• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*continued_write,
53 	int			*logoffsetp);
54 STATIC void
55 xlog_grant_push_ail(
56 	struct xlog		*log,
57 	int			need_bytes);
58 STATIC void
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_verify_dest_ptr(
65 	struct xlog		*log,
66 	void			*ptr);
67 STATIC void
68 xlog_verify_grant_tail(
69 	struct xlog *log);
70 STATIC void
71 xlog_verify_iclog(
72 	struct xlog		*log,
73 	struct xlog_in_core	*iclog,
74 	int			count);
75 STATIC void
76 xlog_verify_tail_lsn(
77 	struct xlog		*log,
78 	struct xlog_in_core	*iclog);
79 #else
80 #define xlog_verify_dest_ptr(a,b)
81 #define xlog_verify_grant_tail(a)
82 #define xlog_verify_iclog(a,b,c)
83 #define xlog_verify_tail_lsn(a,b)
84 #endif
85 
86 STATIC int
87 xlog_iclogs_empty(
88 	struct xlog		*log);
89 
90 static int
91 xfs_log_cover(struct xfs_mount *);
92 
93 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)94 xlog_grant_sub_space(
95 	struct xlog		*log,
96 	atomic64_t		*head,
97 	int			bytes)
98 {
99 	int64_t	head_val = atomic64_read(head);
100 	int64_t new, old;
101 
102 	do {
103 		int	cycle, space;
104 
105 		xlog_crack_grant_head_val(head_val, &cycle, &space);
106 
107 		space -= bytes;
108 		if (space < 0) {
109 			space += log->l_logsize;
110 			cycle--;
111 		}
112 
113 		old = head_val;
114 		new = xlog_assign_grant_head_val(cycle, space);
115 		head_val = atomic64_cmpxchg(head, old, new);
116 	} while (head_val != old);
117 }
118 
119 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)120 xlog_grant_add_space(
121 	struct xlog		*log,
122 	atomic64_t		*head,
123 	int			bytes)
124 {
125 	int64_t	head_val = atomic64_read(head);
126 	int64_t new, old;
127 
128 	do {
129 		int		tmp;
130 		int		cycle, space;
131 
132 		xlog_crack_grant_head_val(head_val, &cycle, &space);
133 
134 		tmp = log->l_logsize - space;
135 		if (tmp > bytes)
136 			space += bytes;
137 		else {
138 			space = bytes - tmp;
139 			cycle++;
140 		}
141 
142 		old = head_val;
143 		new = xlog_assign_grant_head_val(cycle, space);
144 		head_val = atomic64_cmpxchg(head, old, new);
145 	} while (head_val != old);
146 }
147 
148 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)149 xlog_grant_head_init(
150 	struct xlog_grant_head	*head)
151 {
152 	xlog_assign_grant_head(&head->grant, 1, 0);
153 	INIT_LIST_HEAD(&head->waiters);
154 	spin_lock_init(&head->lock);
155 }
156 
157 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)158 xlog_grant_head_wake_all(
159 	struct xlog_grant_head	*head)
160 {
161 	struct xlog_ticket	*tic;
162 
163 	spin_lock(&head->lock);
164 	list_for_each_entry(tic, &head->waiters, t_queue)
165 		wake_up_process(tic->t_task);
166 	spin_unlock(&head->lock);
167 }
168 
169 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)170 xlog_ticket_reservation(
171 	struct xlog		*log,
172 	struct xlog_grant_head	*head,
173 	struct xlog_ticket	*tic)
174 {
175 	if (head == &log->l_write_head) {
176 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 		return tic->t_unit_res;
178 	} else {
179 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
180 			return tic->t_unit_res * tic->t_cnt;
181 		else
182 			return tic->t_unit_res;
183 	}
184 }
185 
186 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)187 xlog_grant_head_wake(
188 	struct xlog		*log,
189 	struct xlog_grant_head	*head,
190 	int			*free_bytes)
191 {
192 	struct xlog_ticket	*tic;
193 	int			need_bytes;
194 	bool			woken_task = false;
195 
196 	list_for_each_entry(tic, &head->waiters, t_queue) {
197 
198 		/*
199 		 * There is a chance that the size of the CIL checkpoints in
200 		 * progress at the last AIL push target calculation resulted in
201 		 * limiting the target to the log head (l_last_sync_lsn) at the
202 		 * time. This may not reflect where the log head is now as the
203 		 * CIL checkpoints may have completed.
204 		 *
205 		 * Hence when we are woken here, it may be that the head of the
206 		 * log that has moved rather than the tail. As the tail didn't
207 		 * move, there still won't be space available for the
208 		 * reservation we require.  However, if the AIL has already
209 		 * pushed to the target defined by the old log head location, we
210 		 * will hang here waiting for something else to update the AIL
211 		 * push target.
212 		 *
213 		 * Therefore, if there isn't space to wake the first waiter on
214 		 * the grant head, we need to push the AIL again to ensure the
215 		 * target reflects both the current log tail and log head
216 		 * position before we wait for the tail to move again.
217 		 */
218 
219 		need_bytes = xlog_ticket_reservation(log, head, tic);
220 		if (*free_bytes < need_bytes) {
221 			if (!woken_task)
222 				xlog_grant_push_ail(log, need_bytes);
223 			return false;
224 		}
225 
226 		*free_bytes -= need_bytes;
227 		trace_xfs_log_grant_wake_up(log, tic);
228 		wake_up_process(tic->t_task);
229 		woken_task = true;
230 	}
231 
232 	return true;
233 }
234 
235 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)236 xlog_grant_head_wait(
237 	struct xlog		*log,
238 	struct xlog_grant_head	*head,
239 	struct xlog_ticket	*tic,
240 	int			need_bytes) __releases(&head->lock)
241 					    __acquires(&head->lock)
242 {
243 	list_add_tail(&tic->t_queue, &head->waiters);
244 
245 	do {
246 		if (xlog_is_shutdown(log))
247 			goto shutdown;
248 		xlog_grant_push_ail(log, need_bytes);
249 
250 		__set_current_state(TASK_UNINTERRUPTIBLE);
251 		spin_unlock(&head->lock);
252 
253 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
254 
255 		trace_xfs_log_grant_sleep(log, tic);
256 		schedule();
257 		trace_xfs_log_grant_wake(log, tic);
258 
259 		spin_lock(&head->lock);
260 		if (xlog_is_shutdown(log))
261 			goto shutdown;
262 	} while (xlog_space_left(log, &head->grant) < need_bytes);
263 
264 	list_del_init(&tic->t_queue);
265 	return 0;
266 shutdown:
267 	list_del_init(&tic->t_queue);
268 	return -EIO;
269 }
270 
271 /*
272  * Atomically get the log space required for a log ticket.
273  *
274  * Once a ticket gets put onto head->waiters, it will only return after the
275  * needed reservation is satisfied.
276  *
277  * This function is structured so that it has a lock free fast path. This is
278  * necessary because every new transaction reservation will come through this
279  * path. Hence any lock will be globally hot if we take it unconditionally on
280  * every pass.
281  *
282  * As tickets are only ever moved on and off head->waiters under head->lock, we
283  * only need to take that lock if we are going to add the ticket to the queue
284  * and sleep. We can avoid taking the lock if the ticket was never added to
285  * head->waiters because the t_queue list head will be empty and we hold the
286  * only reference to it so it can safely be checked unlocked.
287  */
288 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)289 xlog_grant_head_check(
290 	struct xlog		*log,
291 	struct xlog_grant_head	*head,
292 	struct xlog_ticket	*tic,
293 	int			*need_bytes)
294 {
295 	int			free_bytes;
296 	int			error = 0;
297 
298 	ASSERT(!xlog_in_recovery(log));
299 
300 	/*
301 	 * If there are other waiters on the queue then give them a chance at
302 	 * logspace before us.  Wake up the first waiters, if we do not wake
303 	 * up all the waiters then go to sleep waiting for more free space,
304 	 * otherwise try to get some space for this transaction.
305 	 */
306 	*need_bytes = xlog_ticket_reservation(log, head, tic);
307 	free_bytes = xlog_space_left(log, &head->grant);
308 	if (!list_empty_careful(&head->waiters)) {
309 		spin_lock(&head->lock);
310 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
311 		    free_bytes < *need_bytes) {
312 			error = xlog_grant_head_wait(log, head, tic,
313 						     *need_bytes);
314 		}
315 		spin_unlock(&head->lock);
316 	} else if (free_bytes < *need_bytes) {
317 		spin_lock(&head->lock);
318 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
319 		spin_unlock(&head->lock);
320 	}
321 
322 	return error;
323 }
324 
325 static void
xlog_tic_reset_res(xlog_ticket_t * tic)326 xlog_tic_reset_res(xlog_ticket_t *tic)
327 {
328 	tic->t_res_num = 0;
329 	tic->t_res_arr_sum = 0;
330 	tic->t_res_num_ophdrs = 0;
331 }
332 
333 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)334 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
335 {
336 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
337 		/* add to overflow and start again */
338 		tic->t_res_o_flow += tic->t_res_arr_sum;
339 		tic->t_res_num = 0;
340 		tic->t_res_arr_sum = 0;
341 	}
342 
343 	tic->t_res_arr[tic->t_res_num].r_len = len;
344 	tic->t_res_arr[tic->t_res_num].r_type = type;
345 	tic->t_res_arr_sum += len;
346 	tic->t_res_num++;
347 }
348 
349 bool
xfs_log_writable(struct xfs_mount * mp)350 xfs_log_writable(
351 	struct xfs_mount	*mp)
352 {
353 	/*
354 	 * Do not write to the log on norecovery mounts, if the data or log
355 	 * devices are read-only, or if the filesystem is shutdown. Read-only
356 	 * mounts allow internal writes for log recovery and unmount purposes,
357 	 * so don't restrict that case.
358 	 */
359 	if (xfs_has_norecovery(mp))
360 		return false;
361 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
362 		return false;
363 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
364 		return false;
365 	if (xlog_is_shutdown(mp->m_log))
366 		return false;
367 	return true;
368 }
369 
370 /*
371  * Replenish the byte reservation required by moving the grant write head.
372  */
373 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)374 xfs_log_regrant(
375 	struct xfs_mount	*mp,
376 	struct xlog_ticket	*tic)
377 {
378 	struct xlog		*log = mp->m_log;
379 	int			need_bytes;
380 	int			error = 0;
381 
382 	if (xlog_is_shutdown(log))
383 		return -EIO;
384 
385 	XFS_STATS_INC(mp, xs_try_logspace);
386 
387 	/*
388 	 * This is a new transaction on the ticket, so we need to change the
389 	 * transaction ID so that the next transaction has a different TID in
390 	 * the log. Just add one to the existing tid so that we can see chains
391 	 * of rolling transactions in the log easily.
392 	 */
393 	tic->t_tid++;
394 
395 	xlog_grant_push_ail(log, tic->t_unit_res);
396 
397 	tic->t_curr_res = tic->t_unit_res;
398 	xlog_tic_reset_res(tic);
399 
400 	if (tic->t_cnt > 0)
401 		return 0;
402 
403 	trace_xfs_log_regrant(log, tic);
404 
405 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
406 				      &need_bytes);
407 	if (error)
408 		goto out_error;
409 
410 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
411 	trace_xfs_log_regrant_exit(log, tic);
412 	xlog_verify_grant_tail(log);
413 	return 0;
414 
415 out_error:
416 	/*
417 	 * If we are failing, make sure the ticket doesn't have any current
418 	 * reservations.  We don't want to add this back when the ticket/
419 	 * transaction gets cancelled.
