1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23
24 kmem_zone_t *xfs_log_ticket_zone;
25
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
33 STATIC int
34 xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
37 STATIC void
38 xlog_dealloc_log(
39 struct xlog *log);
40
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 struct xlog_in_core *iclog);
44 STATIC void xlog_state_do_callback(
45 struct xlog *log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 struct xlog *log,
49 int len,
50 struct xlog_in_core **iclog,
51 struct xlog_ticket *ticket,
52 int *continued_write,
53 int *logoffsetp);
54 STATIC void
55 xlog_grant_push_ail(
56 struct xlog *log,
57 int need_bytes);
58 STATIC void
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_verify_dest_ptr(
65 struct xlog *log,
66 void *ptr);
67 STATIC void
68 xlog_verify_grant_tail(
69 struct xlog *log);
70 STATIC void
71 xlog_verify_iclog(
72 struct xlog *log,
73 struct xlog_in_core *iclog,
74 int count);
75 STATIC void
76 xlog_verify_tail_lsn(
77 struct xlog *log,
78 struct xlog_in_core *iclog);
79 #else
80 #define xlog_verify_dest_ptr(a,b)
81 #define xlog_verify_grant_tail(a)
82 #define xlog_verify_iclog(a,b,c)
83 #define xlog_verify_tail_lsn(a,b)
84 #endif
85
86 STATIC int
87 xlog_iclogs_empty(
88 struct xlog *log);
89
90 static int
91 xfs_log_cover(struct xfs_mount *);
92
93 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)94 xlog_grant_sub_space(
95 struct xlog *log,
96 atomic64_t *head,
97 int bytes)
98 {
99 int64_t head_val = atomic64_read(head);
100 int64_t new, old;
101
102 do {
103 int cycle, space;
104
105 xlog_crack_grant_head_val(head_val, &cycle, &space);
106
107 space -= bytes;
108 if (space < 0) {
109 space += log->l_logsize;
110 cycle--;
111 }
112
113 old = head_val;
114 new = xlog_assign_grant_head_val(cycle, space);
115 head_val = atomic64_cmpxchg(head, old, new);
116 } while (head_val != old);
117 }
118
119 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)120 xlog_grant_add_space(
121 struct xlog *log,
122 atomic64_t *head,
123 int bytes)
124 {
125 int64_t head_val = atomic64_read(head);
126 int64_t new, old;
127
128 do {
129 int tmp;
130 int cycle, space;
131
132 xlog_crack_grant_head_val(head_val, &cycle, &space);
133
134 tmp = log->l_logsize - space;
135 if (tmp > bytes)
136 space += bytes;
137 else {
138 space = bytes - tmp;
139 cycle++;
140 }
141
142 old = head_val;
143 new = xlog_assign_grant_head_val(cycle, space);
144 head_val = atomic64_cmpxchg(head, old, new);
145 } while (head_val != old);
146 }
147
148 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)149 xlog_grant_head_init(
150 struct xlog_grant_head *head)
151 {
152 xlog_assign_grant_head(&head->grant, 1, 0);
153 INIT_LIST_HEAD(&head->waiters);
154 spin_lock_init(&head->lock);
155 }
156
157 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)158 xlog_grant_head_wake_all(
159 struct xlog_grant_head *head)
160 {
161 struct xlog_ticket *tic;
162
163 spin_lock(&head->lock);
164 list_for_each_entry(tic, &head->waiters, t_queue)
165 wake_up_process(tic->t_task);
166 spin_unlock(&head->lock);
167 }
168
169 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)170 xlog_ticket_reservation(
171 struct xlog *log,
172 struct xlog_grant_head *head,
173 struct xlog_ticket *tic)
174 {
175 if (head == &log->l_write_head) {
176 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 return tic->t_unit_res;
178 } else {
179 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
180 return tic->t_unit_res * tic->t_cnt;
181 else
182 return tic->t_unit_res;
183 }
184 }
185
186 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)187 xlog_grant_head_wake(
188 struct xlog *log,
189 struct xlog_grant_head *head,
190 int *free_bytes)
191 {
192 struct xlog_ticket *tic;
193 int need_bytes;
194 bool woken_task = false;
195
196 list_for_each_entry(tic, &head->waiters, t_queue) {
197
198 /*
199 * There is a chance that the size of the CIL checkpoints in
200 * progress at the last AIL push target calculation resulted in
201 * limiting the target to the log head (l_last_sync_lsn) at the
202 * time. This may not reflect where the log head is now as the
203 * CIL checkpoints may have completed.
204 *
205 * Hence when we are woken here, it may be that the head of the
206 * log that has moved rather than the tail. As the tail didn't
207 * move, there still won't be space available for the
208 * reservation we require. However, if the AIL has already
209 * pushed to the target defined by the old log head location, we
210 * will hang here waiting for something else to update the AIL
211 * push target.
212 *
213 * Therefore, if there isn't space to wake the first waiter on
214 * the grant head, we need to push the AIL again to ensure the
215 * target reflects both the current log tail and log head
216 * position before we wait for the tail to move again.
217 */
218
219 need_bytes = xlog_ticket_reservation(log, head, tic);
220 if (*free_bytes < need_bytes) {
221 if (!woken_task)
222 xlog_grant_push_ail(log, need_bytes);
223 return false;
224 }
225
226 *free_bytes -= need_bytes;
227 trace_xfs_log_grant_wake_up(log, tic);
228 wake_up_process(tic->t_task);
229 woken_task = true;
230 }
231
232 return true;
233 }
234
235 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)236 xlog_grant_head_wait(
237 struct xlog *log,
238 struct xlog_grant_head *head,
239 struct xlog_ticket *tic,
240 int need_bytes) __releases(&head->lock)
241 __acquires(&head->lock)
242 {
243 list_add_tail(&tic->t_queue, &head->waiters);
244
245 do {
246 if (xlog_is_shutdown(log))
247 goto shutdown;
248 xlog_grant_push_ail(log, need_bytes);
249
250 __set_current_state(TASK_UNINTERRUPTIBLE);
251 spin_unlock(&head->lock);
252
253 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
254
255 trace_xfs_log_grant_sleep(log, tic);
256 schedule();
257 trace_xfs_log_grant_wake(log, tic);
258
259 spin_lock(&head->lock);
260 if (xlog_is_shutdown(log))
261 goto shutdown;
262 } while (xlog_space_left(log, &head->grant) < need_bytes);
263
264 list_del_init(&tic->t_queue);
265 return 0;
266 shutdown:
267 list_del_init(&tic->t_queue);
268 return -EIO;
269 }
270
271 /*
272 * Atomically get the log space required for a log ticket.
273 *
274 * Once a ticket gets put onto head->waiters, it will only return after the
275 * needed reservation is satisfied.
276 *
277 * This function is structured so that it has a lock free fast path. This is
278 * necessary because every new transaction reservation will come through this
279 * path. Hence any lock will be globally hot if we take it unconditionally on
280 * every pass.
281 *
282 * As tickets are only ever moved on and off head->waiters under head->lock, we
283 * only need to take that lock if we are going to add the ticket to the queue
284 * and sleep. We can avoid taking the lock if the ticket was never added to
285 * head->waiters because the t_queue list head will be empty and we hold the
286 * only reference to it so it can safely be checked unlocked.
287 */
288 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)289 xlog_grant_head_check(
290 struct xlog *log,
291 struct xlog_grant_head *head,
292 struct xlog_ticket *tic,
293 int *need_bytes)
294 {
295 int free_bytes;
296 int error = 0;
297
298 ASSERT(!xlog_in_recovery(log));
299
300 /*
301 * If there are other waiters on the queue then give them a chance at
302 * logspace before us. Wake up the first waiters, if we do not wake
303 * up all the waiters then go to sleep waiting for more free space,
304 * otherwise try to get some space for this transaction.
305 */
306 *need_bytes = xlog_ticket_reservation(log, head, tic);
307 free_bytes = xlog_space_left(log, &head->grant);
308 if (!list_empty_careful(&head->waiters)) {
309 spin_lock(&head->lock);
310 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
311 free_bytes < *need_bytes) {
312 error = xlog_grant_head_wait(log, head, tic,
313 *need_bytes);
314 }
315 spin_unlock(&head->lock);
316 } else if (free_bytes < *need_bytes) {
317 spin_lock(&head->lock);
318 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
319 spin_unlock(&head->lock);
320 }
321
322 return error;
323 }
324
325 static void
xlog_tic_reset_res(xlog_ticket_t * tic)326 xlog_tic_reset_res(xlog_ticket_t *tic)
327 {
328 tic->t_res_num = 0;
329 tic->t_res_arr_sum = 0;
330 tic->t_res_num_ophdrs = 0;
331 }
332
333 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)334 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
335 {
336 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
337 /* add to overflow and start again */
338 tic->t_res_o_flow += tic->t_res_arr_sum;
339 tic->t_res_num = 0;
340 tic->t_res_arr_sum = 0;
341 }
342
343 tic->t_res_arr[tic->t_res_num].r_len = len;
344 tic->t_res_arr[tic->t_res_num].r_type = type;
345 tic->t_res_arr_sum += len;
346 tic->t_res_num++;
347 }
348
349 bool
xfs_log_writable(struct xfs_mount * mp)350 xfs_log_writable(
351 struct xfs_mount *mp)
352 {
353 /*
354 * Do not write to the log on norecovery mounts, if the data or log
355 * devices are read-only, or if the filesystem is shutdown. Read-only
356 * mounts allow internal writes for log recovery and unmount purposes,
357 * so don't restrict that case.
358 */
359 if (xfs_has_norecovery(mp))
360 return false;
361 if (xfs_readonly_buftarg(mp->m_ddev_targp))
362 return false;
363 if (xfs_readonly_buftarg(mp->m_log->l_targ))
364 return false;
365 if (xlog_is_shutdown(mp->m_log))
366 return false;
367 return true;
368 }
369
370 /*
371 * Replenish the byte reservation required by moving the grant write head.
372 */
373 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)374 xfs_log_regrant(
375 struct xfs_mount *mp,
376 struct xlog_ticket *tic)
377 {
378 struct xlog *log = mp->m_log;
379 int need_bytes;
380 int error = 0;
381
382 if (xlog_is_shutdown(log))
383 return -EIO;
384
385 XFS_STATS_INC(mp, xs_try_logspace);
386
387 /*
388 * This is a new transaction on the ticket, so we need to change the
389 * transaction ID so that the next transaction has a different TID in
390 * the log. Just add one to the existing tid so that we can see chains
391 * of rolling transactions in the log easily.
392 */
393 tic->t_tid++;
394
395 xlog_grant_push_ail(log, tic->t_unit_res);
396
397 tic->t_curr_res = tic->t_unit_res;
398 xlog_tic_reset_res(tic);
399
400 if (tic->t_cnt > 0)
401 return 0;
402
403 trace_xfs_log_regrant(log, tic);
404
405 error = xlog_grant_head_check(log, &log->l_write_head, tic,
406 &need_bytes);
407 if (error)
408 goto out_error;
409
410 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
411 trace_xfs_log_regrant_exit(log, tic);
412 xlog_verify_grant_tail(log);
413 return 0;
414
415 out_error:
416 /*
417 * If we are failing, make sure the ticket doesn't have any current
418 * reservations. We don't want to add this back when the ticket/
419 * transaction gets cancelled.
420 */
421 tic->t_curr_res = 0;
422 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
423 return error;
424 }
425
426 /*
427 * Reserve log space and return a ticket corresponding to the reservation.
428 *
429 * Each reservation is going to reserve extra space for a log record header.
430 * When writes happen to the on-disk log, we don't subtract the length of the
431 * log record header from any reservation. By wasting space in each
432 * reservation, we prevent over allocation problems.
433 */
434 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)435 xfs_log_reserve(
436 struct xfs_mount *mp,
437 int unit_bytes,
438 int cnt,
439 struct xlog_ticket **ticp,
440 uint8_t client,
441 bool permanent)
442 {
443 struct xlog *log = mp->m_log;
444 struct xlog_ticket *tic;
445 int need_bytes;
446 int error = 0;
447
448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449
450 if (xlog_is_shutdown(log))
451 return -EIO;
452
453 XFS_STATS_INC(mp, xs_try_logspace);
454
455 ASSERT(*ticp == NULL);
456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
457 *ticp = tic;
458
459 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
460 : tic->t_unit_res);
461
462 trace_xfs_log_reserve(log, tic);
463
464 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
465 &need_bytes);
466 if (error)
467 goto out_error;
468
469 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
470 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
471 trace_xfs_log_reserve_exit(log, tic);
472 xlog_verify_grant_tail(log);
473 return 0;
474
475 out_error:
476 /*
477 * If we are failing, make sure the ticket doesn't have any current
478 * reservations. We don't want to add this back when the ticket/
479 * transaction gets cancelled.
480 */
481 tic->t_curr_res = 0;
482 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
483 return error;
484 }
485
486 /*
487 * Run all the pending iclog callbacks and wake log force waiters and iclog
488 * space waiters so they can process the newly set shutdown state. We really
489 * don't care what order we process callbacks here because the log is shut down
490 * and so state cannot change on disk anymore. However, we cannot wake waiters
491 * until the callbacks have been processed because we may be in unmount and
492 * we must ensure that all AIL operations the callbacks perform have completed
493 * before we tear down the AIL.
494 *
495 * We avoid processing actively referenced iclogs so that we don't run callbacks
496 * while the iclog owner might still be preparing the iclog for IO submssion.
497 * These will be caught by xlog_state_iclog_release() and call this function
498 * again to process any callbacks that may have been added to that iclog.
499 */
500 static void
xlog_state_shutdown_callbacks(struct xlog * log)501 xlog_state_shutdown_callbacks(
502 struct xlog *log)
503 {
504 struct xlog_in_core *iclog;
505 LIST_HEAD(cb_list);
506
507 iclog = log->l_iclog;
508 do {
509 if (atomic_read(&iclog->ic_refcnt)) {
510 /* Reference holder will re-run iclog callbacks. */
511 continue;
512 }
513 list_splice_init(&iclog->ic_callbacks, &cb_list);
514 spin_unlock(&log->l_icloglock);
515
516 xlog_cil_process_committed(&cb_list);
517
518 spin_lock(&log->l_icloglock);
519 wake_up_all(&iclog->ic_write_wait);
520 wake_up_all(&iclog->ic_force_wait);
521 } while ((iclog = iclog->ic_next) != log->l_iclog);
522
523 wake_up_all(&log->l_flush_wait);
524 }
525
526 /*
527 * Flush iclog to disk if this is the last reference to the given iclog and the
528 * it is in the WANT_SYNC state.
529 *
530 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
531 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
532 * written to stable storage, and implies that a commit record is contained
533 * within the iclog. We need to ensure that the log tail does not move beyond
534 * the tail that the first commit record in the iclog ordered against, otherwise
535 * correct recovery of that checkpoint becomes dependent on future operations
536 * performed on this iclog.
537 *
538 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
539 * current tail into iclog. Once the iclog tail is set, future operations must
540 * not modify it, otherwise they potentially violate ordering constraints for
541 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
542 * the iclog will get zeroed on activation of the iclog after sync, so we
543 * always capture the tail lsn on the iclog on the first NEED_FUA release
544 * regardless of the number of active reference counts on this iclog.
545 */
546 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)547 xlog_state_release_iclog(
548 struct xlog *log,
549 struct xlog_in_core *iclog)
550 {
551 xfs_lsn_t tail_lsn;
552 bool last_ref;
553
554 lockdep_assert_held(&log->l_icloglock);
555
556 trace_xlog_iclog_release(iclog, _RET_IP_);
557 /*
558 * Grabbing the current log tail needs to be atomic w.r.t. the writing
559 * of the tail LSN into the iclog so we guarantee that the log tail does
560 * not move between the first time we know that the iclog needs to be
561 * made stable and when we eventually submit it.
