1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38
39 kmem_zone_t *xfs_inode_zone;
40
41 /*
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45 #define XFS_ITRUNC_MAX_EXTENTS 2
46
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
49 struct xfs_inode *);
50
51 /*
52 * helper function to extract extent size hint from inode
53 */
54 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)55 xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57 {
58 /*
59 * No point in aligning allocations if we need to COW to actually
60 * write to them.
61 */
62 if (xfs_is_always_cow_inode(ip))
63 return 0;
64 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
65 return ip->i_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69 }
70
71 /*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
76 */
77 xfs_extlen_t
xfs_get_cowextsz_hint(struct xfs_inode * ip)78 xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80 {
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
92 }
93
94 /*
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
105 *
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
108 */
109 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
112 {
113 uint lock_mode = XFS_ILOCK_SHARED;
114
115 if (xfs_need_iread_extents(&ip->i_df))
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
119 }
120
121 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)122 xfs_ilock_attr_map_shared(
123 struct xfs_inode *ip)
124 {
125 uint lock_mode = XFS_ILOCK_SHARED;
126
127 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
128 lock_mode = XFS_ILOCK_EXCL;
129 xfs_ilock(ip, lock_mode);
130 return lock_mode;
131 }
132
133 /*
134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
135 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
136 * various combinations of the locks to be obtained.
137 *
138 * The 3 locks should always be ordered so that the IO lock is obtained first,
139 * the mmap lock second and the ilock last in order to prevent deadlock.
140 *
141 * Basic locking order:
142 *
143 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
144 *
145 * mmap_lock locking order:
146 *
147 * i_rwsem -> page lock -> mmap_lock
148 * mmap_lock -> invalidate_lock -> page_lock
149 *
150 * The difference in mmap_lock locking order mean that we cannot hold the
151 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
152 * can fault in pages during copy in/out (for buffered IO) or require the
153 * mmap_lock in get_user_pages() to map the user pages into the kernel address
154 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
155 * fault because page faults already hold the mmap_lock.
156 *
157 * Hence to serialise fully against both syscall and mmap based IO, we need to
158 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
159 * both taken in places where we need to invalidate the page cache in a race
160 * free manner (e.g. truncate, hole punch and other extent manipulation
161 * functions).
162 */
163 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)164 xfs_ilock(
165 xfs_inode_t *ip,
166 uint lock_flags)
167 {
168 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
169
170 /*
171 * You can't set both SHARED and EXCL for the same lock,
172 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
173 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
174 */
175 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
176 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
177 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
178 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
180 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
181 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
182
183 if (lock_flags & XFS_IOLOCK_EXCL) {
184 down_write_nested(&VFS_I(ip)->i_rwsem,
185 XFS_IOLOCK_DEP(lock_flags));
186 } else if (lock_flags & XFS_IOLOCK_SHARED) {
187 down_read_nested(&VFS_I(ip)->i_rwsem,
188 XFS_IOLOCK_DEP(lock_flags));
189 }
190
191 if (lock_flags & XFS_MMAPLOCK_EXCL) {
192 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
193 XFS_MMAPLOCK_DEP(lock_flags));
194 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
195 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
196 XFS_MMAPLOCK_DEP(lock_flags));
197 }
198
199 if (lock_flags & XFS_ILOCK_EXCL)
200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
201 else if (lock_flags & XFS_ILOCK_SHARED)
202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
203 }
204
205 /*
206 * This is just like xfs_ilock(), except that the caller
207 * is guaranteed not to sleep. It returns 1 if it gets
208 * the requested locks and 0 otherwise. If the IO lock is
209 * obtained but the inode lock cannot be, then the IO lock
210 * is dropped before returning.
211 *
212 * ip -- the inode being locked
213 * lock_flags -- this parameter indicates the inode's locks to be
214 * to be locked. See the comment for xfs_ilock() for a list
215 * of valid values.
216 */
217 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)218 xfs_ilock_nowait(
219 xfs_inode_t *ip,
220 uint lock_flags)
221 {
222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
223
224 /*
225 * You can't set both SHARED and EXCL for the same lock,
226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 */
229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 goto out;
243 }
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 goto out_undo_iolock;
251 }
252
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_lock))
255 goto out_undo_mmaplock;
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_lock))
258 goto out_undo_mmaplock;
259 }
260 return 1;
261
262 out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 if (lock_flags & XFS_IOLOCK_EXCL)
269 up_write(&VFS_I(ip)->i_rwsem);
270 else if (lock_flags & XFS_IOLOCK_SHARED)
271 up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 return 0;
274 }
275
276 /*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)289 xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292 {
293 /*
294 * You can't set both SHARED and EXCL for the same lock,
295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 */
298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
305 ASSERT(lock_flags != 0);
306
307 if (lock_flags & XFS_IOLOCK_EXCL)
308 up_write(&VFS_I(ip)->i_rwsem);
309 else if (lock_flags & XFS_IOLOCK_SHARED)
310 up_read(&VFS_I(ip)->i_rwsem);
311
312 if (lock_flags & XFS_MMAPLOCK_EXCL)
313 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
314 else if (lock_flags & XFS_MMAPLOCK_SHARED)
315 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
316
317 if (lock_flags & XFS_ILOCK_EXCL)
318 mrunlock_excl(&ip->i_lock);
319 else if (lock_flags & XFS_ILOCK_SHARED)
320 mrunlock_shared(&ip->i_lock);
321
322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
323 }
324
325 /*
326 * give up write locks. the i/o lock cannot be held nested
327 * if it is being demoted.
328 */
329 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)330 xfs_ilock_demote(
331 xfs_inode_t *ip,
332 uint lock_flags)
333 {
334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 ASSERT((lock_flags &
336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337
338 if (lock_flags & XFS_ILOCK_EXCL)
339 mrdemote(&ip->i_lock);
340 if (lock_flags & XFS_MMAPLOCK_EXCL)
341 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
342 if (lock_flags & XFS_IOLOCK_EXCL)
343 downgrade_write(&VFS_I(ip)->i_rwsem);
344
345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
346 }
347
348 #if defined(DEBUG) || defined(XFS_WARN)
349 static inline bool
__xfs_rwsem_islocked(struct rw_semaphore * rwsem,bool shared)350 __xfs_rwsem_islocked(
351 struct rw_semaphore *rwsem,
352 bool shared)
353 {
354 if (!debug_locks)
355 return rwsem_is_locked(rwsem);
356
357 if (!shared)
358 return lockdep_is_held_type(rwsem, 0);
359
360 /*
361 * We are checking that the lock is held at least in shared
362 * mode but don't care that it might be held exclusively
363 * (i.e. shared | excl). Hence we check if the lock is held
364 * in any mode rather than an explicit shared mode.
365 */
366 return lockdep_is_held_type(rwsem, -1);
367 }
368
369 bool
xfs_isilocked(struct xfs_inode * ip,uint lock_flags)370 xfs_isilocked(
371 struct xfs_inode *ip,
372 uint lock_flags)
373 {
374 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
375 if (!(lock_flags & XFS_ILOCK_SHARED))
376 return !!ip->i_lock.mr_writer;
377 return rwsem_is_locked(&ip->i_lock.mr_lock);
378 }
379
380 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
381 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
382 (lock_flags & XFS_MMAPLOCK_SHARED));
383 }
384
385 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
386 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
387 (lock_flags & XFS_IOLOCK_SHARED));
388 }
389
390 ASSERT(0);
391 return false;
392 }
393 #endif
394
395 /*
396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399 * errors and warnings.
400 */
401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
402 static bool
xfs_lockdep_subclass_ok(int subclass)403 xfs_lockdep_subclass_ok(
404 int subclass)
405 {
406 return subclass < MAX_LOCKDEP_SUBCLASSES;
407 }
408 #else
409 #define xfs_lockdep_subclass_ok(subclass) (true)
410 #endif
411
412 /*
413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
414 * value. This can be called for any type of inode lock combination, including
415 * parent locking. Care must be taken to ensure we don't overrun the subclass
416 * storage fields in the class mask we build.
417 */
418 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)419 xfs_lock_inumorder(int lock_mode, int subclass)
420 {
421 int class = 0;
422
423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 XFS_ILOCK_RTSUM)));
425 ASSERT(xfs_lockdep_subclass_ok(subclass));
426
427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
429 class += subclass << XFS_IOLOCK_SHIFT;
430 }
431
432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 class += subclass << XFS_MMAPLOCK_SHIFT;
435 }
436
437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 class += subclass << XFS_ILOCK_SHIFT;
440 }
441
442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
443 }
444
445 /*
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
448 *
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
454 *
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
459 */
460 static void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)461 xfs_lock_inodes(
462 struct xfs_inode **ips,
463 int inodes,
464 uint lock_mode)
465 {
466 int attempts = 0, i, j, try_lock;
467 struct xfs_log_item *lp;
468
469 /*
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
474 * the asserts.
475 */
476 ASSERT(ips && inodes >= 2 && inodes <= 5);
477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 XFS_ILOCK_EXCL));
479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 XFS_ILOCK_SHARED)));
481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485
486 if (lock_mode & XFS_IOLOCK_EXCL) {
487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
490
491 try_lock = 0;
492 i = 0;
493 again:
494 for (; i < inodes; i++) {
495 ASSERT(ips[i]);
496
497 if (i && (ips[i] == ips[i - 1])) /* Already locked */
498 continue;
499
500 /*
501 * If try_lock is not set yet, make sure all locked inodes are
502 * not in the AIL. If any are, set try_lock to be used later.
503 */
504 if (!try_lock) {
505 for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 lp = &ips[j]->i_itemp->ili_item;
507 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
508 try_lock++;
509 }
510 }
511
512 /*
513 * If any of the previous locks we have locked is in the AIL,
514 * we must TRY to get the second and subsequent locks. If
515 * we can't get any, we must release all we have
516 * and try again.
517 */
518 if (!try_lock) {
519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 continue;
521 }
522
523 /* try_lock means we have an inode locked that is in the AIL. */
524 ASSERT(i != 0);
525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 continue;
527
528 /*
529 * Unlock all previous guys and try again. xfs_iunlock will try
530 * to push the tail if the inode is in the AIL.
531 */
532 attempts++;
533 for (j = i - 1; j >= 0; j--) {
534 /*
535 * Check to see if we've already unlocked this one. Not
536 * the first one going back, and the inode ptr is the
537 * same.
538 */
539 if (j != (i - 1) && ips[j] == ips[j + 1])
540 continue;
541
542 xfs_iunlock(ips[j], lock_mode);
543 }
544
545 if ((attempts % 5) == 0) {
546 delay(1); /* Don't just spin the CPU */
547 }
548 i = 0;
549 try_lock = 0;
550 goto again;
551 }
552 }
553
554 /*
555 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
556 * mmaplock must be double-locked separately since we use i_rwsem and
557 * invalidate_lock for that. We now support taking one lock EXCL and the
558 * other SHARED.
559 */
560 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)561 xfs_lock_two_inodes(
562 struct xfs_inode *ip0,
563 uint ip0_mode,
564 struct xfs_inode *ip1,
565 uint ip1_mode)
566 {
567 struct xfs_inode *temp;
568 uint mode_temp;
569 int attempts = 0;
570 struct xfs_log_item *lp;
571
572 ASSERT(hweight32(ip0_mode) == 1);
573 ASSERT(hweight32(ip1_mode) == 1);
574 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
575 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
576 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
577 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
578 ASSERT(ip0->i_ino != ip1->i_ino);
579
580 if (ip0->i_ino > ip1->i_ino) {
581 temp = ip0;
582 ip0 = ip1;
583 ip1 = temp;
584 mode_temp = ip0_mode;
585 ip0_mode = ip1_mode;
586 ip1_mode = mode_temp;
587 }
588
589 again:
590 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
591
592 /*
593 * If the first lock we have locked is in the AIL, we must TRY to get
594 * the second lock. If we can't get it, we must release the first one
595 * and try again.
596 */
597 lp = &ip0->i_itemp->ili_item;
598 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
599 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
600 xfs_iunlock(ip0, ip0_mode);
601 if ((++attempts % 5) == 0)
602 delay(1); /* Don't just spin the CPU */
603 goto again;
604 }
605 } else {
606 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
607 }
608 }
609
610 uint
xfs_ip2xflags(struct xfs_inode * ip)611 xfs_ip2xflags(
612 struct xfs_inode *ip)
613 {
614 uint flags = 0;
615
616 if (ip->i_diflags & XFS_DIFLAG_ANY) {
617 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
618 flags |= FS_XFLAG_REALTIME;
619 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
620 flags |= FS_XFLAG_PREALLOC;
621 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
622 flags |= FS_XFLAG_IMMUTABLE;
623 if (ip->i_diflags & XFS_DIFLAG_APPEND)
624 flags |= FS_XFLAG_APPEND;
625 if (ip->i_diflags & XFS_DIFLAG_SYNC)
626 flags |= FS_XFLAG_SYNC;
627 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
628 flags |= FS_XFLAG_NOATIME;
629 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
630 flags |= FS_XFLAG_NODUMP;
631 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
632 flags |= FS_XFLAG_RTINHERIT;
633 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
634 flags |= FS_XFLAG_PROJINHERIT;
635 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
636 flags |= FS_XFLAG_NOSYMLINKS;
637 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
638 flags |= FS_XFLAG_EXTSIZE;
639 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
640 flags |= FS_XFLAG_EXTSZINHERIT;
641 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
642 flags |= FS_XFLAG_NODEFRAG;
643 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
644 flags |= FS_XFLAG_FILESTREAM;
645 }
646
647 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
648 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
649 flags |= FS_XFLAG_DAX;
650 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
651 flags |= FS_XFLAG_COWEXTSIZE;
652 }
653
654 if (XFS_IFORK_Q(ip))
655 flags |= FS_XFLAG_HASATTR;
656 return flags;
657 }
658
659 /*
660 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
661 * is allowed, otherwise it has to be an exact match. If a CI match is found,
662 * ci_name->name will point to a the actual name (caller must free) or
663 * will be set to NULL if an exact match is found.