420 	 */
421 	tic->t_curr_res = 0;
422 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
423 	return error;
424 }
425 
426 /*
427  * Reserve log space and return a ticket corresponding to the reservation.
428  *
429  * Each reservation is going to reserve extra space for a log record header.
430  * When writes happen to the on-disk log, we don't subtract the length of the
431  * log record header from any reservation.  By wasting space in each
432  * reservation, we prevent over allocation problems.
433  */
434 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)435 xfs_log_reserve(
436 	struct xfs_mount	*mp,
437 	int		 	unit_bytes,
438 	int		 	cnt,
439 	struct xlog_ticket	**ticp,
440 	uint8_t		 	client,
441 	bool			permanent)
442 {
443 	struct xlog		*log = mp->m_log;
444 	struct xlog_ticket	*tic;
445 	int			need_bytes;
446 	int			error = 0;
447 
448 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449 
450 	if (xlog_is_shutdown(log))
451 		return -EIO;
452 
453 	XFS_STATS_INC(mp, xs_try_logspace);
454 
455 	ASSERT(*ticp == NULL);
456 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
457 	*ticp = tic;
458 
459 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
460 					    : tic->t_unit_res);
461 
462 	trace_xfs_log_reserve(log, tic);
463 
464 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
465 				      &need_bytes);
466 	if (error)
467 		goto out_error;
468 
469 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
470 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
471 	trace_xfs_log_reserve_exit(log, tic);
472 	xlog_verify_grant_tail(log);
473 	return 0;
474 
475 out_error:
476 	/*
477 	 * If we are failing, make sure the ticket doesn't have any current
478 	 * reservations.  We don't want to add this back when the ticket/
479 	 * transaction gets cancelled.
480 	 */
481 	tic->t_curr_res = 0;
482 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
483 	return error;
484 }
485 
486 /*
487  * Run all the pending iclog callbacks and wake log force waiters and iclog
488  * space waiters so they can process the newly set shutdown state. We really
489  * don't care what order we process callbacks here because the log is shut down
490  * and so state cannot change on disk anymore. However, we cannot wake waiters
491  * until the callbacks have been processed because we may be in unmount and
492  * we must ensure that all AIL operations the callbacks perform have completed
493  * before we tear down the AIL.
494  *
495  * We avoid processing actively referenced iclogs so that we don't run callbacks
496  * while the iclog owner might still be preparing the iclog for IO submssion.
497  * These will be caught by xlog_state_iclog_release() and call this function
498  * again to process any callbacks that may have been added to that iclog.
499  */
500 static void
xlog_state_shutdown_callbacks(struct xlog * log)501 xlog_state_shutdown_callbacks(
502 	struct xlog		*log)
503 {
504 	struct xlog_in_core	*iclog;
505 	LIST_HEAD(cb_list);
506 
507 	iclog = log->l_iclog;
508 	do {
509 		if (atomic_read(&iclog->ic_refcnt)) {
510 			/* Reference holder will re-run iclog callbacks. */
511 			continue;
512 		}
513 		list_splice_init(&iclog->ic_callbacks, &cb_list);
514 		spin_unlock(&log->l_icloglock);
515 
516 		xlog_cil_process_committed(&cb_list);
517 
518 		spin_lock(&log->l_icloglock);
519 		wake_up_all(&iclog->ic_write_wait);
520 		wake_up_all(&iclog->ic_force_wait);
521 	} while ((iclog = iclog->ic_next) != log->l_iclog);
522 
523 	wake_up_all(&log->l_flush_wait);
524 }
525 
526 /*
527  * Flush iclog to disk if this is the last reference to the given iclog and the
528  * it is in the WANT_SYNC state.
529  *
530  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
531  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
532  * written to stable storage, and implies that a commit record is contained
533  * within the iclog. We need to ensure that the log tail does not move beyond
534  * the tail that the first commit record in the iclog ordered against, otherwise
535  * correct recovery of that checkpoint becomes dependent on future operations
536  * performed on this iclog.
537  *
538  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
539  * current tail into iclog. Once the iclog tail is set, future operations must
540  * not modify it, otherwise they potentially violate ordering constraints for
541  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
542  * the iclog will get zeroed on activation of the iclog after sync, so we
543  * always capture the tail lsn on the iclog on the first NEED_FUA release
544  * regardless of the number of active reference counts on this iclog.
545  */
546 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)547 xlog_state_release_iclog(
548 	struct xlog		*log,
549 	struct xlog_in_core	*iclog)
550 {
551 	xfs_lsn_t		tail_lsn;
552 	bool			last_ref;
553 
554 	lockdep_assert_held(&log->l_icloglock);
555 
556 	trace_xlog_iclog_release(iclog, _RET_IP_);
557 	/*
558 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
559 	 * of the tail LSN into the iclog so we guarantee that the log tail does
560 	 * not move between the first time we know that the iclog needs to be
561 	 * made stable and when we eventually submit it.
562 	 */
563 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
564 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
565 	    !iclog->ic_header.h_tail_lsn) {
566 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
567 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
568 	}
569 
570 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
571 
572 	if (xlog_is_shutdown(log)) {
573 		/*
574 		 * If there are no more references to this iclog, process the
575 		 * pending iclog callbacks that were waiting on the release of
576 		 * this iclog.
577 		 */
578 		if (last_ref)
579 			xlog_state_shutdown_callbacks(log);
580 		return -EIO;
581 	}
582 
583 	if (!last_ref)
584 		return 0;
585 
586 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
587 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
588 		return 0;
589 	}
590 
591 	iclog->ic_state = XLOG_STATE_SYNCING;
592 	xlog_verify_tail_lsn(log, iclog);
593 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
594 
595 	spin_unlock(&log->l_icloglock);
596 	xlog_sync(log, iclog);
597 	spin_lock(&log->l_icloglock);
598 	return 0;
599 }
600 
601 /*
602  * Mount a log filesystem
603  *
604  * mp		- ubiquitous xfs mount point structure
605  * log_target	- buftarg of on-disk log device
606  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
607  * num_bblocks	- Number of BBSIZE blocks in on-disk log
608  *
609  * Return error or zero.
610  */
611 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)612 xfs_log_mount(
613 	xfs_mount_t	*mp,
614 	xfs_buftarg_t	*log_target,
615 	xfs_daddr_t	blk_offset,
616 	int		num_bblks)
617 {
618 	struct xlog	*log;
619 	bool		fatal = xfs_has_crc(mp);
620 	int		error = 0;
621 	int		min_logfsbs;
622 
623 	if (!xfs_has_norecovery(mp)) {
624 		xfs_notice(mp, "Mounting V%d Filesystem",
625 			   XFS_SB_VERSION_NUM(&mp->m_sb));
626 	} else {
627 		xfs_notice(mp,
628 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
629 			   XFS_SB_VERSION_NUM(&mp->m_sb));
630 		ASSERT(xfs_is_readonly(mp));
631 	}
632 
633 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
634 	if (IS_ERR(log)) {
635 		error = PTR_ERR(log);
636 		goto out;
637 	}
638 	mp->m_log = log;
639 
640 	/*
641 	 * Validate the given log space and drop a critical message via syslog
642 	 * if the log size is too small that would lead to some unexpected
643 	 * situations in transaction log space reservation stage.
644 	 *
645 	 * Note: we can't just reject the mount if the validation fails.  This
646 	 * would mean that people would have to downgrade their kernel just to
647 	 * remedy the situation as there is no way to grow the log (short of
648 	 * black magic surgery with xfs_db).
649 	 *
650 	 * We can, however, reject mounts for CRC format filesystems, as the
651 	 * mkfs binary being used to make the filesystem should never create a
652 	 * filesystem with a log that is too small.
653 	 */
654 	min_logfsbs = xfs_log_calc_minimum_size(mp);
655 
656 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
657 		xfs_warn(mp,
658 		"Log size %d blocks too small, minimum size is %d blocks",
659 			 mp->m_sb.sb_logblocks, min_logfsbs);
660 		error = -EINVAL;
661 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
662 		xfs_warn(mp,
663 		"Log size %d blocks too large, maximum size is %lld blocks",
664 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
665 		error = -EINVAL;
666 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
667 		xfs_warn(mp,
668 		"log size %lld bytes too large, maximum size is %lld bytes",
669 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
670 			 XFS_MAX_LOG_BYTES);
671 		error = -EINVAL;
672 	} else if (mp->m_sb.sb_logsunit > 1 &&
673 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
674 		xfs_warn(mp,
675 		"log stripe unit %u bytes must be a multiple of block size",
676 			 mp->m_sb.sb_logsunit);
677 		error = -EINVAL;
678 		fatal = true;
679 	}
680 	if (error) {
681 		/*
682 		 * Log check errors are always fatal on v5; or whenever bad
683 		 * metadata leads to a crash.
684 		 */
685 		if (fatal) {
686 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
687 			ASSERT(0);
688 			goto out_free_log;
689 		}
690 		xfs_crit(mp, "Log size out of supported range.");
691 		xfs_crit(mp,
692 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
693 	}
694 
695 	/*
696 	 * Initialize the AIL now we have a log.
697 	 */
698 	error = xfs_trans_ail_init(mp);
699 	if (error) {
700 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
701 		goto out_free_log;
702 	}
703 	log->l_ailp = mp->m_ail;
704 
705 	/*
706 	 * skip log recovery on a norecovery mount.  pretend it all
707 	 * just worked.
708 	 */
709 	if (!xfs_has_norecovery(mp)) {
710 		/*
711 		 * log recovery ignores readonly state and so we need to clear
712 		 * mount-based read only state so it can write to disk.
713 		 */
714 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
715 						&mp->m_opstate);
716 		error = xlog_recover(log);
717 		if (readonly)
718 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
719 		if (error) {
720 			xfs_warn(mp, "log mount/recovery failed: error %d",
721 				error);
722 			xlog_recover_cancel(log);
723 			goto out_destroy_ail;
724 		}
725 	}
726 
727 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
728 			       "log");
729 	if (error)
730 		goto out_destroy_ail;
731 
732 	/* Normal transactions can now occur */
733 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
734 
735 	/*
736 	 * Now the log has been fully initialised and we know were our
737 	 * space grant counters are, we can initialise the permanent ticket
738 	 * needed for delayed logging to work.
739 	 */
740 	xlog_cil_init_post_recovery(log);
741 
742 	return 0;
743 
744 out_destroy_ail:
745 	xfs_trans_ail_destroy(mp);
746 out_free_log:
747 	xlog_dealloc_log(log);
748 out:
749 	return error;
750 }
751 
752 /*
753  * Finish the recovery of the file system.  This is separate from the
754  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
755  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
756  * here.
757  *
758  * If we finish recovery successfully, start the background log work. If we are
759  * not doing recovery, then we have a RO filesystem and we don't need to start
760  * it.
761  */
762 int
xfs_log_mount_finish(struct xfs_mount * mp)763 xfs_log_mount_finish(
764 	struct xfs_mount	*mp)
765 {
766 	struct xlog		*log = mp->m_log;
767 	bool			readonly;
768 	int			error = 0;
769 
770 	if (xfs_has_norecovery(mp)) {
771 		ASSERT(xfs_is_readonly(mp));
772 		return 0;
773 	}
774 
775 	/*
776 	 * log recovery ignores readonly state and so we need to clear
777 	 * mount-based read only state so it can write to disk.
778 	 */
779 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
780 
781 	/*
782 	 * During the second phase of log recovery, we need iget and
783 	 * iput to behave like they do for an active filesystem.
784 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
785 	 * of inodes before we're done replaying log items on those
786 	 * inodes.  Turn it off immediately after recovery finishes
787 	 * so that we don't leak the quota inodes if subsequent mount
788 	 * activities fail.