562 */
563 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
564 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
565 !iclog->ic_header.h_tail_lsn) {
566 tail_lsn = xlog_assign_tail_lsn(log->l_mp);
567 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
568 }
569
570 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
571
572 if (xlog_is_shutdown(log)) {
573 /*
574 * If there are no more references to this iclog, process the
575 * pending iclog callbacks that were waiting on the release of
576 * this iclog.
577 */
578 if (last_ref)
579 xlog_state_shutdown_callbacks(log);
580 return -EIO;
581 }
582
583 if (!last_ref)
584 return 0;
585
586 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
587 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
588 return 0;
589 }
590
591 iclog->ic_state = XLOG_STATE_SYNCING;
592 xlog_verify_tail_lsn(log, iclog);
593 trace_xlog_iclog_syncing(iclog, _RET_IP_);
594
595 spin_unlock(&log->l_icloglock);
596 xlog_sync(log, iclog);
597 spin_lock(&log->l_icloglock);
598 return 0;
599 }
600
601 /*
602 * Mount a log filesystem
603 *
604 * mp - ubiquitous xfs mount point structure
605 * log_target - buftarg of on-disk log device
606 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
607 * num_bblocks - Number of BBSIZE blocks in on-disk log
608 *
609 * Return error or zero.
610 */
611 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)612 xfs_log_mount(
613 xfs_mount_t *mp,
614 xfs_buftarg_t *log_target,
615 xfs_daddr_t blk_offset,
616 int num_bblks)
617 {
618 struct xlog *log;
619 bool fatal = xfs_has_crc(mp);
620 int error = 0;
621 int min_logfsbs;
622
623 if (!xfs_has_norecovery(mp)) {
624 xfs_notice(mp, "Mounting V%d Filesystem",
625 XFS_SB_VERSION_NUM(&mp->m_sb));
626 } else {
627 xfs_notice(mp,
628 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
629 XFS_SB_VERSION_NUM(&mp->m_sb));
630 ASSERT(xfs_is_readonly(mp));
631 }
632
633 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
634 if (IS_ERR(log)) {
635 error = PTR_ERR(log);
636 goto out;
637 }
638 mp->m_log = log;
639
640 /*
641 * Validate the given log space and drop a critical message via syslog
642 * if the log size is too small that would lead to some unexpected
643 * situations in transaction log space reservation stage.
644 *
645 * Note: we can't just reject the mount if the validation fails. This
646 * would mean that people would have to downgrade their kernel just to
647 * remedy the situation as there is no way to grow the log (short of
648 * black magic surgery with xfs_db).
649 *
650 * We can, however, reject mounts for CRC format filesystems, as the
651 * mkfs binary being used to make the filesystem should never create a
652 * filesystem with a log that is too small.
653 */
654 min_logfsbs = xfs_log_calc_minimum_size(mp);
655
656 if (mp->m_sb.sb_logblocks < min_logfsbs) {
657 xfs_warn(mp,
658 "Log size %d blocks too small, minimum size is %d blocks",
659 mp->m_sb.sb_logblocks, min_logfsbs);
660 error = -EINVAL;
661 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
662 xfs_warn(mp,
663 "Log size %d blocks too large, maximum size is %lld blocks",
664 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
665 error = -EINVAL;
666 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
667 xfs_warn(mp,
668 "log size %lld bytes too large, maximum size is %lld bytes",
669 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
670 XFS_MAX_LOG_BYTES);
671 error = -EINVAL;
672 } else if (mp->m_sb.sb_logsunit > 1 &&
673 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
674 xfs_warn(mp,
675 "log stripe unit %u bytes must be a multiple of block size",
676 mp->m_sb.sb_logsunit);
677 error = -EINVAL;
678 fatal = true;
679 }
680 if (error) {
681 /*
682 * Log check errors are always fatal on v5; or whenever bad
683 * metadata leads to a crash.
684 */
685 if (fatal) {
686 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
687 ASSERT(0);
688 goto out_free_log;
689 }
690 xfs_crit(mp, "Log size out of supported range.");
691 xfs_crit(mp,
692 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
693 }
694
695 /*
696 * Initialize the AIL now we have a log.
697 */
698 error = xfs_trans_ail_init(mp);
699 if (error) {
700 xfs_warn(mp, "AIL initialisation failed: error %d", error);
701 goto out_free_log;
702 }
703 log->l_ailp = mp->m_ail;
704
705 /*
706 * skip log recovery on a norecovery mount. pretend it all
707 * just worked.
708 */
709 if (!xfs_has_norecovery(mp)) {
710 /*
711 * log recovery ignores readonly state and so we need to clear
712 * mount-based read only state so it can write to disk.
713 */
714 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
715 &mp->m_opstate);
716 error = xlog_recover(log);
717 if (readonly)
718 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
719 if (error) {
720 xfs_warn(mp, "log mount/recovery failed: error %d",
721 error);
722 xlog_recover_cancel(log);
723 goto out_destroy_ail;
724 }
725 }
726
727 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
728 "log");
729 if (error)
730 goto out_destroy_ail;
731
732 /* Normal transactions can now occur */
733 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
734
735 /*
736 * Now the log has been fully initialised and we know were our
737 * space grant counters are, we can initialise the permanent ticket
738 * needed for delayed logging to work.
739 */
740 xlog_cil_init_post_recovery(log);
741
742 return 0;
743
744 out_destroy_ail:
745 xfs_trans_ail_destroy(mp);
746 out_free_log:
747 xlog_dealloc_log(log);
748 out:
749 return error;
750 }
751
752 /*
753 * Finish the recovery of the file system. This is separate from the
754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
756 * here.
757 *
758 * If we finish recovery successfully, start the background log work. If we are
759 * not doing recovery, then we have a RO filesystem and we don't need to start
760 * it.
761 */
762 int
xfs_log_mount_finish(struct xfs_mount * mp)763 xfs_log_mount_finish(
764 struct xfs_mount *mp)
765 {
766 struct xlog *log = mp->m_log;
767 bool readonly;
768 int error = 0;
769
770 if (xfs_has_norecovery(mp)) {
771 ASSERT(xfs_is_readonly(mp));
772 return 0;
773 }
774
775 /*
776 * log recovery ignores readonly state and so we need to clear
777 * mount-based read only state so it can write to disk.
778 */
779 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
780
781 /*
782 * During the second phase of log recovery, we need iget and
783 * iput to behave like they do for an active filesystem.
784 * xfs_fs_drop_inode needs to be able to prevent the deletion
785 * of inodes before we're done replaying log items on those
786 * inodes. Turn it off immediately after recovery finishes
787 * so that we don't leak the quota inodes if subsequent mount
788 * activities fail.
789 *
790 * We let all inodes involved in redo item processing end up on
791 * the LRU instead of being evicted immediately so that if we do
792 * something to an unlinked inode, the irele won't cause
793 * premature truncation and freeing of the inode, which results
794 * in log recovery failure. We have to evict the unreferenced
795 * lru inodes after clearing SB_ACTIVE because we don't
796 * otherwise clean up the lru if there's a subsequent failure in
797 * xfs_mountfs, which leads to us leaking the inodes if nothing
798 * else (e.g. quotacheck) references the inodes before the
799 * mount failure occurs.
800 */
801 mp->m_super->s_flags |= SB_ACTIVE;
802 if (xlog_recovery_needed(log))
803 error = xlog_recover_finish(log);
804 if (!error)
805 xfs_log_work_queue(mp);
806 mp->m_super->s_flags &= ~SB_ACTIVE;
807 evict_inodes(mp->m_super);
808
809 /*
810 * Drain the buffer LRU after log recovery. This is required for v4
811 * filesystems to avoid leaving around buffers with NULL verifier ops,
812 * but we do it unconditionally to make sure we're always in a clean
813 * cache state after mount.
814 *
815 * Don't push in the error case because the AIL may have pending intents
816 * that aren't removed until recovery is cancelled.
817 */
818 if (xlog_recovery_needed(log)) {
819 if (!error) {
820 xfs_log_force(mp, XFS_LOG_SYNC);
821 xfs_ail_push_all_sync(mp->m_ail);
822 }
823 xfs_notice(mp, "Ending recovery (logdev: %s)",
824 mp->m_logname ? mp->m_logname : "internal");
825 } else {
826 xfs_info(mp, "Ending clean mount");
827 }
828 xfs_buftarg_drain(mp->m_ddev_targp);
829
830 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
831 if (readonly)
832 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
833
834 /* Make sure the log is dead if we're returning failure. */
835 ASSERT(!error || xlog_is_shutdown(log));
836
837 return error;
838 }
839
840 /*
841 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
842 * the log.
843 */
844 void
xfs_log_mount_cancel(struct xfs_mount * mp)845 xfs_log_mount_cancel(
846 struct xfs_mount *mp)
847 {
848 xlog_recover_cancel(mp->m_log);
849 xfs_log_unmount(mp);
850 }
851
852 /*
853 * Flush out the iclog to disk ensuring that device caches are flushed and
854 * the iclog hits stable storage before any completion waiters are woken.
855 */
856 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)857 xlog_force_iclog(
858 struct xlog_in_core *iclog)
859 {
860 atomic_inc(&iclog->ic_refcnt);
861 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
862 if (iclog->ic_state == XLOG_STATE_ACTIVE)
863 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
864 return xlog_state_release_iclog(iclog->ic_log, iclog);
865 }
866
867 /*
868 * Wait for the iclog and all prior iclogs to be written disk as required by the
869 * log force state machine. Waiting on ic_force_wait ensures iclog completions
870 * have been ordered and callbacks run before we are woken here, hence
871 * guaranteeing that all the iclogs up to this one are on stable storage.
872 */
873 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)874 xlog_wait_on_iclog(
875 struct xlog_in_core *iclog)
876 __releases(iclog->ic_log->l_icloglock)
877 {
878 struct xlog *log = iclog->ic_log;
879
880 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
881 if (!xlog_is_shutdown(log) &&
882 iclog->ic_state != XLOG_STATE_ACTIVE &&
883 iclog->ic_state != XLOG_STATE_DIRTY) {
884 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
885 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
886 } else {
887 spin_unlock(&log->l_icloglock);
888 }
889
890 if (xlog_is_shutdown(log))
891 return -EIO;
892 return 0;
893 }
894
895 /*
896 * Write out an unmount record using the ticket provided. We have to account for
897 * the data space used in the unmount ticket as this write is not done from a
898 * transaction context that has already done the accounting for us.
899 */
900 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)901 xlog_write_unmount_record(
902 struct xlog *log,
903 struct xlog_ticket *ticket)
904 {
905 struct xfs_unmount_log_format ulf = {
906 .magic = XLOG_UNMOUNT_TYPE,
907 };
908 struct xfs_log_iovec reg = {
909 .i_addr = &ulf,
910 .i_len = sizeof(ulf),
911 .i_type = XLOG_REG_TYPE_UNMOUNT,
912 };
913 struct xfs_log_vec vec = {
914 .lv_niovecs = 1,
915 .lv_iovecp = ®,
916 };
917
918 /* account for space used by record data */
919 ticket->t_curr_res -= sizeof(ulf);
920
921 return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS);
922 }
923
924 /*
925 * Mark the filesystem clean by writing an unmount record to the head of the
926 * log.
927 */
928 static void
xlog_unmount_write(struct xlog * log)929 xlog_unmount_write(
930 struct xlog *log)
931 {
932 struct xfs_mount *mp = log->l_mp;
933 struct xlog_in_core *iclog;
934 struct xlog_ticket *tic = NULL;
935 int error;
936
937 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
938 if (error)
939 goto out_err;
940
941 error = xlog_write_unmount_record(log, tic);
942 /*
943 * At this point, we're umounting anyway, so there's no point in
944 * transitioning log state to shutdown. Just continue...
945 */
946 out_err:
947 if (error)
948 xfs_alert(mp, "%s: unmount record failed", __func__);
949
950 spin_lock(&log->l_icloglock);
951 iclog = log->l_iclog;
952 error = xlog_force_iclog(iclog);
953 xlog_wait_on_iclog(iclog);
954
955 if (tic) {
956 trace_xfs_log_umount_write(log, tic);
957 xfs_log_ticket_ungrant(log, tic);
958 }
959 }
960
961 static void
xfs_log_unmount_verify_iclog(struct xlog * log)962 xfs_log_unmount_verify_iclog(
963 struct xlog *log)
964 {
965 struct xlog_in_core *iclog = log->l_iclog;
966
967 do {
968 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
969 ASSERT(iclog->ic_offset == 0);
970 } while ((iclog = iclog->ic_next) != log->l_iclog);
971 }
972
973 /*
974 * Unmount record used to have a string "Unmount filesystem--" in the
975 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
976 * We just write the magic number now since that particular field isn't
977 * currently architecture converted and "Unmount" is a bit foo.
978 * As far as I know, there weren't any dependencies on the old behaviour.
979 */
980 static void
xfs_log_unmount_write(struct xfs_mount * mp)981 xfs_log_unmount_write(
982 struct xfs_mount *mp)
983 {
984 struct xlog *log = mp->m_log;
985
986 if (!xfs_log_writable(mp))
987 return;
988
989 xfs_log_force(mp, XFS_LOG_SYNC);
990
991 if (xlog_is_shutdown(log))
992 return;
993
994 /*
995 * If we think the summary counters are bad, avoid writing the unmount
996 * record to force log recovery at next mount, after which the summary
997 * counters will be recalculated. Refer to xlog_check_unmount_rec for
998 * more details.
999 */
1000 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1001 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1002 xfs_alert(mp, "%s: will fix summary counters at next mount",
1003 __func__);
1004 return;
1005 }
1006
1007 xfs_log_unmount_verify_iclog(log);
1008 xlog_unmount_write(log);
1009 }
1010
1011 /*
1012 * Empty the log for unmount/freeze.
1013 *
1014 * To do this, we first need to shut down the background log work so it is not
1015 * trying to cover the log as we clean up. We then need to unpin all objects in
1016 * the log so we can then flush them out. Once they have completed their IO and
1017 * run the callbacks removing themselves from the AIL, we can cover the log.
1018 */
1019 int
xfs_log_quiesce(struct xfs_mount * mp)1020 xfs_log_quiesce(
1021 struct xfs_mount *mp)
1022 {
1023 /*
1024 * Clear log incompat features since we're quiescing the log. Report
1025 * failures, though it's not fatal to have a higher log feature
1026 * protection level than the log contents actually require.
1027 */
1028 if (xfs_clear_incompat_log_features(mp)) {
1029 int error;
1030
1031 error = xfs_sync_sb(mp, false);
1032 if (error)
1033 xfs_warn(mp,
1034 "Failed to clear log incompat features on quiesce");
1035 }
1036
1037 cancel_delayed_work_sync(&mp->m_log->l_work);
1038 xfs_log_force(mp, XFS_LOG_SYNC);
1039
1040 /*
1041 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1042 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1043 * xfs_buf_iowait() cannot be used because it was pushed with the
1044 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1045 * the IO to complete.
1046 */
1047 xfs_ail_push_all_sync(mp->m_ail);
1048 xfs_buftarg_wait(mp->m_ddev_targp);
1049 xfs_buf_lock(mp->m_sb_bp);
1050 xfs_buf_unlock(mp->m_sb_bp);
1051
1052 return xfs_log_cover(mp);
1053 }
1054
1055 void
xfs_log_clean(struct xfs_mount * mp)1056 xfs_log_clean(
1057 struct xfs_mount *mp)
1058 {
1059 xfs_log_quiesce(mp);
1060 xfs_log_unmount_write(mp);
1061 }
1062
1063 /*
1064 * Shut down and release the AIL and Log.