664 */
665 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)666 xfs_lookup(
667 xfs_inode_t *dp,
668 struct xfs_name *name,
669 xfs_inode_t **ipp,
670 struct xfs_name *ci_name)
671 {
672 xfs_ino_t inum;
673 int error;
674
675 trace_xfs_lookup(dp, name);
676
677 if (xfs_is_shutdown(dp->i_mount))
678 return -EIO;
679
680 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
681 if (error)
682 goto out_unlock;
683
684 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
685 if (error)
686 goto out_free_name;
687
688 return 0;
689
690 out_free_name:
691 if (ci_name)
692 kmem_free(ci_name->name);
693 out_unlock:
694 *ipp = NULL;
695 return error;
696 }
697
698 /* Propagate di_flags from a parent inode to a child inode. */
699 static void
xfs_inode_inherit_flags(struct xfs_inode * ip,const struct xfs_inode * pip)700 xfs_inode_inherit_flags(
701 struct xfs_inode *ip,
702 const struct xfs_inode *pip)
703 {
704 unsigned int di_flags = 0;
705 xfs_failaddr_t failaddr;
706 umode_t mode = VFS_I(ip)->i_mode;
707
708 if (S_ISDIR(mode)) {
709 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
710 di_flags |= XFS_DIFLAG_RTINHERIT;
711 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
712 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
713 ip->i_extsize = pip->i_extsize;
714 }
715 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
716 di_flags |= XFS_DIFLAG_PROJINHERIT;
717 } else if (S_ISREG(mode)) {
718 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
719 xfs_has_realtime(ip->i_mount))
720 di_flags |= XFS_DIFLAG_REALTIME;
721 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
722 di_flags |= XFS_DIFLAG_EXTSIZE;
723 ip->i_extsize = pip->i_extsize;
724 }
725 }
726 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
727 xfs_inherit_noatime)
728 di_flags |= XFS_DIFLAG_NOATIME;
729 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
730 xfs_inherit_nodump)
731 di_flags |= XFS_DIFLAG_NODUMP;
732 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
733 xfs_inherit_sync)
734 di_flags |= XFS_DIFLAG_SYNC;
735 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
736 xfs_inherit_nosymlinks)
737 di_flags |= XFS_DIFLAG_NOSYMLINKS;
738 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
739 xfs_inherit_nodefrag)
740 di_flags |= XFS_DIFLAG_NODEFRAG;
741 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
742 di_flags |= XFS_DIFLAG_FILESTREAM;
743
744 ip->i_diflags |= di_flags;
745
746 /*
747 * Inode verifiers on older kernels only check that the extent size
748 * hint is an integer multiple of the rt extent size on realtime files.
749 * They did not check the hint alignment on a directory with both
750 * rtinherit and extszinherit flags set. If the misaligned hint is
751 * propagated from a directory into a new realtime file, new file
752 * allocations will fail due to math errors in the rt allocator and/or
753 * trip the verifiers. Validate the hint settings in the new file so
754 * that we don't let broken hints propagate.
755 */
756 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
757 VFS_I(ip)->i_mode, ip->i_diflags);
758 if (failaddr) {
759 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
760 XFS_DIFLAG_EXTSZINHERIT);
761 ip->i_extsize = 0;
762 }
763 }
764
765 /* Propagate di_flags2 from a parent inode to a child inode. */
766 static void
xfs_inode_inherit_flags2(struct xfs_inode * ip,const struct xfs_inode * pip)767 xfs_inode_inherit_flags2(
768 struct xfs_inode *ip,
769 const struct xfs_inode *pip)
770 {
771 xfs_failaddr_t failaddr;
772
773 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
774 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
775 ip->i_cowextsize = pip->i_cowextsize;
776 }
777 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
778 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
779
780 /* Don't let invalid cowextsize hints propagate. */
781 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
782 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
783 if (failaddr) {
784 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
785 ip->i_cowextsize = 0;
786 }
787 }
788
789 /*
790 * Initialise a newly allocated inode and return the in-core inode to the
791 * caller locked exclusively.
792 */
793 int
xfs_init_new_inode(struct user_namespace * mnt_userns,struct xfs_trans * tp,struct xfs_inode * pip,xfs_ino_t ino,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,bool init_xattrs,struct xfs_inode ** ipp)794 xfs_init_new_inode(
795 struct user_namespace *mnt_userns,
796 struct xfs_trans *tp,
797 struct xfs_inode *pip,
798 xfs_ino_t ino,
799 umode_t mode,
800 xfs_nlink_t nlink,
801 dev_t rdev,
802 prid_t prid,
803 bool init_xattrs,
804 struct xfs_inode **ipp)
805 {
806 struct inode *dir = pip ? VFS_I(pip) : NULL;
807 struct xfs_mount *mp = tp->t_mountp;
808 struct xfs_inode *ip;
809 unsigned int flags;
810 int error;
811 struct timespec64 tv;
812 struct inode *inode;
813
814 /*
815 * Protect against obviously corrupt allocation btree records. Later
816 * xfs_iget checks will catch re-allocation of other active in-memory
817 * and on-disk inodes. If we don't catch reallocating the parent inode
818 * here we will deadlock in xfs_iget() so we have to do these checks
819 * first.
820 */
821 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
822 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
823 return -EFSCORRUPTED;
824 }
825
826 /*
827 * Get the in-core inode with the lock held exclusively to prevent
828 * others from looking at until we're done.
829 */
830 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
831 if (error)
832 return error;
833
834 ASSERT(ip != NULL);
835 inode = VFS_I(ip);
836 set_nlink(inode, nlink);
837 inode->i_rdev = rdev;
838 ip->i_projid = prid;
839
840 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
841 inode_fsuid_set(inode, mnt_userns);
842 inode->i_gid = dir->i_gid;
843 inode->i_mode = mode;
844 } else {
845 inode_init_owner(mnt_userns, inode, dir, mode);
846 }
847
848 /*
849 * If the group ID of the new file does not match the effective group
850 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
851 * (and only if the irix_sgid_inherit compatibility variable is set).
852 */
853 if (irix_sgid_inherit &&
854 (inode->i_mode & S_ISGID) &&
855 !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
856 inode->i_mode &= ~S_ISGID;
857
858 ip->i_disk_size = 0;
859 ip->i_df.if_nextents = 0;
860 ASSERT(ip->i_nblocks == 0);
861
862 tv = current_time(inode);
863 inode->i_mtime = tv;
864 inode->i_atime = tv;
865 inode->i_ctime = tv;
866
867 ip->i_extsize = 0;
868 ip->i_diflags = 0;
869
870 if (xfs_has_v3inodes(mp)) {
871 inode_set_iversion(inode, 1);
872 ip->i_cowextsize = 0;
873 ip->i_crtime = tv;
874 }
875
876 flags = XFS_ILOG_CORE;
877 switch (mode & S_IFMT) {
878 case S_IFIFO:
879 case S_IFCHR:
880 case S_IFBLK:
881 case S_IFSOCK:
882 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
883 flags |= XFS_ILOG_DEV;
884 break;
885 case S_IFREG:
886 case S_IFDIR:
887 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
888 xfs_inode_inherit_flags(ip, pip);
889 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
890 xfs_inode_inherit_flags2(ip, pip);
891 fallthrough;
892 case S_IFLNK:
893 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
894 ip->i_df.if_bytes = 0;
895 ip->i_df.if_u1.if_root = NULL;
896 break;
897 default:
898 ASSERT(0);
899 }
900
901 /*
902 * If we need to create attributes immediately after allocating the
903 * inode, initialise an empty attribute fork right now. We use the
904 * default fork offset for attributes here as we don't know exactly what
905 * size or how many attributes we might be adding. We can do this
906 * safely here because we know the data fork is completely empty and
907 * this saves us from needing to run a separate transaction to set the
908 * fork offset in the immediate future.
909 */
910 if (init_xattrs && xfs_has_attr(mp)) {
911 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
912 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
913 }
914
915 /*
916 * Log the new values stuffed into the inode.
917 */
918 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
919 xfs_trans_log_inode(tp, ip, flags);
920
921 /* now that we have an i_mode we can setup the inode structure */
922 xfs_setup_inode(ip);
923
924 *ipp = ip;
925 return 0;
926 }
927
928 /*
929 * Decrement the link count on an inode & log the change. If this causes the
930 * link count to go to zero, move the inode to AGI unlinked list so that it can
931 * be freed when the last active reference goes away via xfs_inactive().
932 */
933 static int /* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)934 xfs_droplink(
935 xfs_trans_t *tp,
936 xfs_inode_t *ip)
937 {
938 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
939
940 drop_nlink(VFS_I(ip));
941 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
942
943 if (VFS_I(ip)->i_nlink)
944 return 0;
945
946 return xfs_iunlink(tp, ip);
947 }
948
949 /*
950 * Increment the link count on an inode & log the change.
951 */
952 static void
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)953 xfs_bumplink(
954 xfs_trans_t *tp,
955 xfs_inode_t *ip)
956 {
957 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
958
959 inc_nlink(VFS_I(ip));
960 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
961 }
962
963 int
xfs_create(struct user_namespace * mnt_userns,xfs_inode_t * dp,struct xfs_name * name,umode_t mode,dev_t rdev,bool init_xattrs,xfs_inode_t ** ipp)964 xfs_create(
965 struct user_namespace *mnt_userns,
966 xfs_inode_t *dp,
967 struct xfs_name *name,
968 umode_t mode,
969 dev_t rdev,
970 bool init_xattrs,
971 xfs_inode_t **ipp)
972 {
973 int is_dir = S_ISDIR(mode);
974 struct xfs_mount *mp = dp->i_mount;
975 struct xfs_inode *ip = NULL;
976 struct xfs_trans *tp = NULL;
977 int error;
978 bool unlock_dp_on_error = false;
979 prid_t prid;
980 struct xfs_dquot *udqp = NULL;
981 struct xfs_dquot *gdqp = NULL;
982 struct xfs_dquot *pdqp = NULL;
983 struct xfs_trans_res *tres;
984 uint resblks;
985 xfs_ino_t ino;
986
987 trace_xfs_create(dp, name);
988
989 if (xfs_is_shutdown(mp))
990 return -EIO;
991
992 prid = xfs_get_initial_prid(dp);
993
994 /*
995 * Make sure that we have allocated dquot(s) on disk.
996 */
997 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
998 mapped_fsgid(mnt_userns, &init_user_ns), prid,
999 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1000 &udqp, &gdqp, &pdqp);
1001 if (error)
1002 return error;
1003
1004 if (is_dir) {
1005 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1006 tres = &M_RES(mp)->tr_mkdir;
1007 } else {
1008 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1009 tres = &M_RES(mp)->tr_create;
1010 }
1011
1012 /*
1013 * Initially assume that the file does not exist and
1014 * reserve the resources for that case. If that is not
1015 * the case we'll drop the one we have and get a more
1016 * appropriate transaction later.
1017 */
1018 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1019 &tp);
1020 if (error == -ENOSPC) {
1021 /* flush outstanding delalloc blocks and retry */
1022 xfs_flush_inodes(mp);
1023 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1024 resblks, &tp);
1025 }
1026 if (error)
1027 goto out_release_dquots;
1028
1029 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1030 unlock_dp_on_error = true;
1031
1032 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1033 XFS_IEXT_DIR_MANIP_CNT(mp));
1034 if (error)
1035 goto out_trans_cancel;
1036
1037 /*
1038 * A newly created regular or special file just has one directory
1039 * entry pointing to them, but a directory also the "." entry
1040 * pointing to itself.
1041 */
1042 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1043 if (!error)
1044 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1045 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1046 if (error)
1047 goto out_trans_cancel;
1048
1049 /*
1050 * Now we join the directory inode to the transaction. We do not do it
1051 * earlier because xfs_dialloc might commit the previous transaction
1052 * (and release all the locks). An error from here on will result in
1053 * the transaction cancel unlocking dp so don't do it explicitly in the
1054 * error path.
1055 */
1056 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1057 unlock_dp_on_error = false;
1058
1059 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1060 resblks - XFS_IALLOC_SPACE_RES(mp));
1061 if (error) {
1062 ASSERT(error != -ENOSPC);
1063 goto out_trans_cancel;
1064 }
1065 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1066 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1067
1068 if (is_dir) {
1069 error = xfs_dir_init(tp, ip, dp);
1070 if (error)
1071 goto out_trans_cancel;
1072
1073 xfs_bumplink(tp, dp);
1074 }
1075
1076 /*
1077 * If this is a synchronous mount, make sure that the
1078 * create transaction goes to disk before returning to
1079 * the user.
1080 */
1081 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1082 xfs_trans_set_sync(tp);
1083
1084 /*
1085 * Attach the dquot(s) to the inodes and modify them incore.
1086 * These ids of the inode couldn't have changed since the new
1087 * inode has been locked ever since it was created.
1088 */
1089 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1090
1091 error = xfs_trans_commit(tp);
1092 if (error)
1093 goto out_release_inode;
1094
1095 xfs_qm_dqrele(udqp);
1096 xfs_qm_dqrele(gdqp);
1097 xfs_qm_dqrele(pdqp);
1098
1099 *ipp = ip;
1100 return 0;
1101
1102 out_trans_cancel:
1103 xfs_trans_cancel(tp);
1104 out_release_inode:
1105 /*
1106 * Wait until after the current transaction is aborted to finish the
1107 * setup of the inode and release the inode. This prevents recursive
1108 * transactions and deadlocks from xfs_inactive.
1109 */
1110 if (ip) {
1111 xfs_finish_inode_setup(ip);
1112 xfs_irele(ip);
1113 }
1114 out_release_dquots:
1115 xfs_qm_dqrele(udqp);
1116 xfs_qm_dqrele(gdqp);
1117 xfs_qm_dqrele(pdqp);
1118
1119 if (unlock_dp_on_error)
1120 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1121 return error;
1122 }
1123
1124 int
xfs_create_tmpfile(struct user_namespace * mnt_userns,struct xfs_inode * dp,umode_t mode,struct xfs_inode ** ipp)1125 xfs_create_tmpfile(
1126 struct user_namespace *mnt_userns,
1127 struct xfs_inode *dp,
1128 umode_t mode,
1129 struct xfs_inode **ipp)
1130 {
1131 struct xfs_mount *mp = dp->i_mount;
1132 struct xfs_inode *ip = NULL;
1133 struct xfs_trans *tp = NULL;
1134 int error;
1135 prid_t prid;
1136 struct xfs_dquot *udqp = NULL;
1137 struct xfs_dquot *gdqp = NULL;
1138 struct xfs_dquot *pdqp = NULL;
1139 struct xfs_trans_res *tres;
1140 uint resblks;
1141 xfs_ino_t ino;
1142
1143 if (xfs_is_shutdown(mp))
1144 return -EIO;
1145
1146 prid = xfs_get_initial_prid(dp);
1147
1148 /*
1149 * Make sure that we have allocated dquot(s) on disk.