789 	 *
790 	 * We let all inodes involved in redo item processing end up on
791 	 * the LRU instead of being evicted immediately so that if we do
792 	 * something to an unlinked inode, the irele won't cause
793 	 * premature truncation and freeing of the inode, which results
794 	 * in log recovery failure.  We have to evict the unreferenced
795 	 * lru inodes after clearing SB_ACTIVE because we don't
796 	 * otherwise clean up the lru if there's a subsequent failure in
797 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
798 	 * else (e.g. quotacheck) references the inodes before the
799 	 * mount failure occurs.
800 	 */
801 	mp->m_super->s_flags |= SB_ACTIVE;
802 	if (xlog_recovery_needed(log))
803 		error = xlog_recover_finish(log);
804 	if (!error)
805 		xfs_log_work_queue(mp);
806 	mp->m_super->s_flags &= ~SB_ACTIVE;
807 	evict_inodes(mp->m_super);
808 
809 	/*
810 	 * Drain the buffer LRU after log recovery. This is required for v4
811 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
812 	 * but we do it unconditionally to make sure we're always in a clean
813 	 * cache state after mount.
814 	 *
815 	 * Don't push in the error case because the AIL may have pending intents
816 	 * that aren't removed until recovery is cancelled.
817 	 */
818 	if (xlog_recovery_needed(log)) {
819 		if (!error) {
820 			xfs_log_force(mp, XFS_LOG_SYNC);
821 			xfs_ail_push_all_sync(mp->m_ail);
822 		}
823 		xfs_notice(mp, "Ending recovery (logdev: %s)",
824 				mp->m_logname ? mp->m_logname : "internal");
825 	} else {
826 		xfs_info(mp, "Ending clean mount");
827 	}
828 	xfs_buftarg_drain(mp->m_ddev_targp);
829 
830 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
831 	if (readonly)
832 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
833 
834 	/* Make sure the log is dead if we're returning failure. */
835 	ASSERT(!error || xlog_is_shutdown(log));
836 
837 	return error;
838 }
839 
840 /*
841  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
842  * the log.
843  */
844 void
xfs_log_mount_cancel(struct xfs_mount * mp)845 xfs_log_mount_cancel(
846 	struct xfs_mount	*mp)
847 {
848 	xlog_recover_cancel(mp->m_log);
849 	xfs_log_unmount(mp);
850 }
851 
852 /*
853  * Flush out the iclog to disk ensuring that device caches are flushed and
854  * the iclog hits stable storage before any completion waiters are woken.
855  */
856 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)857 xlog_force_iclog(
858 	struct xlog_in_core	*iclog)
859 {
860 	atomic_inc(&iclog->ic_refcnt);
861 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
862 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
863 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
864 	return xlog_state_release_iclog(iclog->ic_log, iclog);
865 }
866 
867 /*
868  * Wait for the iclog and all prior iclogs to be written disk as required by the
869  * log force state machine. Waiting on ic_force_wait ensures iclog completions
870  * have been ordered and callbacks run before we are woken here, hence
871  * guaranteeing that all the iclogs up to this one are on stable storage.
872  */
873 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)874 xlog_wait_on_iclog(
875 	struct xlog_in_core	*iclog)
876 		__releases(iclog->ic_log->l_icloglock)
877 {
878 	struct xlog		*log = iclog->ic_log;
879 
880 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
881 	if (!xlog_is_shutdown(log) &&
882 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
883 	    iclog->ic_state != XLOG_STATE_DIRTY) {
884 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
885 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
886 	} else {
887 		spin_unlock(&log->l_icloglock);
888 	}
889 
890 	if (xlog_is_shutdown(log))
891 		return -EIO;
892 	return 0;
893 }
894 
895 /*
896  * Write out an unmount record using the ticket provided. We have to account for
897  * the data space used in the unmount ticket as this write is not done from a
898  * transaction context that has already done the accounting for us.
899  */
900 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)901 xlog_write_unmount_record(
902 	struct xlog		*log,
903 	struct xlog_ticket	*ticket)
904 {
905 	struct xfs_unmount_log_format ulf = {
906 		.magic = XLOG_UNMOUNT_TYPE,
907 	};
908 	struct xfs_log_iovec reg = {
909 		.i_addr = &ulf,
910 		.i_len = sizeof(ulf),
911 		.i_type = XLOG_REG_TYPE_UNMOUNT,
912 	};
913 	struct xfs_log_vec vec = {
914 		.lv_niovecs = 1,
915 		.lv_iovecp = &reg,
916 	};
917 
918 	/* account for space used by record data */
919 	ticket->t_curr_res -= sizeof(ulf);
920 
921 	return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS);
922 }
923 
924 /*
925  * Mark the filesystem clean by writing an unmount record to the head of the
926  * log.
927  */
928 static void
xlog_unmount_write(struct xlog * log)929 xlog_unmount_write(
930 	struct xlog		*log)
931 {
932 	struct xfs_mount	*mp = log->l_mp;
933 	struct xlog_in_core	*iclog;
934 	struct xlog_ticket	*tic = NULL;
935 	int			error;
936 
937 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
938 	if (error)
939 		goto out_err;
940 
941 	error = xlog_write_unmount_record(log, tic);
942 	/*
943 	 * At this point, we're umounting anyway, so there's no point in
944 	 * transitioning log state to shutdown. Just continue...
945 	 */
946 out_err:
947 	if (error)
948 		xfs_alert(mp, "%s: unmount record failed", __func__);
949 
950 	spin_lock(&log->l_icloglock);
951 	iclog = log->l_iclog;
952 	error = xlog_force_iclog(iclog);
953 	xlog_wait_on_iclog(iclog);
954 
955 	if (tic) {
956 		trace_xfs_log_umount_write(log, tic);
957 		xfs_log_ticket_ungrant(log, tic);
958 	}
959 }
960 
961 static void
xfs_log_unmount_verify_iclog(struct xlog * log)962 xfs_log_unmount_verify_iclog(
963 	struct xlog		*log)
964 {
965 	struct xlog_in_core	*iclog = log->l_iclog;
966 
967 	do {
968 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
969 		ASSERT(iclog->ic_offset == 0);
970 	} while ((iclog = iclog->ic_next) != log->l_iclog);
971 }
972 
973 /*
974  * Unmount record used to have a string "Unmount filesystem--" in the
975  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
976  * We just write the magic number now since that particular field isn't
977  * currently architecture converted and "Unmount" is a bit foo.
978  * As far as I know, there weren't any dependencies on the old behaviour.
979  */
980 static void
xfs_log_unmount_write(struct xfs_mount * mp)981 xfs_log_unmount_write(
982 	struct xfs_mount	*mp)
983 {
984 	struct xlog		*log = mp->m_log;
985 
986 	if (!xfs_log_writable(mp))
987 		return;
988 
989 	xfs_log_force(mp, XFS_LOG_SYNC);
990 
991 	if (xlog_is_shutdown(log))
992 		return;
993 
994 	/*
995 	 * If we think the summary counters are bad, avoid writing the unmount
996 	 * record to force log recovery at next mount, after which the summary
997 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
998 	 * more details.
999 	 */
1000 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1001 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1002 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1003 				__func__);
1004 		return;
1005 	}
1006 
1007 	xfs_log_unmount_verify_iclog(log);
1008 	xlog_unmount_write(log);
1009 }
1010 
1011 /*
1012  * Empty the log for unmount/freeze.
1013  *
1014  * To do this, we first need to shut down the background log work so it is not
1015  * trying to cover the log as we clean up. We then need to unpin all objects in
1016  * the log so we can then flush them out. Once they have completed their IO and
1017  * run the callbacks removing themselves from the AIL, we can cover the log.
1018  */
1019 int
xfs_log_quiesce(struct xfs_mount * mp)1020 xfs_log_quiesce(
1021 	struct xfs_mount	*mp)
1022 {
1023 	/*
1024 	 * Clear log incompat features since we're quiescing the log.  Report
1025 	 * failures, though it's not fatal to have a higher log feature
1026 	 * protection level than the log contents actually require.
1027 	 */
1028 	if (xfs_clear_incompat_log_features(mp)) {
1029 		int error;
1030 
1031 		error = xfs_sync_sb(mp, false);
1032 		if (error)
1033 			xfs_warn(mp,
1034 	"Failed to clear log incompat features on quiesce");
1035 	}
1036 
1037 	cancel_delayed_work_sync(&mp->m_log->l_work);
1038 	xfs_log_force(mp, XFS_LOG_SYNC);
1039 
1040 	/*
1041 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1042 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1043 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1044 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1045 	 * the IO to complete.
1046 	 */
1047 	xfs_ail_push_all_sync(mp->m_ail);
1048 	xfs_buftarg_wait(mp->m_ddev_targp);
1049 	xfs_buf_lock(mp->m_sb_bp);
1050 	xfs_buf_unlock(mp->m_sb_bp);
1051 
1052 	return xfs_log_cover(mp);
1053 }
1054 
1055 void
xfs_log_clean(struct xfs_mount * mp)1056 xfs_log_clean(
1057 	struct xfs_mount	*mp)
1058 {
1059 	xfs_log_quiesce(mp);
1060 	xfs_log_unmount_write(mp);
1061 }
1062 
1063 /*
1064  * Shut down and release the AIL and Log.
1065  *
1066  * During unmount, we need to ensure we flush all the dirty metadata objects
1067  * from the AIL so that the log is empty before we write the unmount record to
1068  * the log. Once this is done, we can tear down the AIL and the log.
1069  */
1070 void
xfs_log_unmount(struct xfs_mount * mp)1071 xfs_log_unmount(
1072 	struct xfs_mount	*mp)
1073 {
1074 	xfs_log_clean(mp);
1075 
1076 	xfs_buftarg_drain(mp->m_ddev_targp);
1077 
1078 	xfs_trans_ail_destroy(mp);
1079 
1080 	xfs_sysfs_del(&mp->m_log->l_kobj);
1081 
1082 	xlog_dealloc_log(mp->m_log);
1083 }
1084 
1085 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1086 xfs_log_item_init(
1087 	struct xfs_mount	*mp,
1088 	struct xfs_log_item	*item,
1089 	int			type,
1090 	const struct xfs_item_ops *ops)
1091 {
1092 	item->li_mountp = mp;
1093 	item->li_ailp = mp->m_ail;
1094 	item->li_type = type;
1095 	item->li_ops = ops;
1096 	item->li_lv = NULL;
1097 
1098 	INIT_LIST_HEAD(&item->li_ail);
1099 	INIT_LIST_HEAD(&item->li_cil);
1100 	INIT_LIST_HEAD(&item->li_bio_list);
1101 	INIT_LIST_HEAD(&item->li_trans);
1102 }
1103 
1104 /*
1105  * Wake up processes waiting for log space after we have moved the log tail.
1106  */
1107 void
xfs_log_space_wake(struct xfs_mount * mp)1108 xfs_log_space_wake(
1109 	struct xfs_mount	*mp)
1110 {
1111 	struct xlog		*log = mp->m_log;
1112 	int			free_bytes;
1113 
1114 	if (xlog_is_shutdown(log))
1115 		return;
1116 
1117 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1118 		ASSERT(!xlog_in_recovery(log));
1119 
1120 		spin_lock(&log->l_write_head.lock);
1121 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1122 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1123 		spin_unlock(&log->l_write_head.lock);
1124 	}
1125 
1126 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1127 		ASSERT(!xlog_in_recovery(log));
1128 
1129 		spin_lock(&log->l_reserve_head.lock);
1130 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1131 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1132 		spin_unlock(&log->l_reserve_head.lock);
1133 	}
1134 }
1135 
1136 /*
1137  * Determine if we have a transaction that has gone to disk that needs to be
1138  * covered. To begin the transition to the idle state firstly the log needs to
1139  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1140  * we start attempting to cover the log.