1065 *
1066 * During unmount, we need to ensure we flush all the dirty metadata objects
1067 * from the AIL so that the log is empty before we write the unmount record to
1068 * the log. Once this is done, we can tear down the AIL and the log.
1069 */
1070 void
xfs_log_unmount(struct xfs_mount * mp)1071 xfs_log_unmount(
1072 struct xfs_mount *mp)
1073 {
1074 xfs_log_clean(mp);
1075
1076 xfs_buftarg_drain(mp->m_ddev_targp);
1077
1078 xfs_trans_ail_destroy(mp);
1079
1080 xfs_sysfs_del(&mp->m_log->l_kobj);
1081
1082 xlog_dealloc_log(mp->m_log);
1083 }
1084
1085 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1086 xfs_log_item_init(
1087 struct xfs_mount *mp,
1088 struct xfs_log_item *item,
1089 int type,
1090 const struct xfs_item_ops *ops)
1091 {
1092 item->li_mountp = mp;
1093 item->li_ailp = mp->m_ail;
1094 item->li_type = type;
1095 item->li_ops = ops;
1096 item->li_lv = NULL;
1097
1098 INIT_LIST_HEAD(&item->li_ail);
1099 INIT_LIST_HEAD(&item->li_cil);
1100 INIT_LIST_HEAD(&item->li_bio_list);
1101 INIT_LIST_HEAD(&item->li_trans);
1102 }
1103
1104 /*
1105 * Wake up processes waiting for log space after we have moved the log tail.
1106 */
1107 void
xfs_log_space_wake(struct xfs_mount * mp)1108 xfs_log_space_wake(
1109 struct xfs_mount *mp)
1110 {
1111 struct xlog *log = mp->m_log;
1112 int free_bytes;
1113
1114 if (xlog_is_shutdown(log))
1115 return;
1116
1117 if (!list_empty_careful(&log->l_write_head.waiters)) {
1118 ASSERT(!xlog_in_recovery(log));
1119
1120 spin_lock(&log->l_write_head.lock);
1121 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1122 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1123 spin_unlock(&log->l_write_head.lock);
1124 }
1125
1126 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1127 ASSERT(!xlog_in_recovery(log));
1128
1129 spin_lock(&log->l_reserve_head.lock);
1130 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1131 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1132 spin_unlock(&log->l_reserve_head.lock);
1133 }
1134 }
1135
1136 /*
1137 * Determine if we have a transaction that has gone to disk that needs to be
1138 * covered. To begin the transition to the idle state firstly the log needs to
1139 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1140 * we start attempting to cover the log.
1141 *
1142 * Only if we are then in a state where covering is needed, the caller is
1143 * informed that dummy transactions are required to move the log into the idle
1144 * state.
1145 *
1146 * If there are any items in the AIl or CIL, then we do not want to attempt to
1147 * cover the log as we may be in a situation where there isn't log space
1148 * available to run a dummy transaction and this can lead to deadlocks when the
1149 * tail of the log is pinned by an item that is modified in the CIL. Hence
1150 * there's no point in running a dummy transaction at this point because we
1151 * can't start trying to idle the log until both the CIL and AIL are empty.
1152 */
1153 static bool
xfs_log_need_covered(struct xfs_mount * mp)1154 xfs_log_need_covered(
1155 struct xfs_mount *mp)
1156 {
1157 struct xlog *log = mp->m_log;
1158 bool needed = false;
1159
1160 if (!xlog_cil_empty(log))
1161 return false;
1162
1163 spin_lock(&log->l_icloglock);
1164 switch (log->l_covered_state) {
1165 case XLOG_STATE_COVER_DONE:
1166 case XLOG_STATE_COVER_DONE2:
1167 case XLOG_STATE_COVER_IDLE:
1168 break;
1169 case XLOG_STATE_COVER_NEED:
1170 case XLOG_STATE_COVER_NEED2:
1171 if (xfs_ail_min_lsn(log->l_ailp))
1172 break;
1173 if (!xlog_iclogs_empty(log))
1174 break;
1175
1176 needed = true;
1177 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1178 log->l_covered_state = XLOG_STATE_COVER_DONE;
1179 else
1180 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1181 break;
1182 default:
1183 needed = true;
1184 break;
1185 }
1186 spin_unlock(&log->l_icloglock);
1187 return needed;
1188 }
1189
1190 /*
1191 * Explicitly cover the log. This is similar to background log covering but
1192 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1193 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1194 * must all be empty.
1195 */
1196 static int
xfs_log_cover(struct xfs_mount * mp)1197 xfs_log_cover(
1198 struct xfs_mount *mp)
1199 {
1200 int error = 0;
1201 bool need_covered;
1202
1203 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1204 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1205 xlog_is_shutdown(mp->m_log));
1206
1207 if (!xfs_log_writable(mp))
1208 return 0;
1209
1210 /*
1211 * xfs_log_need_covered() is not idempotent because it progresses the
1212 * state machine if the log requires covering. Therefore, we must call
1213 * this function once and use the result until we've issued an sb sync.
1214 * Do so first to make that abundantly clear.
1215 *
1216 * Fall into the covering sequence if the log needs covering or the
1217 * mount has lazy superblock accounting to sync to disk. The sb sync
1218 * used for covering accumulates the in-core counters, so covering
1219 * handles this for us.
1220 */
1221 need_covered = xfs_log_need_covered(mp);
1222 if (!need_covered && !xfs_has_lazysbcount(mp))
1223 return 0;
1224
1225 /*
1226 * To cover the log, commit the superblock twice (at most) in
1227 * independent checkpoints. The first serves as a reference for the
1228 * tail pointer. The sync transaction and AIL push empties the AIL and
1229 * updates the in-core tail to the LSN of the first checkpoint. The
1230 * second commit updates the on-disk tail with the in-core LSN,
1231 * covering the log. Push the AIL one more time to leave it empty, as
1232 * we found it.
1233 */
1234 do {
1235 error = xfs_sync_sb(mp, true);
1236 if (error)
1237 break;
1238 xfs_ail_push_all_sync(mp->m_ail);
1239 } while (xfs_log_need_covered(mp));
1240
1241 return error;
1242 }
1243
1244 /*
1245 * We may be holding the log iclog lock upon entering this routine.
1246 */
1247 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1248 xlog_assign_tail_lsn_locked(
1249 struct xfs_mount *mp)
1250 {
1251 struct xlog *log = mp->m_log;
1252 struct xfs_log_item *lip;
1253 xfs_lsn_t tail_lsn;
1254
1255 assert_spin_locked(&mp->m_ail->ail_lock);
1256
1257 /*
1258 * To make sure we always have a valid LSN for the log tail we keep
1259 * track of the last LSN which was committed in log->l_last_sync_lsn,
1260 * and use that when the AIL was empty.
1261 */
1262 lip = xfs_ail_min(mp->m_ail);
1263 if (lip)
1264 tail_lsn = lip->li_lsn;
1265 else
1266 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1267 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1268 atomic64_set(&log->l_tail_lsn, tail_lsn);
1269 return tail_lsn;
1270 }
1271
1272 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1273 xlog_assign_tail_lsn(
1274 struct xfs_mount *mp)
1275 {
1276 xfs_lsn_t tail_lsn;
1277
1278 spin_lock(&mp->m_ail->ail_lock);
1279 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1280 spin_unlock(&mp->m_ail->ail_lock);
1281
1282 return tail_lsn;
1283 }
1284
1285 /*
1286 * Return the space in the log between the tail and the head. The head
1287 * is passed in the cycle/bytes formal parms. In the special case where
1288 * the reserve head has wrapped passed the tail, this calculation is no
1289 * longer valid. In this case, just return 0 which means there is no space
1290 * in the log. This works for all places where this function is called
1291 * with the reserve head. Of course, if the write head were to ever
1292 * wrap the tail, we should blow up. Rather than catch this case here,
1293 * we depend on other ASSERTions in other parts of the code. XXXmiken
1294 *
1295 * If reservation head is behind the tail, we have a problem. Warn about it,
1296 * but then treat it as if the log is empty.
1297 *
1298 * If the log is shut down, the head and tail may be invalid or out of whack, so
1299 * shortcut invalidity asserts in this case so that we don't trigger them
1300 * falsely.
1301 */
1302 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1303 xlog_space_left(
1304 struct xlog *log,
1305 atomic64_t *head)
1306 {
1307 int tail_bytes;
1308 int tail_cycle;
1309 int head_cycle;
1310 int head_bytes;
1311
1312 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1313 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1314 tail_bytes = BBTOB(tail_bytes);
1315 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1316 return log->l_logsize - (head_bytes - tail_bytes);
1317 if (tail_cycle + 1 < head_cycle)
1318 return 0;
1319
1320 /* Ignore potential inconsistency when shutdown. */
1321 if (xlog_is_shutdown(log))
1322 return log->l_logsize;
1323
1324 if (tail_cycle < head_cycle) {
1325 ASSERT(tail_cycle == (head_cycle - 1));
1326 return tail_bytes - head_bytes;
1327 }
1328
1329 /*
1330 * The reservation head is behind the tail. In this case we just want to
1331 * return the size of the log as the amount of space left.
1332 */
1333 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1334 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d",
1335 tail_cycle, tail_bytes);
1336 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d",
1337 head_cycle, head_bytes);
1338 ASSERT(0);
1339 return log->l_logsize;
1340 }
1341
1342
1343 static void
xlog_ioend_work(struct work_struct * work)1344 xlog_ioend_work(
1345 struct work_struct *work)
1346 {
1347 struct xlog_in_core *iclog =
1348 container_of(work, struct xlog_in_core, ic_end_io_work);
1349 struct xlog *log = iclog->ic_log;
1350 int error;
1351
1352 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1353 #ifdef DEBUG
1354 /* treat writes with injected CRC errors as failed */
1355 if (iclog->ic_fail_crc)
1356 error = -EIO;
1357 #endif
1358
1359 /*
1360 * Race to shutdown the filesystem if we see an error.
1361 */
1362 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1363 xfs_alert(log->l_mp, "log I/O error %d", error);
1364 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1365 }
1366
1367 xlog_state_done_syncing(iclog);
1368 bio_uninit(&iclog->ic_bio);
1369
1370 /*
1371 * Drop the lock to signal that we are done. Nothing references the
1372 * iclog after this, so an unmount waiting on this lock can now tear it
1373 * down safely. As such, it is unsafe to reference the iclog after the
1374 * unlock as we could race with it being freed.
1375 */
1376 up(&iclog->ic_sema);
1377 }
1378
1379 /*
1380 * Return size of each in-core log record buffer.
1381 *
1382 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1383 *
1384 * If the filesystem blocksize is too large, we may need to choose a
1385 * larger size since the directory code currently logs entire blocks.
1386 */
1387 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1388 xlog_get_iclog_buffer_size(
1389 struct xfs_mount *mp,
1390 struct xlog *log)
1391 {
1392 if (mp->m_logbufs <= 0)
1393 mp->m_logbufs = XLOG_MAX_ICLOGS;
1394 if (mp->m_logbsize <= 0)
1395 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1396
1397 log->l_iclog_bufs = mp->m_logbufs;
1398 log->l_iclog_size = mp->m_logbsize;
1399
1400 /*
1401 * # headers = size / 32k - one header holds cycles from 32k of data.
1402 */
1403 log->l_iclog_heads =
1404 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1405 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1406 }
1407
1408 void
xfs_log_work_queue(struct xfs_mount * mp)1409 xfs_log_work_queue(
1410 struct xfs_mount *mp)
1411 {
1412 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1413 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1414 }
1415
1416 /*
1417 * Clear the log incompat flags if we have the opportunity.
1418 *
1419 * This only happens if we're about to log the second dummy transaction as part
1420 * of covering the log and we can get the log incompat feature usage lock.
1421 */
1422 static inline void
xlog_clear_incompat(struct xlog * log)1423 xlog_clear_incompat(
1424 struct xlog *log)
1425 {
1426 struct xfs_mount *mp = log->l_mp;
1427
1428 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1429 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1430 return;
1431
1432 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1433 return;
1434
1435 if (!down_write_trylock(&log->l_incompat_users))
1436 return;
1437
1438 xfs_clear_incompat_log_features(mp);
1439 up_write(&log->l_incompat_users);
1440 }
1441
1442 /*
1443 * Every sync period we need to unpin all items in the AIL and push them to
1444 * disk. If there is nothing dirty, then we might need to cover the log to
1445 * indicate that the filesystem is idle.
1446 */
1447 static void
xfs_log_worker(struct work_struct * work)1448 xfs_log_worker(
1449 struct work_struct *work)
1450 {
1451 struct xlog *log = container_of(to_delayed_work(work),
1452 struct xlog, l_work);
1453 struct xfs_mount *mp = log->l_mp;
1454
1455 /* dgc: errors ignored - not fatal and nowhere to report them */
1456 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1457 /*
1458 * Dump a transaction into the log that contains no real change.
1459 * This is needed to stamp the current tail LSN into the log
1460 * during the covering operation.
1461 *
1462 * We cannot use an inode here for this - that will push dirty
1463 * state back up into the VFS and then periodic inode flushing
1464 * will prevent log covering from making progress. Hence we
1465 * synchronously log the superblock instead to ensure the
1466 * superblock is immediately unpinned and can be written back.
1467 */
1468 xlog_clear_incompat(log);
1469 xfs_sync_sb(mp, true);
1470 } else
1471 xfs_log_force(mp, 0);
1472
1473 /* start pushing all the metadata that is currently dirty */
1474 xfs_ail_push_all(mp->m_ail);
1475
1476 /* queue us up again */
1477 xfs_log_work_queue(mp);
1478 }
1479
1480 /*
1481 * This routine initializes some of the log structure for a given mount point.
1482 * Its primary purpose is to fill in enough, so recovery can occur. However,
1483 * some other stuff may be filled in too.
1484 */
1485 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1486 xlog_alloc_log(
1487 struct xfs_mount *mp,
1488 struct xfs_buftarg *log_target,
1489 xfs_daddr_t blk_offset,
1490 int num_bblks)
1491 {
1492 struct xlog *log;
1493 xlog_rec_header_t *head;
1494 xlog_in_core_t **iclogp;
1495 xlog_in_core_t *iclog, *prev_iclog=NULL;
1496 int i;
1497 int error = -ENOMEM;
1498 uint log2_size = 0;
1499
1500 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1501 if (!log) {
1502 xfs_warn(mp, "Log allocation failed: No memory!");
1503 goto out;
1504 }
1505
1506 log->l_mp = mp;
1507 log->l_targ = log_target;
1508 log->l_logsize = BBTOB(num_bblks);
1509 log->l_logBBstart = blk_offset;
1510 log->l_logBBsize = num_bblks;
1511 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1512 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1513 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1514
1515 log->l_prev_block = -1;
1516 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1517 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1518 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1519 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1520
1521 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1522 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1523 else
1524 log->l_iclog_roundoff = BBSIZE;
1525
1526 xlog_grant_head_init(&log->l_reserve_head);
1527 xlog_grant_head_init(&log->l_write_head);
1528
1529 error = -EFSCORRUPTED;
1530 if (xfs_has_sector(mp)) {
1531 log2_size = mp->m_sb.sb_logsectlog;
1532 if (log2_size < BBSHIFT) {
1533 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1534 log2_size, BBSHIFT);
1535 goto out_free_log;
1536 }
1537
1538 log2_size -= BBSHIFT;
1539 if (log2_size > mp->m_sectbb_log) {
1540 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1541 log2_size, mp->m_sectbb_log);
1542 goto out_free_log;
1543 }
1544
1545 /* for larger sector sizes, must have v2 or external log */
1546 if (log2_size && log->l_logBBstart > 0 &&
1547 !xfs_has_logv2(mp)) {
1548 xfs_warn(mp,
1549 "log sector size (0x%x) invalid for configuration.",
1550 log2_size);
1551 goto out_free_log;
1552 }
1553 }
1554 log->l_sectBBsize = 1 << log2_size;
1555
1556 init_rwsem(&log->l_incompat_users);
1557
1558 xlog_get_iclog_buffer_size(mp, log);
1559
1560 spin_lock_init(&log->l_icloglock);
1561 init_waitqueue_head(&log->l_flush_wait);
1562
1563 iclogp = &log->l_iclog;
1564 /*
1565 * The amount of memory to allocate for the iclog structure is
1566 * rather funky due to the way the structure is defined. It is
1567 * done this way so that we can use different sizes for machines
1568 * with different amounts of memory. See the definition of
1569 * xlog_in_core_t in xfs_log_priv.h for details.
