Enable the inode inactivation background workers and schedule deferred inode
1943  * inactivation work if there is any.  Caller must hold sb->s_umount to
1944  * coordinate changes in the inodegc_enabled state.
1945  */
1946 void
xfs_inodegc_start(struct xfs_mount * mp)1947 xfs_inodegc_start(
1948 	struct xfs_mount	*mp)
1949 {
1950 	if (xfs_set_inodegc_enabled(mp))
1951 		return;
1952 
1953 	trace_xfs_inodegc_start(mp, __return_address);
1954 	xfs_inodegc_queue_all(mp);
1955 }
1956 
1957 #ifdef CONFIG_XFS_RT
1958 static inline bool
xfs_inodegc_want_queue_rt_file(struct xfs_inode * ip)1959 xfs_inodegc_want_queue_rt_file(
1960 	struct xfs_inode	*ip)
1961 {
1962 	struct xfs_mount	*mp = ip->i_mount;
1963 	uint64_t		freertx;
1964 
1965 	if (!XFS_IS_REALTIME_INODE(ip))
1966 		return false;
1967 
1968 	freertx = READ_ONCE(mp->m_sb.sb_frextents);
1969 	return freertx < mp->m_low_rtexts[XFS_LOWSP_5_PCNT];
1970 }
1971 #else
1972 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1973 #endif /* CONFIG_XFS_RT */
1974 
1975 /*
1976  * Schedule the inactivation worker when:
1977  *
1978  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1979  *  - There is less than 5% free space left.
1980  *  - Any of the quotas for this inode are near an enforcement limit.
1981  */
1982 static inline bool
xfs_inodegc_want_queue_work(struct xfs_inode * ip,unsigned int items)1983 xfs_inodegc_want_queue_work(
1984 	struct xfs_inode	*ip,
1985 	unsigned int		items)
1986 {
1987 	struct xfs_mount	*mp = ip->i_mount;
1988 
1989 	if (items > mp->m_ino_geo.inodes_per_cluster)
1990 		return true;
1991 
1992 	if (__percpu_counter_compare(&mp->m_fdblocks,
1993 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1994 				XFS_FDBLOCKS_BATCH) < 0)
1995 		return true;
1996 
1997 	if (xfs_inodegc_want_queue_rt_file(ip))
1998 		return true;
1999 
2000 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2001 		return true;
2002 
2003 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2004 		return true;
2005 
2006 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2007 		return true;
2008 
2009 	return false;
2010 }
2011 
2012 /*
2013  * Upper bound on the number of inodes in each AG that can be queued for
2014  * inactivation at any given time, to avoid monopolizing the workqueue.
2015  */
2016 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2017 
2018 /*
2019  * Make the frontend wait for inactivations when:
2020  *
2021  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2022  *  - The queue depth exceeds the maximum allowable percpu backlog.
2023  *
2024  * Note: If the current thread is running a transaction, we don't ever want to
2025  * wait for other transactions because that could introduce a deadlock.
2026  */
2027 static inline bool
xfs_inodegc_want_flush_work(struct xfs_inode * ip,unsigned int items,unsigned int shrinker_hits)2028 xfs_inodegc_want_flush_work(
2029 	struct xfs_inode	*ip,
2030 	unsigned int		items,
2031 	unsigned int		shrinker_hits)
2032 {
2033 	if (current->journal_info)
2034 		return false;
2035 
2036 	if (shrinker_hits > 0)
2037 		return true;
2038 
2039 	if (items > XFS_INODEGC_MAX_BACKLOG)
2040 		return true;
2041 
2042 	return false;
2043 }
2044 
2045 /*
2046  * Queue a background inactivation worker if there are inodes that need to be
2047  * inactivated and higher level xfs code hasn't disabled the background
2048  * workers.
2049  */
2050 static void
xfs_inodegc_queue(struct xfs_inode * ip)2051 xfs_inodegc_queue(
2052 	struct xfs_inode	*ip)
2053 {
2054 	struct xfs_mount	*mp = ip->i_mount;
2055 	struct xfs_inodegc	*gc;
2056 	int			items;
2057 	unsigned int		shrinker_hits;
2058 	unsigned long		queue_delay = 1;
2059 
2060 	trace_xfs_inode_set_need_inactive(ip);
2061 	spin_lock(&ip->i_flags_lock);
2062 	ip->i_flags |= XFS_NEED_INACTIVE;
2063 	spin_unlock(&ip->i_flags_lock);
2064 
2065 	gc = get_cpu_ptr(mp->m_inodegc);
2066 	llist_add(&ip->i_gclist, &gc->list);
2067 	items = READ_ONCE(gc->items);
2068 	WRITE_ONCE(gc->items, items + 1);
2069 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2070 
2071 	/*
2072 	 * We queue the work while holding the current CPU so that the work
2073 	 * is scheduled to run on this CPU.
2074 	 */
2075 	if (!xfs_is_inodegc_enabled(mp)) {
2076 		put_cpu_ptr(gc);
2077 		return;
2078 	}
2079 
2080 	if (xfs_inodegc_want_queue_work(ip, items))
2081 		queue_delay = 0;
2082 
2083 	trace_xfs_inodegc_queue(mp, __return_address);
2084 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2085 			queue_delay);
2086 	put_cpu_ptr(gc);
2087 
2088 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2089 		trace_xfs_inodegc_throttle(mp, __return_address);
2090 		flush_delayed_work(&gc->work);
2091 	}
2092 }
2093 
2094 /*
2095  * Fold the dead CPU inodegc queue into the current CPUs queue.