1141  *
1142  * Only if we are then in a state where covering is needed, the caller is
1143  * informed that dummy transactions are required to move the log into the idle
1144  * state.
1145  *
1146  * If there are any items in the AIl or CIL, then we do not want to attempt to
1147  * cover the log as we may be in a situation where there isn't log space
1148  * available to run a dummy transaction and this can lead to deadlocks when the
1149  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1150  * there's no point in running a dummy transaction at this point because we
1151  * can't start trying to idle the log until both the CIL and AIL are empty.
1152  */
1153 static bool
xfs_log_need_covered(struct xfs_mount * mp)1154 xfs_log_need_covered(
1155 	struct xfs_mount	*mp)
1156 {
1157 	struct xlog		*log = mp->m_log;
1158 	bool			needed = false;
1159 
1160 	if (!xlog_cil_empty(log))
1161 		return false;
1162 
1163 	spin_lock(&log->l_icloglock);
1164 	switch (log->l_covered_state) {
1165 	case XLOG_STATE_COVER_DONE:
1166 	case XLOG_STATE_COVER_DONE2:
1167 	case XLOG_STATE_COVER_IDLE:
1168 		break;
1169 	case XLOG_STATE_COVER_NEED:
1170 	case XLOG_STATE_COVER_NEED2:
1171 		if (xfs_ail_min_lsn(log->l_ailp))
1172 			break;
1173 		if (!xlog_iclogs_empty(log))
1174 			break;
1175 
1176 		needed = true;
1177 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1178 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1179 		else
1180 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1181 		break;
1182 	default:
1183 		needed = true;
1184 		break;
1185 	}
1186 	spin_unlock(&log->l_icloglock);
1187 	return needed;
1188 }
1189 
1190 /*
1191  * Explicitly cover the log. This is similar to background log covering but
1192  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1193  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1194  * must all be empty.
1195  */
1196 static int
xfs_log_cover(struct xfs_mount * mp)1197 xfs_log_cover(
1198 	struct xfs_mount	*mp)
1199 {
1200 	int			error = 0;
1201 	bool			need_covered;
1202 
1203 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1204 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1205 		xlog_is_shutdown(mp->m_log));
1206 
1207 	if (!xfs_log_writable(mp))
1208 		return 0;
1209 
1210 	/*
1211 	 * xfs_log_need_covered() is not idempotent because it progresses the
1212 	 * state machine if the log requires covering. Therefore, we must call
1213 	 * this function once and use the result until we've issued an sb sync.
1214 	 * Do so first to make that abundantly clear.
1215 	 *
1216 	 * Fall into the covering sequence if the log needs covering or the
1217 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1218 	 * used for covering accumulates the in-core counters, so covering
1219 	 * handles this for us.
1220 	 */
1221 	need_covered = xfs_log_need_covered(mp);
1222 	if (!need_covered && !xfs_has_lazysbcount(mp))
1223 		return 0;
1224 
1225 	/*
1226 	 * To cover the log, commit the superblock twice (at most) in
1227 	 * independent checkpoints. The first serves as a reference for the
1228 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1229 	 * updates the in-core tail to the LSN of the first checkpoint. The
1230 	 * second commit updates the on-disk tail with the in-core LSN,
1231 	 * covering the log. Push the AIL one more time to leave it empty, as
1232 	 * we found it.
1233 	 */
1234 	do {
1235 		error = xfs_sync_sb(mp, true);
1236 		if (error)
1237 			break;
1238 		xfs_ail_push_all_sync(mp->m_ail);
1239 	} while (xfs_log_need_covered(mp));
1240 
1241 	return error;
1242 }
1243 
1244 /*
1245  * We may be holding the log iclog lock upon entering this routine.
1246  */
1247 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1248 xlog_assign_tail_lsn_locked(
1249 	struct xfs_mount	*mp)
1250 {
1251 	struct xlog		*log = mp->m_log;
1252 	struct xfs_log_item	*lip;
1253 	xfs_lsn_t		tail_lsn;
1254 
1255 	assert_spin_locked(&mp->m_ail->ail_lock);
1256 
1257 	/*
1258 	 * To make sure we always have a valid LSN for the log tail we keep
1259 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1260 	 * and use that when the AIL was empty.
1261 	 */
1262 	lip = xfs_ail_min(mp->m_ail);
1263 	if (lip)
1264 		tail_lsn = lip->li_lsn;
1265 	else
1266 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1267 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1268 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1269 	return tail_lsn;
1270 }
1271 
1272 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1273 xlog_assign_tail_lsn(
1274 	struct xfs_mount	*mp)
1275 {
1276 	xfs_lsn_t		tail_lsn;
1277 
1278 	spin_lock(&mp->m_ail->ail_lock);
1279 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1280 	spin_unlock(&mp->m_ail->ail_lock);
1281 
1282 	return tail_lsn;
1283 }
1284 
1285 /*
1286  * Return the space in the log between the tail and the head.  The head
1287  * is passed in the cycle/bytes formal parms.  In the special case where
1288  * the reserve head has wrapped passed the tail, this calculation is no
1289  * longer valid.  In this case, just return 0 which means there is no space
1290  * in the log.  This works for all places where this function is called
1291  * with the reserve head.  Of course, if the write head were to ever
1292  * wrap the tail, we should blow up.  Rather than catch this case here,
1293  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1294  *
1295  * If reservation head is behind the tail, we have a problem. Warn about it,
1296  * but then treat it as if the log is empty.
1297  *
1298  * If the log is shut down, the head and tail may be invalid or out of whack, so
1299  * shortcut invalidity asserts in this case so that we don't trigger them
1300  * falsely.
1301  */
1302 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1303 xlog_space_left(
1304 	struct xlog	*log,
1305 	atomic64_t	*head)
1306 {
1307 	int		tail_bytes;
1308 	int		tail_cycle;
1309 	int		head_cycle;
1310 	int		head_bytes;
1311 
1312 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1313 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1314 	tail_bytes = BBTOB(tail_bytes);
1315 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1316 		return log->l_logsize - (head_bytes - tail_bytes);
1317 	if (tail_cycle + 1 < head_cycle)
1318 		return 0;
1319 
1320 	/* Ignore potential inconsistency when shutdown. */
1321 	if (xlog_is_shutdown(log))
1322 		return log->l_logsize;
1323 
1324 	if (tail_cycle < head_cycle) {
1325 		ASSERT(tail_cycle == (head_cycle - 1));
1326 		return tail_bytes - head_bytes;
1327 	}
1328 
1329 	/*
1330 	 * The reservation head is behind the tail. In this case we just want to
1331 	 * return the size of the log as the amount of space left.
1332 	 */
1333 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1334 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1335 		  tail_cycle, tail_bytes);
1336 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1337 		  head_cycle, head_bytes);
1338 	ASSERT(0);
1339 	return log->l_logsize;
1340 }
1341 
1342 
1343 static void
xlog_ioend_work(struct work_struct * work)1344 xlog_ioend_work(
1345 	struct work_struct	*work)
1346 {
1347 	struct xlog_in_core     *iclog =
1348 		container_of(work, struct xlog_in_core, ic_end_io_work);
1349 	struct xlog		*log = iclog->ic_log;
1350 	int			error;
1351 
1352 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1353 #ifdef DEBUG
1354 	/* treat writes with injected CRC errors as failed */
1355 	if (iclog->ic_fail_crc)
1356 		error = -EIO;
1357 #endif
1358 
1359 	/*
1360 	 * Race to shutdown the filesystem if we see an error.
1361 	 */
1362 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1363 		xfs_alert(log->l_mp, "log I/O error %d", error);
1364 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1365 	}
1366 
1367 	xlog_state_done_syncing(iclog);
1368 	bio_uninit(&iclog->ic_bio);
1369 
1370 	/*
1371 	 * Drop the lock to signal that we are done. Nothing references the
1372 	 * iclog after this, so an unmount waiting on this lock can now tear it
1373 	 * down safely. As such, it is unsafe to reference the iclog after the
1374 	 * unlock as we could race with it being freed.
1375 	 */
1376 	up(&iclog->ic_sema);
1377 }
1378 
1379 /*
1380  * Return size of each in-core log record buffer.
1381  *
1382  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1383  *
1384  * If the filesystem blocksize is too large, we may need to choose a
1385  * larger size since the directory code currently logs entire blocks.
1386  */
1387 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1388 xlog_get_iclog_buffer_size(
1389 	struct xfs_mount	*mp,
1390 	struct xlog		*log)
1391 {
1392 	if (mp->m_logbufs <= 0)
1393 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1394 	if (mp->m_logbsize <= 0)
1395 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1396 
1397 	log->l_iclog_bufs = mp->m_logbufs;
1398 	log->l_iclog_size = mp->m_logbsize;
1399 
1400 	/*
1401 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1402 	 */
1403 	log->l_iclog_heads =
1404 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1405 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1406 }
1407 
1408 void
xfs_log_work_queue(struct xfs_mount * mp)1409 xfs_log_work_queue(
1410 	struct xfs_mount        *mp)
1411 {
1412 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1413 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1414 }
1415 
1416 /*
1417  * Clear the log incompat flags if we have the opportunity.
1418  *
1419  * This only happens if we're about to log the second dummy transaction as part
1420  * of covering the log and we can get the log incompat feature usage lock.
1421  */
1422 static inline void
xlog_clear_incompat(struct xlog * log)1423 xlog_clear_incompat(
1424 	struct xlog		*log)
1425 {
1426 	struct xfs_mount	*mp = log->l_mp;
1427 
1428 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1429 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1430 		return;
1431 
1432 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1433 		return;
1434 
1435 	if (!down_write_trylock(&log->l_incompat_users))
1436 		return;
1437 
1438 	xfs_clear_incompat_log_features(mp);
1439 	up_write(&log->l_incompat_users);
1440 }
1441 
1442 /*
1443  * Every sync period we need to unpin all items in the AIL and push them to
1444  * disk. If there is nothing dirty, then we might need to cover the log to
1445  * indicate that the filesystem is idle.
1446  */
1447 static void
xfs_log_worker(struct work_struct * work)1448 xfs_log_worker(
1449 	struct work_struct	*work)
1450 {
1451 	struct xlog		*log = container_of(to_delayed_work(work),
1452 						struct xlog, l_work);
1453 	struct xfs_mount	*mp = log->l_mp;
1454 
1455 	/* dgc: errors ignored - not fatal and nowhere to report them */
1456 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1457 		/*
1458 		 * Dump a transaction into the log that contains no real change.
1459 		 * This is needed to stamp the current tail LSN into the log
1460 		 * during the covering operation.
1461 		 *
1462 		 * We cannot use an inode here for this - that will push dirty
1463 		 * state back up into the VFS and then periodic inode flushing
1464 		 * will prevent log covering from making progress. Hence we
1465 		 * synchronously log the superblock instead to ensure the
1466 		 * superblock is immediately unpinned and can be written back.
1467 		 */
1468 		xlog_clear_incompat(log);
1469 		xfs_sync_sb(mp, true);
1470 	} else
1471 		xfs_log_force(mp, 0);
1472 
1473 	/* start pushing all the metadata that is currently dirty */
1474 	xfs_ail_push_all(mp->m_ail);
1475 
1476 	/* queue us up again */
1477 	xfs_log_work_queue(mp);
1478 }
1479 
1480 /*
1481  * This routine initializes some of the log structure for a given mount point.
1482  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1483  * some other stuff may be filled in too.