1570 */
1571 ASSERT(log->l_iclog_size >= 4096);
1572 for (i = 0; i < log->l_iclog_bufs; i++) {
1573 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1574 sizeof(struct bio_vec);
1575
1576 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1577 if (!iclog)
1578 goto out_free_iclog;
1579
1580 *iclogp = iclog;
1581 iclog->ic_prev = prev_iclog;
1582 prev_iclog = iclog;
1583
1584 iclog->ic_data = kvzalloc(log->l_iclog_size,
1585 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1586 if (!iclog->ic_data)
1587 goto out_free_iclog;
1588 #ifdef DEBUG
1589 log->l_iclog_bak[i] = &iclog->ic_header;
1590 #endif
1591 head = &iclog->ic_header;
1592 memset(head, 0, sizeof(xlog_rec_header_t));
1593 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 head->h_version = cpu_to_be32(
1595 xfs_has_logv2(log->l_mp) ? 2 : 1);
1596 head->h_size = cpu_to_be32(log->l_iclog_size);
1597 /* new fields */
1598 head->h_fmt = cpu_to_be32(XLOG_FMT);
1599 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1600
1601 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1602 iclog->ic_state = XLOG_STATE_ACTIVE;
1603 iclog->ic_log = log;
1604 atomic_set(&iclog->ic_refcnt, 0);
1605 INIT_LIST_HEAD(&iclog->ic_callbacks);
1606 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1607
1608 init_waitqueue_head(&iclog->ic_force_wait);
1609 init_waitqueue_head(&iclog->ic_write_wait);
1610 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1611 sema_init(&iclog->ic_sema, 1);
1612
1613 iclogp = &iclog->ic_next;
1614 }
1615 *iclogp = log->l_iclog; /* complete ring */
1616 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1617
1618 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1619 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1620 WQ_HIGHPRI),
1621 0, mp->m_super->s_id);
1622 if (!log->l_ioend_workqueue)
1623 goto out_free_iclog;
1624
1625 error = xlog_cil_init(log);
1626 if (error)
1627 goto out_destroy_workqueue;
1628 return log;
1629
1630 out_destroy_workqueue:
1631 destroy_workqueue(log->l_ioend_workqueue);
1632 out_free_iclog:
1633 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1634 prev_iclog = iclog->ic_next;
1635 kmem_free(iclog->ic_data);
1636 kmem_free(iclog);
1637 if (prev_iclog == log->l_iclog)
1638 break;
1639 }
1640 out_free_log:
1641 kmem_free(log);
1642 out:
1643 return ERR_PTR(error);
1644 } /* xlog_alloc_log */
1645
1646 /*
1647 * Compute the LSN that we'd need to push the log tail towards in order to have
1648 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1649 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1650 * log free space already meets all three thresholds, this function returns
1651 * NULLCOMMITLSN.
1652 */
1653 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1654 xlog_grant_push_threshold(
1655 struct xlog *log,
1656 int need_bytes)
1657 {
1658 xfs_lsn_t threshold_lsn = 0;
1659 xfs_lsn_t last_sync_lsn;
1660 int free_blocks;
1661 int free_bytes;
1662 int threshold_block;
1663 int threshold_cycle;
1664 int free_threshold;
1665
1666 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1667
1668 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1669 free_blocks = BTOBBT(free_bytes);
1670
1671 /*
1672 * Set the threshold for the minimum number of free blocks in the
1673 * log to the maximum of what the caller needs, one quarter of the
1674 * log, and 256 blocks.
1675 */
1676 free_threshold = BTOBB(need_bytes);
1677 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1678 free_threshold = max(free_threshold, 256);
1679 if (free_blocks >= free_threshold)
1680 return NULLCOMMITLSN;
1681
1682 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1683 &threshold_block);
1684 threshold_block += free_threshold;
1685 if (threshold_block >= log->l_logBBsize) {
1686 threshold_block -= log->l_logBBsize;
1687 threshold_cycle += 1;
1688 }
1689 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1690 threshold_block);
1691 /*
1692 * Don't pass in an lsn greater than the lsn of the last
1693 * log record known to be on disk. Use a snapshot of the last sync lsn
1694 * so that it doesn't change between the compare and the set.
1695 */
1696 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1697 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1698 threshold_lsn = last_sync_lsn;
1699
1700 return threshold_lsn;
1701 }
1702
1703 /*
1704 * Push the tail of the log if we need to do so to maintain the free log space
1705 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1706 * policy which pushes on an lsn which is further along in the log once we
1707 * reach the high water mark. In this manner, we would be creating a low water
1708 * mark.
1709 */
1710 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1711 xlog_grant_push_ail(
1712 struct xlog *log,
1713 int need_bytes)
1714 {
1715 xfs_lsn_t threshold_lsn;
1716
1717 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1718 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1719 return;
1720
1721 /*
1722 * Get the transaction layer to kick the dirty buffers out to
1723 * disk asynchronously. No point in trying to do this if
1724 * the filesystem is shutting down.
1725 */
1726 xfs_ail_push(log->l_ailp, threshold_lsn);
1727 }
1728
1729 /*
1730 * Stamp cycle number in every block
1731 */
1732 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1733 xlog_pack_data(
1734 struct xlog *log,
1735 struct xlog_in_core *iclog,
1736 int roundoff)
1737 {
1738 int i, j, k;
1739 int size = iclog->ic_offset + roundoff;
1740 __be32 cycle_lsn;
1741 char *dp;
1742
1743 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1744
1745 dp = iclog->ic_datap;
1746 for (i = 0; i < BTOBB(size); i++) {
1747 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1748 break;
1749 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1750 *(__be32 *)dp = cycle_lsn;
1751 dp += BBSIZE;
1752 }
1753
1754 if (xfs_has_logv2(log->l_mp)) {
1755 xlog_in_core_2_t *xhdr = iclog->ic_data;
1756
1757 for ( ; i < BTOBB(size); i++) {
1758 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1759 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1760 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1761 *(__be32 *)dp = cycle_lsn;
1762 dp += BBSIZE;
1763 }
1764
1765 for (i = 1; i < log->l_iclog_heads; i++)
1766 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1767 }
1768 }
1769
1770 /*
1771 * Calculate the checksum for a log buffer.
1772 *
1773 * This is a little more complicated than it should be because the various
1774 * headers and the actual data are non-contiguous.
1775 */
1776 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1777 xlog_cksum(
1778 struct xlog *log,
1779 struct xlog_rec_header *rhead,
1780 char *dp,
1781 int size)
1782 {
1783 uint32_t crc;
1784
1785 /* first generate the crc for the record header ... */
1786 crc = xfs_start_cksum_update((char *)rhead,
1787 sizeof(struct xlog_rec_header),
1788 offsetof(struct xlog_rec_header, h_crc));
1789
1790 /* ... then for additional cycle data for v2 logs ... */
1791 if (xfs_has_logv2(log->l_mp)) {
1792 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1793 int i;
1794 int xheads;
1795
1796 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1797
1798 for (i = 1; i < xheads; i++) {
1799 crc = crc32c(crc, &xhdr[i].hic_xheader,
1800 sizeof(struct xlog_rec_ext_header));
1801 }
1802 }
1803
1804 /* ... and finally for the payload */
1805 crc = crc32c(crc, dp, size);
1806
1807 return xfs_end_cksum(crc);
1808 }
1809
1810 static void
xlog_bio_end_io(struct bio * bio)1811 xlog_bio_end_io(
1812 struct bio *bio)
1813 {
1814 struct xlog_in_core *iclog = bio->bi_private;
1815
1816 queue_work(iclog->ic_log->l_ioend_workqueue,
1817 &iclog->ic_end_io_work);
1818 }
1819
1820 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1821 xlog_map_iclog_data(
1822 struct bio *bio,
1823 void *data,
1824 size_t count)
1825 {
1826 do {
1827 struct page *page = kmem_to_page(data);
1828 unsigned int off = offset_in_page(data);
1829 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1830
1831 if (bio_add_page(bio, page, len, off) != len)
1832 return -EIO;
1833
1834 data += len;
1835 count -= len;
1836 } while (count);
1837
1838 return 0;
1839 }
1840
1841 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1842 xlog_write_iclog(
1843 struct xlog *log,
1844 struct xlog_in_core *iclog,
1845 uint64_t bno,
1846 unsigned int count)
1847 {
1848 ASSERT(bno < log->l_logBBsize);
1849 trace_xlog_iclog_write(iclog, _RET_IP_);
1850
1851 /*
1852 * We lock the iclogbufs here so that we can serialise against I/O
1853 * completion during unmount. We might be processing a shutdown
1854 * triggered during unmount, and that can occur asynchronously to the
1855 * unmount thread, and hence we need to ensure that completes before
1856 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1857 * across the log IO to archieve that.
1858 */
1859 down(&iclog->ic_sema);
1860 if (xlog_is_shutdown(log)) {
1861 /*
1862 * It would seem logical to return EIO here, but we rely on
1863 * the log state machine to propagate I/O errors instead of
1864 * doing it here. We kick of the state machine and unlock
1865 * the buffer manually, the code needs to be kept in sync
1866 * with the I/O completion path.
1867 */
1868 xlog_state_done_syncing(iclog);
1869 up(&iclog->ic_sema);
1870 return;
1871 }
1872
1873 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1874 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1875 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1876 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1877 iclog->ic_bio.bi_private = iclog;
1878
1879 /*
1880 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1881 * IOs coming immediately after this one. This prevents the block layer
1882 * writeback throttle from throttling log writes behind background
1883 * metadata writeback and causing priority inversions.
1884 */
1885 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1886 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1887 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1888 /*
1889 * For external log devices, we also need to flush the data
1890 * device cache first to ensure all metadata writeback covered
1891 * by the LSN in this iclog is on stable storage. This is slow,
1892 * but it *must* complete before we issue the external log IO.
1893 */
1894 if (log->l_targ != log->l_mp->m_ddev_targp)
1895 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1896 }
1897 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1898 iclog->ic_bio.bi_opf |= REQ_FUA;
1899
1900 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1901
1902 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1903 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1904 return;
1905 }
1906 if (is_vmalloc_addr(iclog->ic_data))
1907 flush_kernel_vmap_range(iclog->ic_data, count);
1908
1909 /*
1910 * If this log buffer would straddle the end of the log we will have
1911 * to split it up into two bios, so that we can continue at the start.
1912 */
1913 if (bno + BTOBB(count) > log->l_logBBsize) {
1914 struct bio *split;
1915
1916 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1917 GFP_NOIO, &fs_bio_set);
1918 bio_chain(split, &iclog->ic_bio);
1919 submit_bio(split);
1920
1921 /* restart at logical offset zero for the remainder */
1922 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1923 }
1924
1925 submit_bio(&iclog->ic_bio);
1926 }
1927
1928 /*
1929 * We need to bump cycle number for the part of the iclog that is
1930 * written to the start of the log. Watch out for the header magic
1931 * number case, though.
1932 */
1933 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1934 xlog_split_iclog(
1935 struct xlog *log,
1936 void *data,
1937 uint64_t bno,
1938 unsigned int count)
1939 {
1940 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1941 unsigned int i;
1942
1943 for (i = split_offset; i < count; i += BBSIZE) {
1944 uint32_t cycle = get_unaligned_be32(data + i);
1945
1946 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1947 cycle++;
1948 put_unaligned_be32(cycle, data + i);
1949 }
1950 }
1951
1952 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1953 xlog_calc_iclog_size(
1954 struct xlog *log,
1955 struct xlog_in_core *iclog,
1956 uint32_t *roundoff)
1957 {
1958 uint32_t count_init, count;
1959
1960 /* Add for LR header */
1961 count_init = log->l_iclog_hsize + iclog->ic_offset;
1962 count = roundup(count_init, log->l_iclog_roundoff);
1963
1964 *roundoff = count - count_init;
1965
1966 ASSERT(count >= count_init);
1967 ASSERT(*roundoff < log->l_iclog_roundoff);
1968 return count;
1969 }
1970
1971 /*
1972 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1973 * fashion. Previously, we should have moved the current iclog
1974 * ptr in the log to point to the next available iclog. This allows further
1975 * write to continue while this code syncs out an iclog ready to go.
1976 * Before an in-core log can be written out, the data section must be scanned
1977 * to save away the 1st word of each BBSIZE block into the header. We replace
1978 * it with the current cycle count. Each BBSIZE block is tagged with the
1979 * cycle count because there in an implicit assumption that drives will
1980 * guarantee that entire 512 byte blocks get written at once. In other words,
1981 * we can't have part of a 512 byte block written and part not written. By
1982 * tagging each block, we will know which blocks are valid when recovering
1983 * after an unclean shutdown.
1984 *
1985 * This routine is single threaded on the iclog. No other thread can be in
1986 * this routine with the same iclog. Changing contents of iclog can there-
1987 * fore be done without grabbing the state machine lock. Updating the global
1988 * log will require grabbing the lock though.
1989 *
1990 * The entire log manager uses a logical block numbering scheme. Only
1991 * xlog_write_iclog knows about the fact that the log may not start with
1992 * block zero on a given device.
1993 */
1994 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1995 xlog_sync(
1996 struct xlog *log,
1997 struct xlog_in_core *iclog)
1998 {
1999 unsigned int count; /* byte count of bwrite */
2000 unsigned int roundoff; /* roundoff to BB or stripe */
2001 uint64_t bno;
2002 unsigned int size;
2003
2004 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2005 trace_xlog_iclog_sync(iclog, _RET_IP_);
2006
2007 count = xlog_calc_iclog_size(log, iclog, &roundoff);
2008
2009 /* move grant heads by roundoff in sync */
2010 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2011 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2012
2013 /* put cycle number in every block */
2014 xlog_pack_data(log, iclog, roundoff);
2015
2016 /* real byte length */
2017 size = iclog->ic_offset;
2018 if (xfs_has_logv2(log->l_mp))
2019 size += roundoff;
2020 iclog->ic_header.h_len = cpu_to_be32(size);
2021
2022 XFS_STATS_INC(log->l_mp, xs_log_writes);
2023 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2024
2025 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2026
2027 /* Do we need to split this write into 2 parts? */
2028 if (bno + BTOBB(count) > log->l_logBBsize)
2029 xlog_split_iclog(log, &iclog->ic_header, bno, count);
2030
2031 /* calculcate the checksum */
2032 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2033 iclog->ic_datap, size);
2034 /*
2035 * Intentionally corrupt the log record CRC based on the error injection
2036 * frequency, if defined. This facilitates testing log recovery in the
2037 * event of torn writes. Hence, set the IOABORT state to abort the log
2038 * write on I/O completion and shutdown the fs. The subsequent mount
2039 * detects the bad CRC and attempts to recover.