1150 */
1151 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1152 mapped_fsgid(mnt_userns, &init_user_ns), prid,
1153 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1154 &udqp, &gdqp, &pdqp);
1155 if (error)
1156 return error;
1157
1158 resblks = XFS_IALLOC_SPACE_RES(mp);
1159 tres = &M_RES(mp)->tr_create_tmpfile;
1160
1161 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1162 &tp);
1163 if (error)
1164 goto out_release_dquots;
1165
1166 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1167 if (!error)
1168 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1169 0, 0, prid, false, &ip);
1170 if (error)
1171 goto out_trans_cancel;
1172
1173 if (xfs_has_wsync(mp))
1174 xfs_trans_set_sync(tp);
1175
1176 /*
1177 * Attach the dquot(s) to the inodes and modify them incore.
1178 * These ids of the inode couldn't have changed since the new
1179 * inode has been locked ever since it was created.
1180 */
1181 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1182
1183 error = xfs_iunlink(tp, ip);
1184 if (error)
1185 goto out_trans_cancel;
1186
1187 error = xfs_trans_commit(tp);
1188 if (error)
1189 goto out_release_inode;
1190
1191 xfs_qm_dqrele(udqp);
1192 xfs_qm_dqrele(gdqp);
1193 xfs_qm_dqrele(pdqp);
1194
1195 *ipp = ip;
1196 return 0;
1197
1198 out_trans_cancel:
1199 xfs_trans_cancel(tp);
1200 out_release_inode:
1201 /*
1202 * Wait until after the current transaction is aborted to finish the
1203 * setup of the inode and release the inode. This prevents recursive
1204 * transactions and deadlocks from xfs_inactive.
1205 */
1206 if (ip) {
1207 xfs_finish_inode_setup(ip);
1208 xfs_irele(ip);
1209 }
1210 out_release_dquots:
1211 xfs_qm_dqrele(udqp);
1212 xfs_qm_dqrele(gdqp);
1213 xfs_qm_dqrele(pdqp);
1214
1215 return error;
1216 }
1217
1218 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1219 xfs_link(
1220 xfs_inode_t *tdp,
1221 xfs_inode_t *sip,
1222 struct xfs_name *target_name)
1223 {
1224 xfs_mount_t *mp = tdp->i_mount;
1225 xfs_trans_t *tp;
1226 int error, nospace_error = 0;
1227 int resblks;
1228
1229 trace_xfs_link(tdp, target_name);
1230
1231 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1232
1233 if (xfs_is_shutdown(mp))
1234 return -EIO;
1235
1236 error = xfs_qm_dqattach(sip);
1237 if (error)
1238 goto std_return;
1239
1240 error = xfs_qm_dqattach(tdp);
1241 if (error)
1242 goto std_return;
1243
1244 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1245 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1246 &tp, &nospace_error);
1247 if (error)
1248 goto std_return;
1249
1250 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1251 XFS_IEXT_DIR_MANIP_CNT(mp));
1252 if (error)
1253 goto error_return;
1254
1255 /*
1256 * If we are using project inheritance, we only allow hard link
1257 * creation in our tree when the project IDs are the same; else
1258 * the tree quota mechanism could be circumvented.
1259 */
1260 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1261 tdp->i_projid != sip->i_projid)) {
1262 error = -EXDEV;
1263 goto error_return;
1264 }
1265
1266 if (!resblks) {
1267 error = xfs_dir_canenter(tp, tdp, target_name);
1268 if (error)
1269 goto error_return;
1270 }
1271
1272 /*
1273 * Handle initial link state of O_TMPFILE inode
1274 */
1275 if (VFS_I(sip)->i_nlink == 0) {
1276 struct xfs_perag *pag;
1277
1278 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1279 error = xfs_iunlink_remove(tp, pag, sip);
1280 xfs_perag_put(pag);
1281 if (error)
1282 goto error_return;
1283 }
1284
1285 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1286 resblks);
1287 if (error)
1288 goto error_return;
1289 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1290 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1291
1292 xfs_bumplink(tp, sip);
1293
1294 /*
1295 * If this is a synchronous mount, make sure that the
1296 * link transaction goes to disk before returning to
1297 * the user.
1298 */
1299 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1300 xfs_trans_set_sync(tp);
1301
1302 return xfs_trans_commit(tp);
1303
1304 error_return:
1305 xfs_trans_cancel(tp);
1306 std_return:
1307 if (error == -ENOSPC && nospace_error)
1308 error = nospace_error;
1309 return error;
1310 }
1311
1312 /* Clear the reflink flag and the cowblocks tag if possible. */
1313 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)1314 xfs_itruncate_clear_reflink_flags(
1315 struct xfs_inode *ip)
1316 {
1317 struct xfs_ifork *dfork;
1318 struct xfs_ifork *cfork;
1319
1320 if (!xfs_is_reflink_inode(ip))
1321 return;
1322 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1323 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1324 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1325 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1326 if (cfork->if_bytes == 0)
1327 xfs_inode_clear_cowblocks_tag(ip);
1328 }
1329
1330 /*
1331 * Free up the underlying blocks past new_size. The new size must be smaller
1332 * than the current size. This routine can be used both for the attribute and
1333 * data fork, and does not modify the inode size, which is left to the caller.
1334 *
1335 * The transaction passed to this routine must have made a permanent log
1336 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1337 * given transaction and start new ones, so make sure everything involved in
1338 * the transaction is tidy before calling here. Some transaction will be
1339 * returned to the caller to be committed. The incoming transaction must
1340 * already include the inode, and both inode locks must be held exclusively.
1341 * The inode must also be "held" within the transaction. On return the inode
1342 * will be "held" within the returned transaction. This routine does NOT
1343 * require any disk space to be reserved for it within the transaction.
1344 *
1345 * If we get an error, we must return with the inode locked and linked into the
1346 * current transaction. This keeps things simple for the higher level code,
1347 * because it always knows that the inode is locked and held in the transaction
1348 * that returns to it whether errors occur or not. We don't mark the inode
1349 * dirty on error so that transactions can be easily aborted if possible.
1350 */
1351 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1352 xfs_itruncate_extents_flags(
1353 struct xfs_trans **tpp,
1354 struct xfs_inode *ip,
1355 int whichfork,
1356 xfs_fsize_t new_size,
1357 int flags)
1358 {
1359 struct xfs_mount *mp = ip->i_mount;
1360 struct xfs_trans *tp = *tpp;
1361 xfs_fileoff_t first_unmap_block;
1362 xfs_filblks_t unmap_len;
1363 int error = 0;
1364
1365 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1366 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1367 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1368 ASSERT(new_size <= XFS_ISIZE(ip));
1369 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1370 ASSERT(ip->i_itemp != NULL);
1371 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1372 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1373
1374 trace_xfs_itruncate_extents_start(ip, new_size);
1375
1376 flags |= xfs_bmapi_aflag(whichfork);
1377
1378 /*
1379 * Since it is possible for space to become allocated beyond
1380 * the end of the file (in a crash where the space is allocated
1381 * but the inode size is not yet updated), simply remove any
1382 * blocks which show up between the new EOF and the maximum
1383 * possible file size.
1384 *
1385 * We have to free all the blocks to the bmbt maximum offset, even if
1386 * the page cache can't scale that far.
1387 */
1388 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1389 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1390 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1391 return 0;
1392 }
1393
1394 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1395 while (unmap_len > 0) {
1396 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1397 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1398 flags, XFS_ITRUNC_MAX_EXTENTS);
1399 if (error)
1400 goto out;
1401
1402 /* free the just unmapped extents */
1403 error = xfs_defer_finish(&tp);
1404 if (error)
1405 goto out;
1406 }
1407
1408 if (whichfork == XFS_DATA_FORK) {
1409 /* Remove all pending CoW reservations. */
1410 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1411 first_unmap_block, XFS_MAX_FILEOFF, true);
1412 if (error)
1413 goto out;
1414
1415 xfs_itruncate_clear_reflink_flags(ip);
1416 }
1417
1418 /*
1419 * Always re-log the inode so that our permanent transaction can keep
1420 * on rolling it forward in the log.
1421 */
1422 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1423
1424 trace_xfs_itruncate_extents_end(ip, new_size);
1425
1426 out:
1427 *tpp = tp;
1428 return error;
1429 }
1430
1431 int
xfs_release(xfs_inode_t * ip)1432 xfs_release(
1433 xfs_inode_t *ip)
1434 {
1435 xfs_mount_t *mp = ip->i_mount;
1436 int error = 0;
1437
1438 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1439 return 0;
1440
1441 /* If this is a read-only mount, don't do this (would generate I/O) */
1442 if (xfs_is_readonly(mp))
1443 return 0;
1444
1445 if (!xfs_is_shutdown(mp)) {
1446 int truncated;
1447
1448 /*
1449 * If we previously truncated this file and removed old data
1450 * in the process, we want to initiate "early" writeout on
1451 * the last close. This is an attempt to combat the notorious
1452 * NULL files problem which is particularly noticeable from a
1453 * truncate down, buffered (re-)write (delalloc), followed by
1454 * a crash. What we are effectively doing here is
1455 * significantly reducing the time window where we'd otherwise
1456 * be exposed to that problem.
1457 */
1458 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1459 if (truncated) {
1460 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1461 if (ip->i_delayed_blks > 0) {
1462 error = filemap_flush(VFS_I(ip)->i_mapping);
1463 if (error)
1464 return error;
1465 }
1466 }
1467 }
1468
1469 if (VFS_I(ip)->i_nlink == 0)
1470 return 0;
1471
1472 /*
1473 * If we can't get the iolock just skip truncating the blocks past EOF
1474 * because we could deadlock with the mmap_lock otherwise. We'll get
1475 * another chance to drop them once the last reference to the inode is
1476 * dropped, so we'll never leak blocks permanently.
1477 */
1478 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1479 return 0;
1480
1481 if (xfs_can_free_eofblocks(ip, false)) {
1482 /*
1483 * Check if the inode is being opened, written and closed
1484 * frequently and we have delayed allocation blocks outstanding
1485 * (e.g. streaming writes from the NFS server), truncating the
1486 * blocks past EOF will cause fragmentation to occur.
1487 *
1488 * In this case don't do the truncation, but we have to be
1489 * careful how we detect this case. Blocks beyond EOF show up as
1490 * i_delayed_blks even when the inode is clean, so we need to
1491 * truncate them away first before checking for a dirty release.
1492 * Hence on the first dirty close we will still remove the
1493 * speculative allocation, but after that we will leave it in
1494 * place.
1495 */
1496 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1497 goto out_unlock;
1498
1499 error = xfs_free_eofblocks(ip);
1500 if (error)
1501 goto out_unlock;
1502
1503 /* delalloc blocks after truncation means it really is dirty */
1504 if (ip->i_delayed_blks)
1505 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1506 }
1507
1508 out_unlock:
1509 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1510 return error;
1511 }
1512
1513 /*
1514 * xfs_inactive_truncate
1515 *
1516 * Called to perform a truncate when an inode becomes unlinked.
1517 */
1518 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1519 xfs_inactive_truncate(
1520 struct xfs_inode *ip)
1521 {
1522 struct xfs_mount *mp = ip->i_mount;
1523 struct xfs_trans *tp;
1524 int error;
1525
1526 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1527 if (error) {
1528 ASSERT(xfs_is_shutdown(mp));
1529 return error;
1530 }
1531 xfs_ilock(ip, XFS_ILOCK_EXCL);
1532 xfs_trans_ijoin(tp, ip, 0);
1533
1534 /*
1535 * Log the inode size first to prevent stale data exposure in the event
1536 * of a system crash before the truncate completes. See the related
1537 * comment in xfs_vn_setattr_size() for details.
1538 */
1539 ip->i_disk_size = 0;
1540 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1541
1542 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1543 if (error)
1544 goto error_trans_cancel;
1545
1546 ASSERT(ip->i_df.if_nextents == 0);
1547
1548 error = xfs_trans_commit(tp);
1549 if (error)
1550 goto error_unlock;
1551
1552 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1553 return 0;
1554
1555 error_trans_cancel:
1556 xfs_trans_cancel(tp);
1557 error_unlock:
1558 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1559 return error;
1560 }
1561
1562 /*
1563 * xfs_inactive_ifree()
1564 *
1565 * Perform the inode free when an inode is unlinked.
1566 */
1567 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1568 xfs_inactive_ifree(
1569 struct xfs_inode *ip)
1570 {
1571 struct xfs_mount *mp = ip->i_mount;
1572 struct xfs_trans *tp;
1573 int error;
1574
1575 /*
1576 * We try to use a per-AG reservation for any block needed by the finobt
1577 * tree, but as the finobt feature predates the per-AG reservation
1578 * support a degraded file system might not have enough space for the
1579 * reservation at mount time. In that case try to dip into the reserved
1580 * pool and pray.
1581 *
1582 * Send a warning if the reservation does happen to fail, as the inode
1583 * now remains allocated and sits on the unlinked list until the fs is
1584 * repaired.
1585 */
1586 if (unlikely(mp->m_finobt_nores)) {
1587 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1588 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1589 &tp);
1590 } else {
1591 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1592 }
1593 if (error) {
1594 if (error == -ENOSPC) {
1595 xfs_warn_ratelimited(mp,
1596 "Failed to remove inode(s) from unlinked list. "
1597 "Please free space, unmount and run xfs_repair.");
1598 } else {
1599 ASSERT(xfs_is_shutdown(mp));
1600 }
1601 return error;
1602 }
1603
1604 /*
1605 * We do not hold the inode locked across the entire rolling transaction
1606 * here. We only need to hold it for the first transaction that
1607 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1608 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1609 * here breaks the relationship between cluster buffer invalidation and
1610 * stale inode invalidation on cluster buffer item journal commit
1611 * completion, and can result in leaving dirty stale inodes hanging
1612 * around in memory.