1484  */
1485 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1486 xlog_alloc_log(
1487 	struct xfs_mount	*mp,
1488 	struct xfs_buftarg	*log_target,
1489 	xfs_daddr_t		blk_offset,
1490 	int			num_bblks)
1491 {
1492 	struct xlog		*log;
1493 	xlog_rec_header_t	*head;
1494 	xlog_in_core_t		**iclogp;
1495 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1496 	int			i;
1497 	int			error = -ENOMEM;
1498 	uint			log2_size = 0;
1499 
1500 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1501 	if (!log) {
1502 		xfs_warn(mp, "Log allocation failed: No memory!");
1503 		goto out;
1504 	}
1505 
1506 	log->l_mp	   = mp;
1507 	log->l_targ	   = log_target;
1508 	log->l_logsize     = BBTOB(num_bblks);
1509 	log->l_logBBstart  = blk_offset;
1510 	log->l_logBBsize   = num_bblks;
1511 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1512 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1513 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1514 
1515 	log->l_prev_block  = -1;
1516 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1517 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1518 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1519 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1520 
1521 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1522 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1523 	else
1524 		log->l_iclog_roundoff = BBSIZE;
1525 
1526 	xlog_grant_head_init(&log->l_reserve_head);
1527 	xlog_grant_head_init(&log->l_write_head);
1528 
1529 	error = -EFSCORRUPTED;
1530 	if (xfs_has_sector(mp)) {
1531 	        log2_size = mp->m_sb.sb_logsectlog;
1532 		if (log2_size < BBSHIFT) {
1533 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1534 				log2_size, BBSHIFT);
1535 			goto out_free_log;
1536 		}
1537 
1538 	        log2_size -= BBSHIFT;
1539 		if (log2_size > mp->m_sectbb_log) {
1540 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1541 				log2_size, mp->m_sectbb_log);
1542 			goto out_free_log;
1543 		}
1544 
1545 		/* for larger sector sizes, must have v2 or external log */
1546 		if (log2_size && log->l_logBBstart > 0 &&
1547 			    !xfs_has_logv2(mp)) {
1548 			xfs_warn(mp,
1549 		"log sector size (0x%x) invalid for configuration.",
1550 				log2_size);
1551 			goto out_free_log;
1552 		}
1553 	}
1554 	log->l_sectBBsize = 1 << log2_size;
1555 
1556 	init_rwsem(&log->l_incompat_users);
1557 
1558 	xlog_get_iclog_buffer_size(mp, log);
1559 
1560 	spin_lock_init(&log->l_icloglock);
1561 	init_waitqueue_head(&log->l_flush_wait);
1562 
1563 	iclogp = &log->l_iclog;
1564 	/*
1565 	 * The amount of memory to allocate for the iclog structure is
1566 	 * rather funky due to the way the structure is defined.  It is
1567 	 * done this way so that we can use different sizes for machines
1568 	 * with different amounts of memory.  See the definition of
1569 	 * xlog_in_core_t in xfs_log_priv.h for details.
1570 	 */
1571 	ASSERT(log->l_iclog_size >= 4096);
1572 	for (i = 0; i < log->l_iclog_bufs; i++) {
1573 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1574 				sizeof(struct bio_vec);
1575 
1576 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1577 		if (!iclog)
1578 			goto out_free_iclog;
1579 
1580 		*iclogp = iclog;
1581 		iclog->ic_prev = prev_iclog;
1582 		prev_iclog = iclog;
1583 
1584 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1585 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1586 		if (!iclog->ic_data)
1587 			goto out_free_iclog;
1588 #ifdef DEBUG
1589 		log->l_iclog_bak[i] = &iclog->ic_header;
1590 #endif
1591 		head = &iclog->ic_header;
1592 		memset(head, 0, sizeof(xlog_rec_header_t));
1593 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 		head->h_version = cpu_to_be32(
1595 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1596 		head->h_size = cpu_to_be32(log->l_iclog_size);
1597 		/* new fields */
1598 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1599 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1600 
1601 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1602 		iclog->ic_state = XLOG_STATE_ACTIVE;
1603 		iclog->ic_log = log;
1604 		atomic_set(&iclog->ic_refcnt, 0);
1605 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1606 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1607 
1608 		init_waitqueue_head(&iclog->ic_force_wait);
1609 		init_waitqueue_head(&iclog->ic_write_wait);
1610 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1611 		sema_init(&iclog->ic_sema, 1);
1612 
1613 		iclogp = &iclog->ic_next;
1614 	}
1615 	*iclogp = log->l_iclog;			/* complete ring */
1616 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1617 
1618 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1619 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1620 				    WQ_HIGHPRI),
1621 			0, mp->m_super->s_id);
1622 	if (!log->l_ioend_workqueue)
1623 		goto out_free_iclog;
1624 
1625 	error = xlog_cil_init(log);
1626 	if (error)
1627 		goto out_destroy_workqueue;
1628 	return log;
1629 
1630 out_destroy_workqueue:
1631 	destroy_workqueue(log->l_ioend_workqueue);
1632 out_free_iclog:
1633 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1634 		prev_iclog = iclog->ic_next;
1635 		kmem_free(iclog->ic_data);
1636 		kmem_free(iclog);
1637 		if (prev_iclog == log->l_iclog)
1638 			break;
1639 	}
1640 out_free_log:
1641 	kmem_free(log);
1642 out:
1643 	return ERR_PTR(error);
1644 }	/* xlog_alloc_log */
1645 
1646 /*
1647  * Compute the LSN that we'd need to push the log tail towards in order to have
1648  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1649  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1650  * log free space already meets all three thresholds, this function returns
1651  * NULLCOMMITLSN.
1652  */
1653 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1654 xlog_grant_push_threshold(
1655 	struct xlog	*log,
1656 	int		need_bytes)
1657 {
1658 	xfs_lsn_t	threshold_lsn = 0;
1659 	xfs_lsn_t	last_sync_lsn;
1660 	int		free_blocks;
1661 	int		free_bytes;
1662 	int		threshold_block;
1663 	int		threshold_cycle;
1664 	int		free_threshold;
1665 
1666 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1667 
1668 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1669 	free_blocks = BTOBBT(free_bytes);
1670 
1671 	/*
1672 	 * Set the threshold for the minimum number of free blocks in the
1673 	 * log to the maximum of what the caller needs, one quarter of the
1674 	 * log, and 256 blocks.
1675 	 */
1676 	free_threshold = BTOBB(need_bytes);
1677 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1678 	free_threshold = max(free_threshold, 256);
1679 	if (free_blocks >= free_threshold)
1680 		return NULLCOMMITLSN;
1681 
1682 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1683 						&threshold_block);
1684 	threshold_block += free_threshold;
1685 	if (threshold_block >= log->l_logBBsize) {
1686 		threshold_block -= log->l_logBBsize;
1687 		threshold_cycle += 1;
1688 	}
1689 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1690 					threshold_block);
1691 	/*
1692 	 * Don't pass in an lsn greater than the lsn of the last
1693 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1694 	 * so that it doesn't change between the compare and the set.
1695 	 */
1696 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1697 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1698 		threshold_lsn = last_sync_lsn;
1699 
1700 	return threshold_lsn;
1701 }
1702 
1703 /*
1704  * Push the tail of the log if we need to do so to maintain the free log space
1705  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1706  * policy which pushes on an lsn which is further along in the log once we
1707  * reach the high water mark.  In this manner, we would be creating a low water
1708  * mark.
1709  */
1710 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1711 xlog_grant_push_ail(
1712 	struct xlog	*log,
1713 	int		need_bytes)
1714 {
1715 	xfs_lsn_t	threshold_lsn;
1716 
1717 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1718 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1719 		return;
1720 
1721 	/*
1722 	 * Get the transaction layer to kick the dirty buffers out to
1723 	 * disk asynchronously. No point in trying to do this if
1724 	 * the filesystem is shutting down.
1725 	 */
1726 	xfs_ail_push(log->l_ailp, threshold_lsn);
1727 }
1728 
1729 /*
1730  * Stamp cycle number in every block
1731  */
1732 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1733 xlog_pack_data(
1734 	struct xlog		*log,
1735 	struct xlog_in_core	*iclog,
1736 	int			roundoff)
1737 {
1738 	int			i, j, k;
1739 	int			size = iclog->ic_offset + roundoff;
1740 	__be32			cycle_lsn;
1741 	char			*dp;
1742 
1743 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1744 
1745 	dp = iclog->ic_datap;
1746 	for (i = 0; i < BTOBB(size); i++) {
1747 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1748 			break;
1749 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1750 		*(__be32 *)dp = cycle_lsn;
1751 		dp += BBSIZE;
1752 	}
1753 
1754 	if (xfs_has_logv2(log->l_mp)) {
1755 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1756 
1757 		for ( ; i < BTOBB(size); i++) {
1758 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1759 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1760 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1761 			*(__be32 *)dp = cycle_lsn;
1762 			dp += BBSIZE;
1763 		}
1764 
1765 		for (i = 1; i < log->l_iclog_heads; i++)
1766 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1767 	}
1768 }
1769 
1770 /*
1771  * Calculate the checksum for a log buffer.
1772  *
1773  * This is a little more complicated than it should be because the various
1774  * headers and the actual data are non-contiguous.
1775  */
1776 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1777 xlog_cksum(
1778 	struct xlog		*log,
1779 	struct xlog_rec_header	*rhead,
1780 	char			*dp,
1781 	int			size)
1782 {
1783 	uint32_t		crc;
1784 
1785 	/* first generate the crc for the record header ... */
1786 	crc = xfs_start_cksum_update((char *)rhead,
1787 			      sizeof(struct xlog_rec_header),
1788 			      offsetof(struct xlog_rec_header, h_crc));
1789 
1790 	/* ... then for additional cycle data for v2 logs ... */
1791 	if (xfs_has_logv2(log->l_mp)) {
1792 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1793 		int		i;
1794 		int		xheads;
1795 
1796 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1797 
1798 		for (i = 1; i < xheads; i++) {
1799 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1800 				     sizeof(struct xlog_rec_ext_header));
1801 		}
1802 	}
1803 
1804 	/* ... and finally for the payload */
1805 	crc = crc32c(crc, dp, size);
1806 
1807 	return xfs_end_cksum(crc);
1808 }
1809 
1810 static void
xlog_bio_end_io(struct bio * bio)1811 xlog_bio_end_io(
1812 	struct bio		*bio)
1813 {
1814 	struct xlog_in_core	*iclog = bio->bi_private;
1815 
1816 	queue_work(iclog->ic_log->l_ioend_workqueue,
1817 		   &iclog->ic_end_io_work);
1818 }
1819 
1820 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1821 xlog_map_iclog_data(
1822 	struct bio		*bio,
1823 	void			*data,
1824 	size_t			count)
1825 {
1826 	do {
1827 		struct page	*page = kmem_to_page(data);
1828 		unsigned int	off = offset_in_page(data);
1829 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1830 
1831 		if (bio_add_page(bio, page, len, off) != len)
1832 			return -EIO;
1833 
1834 		data += len;
1835 		count -= len;
1836 	} while (count);
1837 
1838 	return 0;
1839 }
1840 
1841 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1842 xlog_write_iclog(
1843 	struct xlog		*log,
1844 	struct xlog_in_core	*iclog,
1845 	uint64_t		bno,
1846 	unsigned int		count)
1847 {
1848 	ASSERT(bno < log->l_logBBsize);
1849 	trace_xlog_iclog_write(iclog, _RET_IP_);
1850 
1851 	/*
1852 	 * We lock the iclogbufs here so that we can serialise against I/O
1853 	 * completion during unmount.  We might be processing a shutdown
1854 	 * triggered during unmount, and that can occur asynchronously to the
1855 	 * unmount thread, and hence we need to ensure that completes before
1856 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1857 	 * across the log IO to archieve that.