2040 */
2041 #ifdef DEBUG
2042 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2043 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2044 iclog->ic_fail_crc = true;
2045 xfs_warn(log->l_mp,
2046 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2047 be64_to_cpu(iclog->ic_header.h_lsn));
2048 }
2049 #endif
2050 xlog_verify_iclog(log, iclog, count);
2051 xlog_write_iclog(log, iclog, bno, count);
2052 }
2053
2054 /*
2055 * Deallocate a log structure
2056 */
2057 STATIC void
xlog_dealloc_log(struct xlog * log)2058 xlog_dealloc_log(
2059 struct xlog *log)
2060 {
2061 xlog_in_core_t *iclog, *next_iclog;
2062 int i;
2063
2064 /*
2065 * Cycle all the iclogbuf locks to make sure all log IO completion
2066 * is done before we tear down these buffers.
2067 */
2068 iclog = log->l_iclog;
2069 for (i = 0; i < log->l_iclog_bufs; i++) {
2070 down(&iclog->ic_sema);
2071 up(&iclog->ic_sema);
2072 iclog = iclog->ic_next;
2073 }
2074
2075 /*
2076 * Destroy the CIL after waiting for iclog IO completion because an
2077 * iclog EIO error will try to shut down the log, which accesses the
2078 * CIL to wake up the waiters.
2079 */
2080 xlog_cil_destroy(log);
2081
2082 iclog = log->l_iclog;
2083 for (i = 0; i < log->l_iclog_bufs; i++) {
2084 next_iclog = iclog->ic_next;
2085 kmem_free(iclog->ic_data);
2086 kmem_free(iclog);
2087 iclog = next_iclog;
2088 }
2089
2090 log->l_mp->m_log = NULL;
2091 destroy_workqueue(log->l_ioend_workqueue);
2092 kmem_free(log);
2093 }
2094
2095 /*
2096 * Update counters atomically now that memcpy is done.
2097 */
2098 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2099 xlog_state_finish_copy(
2100 struct xlog *log,
2101 struct xlog_in_core *iclog,
2102 int record_cnt,
2103 int copy_bytes)
2104 {
2105 lockdep_assert_held(&log->l_icloglock);
2106
2107 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2108 iclog->ic_offset += copy_bytes;
2109 }
2110
2111 /*
2112 * print out info relating to regions written which consume
2113 * the reservation
2114 */
2115 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2116 xlog_print_tic_res(
2117 struct xfs_mount *mp,
2118 struct xlog_ticket *ticket)
2119 {
2120 uint i;
2121 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2122
2123 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2124 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2125 static char *res_type_str[] = {
2126 REG_TYPE_STR(BFORMAT, "bformat"),
2127 REG_TYPE_STR(BCHUNK, "bchunk"),
2128 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2129 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2130 REG_TYPE_STR(IFORMAT, "iformat"),
2131 REG_TYPE_STR(ICORE, "icore"),
2132 REG_TYPE_STR(IEXT, "iext"),
2133 REG_TYPE_STR(IBROOT, "ibroot"),
2134 REG_TYPE_STR(ILOCAL, "ilocal"),
2135 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2136 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2137 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2138 REG_TYPE_STR(QFORMAT, "qformat"),
2139 REG_TYPE_STR(DQUOT, "dquot"),
2140 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2141 REG_TYPE_STR(LRHEADER, "LR header"),
2142 REG_TYPE_STR(UNMOUNT, "unmount"),
2143 REG_TYPE_STR(COMMIT, "commit"),
2144 REG_TYPE_STR(TRANSHDR, "trans header"),
2145 REG_TYPE_STR(ICREATE, "inode create"),
2146 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2147 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2148 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2149 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2150 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2151 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2152 };
2153 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2154 #undef REG_TYPE_STR
2155
2156 xfs_warn(mp, "ticket reservation summary:");
2157 xfs_warn(mp, " unit res = %d bytes",
2158 ticket->t_unit_res);
2159 xfs_warn(mp, " current res = %d bytes",
2160 ticket->t_curr_res);
2161 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2162 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2163 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2164 ticket->t_res_num_ophdrs, ophdr_spc);
2165 xfs_warn(mp, " ophdr + reg = %u bytes",
2166 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2167 xfs_warn(mp, " num regions = %u",
2168 ticket->t_res_num);
2169
2170 for (i = 0; i < ticket->t_res_num; i++) {
2171 uint r_type = ticket->t_res_arr[i].r_type;
2172 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2173 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2174 "bad-rtype" : res_type_str[r_type]),
2175 ticket->t_res_arr[i].r_len);
2176 }
2177 }
2178
2179 /*
2180 * Print a summary of the transaction.
2181 */
2182 void
xlog_print_trans(struct xfs_trans * tp)2183 xlog_print_trans(
2184 struct xfs_trans *tp)
2185 {
2186 struct xfs_mount *mp = tp->t_mountp;
2187 struct xfs_log_item *lip;
2188
2189 /* dump core transaction and ticket info */
2190 xfs_warn(mp, "transaction summary:");
2191 xfs_warn(mp, " log res = %d", tp->t_log_res);
2192 xfs_warn(mp, " log count = %d", tp->t_log_count);
2193 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2194
2195 xlog_print_tic_res(mp, tp->t_ticket);
2196
2197 /* dump each log item */
2198 list_for_each_entry(lip, &tp->t_items, li_trans) {
2199 struct xfs_log_vec *lv = lip->li_lv;
2200 struct xfs_log_iovec *vec;
2201 int i;
2202
2203 xfs_warn(mp, "log item: ");
2204 xfs_warn(mp, " type = 0x%x", lip->li_type);
2205 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2206 if (!lv)
2207 continue;
2208 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2209 xfs_warn(mp, " size = %d", lv->lv_size);
2210 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2211 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2212
2213 /* dump each iovec for the log item */
2214 vec = lv->lv_iovecp;
2215 for (i = 0; i < lv->lv_niovecs; i++) {
2216 int dumplen = min(vec->i_len, 32);
2217
2218 xfs_warn(mp, " iovec[%d]", i);
2219 xfs_warn(mp, " type = 0x%x", vec->i_type);
2220 xfs_warn(mp, " len = %d", vec->i_len);
2221 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2222 xfs_hex_dump(vec->i_addr, dumplen);
2223
2224 vec++;
2225 }
2226 }
2227 }
2228
2229 /*
2230 * Calculate the potential space needed by the log vector. We may need a start
2231 * record, and each region gets its own struct xlog_op_header and may need to be
2232 * double word aligned.
2233 */
2234 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector,uint optype)2235 xlog_write_calc_vec_length(
2236 struct xlog_ticket *ticket,
2237 struct xfs_log_vec *log_vector,
2238 uint optype)
2239 {
2240 struct xfs_log_vec *lv;
2241 int headers = 0;
2242 int len = 0;
2243 int i;
2244
2245 if (optype & XLOG_START_TRANS)
2246 headers++;
2247
2248 for (lv = log_vector; lv; lv = lv->lv_next) {
2249 /* we don't write ordered log vectors */
2250 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2251 continue;
2252
2253 headers += lv->lv_niovecs;
2254
2255 for (i = 0; i < lv->lv_niovecs; i++) {
2256 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2257
2258 len += vecp->i_len;
2259 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2260 }
2261 }
2262
2263 ticket->t_res_num_ophdrs += headers;
2264 len += headers * sizeof(struct xlog_op_header);
2265
2266 return len;
2267 }
2268
2269 static void
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2270 xlog_write_start_rec(
2271 struct xlog_op_header *ophdr,
2272 struct xlog_ticket *ticket)
2273 {
2274 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2275 ophdr->oh_clientid = ticket->t_clientid;
2276 ophdr->oh_len = 0;
2277 ophdr->oh_flags = XLOG_START_TRANS;
2278 ophdr->oh_res2 = 0;
2279 }
2280
2281 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2282 xlog_write_setup_ophdr(
2283 struct xlog *log,
2284 struct xlog_op_header *ophdr,
2285 struct xlog_ticket *ticket,
2286 uint flags)
2287 {
2288 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2289 ophdr->oh_clientid = ticket->t_clientid;
2290 ophdr->oh_res2 = 0;
2291
2292 /* are we copying a commit or unmount record? */
2293 ophdr->oh_flags = flags;
2294
2295 /*
2296 * We've seen logs corrupted with bad transaction client ids. This
2297 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2298 * and shut down the filesystem.
2299 */
2300 switch (ophdr->oh_clientid) {
2301 case XFS_TRANSACTION:
2302 case XFS_VOLUME:
2303 case XFS_LOG:
2304 break;
2305 default:
2306 xfs_warn(log->l_mp,
2307 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2308 ophdr->oh_clientid, ticket);
2309 return NULL;
2310 }
2311
2312 return ophdr;
2313 }
2314
2315 /*
2316 * Set up the parameters of the region copy into the log. This has
2317 * to handle region write split across multiple log buffers - this
2318 * state is kept external to this function so that this code can
2319 * be written in an obvious, self documenting manner.
2320 */
2321 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2322 xlog_write_setup_copy(
2323 struct xlog_ticket *ticket,
2324 struct xlog_op_header *ophdr,
2325 int space_available,
2326 int space_required,
2327 int *copy_off,
2328 int *copy_len,
2329 int *last_was_partial_copy,
2330 int *bytes_consumed)
2331 {
2332 int still_to_copy;
2333
2334 still_to_copy = space_required - *bytes_consumed;
2335 *copy_off = *bytes_consumed;
2336
2337 if (still_to_copy <= space_available) {
2338 /* write of region completes here */
2339 *copy_len = still_to_copy;
2340 ophdr->oh_len = cpu_to_be32(*copy_len);
2341 if (*last_was_partial_copy)
2342 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2343 *last_was_partial_copy = 0;
2344 *bytes_consumed = 0;
2345 return 0;
2346 }
2347
2348 /* partial write of region, needs extra log op header reservation */
2349 *copy_len = space_available;
2350 ophdr->oh_len = cpu_to_be32(*copy_len);
2351 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2352 if (*last_was_partial_copy)
2353 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2354 *bytes_consumed += *copy_len;
2355 (*last_was_partial_copy)++;
2356
2357 /* account for new log op header */
2358 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2359 ticket->t_res_num_ophdrs++;
2360
2361 return sizeof(struct xlog_op_header);
2362 }
2363
2364 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset)2365 xlog_write_copy_finish(
2366 struct xlog *log,
2367 struct xlog_in_core *iclog,
2368 uint flags,
2369 int *record_cnt,
2370 int *data_cnt,
2371 int *partial_copy,
2372 int *partial_copy_len,
2373 int log_offset)
2374 {
2375 int error;
2376
2377 if (*partial_copy) {
2378 /*
2379 * This iclog has already been marked WANT_SYNC by
2380 * xlog_state_get_iclog_space.
2381 */
2382 spin_lock(&log->l_icloglock);
2383 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2384 *record_cnt = 0;
2385 *data_cnt = 0;
2386 goto release_iclog;
2387 }
2388
2389 *partial_copy = 0;
2390 *partial_copy_len = 0;
2391
2392 if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t))
2393 return 0;
2394
2395 /* no more space in this iclog - push it. */
2396 spin_lock(&log->l_icloglock);
2397 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2398 *record_cnt = 0;
2399 *data_cnt = 0;
2400
2401 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2402 xlog_state_switch_iclogs(log, iclog, 0);
2403 else
2404 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2405 xlog_is_shutdown(log));
2406 release_iclog:
2407 error = xlog_state_release_iclog(log, iclog);
2408 spin_unlock(&log->l_icloglock);
2409 return error;
2410 }
2411
2412 /*
2413 * Write some region out to in-core log
2414 *
2415 * This will be called when writing externally provided regions or when
2416 * writing out a commit record for a given transaction.
2417 *
2418 * General algorithm:
2419 * 1. Find total length of this write. This may include adding to the
2420 * lengths passed in.
2421 * 2. Check whether we violate the tickets reservation.
2422 * 3. While writing to this iclog
2423 * A. Reserve as much space in this iclog as can get
2424 * B. If this is first write, save away start lsn
2425 * C. While writing this region:
2426 * 1. If first write of transaction, write start record
2427 * 2. Write log operation header (header per region)
2428 * 3. Find out if we can fit entire region into this iclog
2429 * 4. Potentially, verify destination memcpy ptr
2430 * 5. Memcpy (partial) region
2431 * 6. If partial copy, release iclog; otherwise, continue
2432 * copying more regions into current iclog
2433 * 4. Mark want sync bit (in simulation mode)
2434 * 5. Release iclog for potential flush to on-disk log.
2435 *
2436 * ERRORS:
2437 * 1. Panic if reservation is overrun. This should never happen since
2438 * reservation amounts are generated internal to the filesystem.
2439 * NOTES:
2440 * 1. Tickets are single threaded data structures.
2441 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2442 * syncing routine. When a single log_write region needs to span
2443 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2444 * on all log operation writes which don't contain the end of the
2445 * region. The XLOG_END_TRANS bit is used for the in-core log
2446 * operation which contains the end of the continued log_write region.
2447 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2448 * we don't really know exactly how much space will be used. As a result,
2449 * we don't update ic_offset until the end when we know exactly how many
2450 * bytes have been written out.
2451 */
2452 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,uint optype)2453 xlog_write(
2454 struct xlog *log,
2455 struct xfs_cil_ctx *ctx,
2456 struct xfs_log_vec *log_vector,
2457 struct xlog_ticket *ticket,
2458 uint optype)
2459 {
2460 struct xlog_in_core *iclog = NULL;
2461 struct xfs_log_vec *lv = log_vector;
2462 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2463 int index = 0;
2464 int len;
2465 int partial_copy = 0;
2466 int partial_copy_len = 0;
2467 int contwr = 0;
2468 int record_cnt = 0;
2469 int data_cnt = 0;
2470 int error = 0;
2471
2472 /*
2473 * If this is a commit or unmount transaction, we don't need a start
2474 * record to be written. We do, however, have to account for the
2475 * commit or unmount header that gets written. Hence we always have
2476 * to account for an extra xlog_op_header here.
2477 */
2478 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2479 if (ticket->t_curr_res < 0) {
2480 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2481 "ctx ticket reservation ran out. Need to up reservation");
2482 xlog_print_tic_res(log->l_mp, ticket);
2483 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2484 }
2485
2486 len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2487 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2488 void *ptr;
2489 int log_offset;
2490
2491 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2492 &contwr, &log_offset);
2493 if (error)
2494 return error;
2495
2496 ASSERT(log_offset <= iclog->ic_size - 1);
2497 ptr = iclog->ic_datap + log_offset;
2498
2499 /*
2500 * If we have a context pointer, pass it the first iclog we are
2501 * writing to so it can record state needed for iclog write
2502 * ordering.
2503 */
2504 if (ctx) {
2505 xlog_cil_set_ctx_write_state(ctx, iclog);
2506 ctx = NULL;
2507 }
2508
2509 /*
2510 * This loop writes out as many regions as can fit in the amount
2511 * of space which was allocated by xlog_state_get_iclog_space().