2096  */
2097 void
xfs_inodegc_cpu_dead(struct xfs_mount * mp,unsigned int dead_cpu)2098 xfs_inodegc_cpu_dead(
2099 	struct xfs_mount	*mp,
2100 	unsigned int		dead_cpu)
2101 {
2102 	struct xfs_inodegc	*dead_gc, *gc;
2103 	struct llist_node	*first, *last;
2104 	unsigned int		count = 0;
2105 
2106 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2107 	cancel_delayed_work_sync(&dead_gc->work);
2108 
2109 	if (llist_empty(&dead_gc->list))
2110 		return;
2111 
2112 	first = dead_gc->list.first;
2113 	last = first;
2114 	while (last->next) {
2115 		last = last->next;
2116 		count++;
2117 	}
2118 	dead_gc->list.first = NULL;
2119 	dead_gc->items = 0;
2120 
2121 	/* Add pending work to current CPU */
2122 	gc = get_cpu_ptr(mp->m_inodegc);
2123 	llist_add_batch(first, last, &gc->list);
2124 	count += READ_ONCE(gc->items);
2125 	WRITE_ONCE(gc->items, count);
2126 
2127 	if (xfs_is_inodegc_enabled(mp)) {
2128 		trace_xfs_inodegc_queue(mp, __return_address);
2129 		mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2130 				0);
2131 	}
2132 	put_cpu_ptr(gc);
2133 }
2134 
2135 /*
2136  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2137  * lookups on the radix tree, this inode flag can go away.
2138  *
2139  * We always use background reclaim here because even if the inode is clean, it
2140  * still may be under IO and hence we have wait for IO completion to occur
2141  * before we can reclaim the inode. The background reclaim path handles this
2142  * more efficiently than we can here, so simply let background reclaim tear down
2143  * all inodes.
2144  */
2145 void
xfs_inode_mark_reclaimable(struct xfs_inode * ip)2146 xfs_inode_mark_reclaimable(
2147 	struct xfs_inode	*ip)
2148 {
2149 	struct xfs_mount	*mp = ip->i_mount;
2150 	bool			need_inactive;
2151 
2152 	XFS_STATS_INC(mp, vn_reclaim);
2153 
2154 	/*
2155 	 * We should never get here with any of the reclaim flags already set.
2156 	 */
2157 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2158 
2159 	need_inactive = xfs_inode_needs_inactive(ip);
2160 	if (need_inactive) {
2161 		xfs_inodegc_queue(ip);
2162 		return;
2163 	}
2164 
2165 	/* Going straight to reclaim, so drop the dquots. */
2166 	xfs_qm_dqdetach(ip);
2167 	xfs_inodegc_set_reclaimable(ip);
2168 }
2169 
2170 /*
2171  * Register a phony shrinker so that we can run background inodegc sooner when
2172  * there's memory pressure.  Inactivation does not itself free any memory but
2173  * it does make inodes reclaimable, which eventually frees memory.
2174  *
2175  * The count function, seek value, and batch value are crafted to trigger the
2176  * scan function during the second round of scanning.  Hopefully this means
2177  * that we reclaimed enough memory that initiating metadata transactions won't
2178  * make things worse.
2179  */
2180 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2181 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2182 
2183 static unsigned long
xfs_inodegc_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)2184 xfs_inodegc_shrinker_count(
2185 	struct shrinker		*shrink,
2186 	struct shrink_control	*sc)
2187 {
2188 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2189 						   m_inodegc_shrinker);
2190 	struct xfs_inodegc	*gc;
2191 	int			cpu;
2192 
2193 	if (!xfs_is_inodegc_enabled(mp))
2194 		return 0;
2195 
2196 	for_each_online_cpu(cpu) {
2197 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2198 		if (!llist_empty(&gc->list))
2199 			return XFS_INODEGC_SHRINKER_COUNT;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static unsigned long
xfs_inodegc_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)2206 xfs_inodegc_shrinker_scan(
2207 	struct shrinker		*shrink,
2208 	struct shrink_control	*sc)
2209 {
2210 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2211 						   m_inodegc_shrinker);
2212 	struct xfs_inodegc	*gc;
2213 	int			cpu;
2214 	bool			no_items = true;
2215 
2216 	if (!xfs_is_inodegc_enabled(mp))
2217 		return SHRINK_STOP;
2218 
2219 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2220 
2221 	for_each_online_cpu(cpu) {
2222 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2223 		if (!llist_empty(&gc->list)) {
2224 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2225 
2226 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2227 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2228 			no_items = false;
2229 		}
2230 	}
2231 
2232 	/*
2233 	 * If there are no inodes to inactivate, we don't want the shrinker
2234 	 * to think there's deferred work to call us back about.
2235 	 */
2236 	if (no_items)
2237 		return LONG_MAX;
2238 
2239 	return SHRINK_STOP;
2240 }
2241 
2242 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2243 int
xfs_inodegc_register_shrinker(struct xfs_mount * mp)2244 xfs_inodegc_register_shrinker(
2245 	struct xfs_mount	*mp)
2246 {
2247 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2248 
2249 	shrink->count_objects = xfs_inodegc_shrinker_count;
2250 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2251 	shrink->seeks = 0;
2252 	shrink->flags = SHRINKER_NONSLAB;
2253 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2254 
2255 	return register_shrinker(shrink);
2256 }
2257