1613 *
1614 * We have no need for serialising this inode operation against other
1615 * operations - we freed the inode and hence reallocation is required
1616 * and that will serialise on reallocating the space the deferops need
1617 * to free. Hence we can unlock the inode on the first commit of
1618 * the transaction rather than roll it right through the deferops. This
1619 * avoids relogging the XFS_ISTALE inode.
1620 *
1621 * We check that xfs_ifree() hasn't grown an internal transaction roll
1622 * by asserting that the inode is still locked when it returns.
1623 */
1624 xfs_ilock(ip, XFS_ILOCK_EXCL);
1625 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1626
1627 error = xfs_ifree(tp, ip);
1628 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1629 if (error) {
1630 /*
1631 * If we fail to free the inode, shut down. The cancel
1632 * might do that, we need to make sure. Otherwise the
1633 * inode might be lost for a long time or forever.
1634 */
1635 if (!xfs_is_shutdown(mp)) {
1636 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1637 __func__, error);
1638 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1639 }
1640 xfs_trans_cancel(tp);
1641 return error;
1642 }
1643
1644 /*
1645 * Credit the quota account(s). The inode is gone.
1646 */
1647 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1648
1649 /*
1650 * Just ignore errors at this point. There is nothing we can do except
1651 * to try to keep going. Make sure it's not a silent error.
1652 */
1653 error = xfs_trans_commit(tp);
1654 if (error)
1655 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1656 __func__, error);
1657
1658 return 0;
1659 }
1660
1661 /*
1662 * Returns true if we need to update the on-disk metadata before we can free
1663 * the memory used by this inode. Updates include freeing post-eof
1664 * preallocations; freeing COW staging extents; and marking the inode free in
1665 * the inobt if it is on the unlinked list.
1666 */
1667 bool
xfs_inode_needs_inactive(struct xfs_inode * ip)1668 xfs_inode_needs_inactive(
1669 struct xfs_inode *ip)
1670 {
1671 struct xfs_mount *mp = ip->i_mount;
1672 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1673
1674 /*
1675 * If the inode is already free, then there can be nothing
1676 * to clean up here.
1677 */
1678 if (VFS_I(ip)->i_mode == 0)
1679 return false;
1680
1681 /* If this is a read-only mount, don't do this (would generate I/O) */
1682 if (xfs_is_readonly(mp))
1683 return false;
1684
1685 /* If the log isn't running, push inodes straight to reclaim. */
1686 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1687 return false;
1688
1689 /* Metadata inodes require explicit resource cleanup. */
1690 if (xfs_is_metadata_inode(ip))
1691 return false;
1692
1693 /* Want to clean out the cow blocks if there are any. */
1694 if (cow_ifp && cow_ifp->if_bytes > 0)
1695 return true;
1696
1697 /* Unlinked files must be freed. */
1698 if (VFS_I(ip)->i_nlink == 0)
1699 return true;
1700
1701 /*
1702 * This file isn't being freed, so check if there are post-eof blocks
1703 * to free. @force is true because we are evicting an inode from the
1704 * cache. Post-eof blocks must be freed, lest we end up with broken
1705 * free space accounting.
1706 *
1707 * Note: don't bother with iolock here since lockdep complains about
1708 * acquiring it in reclaim context. We have the only reference to the
1709 * inode at this point anyways.
1710 */
1711 return xfs_can_free_eofblocks(ip, true);
1712 }
1713
1714 /*
1715 * xfs_inactive
1716 *
1717 * This is called when the vnode reference count for the vnode
1718 * goes to zero. If the file has been unlinked, then it must
1719 * now be truncated. Also, we clear all of the read-ahead state
1720 * kept for the inode here since the file is now closed.
1721 */
1722 void
xfs_inactive(xfs_inode_t * ip)1723 xfs_inactive(
1724 xfs_inode_t *ip)
1725 {
1726 struct xfs_mount *mp;
1727 int error;
1728 int truncate = 0;
1729
1730 /*
1731 * If the inode is already free, then there can be nothing
1732 * to clean up here.
1733 */
1734 if (VFS_I(ip)->i_mode == 0) {
1735 ASSERT(ip->i_df.if_broot_bytes == 0);
1736 goto out;
1737 }
1738
1739 mp = ip->i_mount;
1740 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1741
1742 /* If this is a read-only mount, don't do this (would generate I/O) */
1743 if (xfs_is_readonly(mp))
1744 goto out;
1745
1746 /* Metadata inodes require explicit resource cleanup. */
1747 if (xfs_is_metadata_inode(ip))
1748 goto out;
1749
1750 /* Try to clean out the cow blocks if there are any. */
1751 if (xfs_inode_has_cow_data(ip))
1752 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1753
1754 if (VFS_I(ip)->i_nlink != 0) {
1755 /*
1756 * force is true because we are evicting an inode from the
1757 * cache. Post-eof blocks must be freed, lest we end up with
1758 * broken free space accounting.
1759 *
1760 * Note: don't bother with iolock here since lockdep complains
1761 * about acquiring it in reclaim context. We have the only
1762 * reference to the inode at this point anyways.
1763 */
1764 if (xfs_can_free_eofblocks(ip, true))
1765 xfs_free_eofblocks(ip);
1766
1767 goto out;
1768 }
1769
1770 if (S_ISREG(VFS_I(ip)->i_mode) &&
1771 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1772 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1773 truncate = 1;
1774
1775 error = xfs_qm_dqattach(ip);
1776 if (error)
1777 goto out;
1778
1779 if (S_ISLNK(VFS_I(ip)->i_mode))
1780 error = xfs_inactive_symlink(ip);
1781 else if (truncate)
1782 error = xfs_inactive_truncate(ip);
1783 if (error)
1784 goto out;
1785
1786 /*
1787 * If there are attributes associated with the file then blow them away
1788 * now. The code calls a routine that recursively deconstructs the
1789 * attribute fork. If also blows away the in-core attribute fork.
1790 */
1791 if (XFS_IFORK_Q(ip)) {
1792 error = xfs_attr_inactive(ip);
1793 if (error)
1794 goto out;
1795 }
1796
1797 ASSERT(!ip->i_afp);
1798 ASSERT(ip->i_forkoff == 0);
1799
1800 /*
1801 * Free the inode.
1802 */
1803 xfs_inactive_ifree(ip);
1804
1805 out:
1806 /*
1807 * We're done making metadata updates for this inode, so we can release
1808 * the attached dquots.
1809 */
1810 xfs_qm_dqdetach(ip);
1811 }
1812
1813 /*
1814 * In-Core Unlinked List Lookups
1815 * =============================
1816 *
1817 * Every inode is supposed to be reachable from some other piece of metadata
1818 * with the exception of the root directory. Inodes with a connection to a
1819 * file descriptor but not linked from anywhere in the on-disk directory tree
1820 * are collectively known as unlinked inodes, though the filesystem itself
1821 * maintains links to these inodes so that on-disk metadata are consistent.
1822 *
1823 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1824 * header contains a number of buckets that point to an inode, and each inode
1825 * record has a pointer to the next inode in the hash chain. This
1826 * singly-linked list causes scaling problems in the iunlink remove function
1827 * because we must walk that list to find the inode that points to the inode
1828 * being removed from the unlinked hash bucket list.
1829 *
1830 * What if we modelled the unlinked list as a collection of records capturing
1831 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1832 * have a fast way to look up unlinked list predecessors, which avoids the
1833 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1834 * rhashtable.
1835 *
1836 * Because this is a backref cache, we ignore operational failures since the
1837 * iunlink code can fall back to the slow bucket walk. The only errors that
1838 * should bubble out are for obviously incorrect situations.
1839 *
1840 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1841 * access or have otherwise provided for concurrency control.
1842 */
1843
1844 /* Capture a "X.next_unlinked = Y" relationship. */
1845 struct xfs_iunlink {
1846 struct rhash_head iu_rhash_head;
1847 xfs_agino_t iu_agino; /* X */
1848 xfs_agino_t iu_next_unlinked; /* Y */
1849 };
1850
1851 /* Unlinked list predecessor lookup hashtable construction */
1852 static int
xfs_iunlink_obj_cmpfn(struct rhashtable_compare_arg * arg,const void * obj)1853 xfs_iunlink_obj_cmpfn(
1854 struct rhashtable_compare_arg *arg,
1855 const void *obj)
1856 {
1857 const xfs_agino_t *key = arg->key;
1858 const struct xfs_iunlink *iu = obj;
1859
1860 if (iu->iu_next_unlinked != *key)
1861 return 1;
1862 return 0;
1863 }
1864
1865 static const struct rhashtable_params xfs_iunlink_hash_params = {
1866 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1867 .key_len = sizeof(xfs_agino_t),
1868 .key_offset = offsetof(struct xfs_iunlink,
1869 iu_next_unlinked),
1870 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1871 .automatic_shrinking = true,
1872 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1873 };
1874
1875 /*
1876 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1877 * relation is found.
1878 */
1879 static xfs_agino_t
xfs_iunlink_lookup_backref(struct xfs_perag * pag,xfs_agino_t agino)1880 xfs_iunlink_lookup_backref(
1881 struct xfs_perag *pag,
1882 xfs_agino_t agino)
1883 {
1884 struct xfs_iunlink *iu;
1885
1886 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1887 xfs_iunlink_hash_params);
1888 return iu ? iu->iu_agino : NULLAGINO;
1889 }
1890
1891 /*
1892 * Take ownership of an iunlink cache entry and insert it into the hash table.
1893 * If successful, the entry will be owned by the cache; if not, it is freed.
1894 * Either way, the caller does not own @iu after this call.
1895 */
1896 static int
xfs_iunlink_insert_backref(struct xfs_perag * pag,struct xfs_iunlink * iu)1897 xfs_iunlink_insert_backref(
1898 struct xfs_perag *pag,
1899 struct xfs_iunlink *iu)
1900 {
1901 int error;
1902
1903 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1904 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1905 /*
1906 * Fail loudly if there already was an entry because that's a sign of
1907 * corruption of in-memory data. Also fail loudly if we see an error
1908 * code we didn't anticipate from the rhashtable code. Currently we
1909 * only anticipate ENOMEM.
1910 */
1911 if (error) {
1912 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1913 kmem_free(iu);
1914 }
1915 /*
1916 * Absorb any runtime errors that aren't a result of corruption because
1917 * this is a cache and we can always fall back to bucket list scanning.
1918 */
1919 if (error != 0 && error != -EEXIST)
1920 error = 0;
1921 return error;
1922 }
1923
1924 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1925 static int
xfs_iunlink_add_backref(struct xfs_perag * pag,xfs_agino_t prev_agino,xfs_agino_t this_agino)1926 xfs_iunlink_add_backref(
1927 struct xfs_perag *pag,
1928 xfs_agino_t prev_agino,
1929 xfs_agino_t this_agino)
1930 {
1931 struct xfs_iunlink *iu;
1932
1933 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1934 return 0;
1935
1936 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1937 iu->iu_agino = prev_agino;
1938 iu->iu_next_unlinked = this_agino;
1939
1940 return xfs_iunlink_insert_backref(pag, iu);
1941 }
1942
1943 /*
1944 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1945 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
1946 * wasn't any such entry then we don't bother.
1947 */
1948 static int
xfs_iunlink_change_backref(struct xfs_perag * pag,xfs_agino_t agino,xfs_agino_t next_unlinked)1949 xfs_iunlink_change_backref(
1950 struct xfs_perag *pag,
1951 xfs_agino_t agino,
1952 xfs_agino_t next_unlinked)
1953 {
1954 struct xfs_iunlink *iu;
1955 int error;
1956
1957 /* Look up the old entry; if there wasn't one then exit. */
1958 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1959 xfs_iunlink_hash_params);
1960 if (!iu)
1961 return 0;
1962
1963 /*
1964 * Remove the entry. This shouldn't ever return an error, but if we
1965 * couldn't remove the old entry we don't want to add it again to the
1966 * hash table, and if the entry disappeared on us then someone's
1967 * violated the locking rules and we need to fail loudly. Either way
1968 * we cannot remove the inode because internal state is or would have
1969 * been corrupt.
1970 */
1971 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1972 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1973 if (error)
1974 return error;
1975
1976 /* If there is no new next entry just free our item and return. */
1977 if (next_unlinked == NULLAGINO) {
1978 kmem_free(iu);
1979 return 0;
1980 }
1981
1982 /* Update the entry and re-add it to the hash table. */
1983 iu->iu_next_unlinked = next_unlinked;
1984 return xfs_iunlink_insert_backref(pag, iu);
1985 }
1986
1987 /* Set up the in-core predecessor structures. */
1988 int
xfs_iunlink_init(struct xfs_perag * pag)1989 xfs_iunlink_init(
1990 struct xfs_perag *pag)
1991 {
1992 return rhashtable_init(&pag->pagi_unlinked_hash,
1993 &xfs_iunlink_hash_params);
1994 }
1995
1996 /* Free the in-core predecessor structures. */
1997 static void
xfs_iunlink_free_item(void * ptr,void * arg)1998 xfs_iunlink_free_item(
1999 void *ptr,
2000 void *arg)
2001 {
2002 struct xfs_iunlink *iu = ptr;
2003 bool *freed_anything = arg;
2004
2005 *freed_anything = true;
2006 kmem_free(iu);
2007 }
2008
2009 void
xfs_iunlink_destroy(struct xfs_perag * pag)2010 xfs_iunlink_destroy(
2011 struct xfs_perag *pag)
2012 {
2013 bool freed_anything = false;
2014
2015 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2016 xfs_iunlink_free_item, &freed_anything);
2017
2018 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
2019 }
2020
2021 /*
2022 * Point the AGI unlinked bucket at an inode and log the results. The caller
2023 * is responsible for validating the old value.