2512 */
2513 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2514 struct xfs_log_iovec *reg;
2515 struct xlog_op_header *ophdr;
2516 int copy_len;
2517 int copy_off;
2518 bool ordered = false;
2519 bool wrote_start_rec = false;
2520
2521 /* ordered log vectors have no regions to write */
2522 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2523 ASSERT(lv->lv_niovecs == 0);
2524 ordered = true;
2525 goto next_lv;
2526 }
2527
2528 reg = &vecp[index];
2529 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2530 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2531
2532 /*
2533 * Before we start formatting log vectors, we need to
2534 * write a start record. Only do this for the first
2535 * iclog we write to.
2536 */
2537 if (optype & XLOG_START_TRANS) {
2538 xlog_write_start_rec(ptr, ticket);
2539 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2540 sizeof(struct xlog_op_header));
2541 optype &= ~XLOG_START_TRANS;
2542 wrote_start_rec = true;
2543 }
2544
2545 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2546 if (!ophdr)
2547 return -EIO;
2548
2549 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2550 sizeof(struct xlog_op_header));
2551
2552 len += xlog_write_setup_copy(ticket, ophdr,
2553 iclog->ic_size-log_offset,
2554 reg->i_len,
2555 ©_off, ©_len,
2556 &partial_copy,
2557 &partial_copy_len);
2558 xlog_verify_dest_ptr(log, ptr);
2559
2560 /*
2561 * Copy region.
2562 *
2563 * Unmount records just log an opheader, so can have
2564 * empty payloads with no data region to copy. Hence we
2565 * only copy the payload if the vector says it has data
2566 * to copy.
2567 */
2568 ASSERT(copy_len >= 0);
2569 if (copy_len > 0) {
2570 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2571 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2572 copy_len);
2573 }
2574 copy_len += sizeof(struct xlog_op_header);
2575 record_cnt++;
2576 if (wrote_start_rec) {
2577 copy_len += sizeof(struct xlog_op_header);
2578 record_cnt++;
2579 }
2580 data_cnt += contwr ? copy_len : 0;
2581
2582 error = xlog_write_copy_finish(log, iclog, optype,
2583 &record_cnt, &data_cnt,
2584 &partial_copy,
2585 &partial_copy_len,
2586 log_offset);
2587 if (error)
2588 return error;
2589
2590 /*
2591 * if we had a partial copy, we need to get more iclog
2592 * space but we don't want to increment the region
2593 * index because there is still more is this region to
2594 * write.
2595 *
2596 * If we completed writing this region, and we flushed
2597 * the iclog (indicated by resetting of the record
2598 * count), then we also need to get more log space. If
2599 * this was the last record, though, we are done and
2600 * can just return.
2601 */
2602 if (partial_copy)
2603 break;
2604
2605 if (++index == lv->lv_niovecs) {
2606 next_lv:
2607 lv = lv->lv_next;
2608 index = 0;
2609 if (lv)
2610 vecp = lv->lv_iovecp;
2611 }
2612 if (record_cnt == 0 && !ordered) {
2613 if (!lv)
2614 return 0;
2615 break;
2616 }
2617 }
2618 }
2619
2620 ASSERT(len == 0);
2621
2622 spin_lock(&log->l_icloglock);
2623 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2624 error = xlog_state_release_iclog(log, iclog);
2625 spin_unlock(&log->l_icloglock);
2626
2627 return error;
2628 }
2629
2630 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2631 xlog_state_activate_iclog(
2632 struct xlog_in_core *iclog,
2633 int *iclogs_changed)
2634 {
2635 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2636 trace_xlog_iclog_activate(iclog, _RET_IP_);
2637
2638 /*
2639 * If the number of ops in this iclog indicate it just contains the
2640 * dummy transaction, we can change state into IDLE (the second time
2641 * around). Otherwise we should change the state into NEED a dummy.
2642 * We don't need to cover the dummy.
2643 */
2644 if (*iclogs_changed == 0 &&
2645 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2646 *iclogs_changed = 1;
2647 } else {
2648 /*
2649 * We have two dirty iclogs so start over. This could also be
2650 * num of ops indicating this is not the dummy going out.
2651 */
2652 *iclogs_changed = 2;
2653 }
2654
2655 iclog->ic_state = XLOG_STATE_ACTIVE;
2656 iclog->ic_offset = 0;
2657 iclog->ic_header.h_num_logops = 0;
2658 memset(iclog->ic_header.h_cycle_data, 0,
2659 sizeof(iclog->ic_header.h_cycle_data));
2660 iclog->ic_header.h_lsn = 0;
2661 iclog->ic_header.h_tail_lsn = 0;
2662 }
2663
2664 /*
2665 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2666 * ACTIVE after iclog I/O has completed.
2667 */
2668 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2669 xlog_state_activate_iclogs(
2670 struct xlog *log,
2671 int *iclogs_changed)
2672 {
2673 struct xlog_in_core *iclog = log->l_iclog;
2674
2675 do {
2676 if (iclog->ic_state == XLOG_STATE_DIRTY)
2677 xlog_state_activate_iclog(iclog, iclogs_changed);
2678 /*
2679 * The ordering of marking iclogs ACTIVE must be maintained, so
2680 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2681 */
2682 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2683 break;
2684 } while ((iclog = iclog->ic_next) != log->l_iclog);
2685 }
2686
2687 static int
xlog_covered_state(int prev_state,int iclogs_changed)2688 xlog_covered_state(
2689 int prev_state,
2690 int iclogs_changed)
2691 {
2692 /*
2693 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2694 * wrote the first covering record (DONE). We go to IDLE if we just
2695 * wrote the second covering record (DONE2) and remain in IDLE until a
2696 * non-covering write occurs.
2697 */
2698 switch (prev_state) {
2699 case XLOG_STATE_COVER_IDLE:
2700 if (iclogs_changed == 1)
2701 return XLOG_STATE_COVER_IDLE;
2702 fallthrough;
2703 case XLOG_STATE_COVER_NEED:
2704 case XLOG_STATE_COVER_NEED2:
2705 break;
2706 case XLOG_STATE_COVER_DONE:
2707 if (iclogs_changed == 1)
2708 return XLOG_STATE_COVER_NEED2;
2709 break;
2710 case XLOG_STATE_COVER_DONE2:
2711 if (iclogs_changed == 1)
2712 return XLOG_STATE_COVER_IDLE;
2713 break;
2714 default:
2715 ASSERT(0);
2716 }
2717
2718 return XLOG_STATE_COVER_NEED;
2719 }
2720
2721 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2722 xlog_state_clean_iclog(
2723 struct xlog *log,
2724 struct xlog_in_core *dirty_iclog)
2725 {
2726 int iclogs_changed = 0;
2727
2728 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2729
2730 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2731
2732 xlog_state_activate_iclogs(log, &iclogs_changed);
2733 wake_up_all(&dirty_iclog->ic_force_wait);
2734
2735 if (iclogs_changed) {
2736 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2737 iclogs_changed);
2738 }
2739 }
2740
2741 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2742 xlog_get_lowest_lsn(
2743 struct xlog *log)
2744 {
2745 struct xlog_in_core *iclog = log->l_iclog;
2746 xfs_lsn_t lowest_lsn = 0, lsn;
2747
2748 do {
2749 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2750 iclog->ic_state == XLOG_STATE_DIRTY)
2751 continue;
2752
2753 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2754 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2755 lowest_lsn = lsn;
2756 } while ((iclog = iclog->ic_next) != log->l_iclog);
2757
2758 return lowest_lsn;
2759 }
2760
2761 /*
2762 * Completion of a iclog IO does not imply that a transaction has completed, as
2763 * transactions can be large enough to span many iclogs. We cannot change the
2764 * tail of the log half way through a transaction as this may be the only
2765 * transaction in the log and moving the tail to point to the middle of it
2766 * will prevent recovery from finding the start of the transaction. Hence we
2767 * should only update the last_sync_lsn if this iclog contains transaction
2768 * completion callbacks on it.
2769 *
2770 * We have to do this before we drop the icloglock to ensure we are the only one
2771 * that can update it.
2772 *
2773 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2774 * the reservation grant head pushing. This is due to the fact that the push
2775 * target is bound by the current last_sync_lsn value. Hence if we have a large
2776 * amount of log space bound up in this committing transaction then the
2777 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2778 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2779 * should push the AIL to ensure the push target (and hence the grant head) is
2780 * no longer bound by the old log head location and can move forwards and make
2781 * progress again.
2782 */
2783 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2784 xlog_state_set_callback(
2785 struct xlog *log,
2786 struct xlog_in_core *iclog,
2787 xfs_lsn_t header_lsn)
2788 {
2789 trace_xlog_iclog_callback(iclog, _RET_IP_);
2790 iclog->ic_state = XLOG_STATE_CALLBACK;
2791
2792 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2793 header_lsn) <= 0);
2794
2795 if (list_empty_careful(&iclog->ic_callbacks))
2796 return;
2797
2798 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2799 xlog_grant_push_ail(log, 0);
2800 }
2801
2802 /*
2803 * Return true if we need to stop processing, false to continue to the next
2804 * iclog. The caller will need to run callbacks if the iclog is returned in the
2805 * XLOG_STATE_CALLBACK state.
2806 */
2807 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2808 xlog_state_iodone_process_iclog(
2809 struct xlog *log,
2810 struct xlog_in_core *iclog)
2811 {
2812 xfs_lsn_t lowest_lsn;
2813 xfs_lsn_t header_lsn;
2814
2815 switch (iclog->ic_state) {
2816 case XLOG_STATE_ACTIVE:
2817 case XLOG_STATE_DIRTY:
2818 /*
2819 * Skip all iclogs in the ACTIVE & DIRTY states:
2820 */
2821 return false;
2822 case XLOG_STATE_DONE_SYNC:
2823 /*
2824 * Now that we have an iclog that is in the DONE_SYNC state, do
2825 * one more check here to see if we have chased our tail around.
2826 * If this is not the lowest lsn iclog, then we will leave it
2827 * for another completion to process.
2828 */
2829 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2830 lowest_lsn = xlog_get_lowest_lsn(log);
2831 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2832 return false;
2833 xlog_state_set_callback(log, iclog, header_lsn);
2834 return false;
2835 default:
2836 /*
2837 * Can only perform callbacks in order. Since this iclog is not
2838 * in the DONE_SYNC state, we skip the rest and just try to
2839 * clean up.
2840 */
2841 return true;
2842 }
2843 }
2844
2845 /*
2846 * Loop over all the iclogs, running attached callbacks on them. Return true if
2847 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2848 * to handle transient shutdown state here at all because
2849 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2850 * cleanup of the callbacks.
2851 */
2852 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2853 xlog_state_do_iclog_callbacks(
2854 struct xlog *log)
2855 __releases(&log->l_icloglock)
2856 __acquires(&log->l_icloglock)
2857 {
2858 struct xlog_in_core *first_iclog = log->l_iclog;
2859 struct xlog_in_core *iclog = first_iclog;
2860 bool ran_callback = false;
2861
2862 do {
2863 LIST_HEAD(cb_list);
2864
2865 if (xlog_state_iodone_process_iclog(log, iclog))
2866 break;
2867 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2868 iclog = iclog->ic_next;
2869 continue;
2870 }
2871 list_splice_init(&iclog->ic_callbacks, &cb_list);
2872 spin_unlock(&log->l_icloglock);
2873
2874 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2875 xlog_cil_process_committed(&cb_list);
2876 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2877 ran_callback = true;
2878
2879 spin_lock(&log->l_icloglock);
2880 xlog_state_clean_iclog(log, iclog);
2881 iclog = iclog->ic_next;
2882 } while (iclog != first_iclog);
2883
2884 return ran_callback;
2885 }
2886
2887
2888 /*
2889 * Loop running iclog completion callbacks until there are no more iclogs in a
2890 * state that can run callbacks.
2891 */
2892 STATIC void
xlog_state_do_callback(struct xlog * log)2893 xlog_state_do_callback(
2894 struct xlog *log)
2895 {
2896 int flushcnt = 0;
2897 int repeats = 0;
2898
2899 spin_lock(&log->l_icloglock);
2900 while (xlog_state_do_iclog_callbacks(log)) {
2901 if (xlog_is_shutdown(log))
2902 break;
2903
2904 if (++repeats > 5000) {
2905 flushcnt += repeats;
2906 repeats = 0;
2907 xfs_warn(log->l_mp,
2908 "%s: possible infinite loop (%d iterations)",
2909 __func__, flushcnt);
2910 }
2911 }
2912
2913 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2914 wake_up_all(&log->l_flush_wait);
2915
2916 spin_unlock(&log->l_icloglock);
2917 }
2918
2919
2920 /*
2921 * Finish transitioning this iclog to the dirty state.
2922 *
2923 * Callbacks could take time, so they are done outside the scope of the
2924 * global state machine log lock.
2925 */
2926 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2927 xlog_state_done_syncing(
2928 struct xlog_in_core *iclog)
2929 {
2930 struct xlog *log = iclog->ic_log;
2931
2932 spin_lock(&log->l_icloglock);
2933 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2934 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2935
2936 /*
2937 * If we got an error, either on the first buffer, or in the case of
2938 * split log writes, on the second, we shut down the file system and
2939 * no iclogs should ever be attempted to be written to disk again.
2940 */
2941 if (!xlog_is_shutdown(log)) {
2942 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2943 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2944 }
2945
2946 /*
2947 * Someone could be sleeping prior to writing out the next
2948 * iclog buffer, we wake them all, one will get to do the
2949 * I/O, the others get to wait for the result.
2950 */
2951 wake_up_all(&iclog->ic_write_wait);
2952 spin_unlock(&log->l_icloglock);
2953 xlog_state_do_callback(log);
2954 }
2955
2956 /*
2957 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2958 * sleep. We wait on the flush queue on the head iclog as that should be
2959 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2960 * we will wait here and all new writes will sleep until a sync completes.
2961 *
2962 * The in-core logs are used in a circular fashion. They are not used
2963 * out-of-order even when an iclog past the head is free.
2964 *
2965 * return:
2966 * * log_offset where xlog_write() can start writing into the in-core
2967 * log's data space.
2968 * * in-core log pointer to which xlog_write() should write.
2969 * * boolean indicating this is a continued write to an in-core log.
2970 * If this is the last write, then the in-core log's offset field
2971 * needs to be incremented, depending on the amount of data which
2972 * is copied.
2973 */
2974 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2975 xlog_state_get_iclog_space(
2976 struct xlog *log,
2977 int len,
2978 struct xlog_in_core **iclogp,
2979 struct xlog_ticket *ticket,
2980 int *continued_write,
2981 int *logoffsetp)
2982 {
2983 int log_offset;
2984 xlog_rec_header_t *head;
2985 xlog_in_core_t *iclog;
2986
2987 restart:
2988 spin_lock(&log->l_icloglock);
2989 if (xlog_is_shutdown(log)) {
2990 spin_unlock(&log->l_icloglock);
2991 return -EIO;
2992 }
2993
2994 iclog = log->l_iclog;
2995 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2996 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2997
2998 /* Wait for log writes to have flushed */
2999 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3000 goto restart;
3001 }
3002
3003 head = &iclog->ic_header;
3004
3005 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3006 log_offset = iclog->ic_offset;
3007
3008 trace_xlog_iclog_get_space(iclog, _RET_IP_);
3009
3010 /* On the 1st write to an iclog, figure out lsn. This works
3011 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3012 * committing to. If the offset is set, that's how many blocks
3013 * must be written.