1858 	 */
1859 	down(&iclog->ic_sema);
1860 	if (xlog_is_shutdown(log)) {
1861 		/*
1862 		 * It would seem logical to return EIO here, but we rely on
1863 		 * the log state machine to propagate I/O errors instead of
1864 		 * doing it here.  We kick of the state machine and unlock
1865 		 * the buffer manually, the code needs to be kept in sync
1866 		 * with the I/O completion path.
1867 		 */
1868 		xlog_state_done_syncing(iclog);
1869 		up(&iclog->ic_sema);
1870 		return;
1871 	}
1872 
1873 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1874 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1875 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1876 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1877 	iclog->ic_bio.bi_private = iclog;
1878 
1879 	/*
1880 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1881 	 * IOs coming immediately after this one. This prevents the block layer
1882 	 * writeback throttle from throttling log writes behind background
1883 	 * metadata writeback and causing priority inversions.
1884 	 */
1885 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1886 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1887 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1888 		/*
1889 		 * For external log devices, we also need to flush the data
1890 		 * device cache first to ensure all metadata writeback covered
1891 		 * by the LSN in this iclog is on stable storage. This is slow,
1892 		 * but it *must* complete before we issue the external log IO.
1893 		 */
1894 		if (log->l_targ != log->l_mp->m_ddev_targp)
1895 			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1896 	}
1897 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1898 		iclog->ic_bio.bi_opf |= REQ_FUA;
1899 
1900 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1901 
1902 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1903 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1904 		return;
1905 	}
1906 	if (is_vmalloc_addr(iclog->ic_data))
1907 		flush_kernel_vmap_range(iclog->ic_data, count);
1908 
1909 	/*
1910 	 * If this log buffer would straddle the end of the log we will have
1911 	 * to split it up into two bios, so that we can continue at the start.
1912 	 */
1913 	if (bno + BTOBB(count) > log->l_logBBsize) {
1914 		struct bio *split;
1915 
1916 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1917 				  GFP_NOIO, &fs_bio_set);
1918 		bio_chain(split, &iclog->ic_bio);
1919 		submit_bio(split);
1920 
1921 		/* restart at logical offset zero for the remainder */
1922 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1923 	}
1924 
1925 	submit_bio(&iclog->ic_bio);
1926 }
1927 
1928 /*
1929  * We need to bump cycle number for the part of the iclog that is
1930  * written to the start of the log. Watch out for the header magic
1931  * number case, though.
1932  */
1933 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1934 xlog_split_iclog(
1935 	struct xlog		*log,
1936 	void			*data,
1937 	uint64_t		bno,
1938 	unsigned int		count)
1939 {
1940 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1941 	unsigned int		i;
1942 
1943 	for (i = split_offset; i < count; i += BBSIZE) {
1944 		uint32_t cycle = get_unaligned_be32(data + i);
1945 
1946 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1947 			cycle++;
1948 		put_unaligned_be32(cycle, data + i);
1949 	}
1950 }
1951 
1952 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1953 xlog_calc_iclog_size(
1954 	struct xlog		*log,
1955 	struct xlog_in_core	*iclog,
1956 	uint32_t		*roundoff)
1957 {
1958 	uint32_t		count_init, count;
1959 
1960 	/* Add for LR header */
1961 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1962 	count = roundup(count_init, log->l_iclog_roundoff);
1963 
1964 	*roundoff = count - count_init;
1965 
1966 	ASSERT(count >= count_init);
1967 	ASSERT(*roundoff < log->l_iclog_roundoff);
1968 	return count;
1969 }
1970 
1971 /*
1972  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1973  * fashion.  Previously, we should have moved the current iclog
1974  * ptr in the log to point to the next available iclog.  This allows further
1975  * write to continue while this code syncs out an iclog ready to go.
1976  * Before an in-core log can be written out, the data section must be scanned
1977  * to save away the 1st word of each BBSIZE block into the header.  We replace
1978  * it with the current cycle count.  Each BBSIZE block is tagged with the
1979  * cycle count because there in an implicit assumption that drives will
1980  * guarantee that entire 512 byte blocks get written at once.  In other words,
1981  * we can't have part of a 512 byte block written and part not written.  By
1982  * tagging each block, we will know which blocks are valid when recovering
1983  * after an unclean shutdown.
1984  *
1985  * This routine is single threaded on the iclog.  No other thread can be in
1986  * this routine with the same iclog.  Changing contents of iclog can there-
1987  * fore be done without grabbing the state machine lock.  Updating the global
1988  * log will require grabbing the lock though.
1989  *
1990  * The entire log manager uses a logical block numbering scheme.  Only
1991  * xlog_write_iclog knows about the fact that the log may not start with
1992  * block zero on a given device.
1993  */
1994 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1995 xlog_sync(
1996 	struct xlog		*log,
1997 	struct xlog_in_core	*iclog)
1998 {
1999 	unsigned int		count;		/* byte count of bwrite */
2000 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2001 	uint64_t		bno;
2002 	unsigned int		size;
2003 
2004 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2005 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2006 
2007 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2008 
2009 	/* move grant heads by roundoff in sync */
2010 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2011 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2012 
2013 	/* put cycle number in every block */
2014 	xlog_pack_data(log, iclog, roundoff);
2015 
2016 	/* real byte length */
2017 	size = iclog->ic_offset;
2018 	if (xfs_has_logv2(log->l_mp))
2019 		size += roundoff;
2020 	iclog->ic_header.h_len = cpu_to_be32(size);
2021 
2022 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2023 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2024 
2025 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2026 
2027 	/* Do we need to split this write into 2 parts? */
2028 	if (bno + BTOBB(count) > log->l_logBBsize)
2029 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2030 
2031 	/* calculcate the checksum */
2032 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2033 					    iclog->ic_datap, size);
2034 	/*
2035 	 * Intentionally corrupt the log record CRC based on the error injection
2036 	 * frequency, if defined. This facilitates testing log recovery in the
2037 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2038 	 * write on I/O completion and shutdown the fs. The subsequent mount
2039 	 * detects the bad CRC and attempts to recover.
2040 	 */
2041 #ifdef DEBUG
2042 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2043 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2044 		iclog->ic_fail_crc = true;
2045 		xfs_warn(log->l_mp,
2046 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2047 			 be64_to_cpu(iclog->ic_header.h_lsn));
2048 	}
2049 #endif
2050 	xlog_verify_iclog(log, iclog, count);
2051 	xlog_write_iclog(log, iclog, bno, count);
2052 }
2053 
2054 /*
2055  * Deallocate a log structure
2056  */
2057 STATIC void
xlog_dealloc_log(struct xlog * log)2058 xlog_dealloc_log(
2059 	struct xlog	*log)
2060 {
2061 	xlog_in_core_t	*iclog, *next_iclog;
2062 	int		i;
2063 
2064 	/*
2065 	 * Cycle all the iclogbuf locks to make sure all log IO completion
2066 	 * is done before we tear down these buffers.
2067 	 */
2068 	iclog = log->l_iclog;
2069 	for (i = 0; i < log->l_iclog_bufs; i++) {
2070 		down(&iclog->ic_sema);
2071 		up(&iclog->ic_sema);
2072 		iclog = iclog->ic_next;
2073 	}
2074 
2075 	/*
2076 	 * Destroy the CIL after waiting for iclog IO completion because an
2077 	 * iclog EIO error will try to shut down the log, which accesses the
2078 	 * CIL to wake up the waiters.
2079 	 */
2080 	xlog_cil_destroy(log);
2081 
2082 	iclog = log->l_iclog;
2083 	for (i = 0; i < log->l_iclog_bufs; i++) {
2084 		next_iclog = iclog->ic_next;
2085 		kmem_free(iclog->ic_data);
2086 		kmem_free(iclog);
2087 		iclog = next_iclog;
2088 	}
2089 
2090 	log->l_mp->m_log = NULL;
2091 	destroy_workqueue(log->l_ioend_workqueue);
2092 	kmem_free(log);
2093 }
2094 
2095 /*
2096  * Update counters atomically now that memcpy is done.
2097  */
2098 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2099 xlog_state_finish_copy(
2100 	struct xlog		*log,
2101 	struct xlog_in_core	*iclog,
2102 	int			record_cnt,
2103 	int			copy_bytes)
2104 {
2105 	lockdep_assert_held(&log->l_icloglock);
2106 
2107 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2108 	iclog->ic_offset += copy_bytes;
2109 }
2110 
2111 /*
2112  * print out info relating to regions written which consume
2113  * the reservation
2114  */
2115 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2116 xlog_print_tic_res(
2117 	struct xfs_mount	*mp,
2118 	struct xlog_ticket	*ticket)
2119 {
2120 	uint i;
2121 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2122 
2123 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2124 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2125 	static char *res_type_str[] = {
2126 	    REG_TYPE_STR(BFORMAT, "bformat"),
2127 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2128 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2129 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2130 	    REG_TYPE_STR(IFORMAT, "iformat"),
2131 	    REG_TYPE_STR(ICORE, "icore"),
2132 	    REG_TYPE_STR(IEXT, "iext"),
2133 	    REG_TYPE_STR(IBROOT, "ibroot"),
2134 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2135 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2136 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2137 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2138 	    REG_TYPE_STR(QFORMAT, "qformat"),
2139 	    REG_TYPE_STR(DQUOT, "dquot"),
2140 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2141 	    REG_TYPE_STR(LRHEADER, "LR header"),
2142 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2143 	    REG_TYPE_STR(COMMIT, "commit"),
2144 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2145 	    REG_TYPE_STR(ICREATE, "inode create"),
2146 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2147 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2148 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2149 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2150 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2151 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2152 	};
2153 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2154 #undef REG_TYPE_STR
2155 
2156 	xfs_warn(mp, "ticket reservation summary:");
2157 	xfs_warn(mp, "  unit res    = %d bytes",
2158 		 ticket->t_unit_res);
2159 	xfs_warn(mp, "  current res = %d bytes",
2160 		 ticket->t_curr_res);
2161 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2162 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2163 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2164 		 ticket->t_res_num_ophdrs, ophdr_spc);
2165 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2166 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2167 	xfs_warn(mp, "  num regions = %u",
2168 		 ticket->t_res_num);
2169 
2170 	for (i = 0; i < ticket->t_res_num; i++) {
2171 		uint r_type = ticket->t_res_arr[i].r_type;
2172 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2173 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2174 			    "bad-rtype" : res_type_str[r_type]),
2175 			    ticket->t_res_arr[i].r_len);
2176 	}
2177 }
2178 
2179 /*
2180  * Print a summary of the transaction.
2181  */
2182 void
xlog_print_trans(struct xfs_trans * tp)2183 xlog_print_trans(
2184 	struct xfs_trans	*tp)
2185 {
2186 	struct xfs_mount	*mp = tp->t_mountp;
2187 	struct xfs_log_item	*lip;
2188 
2189 	/* dump core transaction and ticket info */
2190 	xfs_warn(mp, "transaction summary:");
2191 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2192 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2193 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2194 
2195 	xlog_print_tic_res(mp, tp->t_ticket);
2196 
2197 	/* dump each log item */
2198 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2199 		struct xfs_log_vec	*lv = lip->li_lv;
2200 		struct xfs_log_iovec	*vec;
2201 		int			i;
2202 
2203 		xfs_warn(mp, "log item: ");
2204 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2205 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2206 		if (!lv)
2207 			continue;
2208 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2209 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2210 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2211 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2212 
2213 		/* dump each iovec for the log item */
2214 		vec = lv->lv_iovecp;
2215 		for (i = 0; i < lv->lv_niovecs; i++) {
2216 			int dumplen = min(vec->i_len, 32);
2217 
2218 			xfs_warn(mp, "  iovec[%d]", i);
2219 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2220 			xfs_warn(mp, "    len	= %d", vec->i_len);
2221 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2222 			xfs_hex_dump(vec->i_addr, dumplen);
2223 
2224 			vec++;
2225 		}
2226 	}
2227 }
2228 
2229 /*
2230  * Calculate the potential space needed by the log vector.  We may need a start
2231  * record, and each region gets its own struct xlog_op_header and may need to be
2232  * double word aligned.