2024 */
2025 STATIC int
xfs_iunlink_update_bucket(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_buf * agibp,unsigned int bucket_index,xfs_agino_t new_agino)2026 xfs_iunlink_update_bucket(
2027 struct xfs_trans *tp,
2028 struct xfs_perag *pag,
2029 struct xfs_buf *agibp,
2030 unsigned int bucket_index,
2031 xfs_agino_t new_agino)
2032 {
2033 struct xfs_agi *agi = agibp->b_addr;
2034 xfs_agino_t old_value;
2035 int offset;
2036
2037 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
2038
2039 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2040 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2041 old_value, new_agino);
2042
2043 /*
2044 * We should never find the head of the list already set to the value
2045 * passed in because either we're adding or removing ourselves from the
2046 * head of the list.
2047 */
2048 if (old_value == new_agino) {
2049 xfs_buf_mark_corrupt(agibp);
2050 return -EFSCORRUPTED;
2051 }
2052
2053 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2054 offset = offsetof(struct xfs_agi, agi_unlinked) +
2055 (sizeof(xfs_agino_t) * bucket_index);
2056 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2057 return 0;
2058 }
2059
2060 /* Set an on-disk inode's next_unlinked pointer. */
2061 STATIC void
xfs_iunlink_update_dinode(struct xfs_trans * tp,struct xfs_perag * pag,xfs_agino_t agino,struct xfs_buf * ibp,struct xfs_dinode * dip,struct xfs_imap * imap,xfs_agino_t next_agino)2062 xfs_iunlink_update_dinode(
2063 struct xfs_trans *tp,
2064 struct xfs_perag *pag,
2065 xfs_agino_t agino,
2066 struct xfs_buf *ibp,
2067 struct xfs_dinode *dip,
2068 struct xfs_imap *imap,
2069 xfs_agino_t next_agino)
2070 {
2071 struct xfs_mount *mp = tp->t_mountp;
2072 int offset;
2073
2074 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2075
2076 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2077 be32_to_cpu(dip->di_next_unlinked), next_agino);
2078
2079 dip->di_next_unlinked = cpu_to_be32(next_agino);
2080 offset = imap->im_boffset +
2081 offsetof(struct xfs_dinode, di_next_unlinked);
2082
2083 /* need to recalc the inode CRC if appropriate */
2084 xfs_dinode_calc_crc(mp, dip);
2085 xfs_trans_inode_buf(tp, ibp);
2086 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2087 }
2088
2089 /* Set an in-core inode's unlinked pointer and return the old value. */
2090 STATIC int
xfs_iunlink_update_inode(struct xfs_trans * tp,struct xfs_inode * ip,struct xfs_perag * pag,xfs_agino_t next_agino,xfs_agino_t * old_next_agino)2091 xfs_iunlink_update_inode(
2092 struct xfs_trans *tp,
2093 struct xfs_inode *ip,
2094 struct xfs_perag *pag,
2095 xfs_agino_t next_agino,
2096 xfs_agino_t *old_next_agino)
2097 {
2098 struct xfs_mount *mp = tp->t_mountp;
2099 struct xfs_dinode *dip;
2100 struct xfs_buf *ibp;
2101 xfs_agino_t old_value;
2102 int error;
2103
2104 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2105
2106 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2107 if (error)
2108 return error;
2109 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2110
2111 /* Make sure the old pointer isn't garbage. */
2112 old_value = be32_to_cpu(dip->di_next_unlinked);
2113 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2114 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2115 sizeof(*dip), __this_address);
2116 error = -EFSCORRUPTED;
2117 goto out;
2118 }
2119
2120 /*
2121 * Since we're updating a linked list, we should never find that the
2122 * current pointer is the same as the new value, unless we're
2123 * terminating the list.
2124 */
2125 *old_next_agino = old_value;
2126 if (old_value == next_agino) {
2127 if (next_agino != NULLAGINO) {
2128 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2129 dip, sizeof(*dip), __this_address);
2130 error = -EFSCORRUPTED;
2131 }
2132 goto out;
2133 }
2134
2135 /* Ok, update the new pointer. */
2136 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2137 ibp, dip, &ip->i_imap, next_agino);
2138 return 0;
2139 out:
2140 xfs_trans_brelse(tp, ibp);
2141 return error;
2142 }
2143
2144 /*
2145 * This is called when the inode's link count has gone to 0 or we are creating
2146 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2147 *
2148 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2149 * list when the inode is freed.
2150 */
2151 STATIC int
xfs_iunlink(struct xfs_trans * tp,struct xfs_inode * ip)2152 xfs_iunlink(
2153 struct xfs_trans *tp,
2154 struct xfs_inode *ip)
2155 {
2156 struct xfs_mount *mp = tp->t_mountp;
2157 struct xfs_perag *pag;
2158 struct xfs_agi *agi;
2159 struct xfs_buf *agibp;
2160 xfs_agino_t next_agino;
2161 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2162 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2163 int error;
2164
2165 ASSERT(VFS_I(ip)->i_nlink == 0);
2166 ASSERT(VFS_I(ip)->i_mode != 0);
2167 trace_xfs_iunlink(ip);
2168
2169 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2170
2171 /* Get the agi buffer first. It ensures lock ordering on the list. */
2172 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2173 if (error)
2174 goto out;
2175 agi = agibp->b_addr;
2176
2177 /*
2178 * Get the index into the agi hash table for the list this inode will
2179 * go on. Make sure the pointer isn't garbage and that this inode
2180 * isn't already on the list.
2181 */
2182 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2183 if (next_agino == agino ||
2184 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2185 xfs_buf_mark_corrupt(agibp);
2186 error = -EFSCORRUPTED;
2187 goto out;
2188 }
2189
2190 if (next_agino != NULLAGINO) {
2191 xfs_agino_t old_agino;
2192
2193 /*
2194 * There is already another inode in the bucket, so point this
2195 * inode to the current head of the list.
2196 */
2197 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2198 &old_agino);
2199 if (error)
2200 goto out;
2201 ASSERT(old_agino == NULLAGINO);
2202
2203 /*
2204 * agino has been unlinked, add a backref from the next inode
2205 * back to agino.
2206 */
2207 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2208 if (error)
2209 goto out;
2210 }
2211
2212 /* Point the head of the list to point to this inode. */
2213 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2214 out:
2215 xfs_perag_put(pag);
2216 return error;
2217 }
2218
2219 /* Return the imap, dinode pointer, and buffer for an inode. */
2220 STATIC int
xfs_iunlink_map_ino(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp)2221 xfs_iunlink_map_ino(
2222 struct xfs_trans *tp,
2223 xfs_agnumber_t agno,
2224 xfs_agino_t agino,
2225 struct xfs_imap *imap,
2226 struct xfs_dinode **dipp,
2227 struct xfs_buf **bpp)
2228 {
2229 struct xfs_mount *mp = tp->t_mountp;
2230 int error;
2231
2232 imap->im_blkno = 0;
2233 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2234 if (error) {
2235 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2236 __func__, error);
2237 return error;
2238 }
2239
2240 error = xfs_imap_to_bp(mp, tp, imap, bpp);
2241 if (error) {
2242 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2243 __func__, error);
2244 return error;
2245 }
2246
2247 *dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2248 return 0;
2249 }
2250
2251 /*
2252 * Walk the unlinked chain from @head_agino until we find the inode that
2253 * points to @target_agino. Return the inode number, map, dinode pointer,
2254 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2255 *
2256 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2257 * @agino, @imap, @dipp, and @bpp are all output parameters.
2258 *
2259 * Do not call this function if @target_agino is the head of the list.
2260 */
2261 STATIC int
xfs_iunlink_map_prev(struct xfs_trans * tp,struct xfs_perag * pag,xfs_agino_t head_agino,xfs_agino_t target_agino,xfs_agino_t * agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp)2262 xfs_iunlink_map_prev(
2263 struct xfs_trans *tp,
2264 struct xfs_perag *pag,
2265 xfs_agino_t head_agino,
2266 xfs_agino_t target_agino,
2267 xfs_agino_t *agino,
2268 struct xfs_imap *imap,
2269 struct xfs_dinode **dipp,
2270 struct xfs_buf **bpp)
2271 {
2272 struct xfs_mount *mp = tp->t_mountp;
2273 xfs_agino_t next_agino;
2274 int error;
2275
2276 ASSERT(head_agino != target_agino);
2277 *bpp = NULL;
2278
2279 /* See if our backref cache can find it faster. */
2280 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2281 if (*agino != NULLAGINO) {
2282 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2283 dipp, bpp);
2284 if (error)
2285 return error;
2286
2287 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2288 return 0;
2289
2290 /*
2291 * If we get here the cache contents were corrupt, so drop the
2292 * buffer and fall back to walking the bucket list.
2293 */
2294 xfs_trans_brelse(tp, *bpp);
2295 *bpp = NULL;
2296 WARN_ON_ONCE(1);
2297 }
2298
2299 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2300
2301 /* Otherwise, walk the entire bucket until we find it. */
2302 next_agino = head_agino;
2303 while (next_agino != target_agino) {
2304 xfs_agino_t unlinked_agino;
2305
2306 if (*bpp)
2307 xfs_trans_brelse(tp, *bpp);
2308
2309 *agino = next_agino;
2310 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2311 dipp, bpp);
2312 if (error)
2313 return error;
2314
2315 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2316 /*
2317 * Make sure this pointer is valid and isn't an obvious
2318 * infinite loop.
2319 */
2320 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2321 next_agino == unlinked_agino) {
2322 XFS_CORRUPTION_ERROR(__func__,
2323 XFS_ERRLEVEL_LOW, mp,
2324 *dipp, sizeof(**dipp));
2325 error = -EFSCORRUPTED;
2326 return error;
2327 }
2328 next_agino = unlinked_agino;
2329 }
2330
2331 return 0;
2332 }
2333
2334 /*
2335 * Pull the on-disk inode from the AGI unlinked list.
2336 */
2337 STATIC int
xfs_iunlink_remove(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * ip)2338 xfs_iunlink_remove(
2339 struct xfs_trans *tp,
2340 struct xfs_perag *pag,
2341 struct xfs_inode *ip)
2342 {
2343 struct xfs_mount *mp = tp->t_mountp;
2344 struct xfs_agi *agi;
2345 struct xfs_buf *agibp;
2346 struct xfs_buf *last_ibp;
2347 struct xfs_dinode *last_dip = NULL;
2348 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2349 xfs_agino_t next_agino;
2350 xfs_agino_t head_agino;
2351 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2352 int error;
2353
2354 trace_xfs_iunlink_remove(ip);
2355
2356 /* Get the agi buffer first. It ensures lock ordering on the list. */
2357 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2358 if (error)
2359 return error;
2360 agi = agibp->b_addr;
2361
2362 /*
2363 * Get the index into the agi hash table for the list this inode will
2364 * go on. Make sure the head pointer isn't garbage.
2365 */
2366 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2367 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2368 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2369 agi, sizeof(*agi));
2370 return -EFSCORRUPTED;
2371 }
2372
2373 /*
2374 * Set our inode's next_unlinked pointer to NULL and then return
2375 * the old pointer value so that we can update whatever was previous
2376 * to us in the list to point to whatever was next in the list.
2377 */
2378 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2379 if (error)
2380 return error;
2381
2382 /*
2383 * If there was a backref pointing from the next inode back to this
2384 * one, remove it because we've removed this inode from the list.
2385 *
2386 * Later, if this inode was in the middle of the list we'll update
2387 * this inode's backref to point from the next inode.
2388 */
2389 if (next_agino != NULLAGINO) {
2390 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2391 if (error)
2392 return error;
2393 }
2394
2395 if (head_agino != agino) {
2396 struct xfs_imap imap;
2397 xfs_agino_t prev_agino;
2398
2399 /* We need to search the list for the inode being freed. */
2400 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2401 &prev_agino, &imap, &last_dip, &last_ibp);
2402 if (error)
2403 return error;
2404
2405 /* Point the previous inode on the list to the next inode. */
2406 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2407 last_dip, &imap, next_agino);
2408
2409 /*
2410 * Now we deal with the backref for this inode. If this inode
2411 * pointed at a real inode, change the backref that pointed to
2412 * us to point to our old next. If this inode was the end of
2413 * the list, delete the backref that pointed to us. Note that
2414 * change_backref takes care of deleting the backref if
2415 * next_agino is NULLAGINO.
2416 */
2417 return xfs_iunlink_change_backref(agibp->b_pag, agino,
2418 next_agino);
2419 }
2420
2421 /* Point the head of the list to the next unlinked inode. */
2422 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2423 next_agino);
2424 }
2425
2426 /*
2427 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2428 * mark it stale. We should only find clean inodes in this lookup that aren't
2429 * already stale.
2430 */
2431 static void
xfs_ifree_mark_inode_stale(struct xfs_perag * pag,struct xfs_inode * free_ip,xfs_ino_t inum)2432 xfs_ifree_mark_inode_stale(
2433 struct xfs_perag *pag,
2434 struct xfs_inode *free_ip,
2435 xfs_ino_t inum)
2436 {
2437 struct xfs_mount *mp = pag->pag_mount;
2438 struct xfs_inode_log_item *iip;
2439 struct xfs_inode *ip;
2440
2441 retry:
2442 rcu_read_lock();
2443 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2444
2445 /* Inode not in memory, nothing to do */
2446 if (!ip) {
2447 rcu_read_unlock();
2448 return;
2449 }
2450
2451 /*
2452 * because this is an RCU protected lookup, we could find a recently
2453 * freed or even reallocated inode during the lookup. We need to check
2454 * under the i_flags_lock for a valid inode here. Skip it if it is not
2455 * valid, the wrong inode or stale.
2456 */
2457 spin_lock(&ip->i_flags_lock);
2458 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2459 goto out_iflags_unlock;
2460
2461 /*
2462 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2463 * other inodes that we did not find in the list attached to the buffer
2464 * and are not already marked stale. If we can't lock it, back off and
2465 * retry.