3014 */
3015 if (log_offset == 0) {
3016 ticket->t_curr_res -= log->l_iclog_hsize;
3017 xlog_tic_add_region(ticket,
3018 log->l_iclog_hsize,
3019 XLOG_REG_TYPE_LRHEADER);
3020 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3021 head->h_lsn = cpu_to_be64(
3022 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3023 ASSERT(log->l_curr_block >= 0);
3024 }
3025
3026 /* If there is enough room to write everything, then do it. Otherwise,
3027 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3028 * bit is on, so this will get flushed out. Don't update ic_offset
3029 * until you know exactly how many bytes get copied. Therefore, wait
3030 * until later to update ic_offset.
3031 *
3032 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3033 * can fit into remaining data section.
3034 */
3035 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3036 int error = 0;
3037
3038 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3039
3040 /*
3041 * If we are the only one writing to this iclog, sync it to
3042 * disk. We need to do an atomic compare and decrement here to
3043 * avoid racing with concurrent atomic_dec_and_lock() calls in
3044 * xlog_state_release_iclog() when there is more than one
3045 * reference to the iclog.
3046 */
3047 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3048 error = xlog_state_release_iclog(log, iclog);
3049 spin_unlock(&log->l_icloglock);
3050 if (error)
3051 return error;
3052 goto restart;
3053 }
3054
3055 /* Do we have enough room to write the full amount in the remainder
3056 * of this iclog? Or must we continue a write on the next iclog and
3057 * mark this iclog as completely taken? In the case where we switch
3058 * iclogs (to mark it taken), this particular iclog will release/sync
3059 * to disk in xlog_write().
3060 */
3061 if (len <= iclog->ic_size - iclog->ic_offset) {
3062 *continued_write = 0;
3063 iclog->ic_offset += len;
3064 } else {
3065 *continued_write = 1;
3066 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3067 }
3068 *iclogp = iclog;
3069
3070 ASSERT(iclog->ic_offset <= iclog->ic_size);
3071 spin_unlock(&log->l_icloglock);
3072
3073 *logoffsetp = log_offset;
3074 return 0;
3075 }
3076
3077 /*
3078 * The first cnt-1 times a ticket goes through here we don't need to move the
3079 * grant write head because the permanent reservation has reserved cnt times the
3080 * unit amount. Release part of current permanent unit reservation and reset
3081 * current reservation to be one units worth. Also move grant reservation head
3082 * forward.
3083 */
3084 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)3085 xfs_log_ticket_regrant(
3086 struct xlog *log,
3087 struct xlog_ticket *ticket)
3088 {
3089 trace_xfs_log_ticket_regrant(log, ticket);
3090
3091 if (ticket->t_cnt > 0)
3092 ticket->t_cnt--;
3093
3094 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3095 ticket->t_curr_res);
3096 xlog_grant_sub_space(log, &log->l_write_head.grant,
3097 ticket->t_curr_res);
3098 ticket->t_curr_res = ticket->t_unit_res;
3099 xlog_tic_reset_res(ticket);
3100
3101 trace_xfs_log_ticket_regrant_sub(log, ticket);
3102
3103 /* just return if we still have some of the pre-reserved space */
3104 if (!ticket->t_cnt) {
3105 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3106 ticket->t_unit_res);
3107 trace_xfs_log_ticket_regrant_exit(log, ticket);
3108
3109 ticket->t_curr_res = ticket->t_unit_res;
3110 xlog_tic_reset_res(ticket);
3111 }
3112
3113 xfs_log_ticket_put(ticket);
3114 }
3115
3116 /*
3117 * Give back the space left from a reservation.
3118 *
3119 * All the information we need to make a correct determination of space left
3120 * is present. For non-permanent reservations, things are quite easy. The
3121 * count should have been decremented to zero. We only need to deal with the
3122 * space remaining in the current reservation part of the ticket. If the
3123 * ticket contains a permanent reservation, there may be left over space which
3124 * needs to be released. A count of N means that N-1 refills of the current
3125 * reservation can be done before we need to ask for more space. The first
3126 * one goes to fill up the first current reservation. Once we run out of
3127 * space, the count will stay at zero and the only space remaining will be
3128 * in the current reservation field.
3129 */
3130 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)3131 xfs_log_ticket_ungrant(
3132 struct xlog *log,
3133 struct xlog_ticket *ticket)
3134 {
3135 int bytes;
3136
3137 trace_xfs_log_ticket_ungrant(log, ticket);
3138
3139 if (ticket->t_cnt > 0)
3140 ticket->t_cnt--;
3141
3142 trace_xfs_log_ticket_ungrant_sub(log, ticket);
3143
3144 /*
3145 * If this is a permanent reservation ticket, we may be able to free
3146 * up more space based on the remaining count.
3147 */
3148 bytes = ticket->t_curr_res;
3149 if (ticket->t_cnt > 0) {
3150 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3151 bytes += ticket->t_unit_res*ticket->t_cnt;
3152 }
3153
3154 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3155 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3156
3157 trace_xfs_log_ticket_ungrant_exit(log, ticket);
3158
3159 xfs_log_space_wake(log->l_mp);
3160 xfs_log_ticket_put(ticket);
3161 }
3162
3163 /*
3164 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3165 * the current iclog pointer to the next iclog in the ring.
3166 */
3167 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3168 xlog_state_switch_iclogs(
3169 struct xlog *log,
3170 struct xlog_in_core *iclog,
3171 int eventual_size)
3172 {
3173 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3174 assert_spin_locked(&log->l_icloglock);
3175 trace_xlog_iclog_switch(iclog, _RET_IP_);
3176
3177 if (!eventual_size)
3178 eventual_size = iclog->ic_offset;
3179 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3180 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3181 log->l_prev_block = log->l_curr_block;
3182 log->l_prev_cycle = log->l_curr_cycle;
3183
3184 /* roll log?: ic_offset changed later */
3185 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3186
3187 /* Round up to next log-sunit */
3188 if (log->l_iclog_roundoff > BBSIZE) {
3189 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3190 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3191 }
3192
3193 if (log->l_curr_block >= log->l_logBBsize) {
3194 /*
3195 * Rewind the current block before the cycle is bumped to make
3196 * sure that the combined LSN never transiently moves forward
3197 * when the log wraps to the next cycle. This is to support the
3198 * unlocked sample of these fields from xlog_valid_lsn(). Most
3199 * other cases should acquire l_icloglock.
3200 */
3201 log->l_curr_block -= log->l_logBBsize;
3202 ASSERT(log->l_curr_block >= 0);
3203 smp_wmb();
3204 log->l_curr_cycle++;
3205 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3206 log->l_curr_cycle++;
3207 }
3208 ASSERT(iclog == log->l_iclog);
3209 log->l_iclog = iclog->ic_next;
3210 }
3211
3212 /*
3213 * Force the iclog to disk and check if the iclog has been completed before
3214 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3215 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3216 * If completion has already occurred, tell the caller so that it can avoid an
3217 * unnecessary wait on the iclog.
3218 */
3219 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)3220 xlog_force_and_check_iclog(
3221 struct xlog_in_core *iclog,
3222 bool *completed)
3223 {
3224 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3225 int error;
3226
3227 *completed = false;
3228 error = xlog_force_iclog(iclog);
3229 if (error)
3230 return error;
3231
3232 /*
3233 * If the iclog has already been completed and reused the header LSN
3234 * will have been rewritten by completion
3235 */
3236 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3237 *completed = true;
3238 return 0;
3239 }
3240
3241 /*
3242 * Write out all data in the in-core log as of this exact moment in time.
3243 *
3244 * Data may be written to the in-core log during this call. However,
3245 * we don't guarantee this data will be written out. A change from past
3246 * implementation means this routine will *not* write out zero length LRs.
3247 *
3248 * Basically, we try and perform an intelligent scan of the in-core logs.
3249 * If we determine there is no flushable data, we just return. There is no
3250 * flushable data if:
3251 *
3252 * 1. the current iclog is active and has no data; the previous iclog
3253 * is in the active or dirty state.
3254 * 2. the current iclog is drity, and the previous iclog is in the
3255 * active or dirty state.
3256 *
3257 * We may sleep if:
3258 *
3259 * 1. the current iclog is not in the active nor dirty state.
3260 * 2. the current iclog dirty, and the previous iclog is not in the
3261 * active nor dirty state.
3262 * 3. the current iclog is active, and there is another thread writing
3263 * to this particular iclog.
3264 * 4. a) the current iclog is active and has no other writers
3265 * b) when we return from flushing out this iclog, it is still
3266 * not in the active nor dirty state.
3267 */
3268 int
xfs_log_force(struct xfs_mount * mp,uint flags)3269 xfs_log_force(
3270 struct xfs_mount *mp,
3271 uint flags)
3272 {
3273 struct xlog *log = mp->m_log;
3274 struct xlog_in_core *iclog;
3275
3276 XFS_STATS_INC(mp, xs_log_force);
3277 trace_xfs_log_force(mp, 0, _RET_IP_);
3278
3279 xlog_cil_force(log);
3280
3281 spin_lock(&log->l_icloglock);
3282 if (xlog_is_shutdown(log))
3283 goto out_error;
3284
3285 iclog = log->l_iclog;
3286 trace_xlog_iclog_force(iclog, _RET_IP_);
3287
3288 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3289 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3290 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3291 /*
3292 * If the head is dirty or (active and empty), then we need to
3293 * look at the previous iclog.
3294 *
3295 * If the previous iclog is active or dirty we are done. There
3296 * is nothing to sync out. Otherwise, we attach ourselves to the
3297 * previous iclog and go to sleep.
3298 */
3299 iclog = iclog->ic_prev;
3300 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3301 if (atomic_read(&iclog->ic_refcnt) == 0) {
3302 /* We have exclusive access to this iclog. */
3303 bool completed;
3304
3305 if (xlog_force_and_check_iclog(iclog, &completed))
3306 goto out_error;
3307
3308 if (completed)
3309 goto out_unlock;
3310 } else {
3311 /*
3312 * Someone else is still writing to this iclog, so we
3313 * need to ensure that when they release the iclog it
3314 * gets synced immediately as we may be waiting on it.
3315 */
3316 xlog_state_switch_iclogs(log, iclog, 0);
3317 }
3318 }
3319
3320 /*
3321 * The iclog we are about to wait on may contain the checkpoint pushed
3322 * by the above xlog_cil_force() call, but it may not have been pushed
3323 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3324 * are flushed when this iclog is written.
3325 */
3326 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3327 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3328
3329 if (flags & XFS_LOG_SYNC)
3330 return xlog_wait_on_iclog(iclog);
3331 out_unlock:
3332 spin_unlock(&log->l_icloglock);
3333 return 0;
3334 out_error:
3335 spin_unlock(&log->l_icloglock);
3336 return -EIO;
3337 }
3338
3339 /*
3340 * Force the log to a specific LSN.
3341 *
3342 * If an iclog with that lsn can be found:
3343 * If it is in the DIRTY state, just return.
3344 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3345 * state and go to sleep or return.
3346 * If it is in any other state, go to sleep or return.
3347 *
3348 * Synchronous forces are implemented with a wait queue. All callers trying
3349 * to force a given lsn to disk must wait on the queue attached to the
3350 * specific in-core log. When given in-core log finally completes its write
3351 * to disk, that thread will wake up all threads waiting on the queue.
3352 */
3353 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3354 xlog_force_lsn(
3355 struct xlog *log,
3356 xfs_lsn_t lsn,
3357 uint flags,
3358 int *log_flushed,
3359 bool already_slept)
3360 {
3361 struct xlog_in_core *iclog;
3362 bool completed;
3363
3364 spin_lock(&log->l_icloglock);
3365 if (xlog_is_shutdown(log))
3366 goto out_error;
3367
3368 iclog = log->l_iclog;
3369 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3370 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3371 iclog = iclog->ic_next;
3372 if (iclog == log->l_iclog)
3373 goto out_unlock;
3374 }
3375
3376 switch (iclog->ic_state) {
3377 case XLOG_STATE_ACTIVE:
3378 /*
3379 * We sleep here if we haven't already slept (e.g. this is the
3380 * first time we've looked at the correct iclog buf) and the
3381 * buffer before us is going to be sync'ed. The reason for this
3382 * is that if we are doing sync transactions here, by waiting
3383 * for the previous I/O to complete, we can allow a few more
3384 * transactions into this iclog before we close it down.
3385 *
3386 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3387 * refcnt so we can release the log (which drops the ref count).
3388 * The state switch keeps new transaction commits from using
3389 * this buffer. When the current commits finish writing into
3390 * the buffer, the refcount will drop to zero and the buffer
3391 * will go out then.
3392 */
3393 if (!already_slept &&
3394 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3395 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3396 xlog_wait(&iclog->ic_prev->ic_write_wait,
3397 &log->l_icloglock);
3398 return -EAGAIN;
3399 }
3400 if (xlog_force_and_check_iclog(iclog, &completed))
3401 goto out_error;
3402 if (log_flushed)
3403 *log_flushed = 1;
3404 if (completed)
3405 goto out_unlock;
3406 break;
3407 case XLOG_STATE_WANT_SYNC:
3408 /*
3409 * This iclog may contain the checkpoint pushed by the
3410 * xlog_cil_force_seq() call, but there are other writers still
3411 * accessing it so it hasn't been pushed to disk yet. Like the
3412 * ACTIVE case above, we need to make sure caches are flushed
3413 * when this iclog is written.
3414 */
3415 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3416 break;
3417 default:
3418 /*
3419 * The entire checkpoint was written by the CIL force and is on
3420 * its way to disk already. It will be stable when it
3421 * completes, so we don't need to manipulate caches here at all.
3422 * We just need to wait for completion if necessary.
3423 */
3424 break;
3425 }
3426
3427 if (flags & XFS_LOG_SYNC)
3428 return xlog_wait_on_iclog(iclog);
3429 out_unlock:
3430 spin_unlock(&log->l_icloglock);
3431 return 0;
3432 out_error:
3433 spin_unlock(&log->l_icloglock);
3434 return -EIO;
3435 }
3436
3437 /*
3438 * Force the log to a specific checkpoint sequence.
3439 *
3440 * First force the CIL so that all the required changes have been flushed to the
3441 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3442 * the iclog that needs to be flushed to stable storage. If the caller needs
3443 * a synchronous log force, we will wait on the iclog with the LSN returned by
3444 * xlog_cil_force_seq() to be completed.
3445 */
3446 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3447 xfs_log_force_seq(
3448 struct xfs_mount *mp,
3449 xfs_csn_t seq,
3450 uint flags,
3451 int *log_flushed)
3452 {
3453 struct xlog *log = mp->m_log;
3454 xfs_lsn_t lsn;
3455 int ret;
3456 ASSERT(seq != 0);
3457
3458 XFS_STATS_INC(mp, xs_log_force);
3459 trace_xfs_log_force(mp, seq, _RET_IP_);
3460
3461 lsn = xlog_cil_force_seq(log, seq);
3462 if (lsn == NULLCOMMITLSN)
3463 return 0;
3464
3465 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3466 if (ret == -EAGAIN) {
3467 XFS_STATS_INC(mp, xs_log_force_sleep);
3468 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3469 }
3470 return ret;
3471 }
3472
3473 /*
3474 * Free a used ticket when its refcount falls to zero.
3475 */
3476 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3477 xfs_log_ticket_put(
3478 xlog_ticket_t *ticket)
3479 {
3480 ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 if (atomic_dec_and_test(&ticket->t_ref))
3482 kmem_cache_free(xfs_log_ticket_zone, ticket);
3483 }
3484
3485 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3486 xfs_log_ticket_get(
3487 xlog_ticket_t *ticket)
3488 {
3489 ASSERT(atomic_read(&ticket->t_ref) > 0);
3490 atomic_inc(&ticket->t_ref);
3491 return ticket;
3492 }
3493
3494 /*
3495 * Figure out the total log space unit (in bytes) that would be
3496 * required for a log ticket.