2233  */
2234 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector,uint optype)2235 xlog_write_calc_vec_length(
2236 	struct xlog_ticket	*ticket,
2237 	struct xfs_log_vec	*log_vector,
2238 	uint			optype)
2239 {
2240 	struct xfs_log_vec	*lv;
2241 	int			headers = 0;
2242 	int			len = 0;
2243 	int			i;
2244 
2245 	if (optype & XLOG_START_TRANS)
2246 		headers++;
2247 
2248 	for (lv = log_vector; lv; lv = lv->lv_next) {
2249 		/* we don't write ordered log vectors */
2250 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2251 			continue;
2252 
2253 		headers += lv->lv_niovecs;
2254 
2255 		for (i = 0; i < lv->lv_niovecs; i++) {
2256 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2257 
2258 			len += vecp->i_len;
2259 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2260 		}
2261 	}
2262 
2263 	ticket->t_res_num_ophdrs += headers;
2264 	len += headers * sizeof(struct xlog_op_header);
2265 
2266 	return len;
2267 }
2268 
2269 static void
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2270 xlog_write_start_rec(
2271 	struct xlog_op_header	*ophdr,
2272 	struct xlog_ticket	*ticket)
2273 {
2274 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2275 	ophdr->oh_clientid = ticket->t_clientid;
2276 	ophdr->oh_len = 0;
2277 	ophdr->oh_flags = XLOG_START_TRANS;
2278 	ophdr->oh_res2 = 0;
2279 }
2280 
2281 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2282 xlog_write_setup_ophdr(
2283 	struct xlog		*log,
2284 	struct xlog_op_header	*ophdr,
2285 	struct xlog_ticket	*ticket,
2286 	uint			flags)
2287 {
2288 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2289 	ophdr->oh_clientid = ticket->t_clientid;
2290 	ophdr->oh_res2 = 0;
2291 
2292 	/* are we copying a commit or unmount record? */
2293 	ophdr->oh_flags = flags;
2294 
2295 	/*
2296 	 * We've seen logs corrupted with bad transaction client ids.  This
2297 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2298 	 * and shut down the filesystem.
2299 	 */
2300 	switch (ophdr->oh_clientid)  {
2301 	case XFS_TRANSACTION:
2302 	case XFS_VOLUME:
2303 	case XFS_LOG:
2304 		break;
2305 	default:
2306 		xfs_warn(log->l_mp,
2307 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2308 			ophdr->oh_clientid, ticket);
2309 		return NULL;
2310 	}
2311 
2312 	return ophdr;
2313 }
2314 
2315 /*
2316  * Set up the parameters of the region copy into the log. This has
2317  * to handle region write split across multiple log buffers - this
2318  * state is kept external to this function so that this code can
2319  * be written in an obvious, self documenting manner.
2320  */
2321 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2322 xlog_write_setup_copy(
2323 	struct xlog_ticket	*ticket,
2324 	struct xlog_op_header	*ophdr,
2325 	int			space_available,
2326 	int			space_required,
2327 	int			*copy_off,
2328 	int			*copy_len,
2329 	int			*last_was_partial_copy,
2330 	int			*bytes_consumed)
2331 {
2332 	int			still_to_copy;
2333 
2334 	still_to_copy = space_required - *bytes_consumed;
2335 	*copy_off = *bytes_consumed;
2336 
2337 	if (still_to_copy <= space_available) {
2338 		/* write of region completes here */
2339 		*copy_len = still_to_copy;
2340 		ophdr->oh_len = cpu_to_be32(*copy_len);
2341 		if (*last_was_partial_copy)
2342 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2343 		*last_was_partial_copy = 0;
2344 		*bytes_consumed = 0;
2345 		return 0;
2346 	}
2347 
2348 	/* partial write of region, needs extra log op header reservation */
2349 	*copy_len = space_available;
2350 	ophdr->oh_len = cpu_to_be32(*copy_len);
2351 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2352 	if (*last_was_partial_copy)
2353 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2354 	*bytes_consumed += *copy_len;
2355 	(*last_was_partial_copy)++;
2356 
2357 	/* account for new log op header */
2358 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2359 	ticket->t_res_num_ophdrs++;
2360 
2361 	return sizeof(struct xlog_op_header);
2362 }
2363 
2364 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset)2365 xlog_write_copy_finish(
2366 	struct xlog		*log,
2367 	struct xlog_in_core	*iclog,
2368 	uint			flags,
2369 	int			*record_cnt,
2370 	int			*data_cnt,
2371 	int			*partial_copy,
2372 	int			*partial_copy_len,
2373 	int			log_offset)
2374 {
2375 	int			error;
2376 
2377 	if (*partial_copy) {
2378 		/*
2379 		 * This iclog has already been marked WANT_SYNC by
2380 		 * xlog_state_get_iclog_space.
2381 		 */
2382 		spin_lock(&log->l_icloglock);
2383 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2384 		*record_cnt = 0;
2385 		*data_cnt = 0;
2386 		goto release_iclog;
2387 	}
2388 
2389 	*partial_copy = 0;
2390 	*partial_copy_len = 0;
2391 
2392 	if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t))
2393 		return 0;
2394 
2395 	/* no more space in this iclog - push it. */
2396 	spin_lock(&log->l_icloglock);
2397 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2398 	*record_cnt = 0;
2399 	*data_cnt = 0;
2400 
2401 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
2402 		xlog_state_switch_iclogs(log, iclog, 0);
2403 	else
2404 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2405 			xlog_is_shutdown(log));
2406 release_iclog:
2407 	error = xlog_state_release_iclog(log, iclog);
2408 	spin_unlock(&log->l_icloglock);
2409 	return error;
2410 }
2411 
2412 /*
2413  * Write some region out to in-core log
2414  *
2415  * This will be called when writing externally provided regions or when
2416  * writing out a commit record for a given transaction.
2417  *
2418  * General algorithm:
2419  *	1. Find total length of this write.  This may include adding to the
2420  *		lengths passed in.
2421  *	2. Check whether we violate the tickets reservation.
2422  *	3. While writing to this iclog
2423  *	    A. Reserve as much space in this iclog as can get
2424  *	    B. If this is first write, save away start lsn
2425  *	    C. While writing this region:
2426  *		1. If first write of transaction, write start record
2427  *		2. Write log operation header (header per region)
2428  *		3. Find out if we can fit entire region into this iclog
2429  *		4. Potentially, verify destination memcpy ptr
2430  *		5. Memcpy (partial) region
2431  *		6. If partial copy, release iclog; otherwise, continue
2432  *			copying more regions into current iclog
2433  *	4. Mark want sync bit (in simulation mode)
2434  *	5. Release iclog for potential flush to on-disk log.
2435  *
2436  * ERRORS:
2437  * 1.	Panic if reservation is overrun.  This should never happen since
2438  *	reservation amounts are generated internal to the filesystem.
2439  * NOTES:
2440  * 1. Tickets are single threaded data structures.
2441  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2442  *	syncing routine.  When a single log_write region needs to span
2443  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2444  *	on all log operation writes which don't contain the end of the
2445  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2446  *	operation which contains the end of the continued log_write region.
2447  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2448  *	we don't really know exactly how much space will be used.  As a result,
2449  *	we don't update ic_offset until the end when we know exactly how many
2450  *	bytes have been written out.
2451  */
2452 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,uint optype)2453 xlog_write(
2454 	struct xlog		*log,
2455 	struct xfs_cil_ctx	*ctx,
2456 	struct xfs_log_vec	*log_vector,
2457 	struct xlog_ticket	*ticket,
2458 	uint			optype)
2459 {
2460 	struct xlog_in_core	*iclog = NULL;
2461 	struct xfs_log_vec	*lv = log_vector;
2462 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2463 	int			index = 0;
2464 	int			len;
2465 	int			partial_copy = 0;
2466 	int			partial_copy_len = 0;
2467 	int			contwr = 0;
2468 	int			record_cnt = 0;
2469 	int			data_cnt = 0;
2470 	int			error = 0;
2471 
2472 	/*
2473 	 * If this is a commit or unmount transaction, we don't need a start
2474 	 * record to be written.  We do, however, have to account for the
2475 	 * commit or unmount header that gets written. Hence we always have
2476 	 * to account for an extra xlog_op_header here.
2477 	 */
2478 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2479 	if (ticket->t_curr_res < 0) {
2480 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2481 		     "ctx ticket reservation ran out. Need to up reservation");
2482 		xlog_print_tic_res(log->l_mp, ticket);
2483 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2484 	}
2485 
2486 	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2487 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2488 		void		*ptr;
2489 		int		log_offset;
2490 
2491 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2492 						   &contwr, &log_offset);
2493 		if (error)
2494 			return error;
2495 
2496 		ASSERT(log_offset <= iclog->ic_size - 1);
2497 		ptr = iclog->ic_datap + log_offset;
2498 
2499 		/*
2500 		 * If we have a context pointer, pass it the first iclog we are
2501 		 * writing to so it can record state needed for iclog write
2502 		 * ordering.
2503 		 */
2504 		if (ctx) {
2505 			xlog_cil_set_ctx_write_state(ctx, iclog);
2506 			ctx = NULL;
2507 		}
2508 
2509 		/*
2510 		 * This loop writes out as many regions as can fit in the amount
2511 		 * of space which was allocated by xlog_state_get_iclog_space().
2512 		 */
2513 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2514 			struct xfs_log_iovec	*reg;
2515 			struct xlog_op_header	*ophdr;
2516 			int			copy_len;
2517 			int			copy_off;
2518 			bool			ordered = false;
2519 			bool			wrote_start_rec = false;
2520 
2521 			/* ordered log vectors have no regions to write */
2522 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2523 				ASSERT(lv->lv_niovecs == 0);
2524 				ordered = true;
2525 				goto next_lv;
2526 			}
2527 
2528 			reg = &vecp[index];
2529 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2530 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2531 
2532 			/*
2533 			 * Before we start formatting log vectors, we need to
2534 			 * write a start record. Only do this for the first
2535 			 * iclog we write to.
2536 			 */
2537 			if (optype & XLOG_START_TRANS) {
2538 				xlog_write_start_rec(ptr, ticket);
2539 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2540 						sizeof(struct xlog_op_header));
2541 				optype &= ~XLOG_START_TRANS;
2542 				wrote_start_rec = true;
2543 			}
2544 
2545 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2546 			if (!ophdr)
2547 				return -EIO;
2548 
2549 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2550 					   sizeof(struct xlog_op_header));
2551 
2552 			len += xlog_write_setup_copy(ticket, ophdr,
2553 						     iclog->ic_size-log_offset,
2554 						     reg->i_len,
2555 						     &copy_off, &copy_len,
2556 						     &partial_copy,
2557 						     &partial_copy_len);
2558 			xlog_verify_dest_ptr(log, ptr);
2559 
2560 			/*
2561 			 * Copy region.