2466 */
2467 if (ip != free_ip) {
2468 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2469 spin_unlock(&ip->i_flags_lock);
2470 rcu_read_unlock();
2471 delay(1);
2472 goto retry;
2473 }
2474 }
2475 ip->i_flags |= XFS_ISTALE;
2476
2477 /*
2478 * If the inode is flushing, it is already attached to the buffer. All
2479 * we needed to do here is mark the inode stale so buffer IO completion
2480 * will remove it from the AIL.
2481 */
2482 iip = ip->i_itemp;
2483 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2484 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2485 ASSERT(iip->ili_last_fields);
2486 goto out_iunlock;
2487 }
2488
2489 /*
2490 * Inodes not attached to the buffer can be released immediately.
2491 * Everything else has to go through xfs_iflush_abort() on journal
2492 * commit as the flock synchronises removal of the inode from the
2493 * cluster buffer against inode reclaim.
2494 */
2495 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2496 goto out_iunlock;
2497
2498 __xfs_iflags_set(ip, XFS_IFLUSHING);
2499 spin_unlock(&ip->i_flags_lock);
2500 rcu_read_unlock();
2501
2502 /* we have a dirty inode in memory that has not yet been flushed. */
2503 spin_lock(&iip->ili_lock);
2504 iip->ili_last_fields = iip->ili_fields;
2505 iip->ili_fields = 0;
2506 iip->ili_fsync_fields = 0;
2507 spin_unlock(&iip->ili_lock);
2508 ASSERT(iip->ili_last_fields);
2509
2510 if (ip != free_ip)
2511 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2512 return;
2513
2514 out_iunlock:
2515 if (ip != free_ip)
2516 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2517 out_iflags_unlock:
2518 spin_unlock(&ip->i_flags_lock);
2519 rcu_read_unlock();
2520 }
2521
2522 /*
2523 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2524 * inodes that are in memory - they all must be marked stale and attached to
2525 * the cluster buffer.
2526 */
2527 static int
xfs_ifree_cluster(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * free_ip,struct xfs_icluster * xic)2528 xfs_ifree_cluster(
2529 struct xfs_trans *tp,
2530 struct xfs_perag *pag,
2531 struct xfs_inode *free_ip,
2532 struct xfs_icluster *xic)
2533 {
2534 struct xfs_mount *mp = free_ip->i_mount;
2535 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2536 struct xfs_buf *bp;
2537 xfs_daddr_t blkno;
2538 xfs_ino_t inum = xic->first_ino;
2539 int nbufs;
2540 int i, j;
2541 int ioffset;
2542 int error;
2543
2544 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2545
2546 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2547 /*
2548 * The allocation bitmap tells us which inodes of the chunk were
2549 * physically allocated. Skip the cluster if an inode falls into
2550 * a sparse region.
2551 */
2552 ioffset = inum - xic->first_ino;
2553 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2554 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2555 continue;
2556 }
2557
2558 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2559 XFS_INO_TO_AGBNO(mp, inum));
2560
2561 /*
2562 * We obtain and lock the backing buffer first in the process
2563 * here to ensure dirty inodes attached to the buffer remain in
2564 * the flushing state while we mark them stale.
2565 *
2566 * If we scan the in-memory inodes first, then buffer IO can
2567 * complete before we get a lock on it, and hence we may fail
2568 * to mark all the active inodes on the buffer stale.
2569 */
2570 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2571 mp->m_bsize * igeo->blocks_per_cluster,
2572 XBF_UNMAPPED, &bp);
2573 if (error)
2574 return error;
2575
2576 /*
2577 * This buffer may not have been correctly initialised as we
2578 * didn't read it from disk. That's not important because we are
2579 * only using to mark the buffer as stale in the log, and to
2580 * attach stale cached inodes on it. That means it will never be
2581 * dispatched for IO. If it is, we want to know about it, and we
2582 * want it to fail. We can acheive this by adding a write
2583 * verifier to the buffer.
2584 */
2585 bp->b_ops = &xfs_inode_buf_ops;
2586
2587 /*
2588 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2589 * too. This requires lookups, and will skip inodes that we've
2590 * already marked XFS_ISTALE.
2591 */
2592 for (i = 0; i < igeo->inodes_per_cluster; i++)
2593 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2594
2595 xfs_trans_stale_inode_buf(tp, bp);
2596 xfs_trans_binval(tp, bp);
2597 }
2598 return 0;
2599 }
2600
2601 /*
2602 * This is called to return an inode to the inode free list. The inode should
2603 * already be truncated to 0 length and have no pages associated with it. This
2604 * routine also assumes that the inode is already a part of the transaction.
2605 *
2606 * The on-disk copy of the inode will have been added to the list of unlinked
2607 * inodes in the AGI. We need to remove the inode from that list atomically with
2608 * respect to freeing it here.
2609 */
2610 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)2611 xfs_ifree(
2612 struct xfs_trans *tp,
2613 struct xfs_inode *ip)
2614 {
2615 struct xfs_mount *mp = ip->i_mount;
2616 struct xfs_perag *pag;
2617 struct xfs_icluster xic = { 0 };
2618 struct xfs_inode_log_item *iip = ip->i_itemp;
2619 int error;
2620
2621 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2622 ASSERT(VFS_I(ip)->i_nlink == 0);
2623 ASSERT(ip->i_df.if_nextents == 0);
2624 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2625 ASSERT(ip->i_nblocks == 0);
2626
2627 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2628
2629 /*
2630 * Free the inode first so that we guarantee that the AGI lock is going
2631 * to be taken before we remove the inode from the unlinked list. This
2632 * makes the AGI lock -> unlinked list modification order the same as
2633 * used in O_TMPFILE creation.
2634 */
2635 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2636 if (error)
2637 goto out;
2638
2639 error = xfs_iunlink_remove(tp, pag, ip);
2640 if (error)
2641 goto out;
2642
2643 /*
2644 * Free any local-format data sitting around before we reset the
2645 * data fork to extents format. Note that the attr fork data has
2646 * already been freed by xfs_attr_inactive.
2647 */
2648 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2649 kmem_free(ip->i_df.if_u1.if_data);
2650 ip->i_df.if_u1.if_data = NULL;
2651 ip->i_df.if_bytes = 0;
2652 }
2653
2654 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2655 ip->i_diflags = 0;
2656 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2657 ip->i_forkoff = 0; /* mark the attr fork not in use */
2658 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2659 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2660 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2661
2662 /* Don't attempt to replay owner changes for a deleted inode */
2663 spin_lock(&iip->ili_lock);
2664 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2665 spin_unlock(&iip->ili_lock);
2666
2667 /*
2668 * Bump the generation count so no one will be confused
2669 * by reincarnations of this inode.
2670 */
2671 VFS_I(ip)->i_generation++;
2672 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2673
2674 if (xic.deleted)
2675 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2676 out:
2677 xfs_perag_put(pag);
2678 return error;
2679 }
2680
2681 /*
2682 * This is called to unpin an inode. The caller must have the inode locked
2683 * in at least shared mode so that the buffer cannot be subsequently pinned
2684 * once someone is waiting for it to be unpinned.
2685 */
2686 static void
xfs_iunpin(struct xfs_inode * ip)2687 xfs_iunpin(
2688 struct xfs_inode *ip)
2689 {
2690 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2691
2692 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2693
2694 /* Give the log a push to start the unpinning I/O */
2695 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2696
2697 }
2698
2699 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2700 __xfs_iunpin_wait(
2701 struct xfs_inode *ip)
2702 {
2703 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2704 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2705
2706 xfs_iunpin(ip);
2707
2708 do {
2709 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2710 if (xfs_ipincount(ip))
2711 io_schedule();
2712 } while (xfs_ipincount(ip));
2713 finish_wait(wq, &wait.wq_entry);
2714 }
2715
2716 void
xfs_iunpin_wait(struct xfs_inode * ip)2717 xfs_iunpin_wait(
2718 struct xfs_inode *ip)
2719 {
2720 if (xfs_ipincount(ip))
2721 __xfs_iunpin_wait(ip);
2722 }
2723
2724 /*
2725 * Removing an inode from the namespace involves removing the directory entry
2726 * and dropping the link count on the inode. Removing the directory entry can
2727 * result in locking an AGF (directory blocks were freed) and removing a link
2728 * count can result in placing the inode on an unlinked list which results in
2729 * locking an AGI.
2730 *
2731 * The big problem here is that we have an ordering constraint on AGF and AGI
2732 * locking - inode allocation locks the AGI, then can allocate a new extent for
2733 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2734 * removes the inode from the unlinked list, requiring that we lock the AGI
2735 * first, and then freeing the inode can result in an inode chunk being freed
2736 * and hence freeing disk space requiring that we lock an AGF.
2737 *
2738 * Hence the ordering that is imposed by other parts of the code is AGI before
2739 * AGF. This means we cannot remove the directory entry before we drop the inode
2740 * reference count and put it on the unlinked list as this results in a lock
2741 * order of AGF then AGI, and this can deadlock against inode allocation and
2742 * freeing. Therefore we must drop the link counts before we remove the
2743 * directory entry.
2744 *
2745 * This is still safe from a transactional point of view - it is not until we
2746 * get to xfs_defer_finish() that we have the possibility of multiple
2747 * transactions in this operation. Hence as long as we remove the directory
2748 * entry and drop the link count in the first transaction of the remove
2749 * operation, there are no transactional constraints on the ordering here.
2750 */
2751 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2752 xfs_remove(
2753 xfs_inode_t *dp,
2754 struct xfs_name *name,
2755 xfs_inode_t *ip)
2756 {
2757 xfs_mount_t *mp = dp->i_mount;
2758 xfs_trans_t *tp = NULL;
2759 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2760 int dontcare;
2761 int error = 0;
2762 uint resblks;
2763
2764 trace_xfs_remove(dp, name);
2765
2766 if (xfs_is_shutdown(mp))
2767 return -EIO;
2768
2769 error = xfs_qm_dqattach(dp);
2770 if (error)
2771 goto std_return;
2772
2773 error = xfs_qm_dqattach(ip);
2774 if (error)
2775 goto std_return;
2776
2777 /*
2778 * We try to get the real space reservation first, allowing for
2779 * directory btree deletion(s) implying possible bmap insert(s). If we
2780 * can't get the space reservation then we use 0 instead, and avoid the
2781 * bmap btree insert(s) in the directory code by, if the bmap insert
2782 * tries to happen, instead trimming the LAST block from the directory.
2783 *
2784 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2785 * the directory code can handle a reservationless update and we don't
2786 * want to prevent a user from trying to free space by deleting things.
2787 */
2788 resblks = XFS_REMOVE_SPACE_RES(mp);
2789 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2790 &tp, &dontcare);
2791 if (error) {
2792 ASSERT(error != -ENOSPC);
2793 goto std_return;
2794 }
2795
2796 /*
2797 * If we're removing a directory perform some additional validation.
2798 */
2799 if (is_dir) {
2800 ASSERT(VFS_I(ip)->i_nlink >= 2);
2801 if (VFS_I(ip)->i_nlink != 2) {
2802 error = -ENOTEMPTY;
2803 goto out_trans_cancel;
2804 }
2805 if (!xfs_dir_isempty(ip)) {
2806 error = -ENOTEMPTY;
2807 goto out_trans_cancel;
2808 }
2809
2810 /* Drop the link from ip's "..". */
2811 error = xfs_droplink(tp, dp);
2812 if (error)
2813 goto out_trans_cancel;
2814
2815 /* Drop the "." link from ip to self. */
2816 error = xfs_droplink(tp, ip);
2817 if (error)
2818 goto out_trans_cancel;
2819
2820 /*
2821 * Point the unlinked child directory's ".." entry to the root
2822 * directory to eliminate back-references to inodes that may
2823 * get freed before the child directory is closed. If the fs
2824 * gets shrunk, this can lead to dirent inode validation errors.
2825 */
2826 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2827 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2828 tp->t_mountp->m_sb.sb_rootino, 0);
2829 if (error)
2830 return error;
2831 }
2832 } else {
2833 /*
2834 * When removing a non-directory we need to log the parent
2835 * inode here. For a directory this is done implicitly
2836 * by the xfs_droplink call for the ".." entry.
2837 */
2838 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2839 }
2840 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2841
2842 /* Drop the link from dp to ip. */
2843 error = xfs_droplink(tp, ip);
2844 if (error)
2845 goto out_trans_cancel;
2846
2847 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2848 if (error) {
2849 ASSERT(error != -ENOENT);
2850 goto out_trans_cancel;
2851 }
2852
2853 /*
2854 * If this is a synchronous mount, make sure that the
2855 * remove transaction goes to disk before returning to
2856 * the user.
2857 */
2858 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2859 xfs_trans_set_sync(tp);
2860
2861 error = xfs_trans_commit(tp);
2862 if (error)
2863 goto std_return;
2864
2865 if (is_dir && xfs_inode_is_filestream(ip))
2866 xfs_filestream_deassociate(ip);
2867
2868 return 0;
2869
2870 out_trans_cancel:
2871 xfs_trans_cancel(tp);
2872 std_return:
2873 return error;
2874 }
2875
2876 /*
2877 * Enter all inodes for a rename transaction into a sorted array.
2878 */
2879 #define __XFS_SORT_INODES 5
2880 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2881 xfs_sort_for_rename(
2882 struct xfs_inode *dp1, /* in: old (source) directory inode */
2883 struct xfs_inode *dp2, /* in: new (target) directory inode */
2884 struct xfs_inode *ip1, /* in: inode of old entry */
2885 struct xfs_inode *ip2, /* in: inode of new entry */
2886 struct xfs_inode *wip, /* in: whiteout inode */
2887 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2888 int *num_inodes) /* in/out: inodes in array */
2889 {
2890 int i, j;
2891
2892 ASSERT(*num_inodes == __XFS_SORT_INODES);
2893 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2894
2895 /*
2896 * i_tab contains a list of pointers to inodes. We initialize
2897 * the table here & we'll sort it. We will then use it to
2898 * order the acquisition of the inode locks.
2899 *
2900 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2901 */
2902 i = 0;
2903 i_tab[i++] = dp1;
2904 i_tab[i++] = dp2;
2905 i_tab[i++] = ip1;
2906 if (ip2)
2907 i_tab[i++] = ip2;
2908 if (wip)
2909 i_tab[i++] = wip;
2910 *num_inodes = i;
2911
2912 /*
2913 * Sort the elements via bubble sort. (Remember, there are at
2914 * most 5 elements to sort, so this is adequate.)