3497 */
3498 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes)3499 xlog_calc_unit_res(
3500 struct xlog *log,
3501 int unit_bytes)
3502 {
3503 int iclog_space;
3504 uint num_headers;
3505
3506 /*
3507 * Permanent reservations have up to 'cnt'-1 active log operations
3508 * in the log. A unit in this case is the amount of space for one
3509 * of these log operations. Normal reservations have a cnt of 1
3510 * and their unit amount is the total amount of space required.
3511 *
3512 * The following lines of code account for non-transaction data
3513 * which occupy space in the on-disk log.
3514 *
3515 * Normal form of a transaction is:
3516 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3517 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3518 *
3519 * We need to account for all the leadup data and trailer data
3520 * around the transaction data.
3521 * And then we need to account for the worst case in terms of using
3522 * more space.
3523 * The worst case will happen if:
3524 * - the placement of the transaction happens to be such that the
3525 * roundoff is at its maximum
3526 * - the transaction data is synced before the commit record is synced
3527 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3528 * Therefore the commit record is in its own Log Record.
3529 * This can happen as the commit record is called with its
3530 * own region to xlog_write().
3531 * This then means that in the worst case, roundoff can happen for
3532 * the commit-rec as well.
3533 * The commit-rec is smaller than padding in this scenario and so it is
3534 * not added separately.
3535 */
3536
3537 /* for trans header */
3538 unit_bytes += sizeof(xlog_op_header_t);
3539 unit_bytes += sizeof(xfs_trans_header_t);
3540
3541 /* for start-rec */
3542 unit_bytes += sizeof(xlog_op_header_t);
3543
3544 /*
3545 * for LR headers - the space for data in an iclog is the size minus
3546 * the space used for the headers. If we use the iclog size, then we
3547 * undercalculate the number of headers required.
3548 *
3549 * Furthermore - the addition of op headers for split-recs might
3550 * increase the space required enough to require more log and op
3551 * headers, so take that into account too.
3552 *
3553 * IMPORTANT: This reservation makes the assumption that if this
3554 * transaction is the first in an iclog and hence has the LR headers
3555 * accounted to it, then the remaining space in the iclog is
3556 * exclusively for this transaction. i.e. if the transaction is larger
3557 * than the iclog, it will be the only thing in that iclog.
3558 * Fundamentally, this means we must pass the entire log vector to
3559 * xlog_write to guarantee this.
3560 */
3561 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3562 num_headers = howmany(unit_bytes, iclog_space);
3563
3564 /* for split-recs - ophdrs added when data split over LRs */
3565 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3566
3567 /* add extra header reservations if we overrun */
3568 while (!num_headers ||
3569 howmany(unit_bytes, iclog_space) > num_headers) {
3570 unit_bytes += sizeof(xlog_op_header_t);
3571 num_headers++;
3572 }
3573 unit_bytes += log->l_iclog_hsize * num_headers;
3574
3575 /* for commit-rec LR header - note: padding will subsume the ophdr */
3576 unit_bytes += log->l_iclog_hsize;
3577
3578 /* roundoff padding for transaction data and one for commit record */
3579 unit_bytes += 2 * log->l_iclog_roundoff;
3580
3581 return unit_bytes;
3582 }
3583
3584 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3585 xfs_log_calc_unit_res(
3586 struct xfs_mount *mp,
3587 int unit_bytes)
3588 {
3589 return xlog_calc_unit_res(mp->m_log, unit_bytes);
3590 }
3591
3592 /*
3593 * Allocate and initialise a new log ticket.
3594 */
3595 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent)3596 xlog_ticket_alloc(
3597 struct xlog *log,
3598 int unit_bytes,
3599 int cnt,
3600 char client,
3601 bool permanent)
3602 {
3603 struct xlog_ticket *tic;
3604 int unit_res;
3605
3606 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3607
3608 unit_res = xlog_calc_unit_res(log, unit_bytes);
3609
3610 atomic_set(&tic->t_ref, 1);
3611 tic->t_task = current;
3612 INIT_LIST_HEAD(&tic->t_queue);
3613 tic->t_unit_res = unit_res;
3614 tic->t_curr_res = unit_res;
3615 tic->t_cnt = cnt;
3616 tic->t_ocnt = cnt;
3617 tic->t_tid = prandom_u32();
3618 tic->t_clientid = client;
3619 if (permanent)
3620 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3621
3622 xlog_tic_reset_res(tic);
3623
3624 return tic;
3625 }
3626
3627 #if defined(DEBUG)
3628 /*
3629 * Make sure that the destination ptr is within the valid data region of
3630 * one of the iclogs. This uses backup pointers stored in a different
3631 * part of the log in case we trash the log structure.
3632 */
3633 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3634 xlog_verify_dest_ptr(
3635 struct xlog *log,
3636 void *ptr)
3637 {
3638 int i;
3639 int good_ptr = 0;
3640
3641 for (i = 0; i < log->l_iclog_bufs; i++) {
3642 if (ptr >= log->l_iclog_bak[i] &&
3643 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3644 good_ptr++;
3645 }
3646
3647 if (!good_ptr)
3648 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3649 }
3650
3651 /*
3652 * Check to make sure the grant write head didn't just over lap the tail. If
3653 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3654 * the cycles differ by exactly one and check the byte count.
3655 *
3656 * This check is run unlocked, so can give false positives. Rather than assert
3657 * on failures, use a warn-once flag and a panic tag to allow the admin to
3658 * determine if they want to panic the machine when such an error occurs. For
3659 * debug kernels this will have the same effect as using an assert but, unlinke
3660 * an assert, it can be turned off at runtime.
3661 */
3662 STATIC void
xlog_verify_grant_tail(struct xlog * log)3663 xlog_verify_grant_tail(
3664 struct xlog *log)
3665 {
3666 int tail_cycle, tail_blocks;
3667 int cycle, space;
3668
3669 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3670 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3671 if (tail_cycle != cycle) {
3672 if (cycle - 1 != tail_cycle &&
3673 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3674 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3675 "%s: cycle - 1 != tail_cycle", __func__);
3676 }
3677
3678 if (space > BBTOB(tail_blocks) &&
3679 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3680 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3681 "%s: space > BBTOB(tail_blocks)", __func__);
3682 }
3683 }
3684 }
3685
3686 /* check if it will fit */
3687 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3688 xlog_verify_tail_lsn(
3689 struct xlog *log,
3690 struct xlog_in_core *iclog)
3691 {
3692 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3693 int blocks;
3694
3695 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3696 blocks =
3697 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3698 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3699 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3700 } else {
3701 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3702
3703 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3704 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3705
3706 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3707 if (blocks < BTOBB(iclog->ic_offset) + 1)
3708 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3709 }
3710 }
3711
3712 /*
3713 * Perform a number of checks on the iclog before writing to disk.
3714 *
3715 * 1. Make sure the iclogs are still circular
3716 * 2. Make sure we have a good magic number
3717 * 3. Make sure we don't have magic numbers in the data
3718 * 4. Check fields of each log operation header for:
3719 * A. Valid client identifier
3720 * B. tid ptr value falls in valid ptr space (user space code)
3721 * C. Length in log record header is correct according to the
3722 * individual operation headers within record.
3723 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3724 * log, check the preceding blocks of the physical log to make sure all
3725 * the cycle numbers agree with the current cycle number.
3726 */
3727 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3728 xlog_verify_iclog(
3729 struct xlog *log,
3730 struct xlog_in_core *iclog,
3731 int count)
3732 {
3733 xlog_op_header_t *ophead;
3734 xlog_in_core_t *icptr;
3735 xlog_in_core_2_t *xhdr;
3736 void *base_ptr, *ptr, *p;
3737 ptrdiff_t field_offset;
3738 uint8_t clientid;
3739 int len, i, j, k, op_len;
3740 int idx;
3741
3742 /* check validity of iclog pointers */
3743 spin_lock(&log->l_icloglock);
3744 icptr = log->l_iclog;
3745 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3746 ASSERT(icptr);
3747
3748 if (icptr != log->l_iclog)
3749 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3750 spin_unlock(&log->l_icloglock);
3751
3752 /* check log magic numbers */
3753 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3754 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3755
3756 base_ptr = ptr = &iclog->ic_header;
3757 p = &iclog->ic_header;
3758 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3759 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3760 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3761 __func__);
3762 }
3763
3764 /* check fields */
3765 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3766 base_ptr = ptr = iclog->ic_datap;
3767 ophead = ptr;
3768 xhdr = iclog->ic_data;
3769 for (i = 0; i < len; i++) {
3770 ophead = ptr;
3771
3772 /* clientid is only 1 byte */
3773 p = &ophead->oh_clientid;
3774 field_offset = p - base_ptr;
3775 if (field_offset & 0x1ff) {
3776 clientid = ophead->oh_clientid;
3777 } else {
3778 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3779 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3780 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3781 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3782 clientid = xlog_get_client_id(
3783 xhdr[j].hic_xheader.xh_cycle_data[k]);
3784 } else {
3785 clientid = xlog_get_client_id(
3786 iclog->ic_header.h_cycle_data[idx]);
3787 }
3788 }
3789 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3790 xfs_warn(log->l_mp,
3791 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3792 __func__, clientid, ophead,
3793 (unsigned long)field_offset);
3794
3795 /* check length */
3796 p = &ophead->oh_len;
3797 field_offset = p - base_ptr;
3798 if (field_offset & 0x1ff) {
3799 op_len = be32_to_cpu(ophead->oh_len);
3800 } else {
3801 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3802 (uintptr_t)iclog->ic_datap);
3803 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3804 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3805 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3806 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3807 } else {
3808 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3809 }
3810 }
3811 ptr += sizeof(xlog_op_header_t) + op_len;
3812 }
3813 }
3814 #endif
3815
3816 /*
3817 * Perform a forced shutdown on the log. This should be called once and once
3818 * only by the high level filesystem shutdown code to shut the log subsystem
3819 * down cleanly.
3820 *
3821 * Our main objectives here are to make sure that:
3822 * a. if the shutdown was not due to a log IO error, flush the logs to
3823 * disk. Anything modified after this is ignored.
3824 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3825 * parties to find out. Nothing new gets queued after this is done.
3826 * c. Tasks sleeping on log reservations, pinned objects and
3827 * other resources get woken up.
3828 *
3829 * Return true if the shutdown cause was a log IO error and we actually shut the
3830 * log down.
3831 */
3832 bool
xlog_force_shutdown(struct xlog * log,int shutdown_flags)3833 xlog_force_shutdown(
3834 struct xlog *log,
3835 int shutdown_flags)
3836 {
3837 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3838
3839 /*
3840 * If this happens during log recovery then we aren't using the runtime
3841 * log mechanisms yet so there's nothing to shut down.
3842 */
3843 if (!log || xlog_in_recovery(log))
3844 return false;
3845
3846 ASSERT(!xlog_is_shutdown(log));
3847
3848 /*
3849 * Flush all the completed transactions to disk before marking the log
3850 * being shut down. We need to do this first as shutting down the log
3851 * before the force will prevent the log force from flushing the iclogs
3852 * to disk.
3853 *
3854 * Re-entry due to a log IO error shutdown during the log force is
3855 * prevented by the atomicity of higher level shutdown code.
3856 */
3857 if (!log_error)
3858 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3859
3860 /*
3861 * Atomically set the shutdown state. If the shutdown state is already
3862 * set, there someone else is performing the shutdown and so we are done
3863 * here. This should never happen because we should only ever get called
3864 * once by the first shutdown caller.
3865 *
3866 * Much of the log state machine transitions assume that shutdown state
3867 * cannot change once they hold the log->l_icloglock. Hence we need to
3868 * hold that lock here, even though we use the atomic test_and_set_bit()
3869 * operation to set the shutdown state.
3870 */
3871 spin_lock(&log->l_icloglock);
3872 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3873 spin_unlock(&log->l_icloglock);
3874 ASSERT(0);
3875 return false;
3876 }
3877 spin_unlock(&log->l_icloglock);
3878
3879 /*
3880 * We don't want anybody waiting for log reservations after this. That
3881 * means we have to wake up everybody queued up on reserveq as well as
3882 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3883 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3884 * action is protected by the grant locks.
3885 */
3886 xlog_grant_head_wake_all(&log->l_reserve_head);
3887 xlog_grant_head_wake_all(&log->l_write_head);
3888
3889 /*
3890 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3891 * as if the log writes were completed. The abort handling in the log
3892 * item committed callback functions will do this again under lock to
3893 * avoid races.
3894 */
3895 spin_lock(&log->l_cilp->xc_push_lock);
3896 wake_up_all(&log->l_cilp->xc_start_wait);
3897 wake_up_all(&log->l_cilp->xc_commit_wait);
3898 spin_unlock(&log->l_cilp->xc_push_lock);
3899
3900 spin_lock(&log->l_icloglock);
3901 xlog_state_shutdown_callbacks(log);
3902 spin_unlock(&log->l_icloglock);
3903
3904 return log_error;
3905 }
3906
3907 STATIC int
xlog_iclogs_empty(struct xlog * log)3908 xlog_iclogs_empty(
3909 struct xlog *log)
3910 {
3911 xlog_in_core_t *iclog;
3912
3913 iclog = log->l_iclog;
3914 do {
3915 /* endianness does not matter here, zero is zero in
3916 * any language.
3917 */
3918 if (iclog->ic_header.h_num_logops)
3919 return 0;
3920 iclog = iclog->ic_next;
3921 } while (iclog != log->l_iclog);
3922 return 1;
3923 }
3924
3925 /*
3926 * Verify that an LSN stamped into a piece of metadata is valid. This is
3927 * intended for use in read verifiers on v5 superblocks.
3928 */
3929 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3930 xfs_log_check_lsn(
3931 struct xfs_mount *mp,
3932 xfs_lsn_t lsn)
3933 {
3934 struct xlog *log = mp->m_log;
3935 bool valid;
3936
3937 /*
3938 * norecovery mode skips mount-time log processing and unconditionally
3939 * resets the in-core LSN. We can't validate in this mode, but
3940 * modifications are not allowed anyways so just return true.
3941 */
3942 if (xfs_has_norecovery(mp))
3943 return true;
3944
3945 /*
3946 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3947 * handled by recovery and thus safe to ignore here.
3948 */
3949 if (lsn == NULLCOMMITLSN)
3950 return true;
3951
3952 valid = xlog_valid_lsn(mp->m_log, lsn);
3953
3954 /* warn the user about what's gone wrong before verifier failure */
3955 if (!valid) {
3956 spin_lock(&log->l_icloglock);
3957 xfs_warn(mp,
3958 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3959 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3960 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3961 log->l_curr_cycle, log->l_curr_block);
3962 spin_unlock(&log->l_icloglock);
3963 }
3964
3965 return valid;
3966 }
3967
3968 /*
3969 * Notify the log that we're about to start using a feature that is protected
3970 * by a log incompat feature flag. This will prevent log covering from
3971 * clearing those flags.
3972 */
3973 void
xlog_use_incompat_feat(struct xlog * log)3974 xlog_use_incompat_feat(
3975 struct xlog *log)
3976 {
3977 down_read(&log->l_incompat_users);
3978 }
3979
3980 /* Notify the log that we've finished using log incompat features. */
3981 void
xlog_drop_incompat_feat(struct xlog * log)3982 xlog_drop_incompat_feat(
3983 struct xlog *log)
3984 {
3985 up_read(&log->l_incompat_users);
3986 }
3987