2915 */
2916 for (i = 0; i < *num_inodes; i++) {
2917 for (j = 1; j < *num_inodes; j++) {
2918 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2919 struct xfs_inode *temp = i_tab[j];
2920 i_tab[j] = i_tab[j-1];
2921 i_tab[j-1] = temp;
2922 }
2923 }
2924 }
2925 }
2926
2927 static int
xfs_finish_rename(struct xfs_trans * tp)2928 xfs_finish_rename(
2929 struct xfs_trans *tp)
2930 {
2931 /*
2932 * If this is a synchronous mount, make sure that the rename transaction
2933 * goes to disk before returning to the user.
2934 */
2935 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2936 xfs_trans_set_sync(tp);
2937
2938 return xfs_trans_commit(tp);
2939 }
2940
2941 /*
2942 * xfs_cross_rename()
2943 *
2944 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2945 */
2946 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,int spaceres)2947 xfs_cross_rename(
2948 struct xfs_trans *tp,
2949 struct xfs_inode *dp1,
2950 struct xfs_name *name1,
2951 struct xfs_inode *ip1,
2952 struct xfs_inode *dp2,
2953 struct xfs_name *name2,
2954 struct xfs_inode *ip2,
2955 int spaceres)
2956 {
2957 int error = 0;
2958 int ip1_flags = 0;
2959 int ip2_flags = 0;
2960 int dp2_flags = 0;
2961
2962 /* Swap inode number for dirent in first parent */
2963 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2964 if (error)
2965 goto out_trans_abort;
2966
2967 /* Swap inode number for dirent in second parent */
2968 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2969 if (error)
2970 goto out_trans_abort;
2971
2972 /*
2973 * If we're renaming one or more directories across different parents,
2974 * update the respective ".." entries (and link counts) to match the new
2975 * parents.
2976 */
2977 if (dp1 != dp2) {
2978 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2979
2980 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2981 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2982 dp1->i_ino, spaceres);
2983 if (error)
2984 goto out_trans_abort;
2985
2986 /* transfer ip2 ".." reference to dp1 */
2987 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2988 error = xfs_droplink(tp, dp2);
2989 if (error)
2990 goto out_trans_abort;
2991 xfs_bumplink(tp, dp1);
2992 }
2993
2994 /*
2995 * Although ip1 isn't changed here, userspace needs
2996 * to be warned about the change, so that applications
2997 * relying on it (like backup ones), will properly
2998 * notify the change
2999 */
3000 ip1_flags |= XFS_ICHGTIME_CHG;
3001 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3002 }
3003
3004 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3005 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3006 dp2->i_ino, spaceres);
3007 if (error)
3008 goto out_trans_abort;
3009
3010 /* transfer ip1 ".." reference to dp2 */
3011 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3012 error = xfs_droplink(tp, dp1);
3013 if (error)
3014 goto out_trans_abort;
3015 xfs_bumplink(tp, dp2);
3016 }
3017
3018 /*
3019 * Although ip2 isn't changed here, userspace needs
3020 * to be warned about the change, so that applications
3021 * relying on it (like backup ones), will properly
3022 * notify the change
3023 */
3024 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3025 ip2_flags |= XFS_ICHGTIME_CHG;
3026 }
3027 }
3028
3029 if (ip1_flags) {
3030 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3031 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3032 }
3033 if (ip2_flags) {
3034 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3035 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3036 }
3037 if (dp2_flags) {
3038 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3039 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3040 }
3041 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3042 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3043 return xfs_finish_rename(tp);
3044
3045 out_trans_abort:
3046 xfs_trans_cancel(tp);
3047 return error;
3048 }
3049
3050 /*
3051 * xfs_rename_alloc_whiteout()
3052 *
3053 * Return a referenced, unlinked, unlocked inode that can be used as a
3054 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3055 * crash between allocating the inode and linking it into the rename transaction
3056 * recovery will free the inode and we won't leak it.
3057 */
3058 static int
xfs_rename_alloc_whiteout(struct user_namespace * mnt_userns,struct xfs_inode * dp,struct xfs_inode ** wip)3059 xfs_rename_alloc_whiteout(
3060 struct user_namespace *mnt_userns,
3061 struct xfs_inode *dp,
3062 struct xfs_inode **wip)
3063 {
3064 struct xfs_inode *tmpfile;
3065 int error;
3066
3067 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3068 &tmpfile);
3069 if (error)
3070 return error;
3071
3072 /*
3073 * Prepare the tmpfile inode as if it were created through the VFS.
3074 * Complete the inode setup and flag it as linkable. nlink is already
3075 * zero, so we can skip the drop_nlink.
3076 */
3077 xfs_setup_iops(tmpfile);
3078 xfs_finish_inode_setup(tmpfile);
3079 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3080
3081 *wip = tmpfile;
3082 return 0;
3083 }
3084
3085 /*
3086 * xfs_rename
3087 */
3088 int
xfs_rename(struct user_namespace * mnt_userns,struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)3089 xfs_rename(
3090 struct user_namespace *mnt_userns,
3091 struct xfs_inode *src_dp,
3092 struct xfs_name *src_name,
3093 struct xfs_inode *src_ip,
3094 struct xfs_inode *target_dp,
3095 struct xfs_name *target_name,
3096 struct xfs_inode *target_ip,
3097 unsigned int flags)
3098 {
3099 struct xfs_mount *mp = src_dp->i_mount;
3100 struct xfs_trans *tp;
3101 struct xfs_inode *wip = NULL; /* whiteout inode */
3102 struct xfs_inode *inodes[__XFS_SORT_INODES];
3103 int i;
3104 int num_inodes = __XFS_SORT_INODES;
3105 bool new_parent = (src_dp != target_dp);
3106 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3107 int spaceres;
3108 bool retried = false;
3109 int error, nospace_error = 0;
3110
3111 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3112
3113 if ((flags & RENAME_EXCHANGE) && !target_ip)
3114 return -EINVAL;
3115
3116 /*
3117 * If we are doing a whiteout operation, allocate the whiteout inode
3118 * we will be placing at the target and ensure the type is set
3119 * appropriately.
3120 */
3121 if (flags & RENAME_WHITEOUT) {
3122 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3123 if (error)
3124 return error;
3125
3126 /* setup target dirent info as whiteout */
3127 src_name->type = XFS_DIR3_FT_CHRDEV;
3128 }
3129
3130 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3131 inodes, &num_inodes);
3132
3133 retry:
3134 nospace_error = 0;
3135 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3136 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3137 if (error == -ENOSPC) {
3138 nospace_error = error;
3139 spaceres = 0;
3140 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3141 &tp);
3142 }
3143 if (error)
3144 goto out_release_wip;
3145
3146 /*
3147 * Attach the dquots to the inodes
3148 */
3149 error = xfs_qm_vop_rename_dqattach(inodes);
3150 if (error)
3151 goto out_trans_cancel;
3152
3153 /*
3154 * Lock all the participating inodes. Depending upon whether
3155 * the target_name exists in the target directory, and
3156 * whether the target directory is the same as the source
3157 * directory, we can lock from 2 to 4 inodes.
3158 */
3159 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3160
3161 /*
3162 * Join all the inodes to the transaction. From this point on,
3163 * we can rely on either trans_commit or trans_cancel to unlock
3164 * them.
3165 */
3166 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3167 if (new_parent)
3168 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3169 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3170 if (target_ip)
3171 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3172 if (wip)
3173 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3174
3175 /*
3176 * If we are using project inheritance, we only allow renames
3177 * into our tree when the project IDs are the same; else the
3178 * tree quota mechanism would be circumvented.
3179 */
3180 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3181 target_dp->i_projid != src_ip->i_projid)) {
3182 error = -EXDEV;
3183 goto out_trans_cancel;
3184 }
3185
3186 /* RENAME_EXCHANGE is unique from here on. */
3187 if (flags & RENAME_EXCHANGE)
3188 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3189 target_dp, target_name, target_ip,
3190 spaceres);
3191
3192 /*
3193 * Try to reserve quota to handle an expansion of the target directory.
3194 * We'll allow the rename to continue in reservationless mode if we hit
3195 * a space usage constraint. If we trigger reservationless mode, save
3196 * the errno if there isn't any free space in the target directory.
3197 */
3198 if (spaceres != 0) {
3199 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3200 0, false);
3201 if (error == -EDQUOT || error == -ENOSPC) {
3202 if (!retried) {
3203 xfs_trans_cancel(tp);
3204 xfs_blockgc_free_quota(target_dp, 0);
3205 retried = true;
3206 goto retry;
3207 }
3208
3209 nospace_error = error;
3210 spaceres = 0;
3211 error = 0;
3212 }
3213 if (error)
3214 goto out_trans_cancel;
3215 }
3216
3217 /*
3218 * Check for expected errors before we dirty the transaction
3219 * so we can return an error without a transaction abort.
3220 *
3221 * Extent count overflow check:
3222 *
3223 * From the perspective of src_dp, a rename operation is essentially a
3224 * directory entry remove operation. Hence the only place where we check
3225 * for extent count overflow for src_dp is in
3226 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3227 * -ENOSPC when it detects a possible extent count overflow and in
3228 * response, the higher layers of directory handling code do the
3229 * following:
3230 * 1. Data/Free blocks: XFS lets these blocks linger until a
3231 * future remove operation removes them.
3232 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3233 * Leaf space and unmaps the last block.
3234 *
3235 * For target_dp, there are two cases depending on whether the
3236 * destination directory entry exists or not.
3237 *
3238 * When destination directory entry does not exist (i.e. target_ip ==
3239 * NULL), extent count overflow check is performed only when transaction
3240 * has a non-zero sized space reservation associated with it. With a
3241 * zero-sized space reservation, XFS allows a rename operation to
3242 * continue only when the directory has sufficient free space in its
3243 * data/leaf/free space blocks to hold the new entry.
3244 *
3245 * When destination directory entry exists (i.e. target_ip != NULL), all
3246 * we need to do is change the inode number associated with the already
3247 * existing entry. Hence there is no need to perform an extent count
3248 * overflow check.
3249 */
3250 if (target_ip == NULL) {
3251 /*
3252 * If there's no space reservation, check the entry will
3253 * fit before actually inserting it.
3254 */
3255 if (!spaceres) {
3256 error = xfs_dir_canenter(tp, target_dp, target_name);
3257 if (error)
3258 goto out_trans_cancel;
3259 } else {
3260 error = xfs_iext_count_may_overflow(target_dp,
3261 XFS_DATA_FORK,
3262 XFS_IEXT_DIR_MANIP_CNT(mp));
3263 if (error)
3264 goto out_trans_cancel;
3265 }
3266 } else {
3267 /*
3268 * If target exists and it's a directory, check that whether
3269 * it can be destroyed.
3270 */
3271 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3272 (!xfs_dir_isempty(target_ip) ||
3273 (VFS_I(target_ip)->i_nlink > 2))) {
3274 error = -EEXIST;
3275 goto out_trans_cancel;
3276 }
3277 }
3278
3279 /*
3280 * Lock the AGI buffers we need to handle bumping the nlink of the
3281 * whiteout inode off the unlinked list and to handle dropping the
3282 * nlink of the target inode. Per locking order rules, do this in
3283 * increasing AG order and before directory block allocation tries to
3284 * grab AGFs because we grab AGIs before AGFs.
3285 *
3286 * The (vfs) caller must ensure that if src is a directory then
3287 * target_ip is either null or an empty directory.
3288 */
3289 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3290 if (inodes[i] == wip ||
3291 (inodes[i] == target_ip &&
3292 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3293 struct xfs_buf *bp;
3294 xfs_agnumber_t agno;
3295
3296 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3297 error = xfs_read_agi(mp, tp, agno, &bp);
3298 if (error)
3299 goto out_trans_cancel;
3300 }
3301 }
3302
3303 /*
3304 * Directory entry creation below may acquire the AGF. Remove
3305 * the whiteout from the unlinked list first to preserve correct
3306 * AGI/AGF locking order. This dirties the transaction so failures
3307 * after this point will abort and log recovery will clean up the
3308 * mess.
3309 *
3310 * For whiteouts, we need to bump the link count on the whiteout
3311 * inode. After this point, we have a real link, clear the tmpfile
3312 * state flag from the inode so it doesn't accidentally get misused
3313 * in future.
3314 */
3315 if (wip) {
3316 struct xfs_perag *pag;
3317
3318 ASSERT(VFS_I(wip)->i_nlink == 0);
3319
3320 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3321 error = xfs_iunlink_remove(tp, pag, wip);
3322 xfs_perag_put(pag);
3323 if (error)
3324 goto out_trans_cancel;
3325
3326 xfs_bumplink(tp, wip);
3327 VFS_I(wip)->i_state &= ~I_LINKABLE;
3328 }
3329
3330 /*
3331 * Set up the target.
3332 */
3333 if (target_ip == NULL) {
3334 /*
3335 * If target does not exist and the rename crosses
3336 * directories, adjust the target directory link count
3337 * to account for the ".." reference from the new entry.
3338 */
3339 error = xfs_dir_createname(tp, target_dp, target_name,
3340 src_ip->i_ino, spaceres);
3341 if (error)
3342 goto out_trans_cancel;
3343
3344 xfs_trans_ichgtime(tp, target_dp,
3345 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3346
3347 if (new_parent && src_is_directory) {
3348 xfs_bumplink(tp, target_dp);
3349 }
3350 } else { /* target_ip != NULL */
3351 /*
3352 * Link the source inode under the target name.
3353 * If the source inode is a directory and we are moving
3354 * it across directories, its ".." entry will be
3355 * inconsistent until we replace that down below.
3356 *
3357 * In case there is already an entry with the same
3358 * name at the destination directory, remove it first.
3359 */
3360 error = xfs_dir_replace(tp, target_dp, target_name,
3361 src_ip->i_ino, spaceres);
3362 if (error)
3363 goto out_trans_cancel;
3364
3365 xfs_trans_ichgtime(tp, target_dp,
3366 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3367
3368 /*
3369 * Decrement the link count on the target since the target
3370 * dir no longer points to it.
3371 */
3372 error = xfs_droplink(tp, target_ip);
3373 if (error)
3374 goto out_trans_cancel;
3375
3376 if (src_is_directory) {
3377 /*
3378 * Drop the link from the old "." entry.
3379 */
3380 error = xfs_droplink(tp, target_ip);
3381 if (error)
3382 goto out_trans_cancel;
3383 }
3384 } /* target_ip != NULL */
3385
3386 /*
3387 * Remove the source.
3388 */
3389 if (new_parent && src_is_directory) {
3390 /*
3391 * Rewrite the ".." entry to point to the new
3392 * directory.
3393 */
3394 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3395 target_dp->i_ino, spaceres);
3396 ASSERT(error != -EEXIST);
3397 if (error)
3398 goto out_trans_cancel;
3399 }
3400
3401 /*
3402 * We always want to hit the ctime on the source inode.
3403 *
3404 * This isn't strictly required by the standards since the source
3405 * inode isn't really being changed, but old unix file systems did
3406 * it and some incremental backup programs won't work without it.
3407 */
3408 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3409 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3410
3411 /*
3412 * Adjust the link count on src_dp. This is necessary when
3413 * renaming a directory, either within one parent when
3414 * the target existed, or across two parent directories.
3415 */
3416 if (src_is_directory && (new_parent || target_ip != NULL)) {
3417
3418 /*
3419 * Decrement link count on src_directory since the
3420 * entry that's moved no longer points to it.
3421 */
3422 error = xfs_droplink(tp, src_dp);
3423 if (error)
3424 goto out_trans_cancel;
3425 }
3426
3427 /*
3428 * For whiteouts, we only need to update the source dirent with the
3429 * inode number of the whiteout inode rather than removing it
3430 * altogether.
3431 */
3432 if (wip) {
3433 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3434 spaceres);
3435 } else {
3436 /*
3437 * NOTE: We don't need to check for extent count overflow here
3438 * because the dir remove name code will leave the dir block in
3439 * place if the extent count would overflow.
3440 */
3441 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3442 spaceres);
3443 }
3444
3445 if (error)
3446 goto out_trans_cancel;
3447
3448 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3449 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3450 if (new_parent)
3451 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3452
3453 error = xfs_finish_rename(tp);
3454 if (wip)
3455 xfs_irele(wip);
3456 return error;
3457
3458 out_trans_cancel:
3459 xfs_trans_cancel(tp);
3460 out_release_wip:
3461 if (wip)
3462 xfs_irele(wip);
3463 if (error == -ENOSPC && nospace_error)
3464 error = nospace_error;
3465 return error;
3466 }
3467
3468 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)3469 xfs_iflush(
3470 struct xfs_inode *ip,
3471 struct xfs_buf *bp)
3472 {
3473 struct xfs_inode_log_item *iip = ip->i_itemp;
3474 struct xfs_dinode *dip;
3475 struct xfs_mount *mp = ip->i_mount;
3476 int error;
3477
3478 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3479 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3480 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3481 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3482 ASSERT(iip->ili_item.li_buf == bp);
3483
3484 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3485
3486 /*
3487 * We don't flush the inode if any of the following checks fail, but we
3488 * do still update the log item and attach to the backing buffer as if
3489 * the flush happened. This is a formality to facilitate predictable
3490 * error handling as the caller will shutdown and fail the buffer.
3491 */
3492 error = -EFSCORRUPTED;
3493 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3494 mp, XFS_ERRTAG_IFLUSH_1)) {
3495 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3496 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3497 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3498 goto flush_out;
3499 }
3500 if (S_ISREG(VFS_I(ip)->i_mode)) {
3501 if (XFS_TEST_ERROR(
3502 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3503 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3504 mp, XFS_ERRTAG_IFLUSH_3)) {
3505 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3506 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3507 __func__, ip->i_ino, ip);
3508 goto flush_out;
3509 }
3510 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3511 if (XFS_TEST_ERROR(
3512 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3513 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3514 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3515 mp, XFS_ERRTAG_IFLUSH_4)) {
3516 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3517 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3518 __func__, ip->i_ino, ip);
3519 goto flush_out;
3520 }
3521 }
3522 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3523 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3524 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3525 "%s: detected corrupt incore inode %Lu, "
3526 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3527 __func__, ip->i_ino,
3528 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3529 ip->i_nblocks, ip);
3530 goto flush_out;
3531 }
3532 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3533 mp, XFS_ERRTAG_IFLUSH_6)) {
3534 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3535 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3536 __func__, ip->i_ino, ip->i_forkoff, ip);
3537 goto flush_out;
3538 }
3539
3540 /*
3541 * Inode item log recovery for v2 inodes are dependent on the flushiter
3542 * count for correct sequencing. We bump the flush iteration count so
3543 * we can detect flushes which postdate a log record during recovery.
3544 * This is redundant as we now log every change and hence this can't
3545 * happen but we need to still do it to ensure backwards compatibility
3546 * with old kernels that predate logging all inode changes.
3547 */
3548 if (!xfs_has_v3inodes(mp))
3549 ip->i_flushiter++;
3550
3551 /*
3552 * If there are inline format data / attr forks attached to this inode,
3553 * make sure they are not corrupt.
3554 */
3555 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3556 xfs_ifork_verify_local_data(ip))
3557 goto flush_out;
3558 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3559 xfs_ifork_verify_local_attr(ip))
3560 goto flush_out;
3561
3562 /*
3563 * Copy the dirty parts of the inode into the on-disk inode. We always
3564 * copy out the core of the inode, because if the inode is dirty at all
3565 * the core must be.
3566 */
3567 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3568
3569 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3570 if (!xfs_has_v3inodes(mp)) {
3571 if (ip->i_flushiter == DI_MAX_FLUSH)
3572 ip->i_flushiter = 0;
3573 }
3574
3575 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3576 if (XFS_IFORK_Q(ip))
3577 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3578
3579 /*
3580 * We've recorded everything logged in the inode, so we'd like to clear
3581 * the ili_fields bits so we don't log and flush things unnecessarily.
3582 * However, we can't stop logging all this information until the data
3583 * we've copied into the disk buffer is written to disk. If we did we
3584 * might overwrite the copy of the inode in the log with all the data
3585 * after re-logging only part of it, and in the face of a crash we
3586 * wouldn't have all the data we need to recover.
3587 *
3588 * What we do is move the bits to the ili_last_fields field. When
3589 * logging the inode, these bits are moved back to the ili_fields field.
3590 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3591 * we know that the information those bits represent is permanently on
3592 * disk. As long as the flush completes before the inode is logged
3593 * again, then both ili_fields and ili_last_fields will be cleared.
3594 */
3595 error = 0;
3596 flush_out:
3597 spin_lock(&iip->ili_lock);
3598 iip->ili_last_fields = iip->ili_fields;
3599 iip->ili_fields = 0;
3600 iip->ili_fsync_fields = 0;
3601 spin_unlock(&iip->ili_lock);
3602
3603 /*
3604 * Store the current LSN of the inode so that we can tell whether the
3605 * item has moved in the AIL from xfs_buf_inode_iodone().
3606 */
3607 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3608 &iip->ili_item.li_lsn);
3609
3610 /* generate the checksum. */
3611 xfs_dinode_calc_crc(mp, dip);
3612 return error;
3613 }
3614
3615 /*
3616 * Non-blocking flush of dirty inode metadata into the backing buffer.
3617 *
3618 * The caller must have a reference to the inode and hold the cluster buffer
3619 * locked. The function will walk across all the inodes on the cluster buffer it
3620 * can find and lock without blocking, and flush them to the cluster buffer.
3621 *
3622 * On successful flushing of at least one inode, the caller must write out the
3623 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3624 * the caller needs to release the buffer. On failure, the filesystem will be
3625 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3626 * will be returned.
3627 */
3628 int
xfs_iflush_cluster(struct xfs_buf * bp)3629 xfs_iflush_cluster(
3630 struct xfs_buf *bp)
3631 {
3632 struct xfs_mount *mp = bp->b_mount;
3633 struct xfs_log_item *lip, *n;
3634 struct xfs_inode *ip;
3635 struct xfs_inode_log_item *iip;
3636 int clcount = 0;
3637 int error = 0;
3638
3639 /*
3640 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3641 * can remove itself from the list.
3642 */
3643 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3644 iip = (struct xfs_inode_log_item *)lip;
3645 ip = iip->ili_inode;
3646
3647 /*
3648 * Quick and dirty check to avoid locks if possible.
3649 */
3650 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3651 continue;
3652 if (xfs_ipincount(ip))
3653 continue;
3654
3655 /*
3656 * The inode is still attached to the buffer, which means it is
3657 * dirty but reclaim might try to grab it. Check carefully for
3658 * that, and grab the ilock while still holding the i_flags_lock
3659 * to guarantee reclaim will not be able to reclaim this inode
3660 * once we drop the i_flags_lock.
3661 */
3662 spin_lock(&ip->i_flags_lock);
3663 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3664 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3665 spin_unlock(&ip->i_flags_lock);
3666 continue;
3667 }
3668
3669 /*
3670 * ILOCK will pin the inode against reclaim and prevent
3671 * concurrent transactions modifying the inode while we are
3672 * flushing the inode. If we get the lock, set the flushing
3673 * state before we drop the i_flags_lock.
3674 */
3675 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3676 spin_unlock(&ip->i_flags_lock);
3677 continue;
3678 }
3679 __xfs_iflags_set(ip, XFS_IFLUSHING);
3680 spin_unlock(&ip->i_flags_lock);
3681
3682 /*
3683 * Abort flushing this inode if we are shut down because the
3684 * inode may not currently be in the AIL. This can occur when
3685 * log I/O failure unpins the inode without inserting into the
3686 * AIL, leaving a dirty/unpinned inode attached to the buffer
3687 * that otherwise looks like it should be flushed.
3688 */
3689 if (xfs_is_shutdown(mp)) {
3690 xfs_iunpin_wait(ip);
3691 xfs_iflush_abort(ip);
3692 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3693 error = -EIO;
3694 continue;
3695 }
3696
3697 /* don't block waiting on a log force to unpin dirty inodes */
3698 if (xfs_ipincount(ip)) {
3699 xfs_iflags_clear(ip, XFS_IFLUSHING);
3700 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3701 continue;
3702 }
3703
3704 if (!xfs_inode_clean(ip))
3705 error = xfs_iflush(ip, bp);
3706 else
3707 xfs_iflags_clear(ip, XFS_IFLUSHING);
3708 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3709 if (error)
3710 break;
3711 clcount++;
3712 }
3713
3714 if (error) {
3715 bp->b_flags |= XBF_ASYNC;
3716 xfs_buf_ioend_fail(bp);
3717 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3718 return error;
3719 }
3720
3721 if (!clcount)
3722 return -EAGAIN;
3723
3724 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3725 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3726 return 0;
3727
3728 }
3729
3730 /* Release an inode. */
3731 void
xfs_irele(struct xfs_inode * ip)3732 xfs_irele(
3733 struct xfs_inode *ip)
3734 {
3735 trace_xfs_irele(ip, _RET_IP_);
3736 iput(VFS_I(ip));
3737 }
3738
3739 /*
3740 * Ensure all commited transactions touching the inode are written to the log.
3741 */
3742 int
xfs_log_force_inode(struct xfs_inode * ip)3743 xfs_log_force_inode(
3744 struct xfs_inode *ip)
3745 {
3746 xfs_csn_t seq = 0;
3747
3748 xfs_ilock(ip, XFS_ILOCK_SHARED);
3749 if (xfs_ipincount(ip))
3750 seq = ip->i_itemp->ili_commit_seq;
3751 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3752
3753 if (!seq)
3754 return 0;
3755 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3756 }
3757
3758 /*
3759 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3760 * abide vfs locking order (lowest pointer value goes first) and breaking the
3761 * layout leases before proceeding. The loop is needed because we cannot call
3762 * the blocking break_layout() with the iolocks held, and therefore have to
3763 * back out both locks.
3764 */
3765 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)3766 xfs_iolock_two_inodes_and_break_layout(
3767 struct inode *src,
3768 struct inode *dest)
3769 {
3770 int error;
3771
3772 if (src > dest)
3773 swap(src, dest);
3774
3775 retry:
3776 /* Wait to break both inodes' layouts before we start locking. */
3777 error = break_layout(src, true);
3778 if (error)
3779 return error;
3780 if (src != dest) {
3781 error = break_layout(dest, true);
3782 if (error)
3783 return error;
3784 }
3785
3786 /* Lock one inode and make sure nobody got in and leased it. */
3787 inode_lock(src);
3788 error = break_layout(src, false);
3789 if (error) {
3790 inode_unlock(src);
3791 if (error == -EWOULDBLOCK)
3792 goto retry;
3793 return error;
3794 }
3795
3796 if (src == dest)
3797 return 0;
3798
3799 /* Lock the other inode and make sure nobody got in and leased it. */
3800 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3801 error = break_layout(dest, false);
3802 if (error) {
3803 inode_unlock(src);
3804 inode_unlock(dest);
3805 if (error == -EWOULDBLOCK)
3806 goto retry;
3807 return error;
3808 }
3809
3810 return 0;
3811 }
3812
3813 /*
3814 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3815 * mmap activity.
3816 */
3817 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)3818 xfs_ilock2_io_mmap(
3819 struct xfs_inode *ip1,
3820 struct xfs_inode *ip2)
3821 {
3822 int ret;
3823
3824 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3825 if (ret)
3826 return ret;
3827 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3828 VFS_I(ip2)->i_mapping);
3829 return 0;
3830 }
3831
3832 /* Unlock both inodes to allow IO and mmap activity. */
3833 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)3834 xfs_iunlock2_io_mmap(
3835 struct xfs_inode *ip1,
3836 struct xfs_inode *ip2)
3837 {
3838 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3839 VFS_I(ip2)->i_mapping);
3840 inode_unlock(VFS_I(ip2));
3841 if (ip1 != ip2)
3842 inode_unlock(VFS_I(ip1));
3843 }
3844