2562 			 *
2563 			 * Unmount records just log an opheader, so can have
2564 			 * empty payloads with no data region to copy. Hence we
2565 			 * only copy the payload if the vector says it has data
2566 			 * to copy.
2567 			 */
2568 			ASSERT(copy_len >= 0);
2569 			if (copy_len > 0) {
2570 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2571 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2572 						   copy_len);
2573 			}
2574 			copy_len += sizeof(struct xlog_op_header);
2575 			record_cnt++;
2576 			if (wrote_start_rec) {
2577 				copy_len += sizeof(struct xlog_op_header);
2578 				record_cnt++;
2579 			}
2580 			data_cnt += contwr ? copy_len : 0;
2581 
2582 			error = xlog_write_copy_finish(log, iclog, optype,
2583 						       &record_cnt, &data_cnt,
2584 						       &partial_copy,
2585 						       &partial_copy_len,
2586 						       log_offset);
2587 			if (error)
2588 				return error;
2589 
2590 			/*
2591 			 * if we had a partial copy, we need to get more iclog
2592 			 * space but we don't want to increment the region
2593 			 * index because there is still more is this region to
2594 			 * write.
2595 			 *
2596 			 * If we completed writing this region, and we flushed
2597 			 * the iclog (indicated by resetting of the record
2598 			 * count), then we also need to get more log space. If
2599 			 * this was the last record, though, we are done and
2600 			 * can just return.
2601 			 */
2602 			if (partial_copy)
2603 				break;
2604 
2605 			if (++index == lv->lv_niovecs) {
2606 next_lv:
2607 				lv = lv->lv_next;
2608 				index = 0;
2609 				if (lv)
2610 					vecp = lv->lv_iovecp;
2611 			}
2612 			if (record_cnt == 0 && !ordered) {
2613 				if (!lv)
2614 					return 0;
2615 				break;
2616 			}
2617 		}
2618 	}
2619 
2620 	ASSERT(len == 0);
2621 
2622 	spin_lock(&log->l_icloglock);
2623 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2624 	error = xlog_state_release_iclog(log, iclog);
2625 	spin_unlock(&log->l_icloglock);
2626 
2627 	return error;
2628 }
2629 
2630 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2631 xlog_state_activate_iclog(
2632 	struct xlog_in_core	*iclog,
2633 	int			*iclogs_changed)
2634 {
2635 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2636 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2637 
2638 	/*
2639 	 * If the number of ops in this iclog indicate it just contains the
2640 	 * dummy transaction, we can change state into IDLE (the second time
2641 	 * around). Otherwise we should change the state into NEED a dummy.
2642 	 * We don't need to cover the dummy.
2643 	 */
2644 	if (*iclogs_changed == 0 &&
2645 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2646 		*iclogs_changed = 1;
2647 	} else {
2648 		/*
2649 		 * We have two dirty iclogs so start over.  This could also be
2650 		 * num of ops indicating this is not the dummy going out.
2651 		 */
2652 		*iclogs_changed = 2;
2653 	}
2654 
2655 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2656 	iclog->ic_offset = 0;
2657 	iclog->ic_header.h_num_logops = 0;
2658 	memset(iclog->ic_header.h_cycle_data, 0,
2659 		sizeof(iclog->ic_header.h_cycle_data));
2660 	iclog->ic_header.h_lsn = 0;
2661 	iclog->ic_header.h_tail_lsn = 0;
2662 }
2663 
2664 /*
2665  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2666  * ACTIVE after iclog I/O has completed.
2667  */
2668 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2669 xlog_state_activate_iclogs(
2670 	struct xlog		*log,
2671 	int			*iclogs_changed)
2672 {
2673 	struct xlog_in_core	*iclog = log->l_iclog;
2674 
2675 	do {
2676 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2677 			xlog_state_activate_iclog(iclog, iclogs_changed);
2678 		/*
2679 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2680 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2681 		 */
2682 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2683 			break;
2684 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2685 }
2686 
2687 static int
xlog_covered_state(int prev_state,int iclogs_changed)2688 xlog_covered_state(
2689 	int			prev_state,
2690 	int			iclogs_changed)
2691 {
2692 	/*
2693 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2694 	 * wrote the first covering record (DONE). We go to IDLE if we just
2695 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2696 	 * non-covering write occurs.
2697 	 */
2698 	switch (prev_state) {
2699 	case XLOG_STATE_COVER_IDLE:
2700 		if (iclogs_changed == 1)
2701 			return XLOG_STATE_COVER_IDLE;
2702 		fallthrough;
2703 	case XLOG_STATE_COVER_NEED:
2704 	case XLOG_STATE_COVER_NEED2:
2705 		break;
2706 	case XLOG_STATE_COVER_DONE:
2707 		if (iclogs_changed == 1)
2708 			return XLOG_STATE_COVER_NEED2;
2709 		break;
2710 	case XLOG_STATE_COVER_DONE2:
2711 		if (iclogs_changed == 1)
2712 			return XLOG_STATE_COVER_IDLE;
2713 		break;
2714 	default:
2715 		ASSERT(0);
2716 	}
2717 
2718 	return XLOG_STATE_COVER_NEED;
2719 }
2720 
2721 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2722 xlog_state_clean_iclog(
2723 	struct xlog		*log,
2724 	struct xlog_in_core	*dirty_iclog)
2725 {
2726 	int			iclogs_changed = 0;
2727 
2728 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2729 
2730 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2731 
2732 	xlog_state_activate_iclogs(log, &iclogs_changed);
2733 	wake_up_all(&dirty_iclog->ic_force_wait);
2734 
2735 	if (iclogs_changed) {
2736 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2737 				iclogs_changed);
2738 	}
2739 }
2740 
2741 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2742 xlog_get_lowest_lsn(
2743 	struct xlog		*log)
2744 {
2745 	struct xlog_in_core	*iclog = log->l_iclog;
2746 	xfs_lsn_t		lowest_lsn = 0, lsn;
2747 
2748 	do {
2749 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2750 		    iclog->ic_state == XLOG_STATE_DIRTY)
2751 			continue;
2752 
2753 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2754 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2755 			lowest_lsn = lsn;
2756 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2757 
2758 	return lowest_lsn;
2759 }
2760 
2761 /*
2762  * Completion of a iclog IO does not imply that a transaction has completed, as
2763  * transactions can be large enough to span many iclogs. We cannot change the
2764  * tail of the log half way through a transaction as this may be the only
2765  * transaction in the log and moving the tail to point to the middle of it
2766  * will prevent recovery from finding the start of the transaction. Hence we
2767  * should only update the last_sync_lsn if this iclog contains transaction
2768  * completion callbacks on it.
2769  *
2770  * We have to do this before we drop the icloglock to ensure we are the only one
2771  * that can update it.
2772  *
2773  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2774  * the reservation grant head pushing. This is due to the fact that the push
2775  * target is bound by the current last_sync_lsn value. Hence if we have a large
2776  * amount of log space bound up in this committing transaction then the
2777  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2778  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2779  * should push the AIL to ensure the push target (and hence the grant head) is
2780  * no longer bound by the old log head location and can move forwards and make
2781  * progress again.
2782  */
2783 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2784 xlog_state_set_callback(
2785 	struct xlog		*log,
2786 	struct xlog_in_core	*iclog,
2787 	xfs_lsn_t		header_lsn)
2788 {
2789 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2790 	iclog->ic_state = XLOG_STATE_CALLBACK;
2791 
2792 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2793 			   header_lsn) <= 0);
2794 
2795 	if (list_empty_careful(&iclog->ic_callbacks))
2796 		return;
2797 
2798 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2799 	xlog_grant_push_ail(log, 0);
2800 }
2801 
2802 /*
2803  * Return true if we need to stop processing, false to continue to the next
2804  * iclog. The caller will need to run callbacks if the iclog is returned in the
2805  * XLOG_STATE_CALLBACK state.
2806  */
2807 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2808 xlog_state_iodone_process_iclog(
2809 	struct xlog		*log,
2810 	struct xlog_in_core	*iclog)
2811 {
2812 	xfs_lsn_t		lowest_lsn;
2813 	xfs_lsn_t		header_lsn;
2814 
2815 	switch (iclog->ic_state) {
2816 	case XLOG_STATE_ACTIVE:
2817 	case XLOG_STATE_DIRTY:
2818 		/*
2819 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2820 		 */
2821 		return false;
2822 	case XLOG_STATE_DONE_SYNC:
2823 		/*
2824 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2825 		 * one more check here to see if we have chased our tail around.
2826 		 * If this is not the lowest lsn iclog, then we will leave it
2827 		 * for another completion to process.
2828 		 */
2829 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2830 		lowest_lsn = xlog_get_lowest_lsn(log);
2831 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2832 			return false;
2833 		xlog_state_set_callback(log, iclog, header_lsn);
2834 		return false;
2835 	default:
2836 		/*
2837 		 * Can only perform callbacks in order.  Since this iclog is not
2838 		 * in the DONE_SYNC state, we skip the rest and just try to
2839 		 * clean up.
2840 		 */
2841 		return true;
2842 	}
2843 }
2844 
2845 /*
2846  * Loop over all the iclogs, running attached callbacks on them. Return true if
2847  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2848  * to handle transient shutdown state here at all because
2849  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2850  * cleanup of the callbacks.
2851  */
2852 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2853 xlog_state_do_iclog_callbacks(
2854 	struct xlog		*log)
2855 		__releases(&log->l_icloglock)
2856 		__acquires(&log->l_icloglock)
2857 {
2858 	struct xlog_in_core	*first_iclog = log->l_iclog;
2859 	struct xlog_in_core	*iclog = first_iclog;
2860 	bool			ran_callback = false;
2861 
2862 	do {
2863 		LIST_HEAD(cb_list);
2864 
2865 		if (xlog_state_iodone_process_iclog(log, iclog))
2866 			break;
2867 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2868 			iclog = iclog->ic_next;
2869 			continue;
2870 		}
2871 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2872 		spin_unlock(&log->l_icloglock);
2873 
2874 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2875 		xlog_cil_process_committed(&cb_list);
2876 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2877 		ran_callback = true;
2878 
2879 		spin_lock(&log->l_icloglock);
2880 		xlog_state_clean_iclog(log, iclog);
2881 		iclog = iclog->ic_next;
2882 	} while (iclog != first_iclog);
2883 
2884 	return ran_callback;
2885 }
2886 
2887 
2888 /*
2889  * Loop running iclog completion callbacks until there are no more iclogs in a
2890  * state that can run callbacks.
2891  */
2892 STATIC void
xlog_state_do_callback(struct xlog * log)2893 xlog_state_do_callback(
2894 	struct xlog		*log)
2895 {
2896 	int			flushcnt = 0;
2897 	int			repeats = 0;
2898 
2899 	spin_lock(&log->l_icloglock);
2900 	while (xlog_state_do_iclog_callbacks(log)) {
2901 		if (xlog_is_shutdown(log))
2902 			break;
2903 
2904 		if (++repeats > 5000) {
2905 			flushcnt += repeats;
2906 			repeats = 0;
2907 			xfs_warn(log->l_mp,
2908 				"%s: possible infinite loop (%d iterations)",
2909 				__func__, flushcnt);
2910 		}
2911 	}
2912 
2913 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2914 		wake_up_all(&log->l_flush_wait);
2915 
2916 	spin_unlock(&log->l_icloglock);
2917 }
2918 
2919 
2920 /*
2921  * Finish transitioning this iclog to the dirty state.
2922  *
2923  * Callbacks could take time, so they are done outside the scope of the
2924  * global state machine log lock.
2925  */
2926 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2927 xlog_state_done_syncing(
2928 	struct xlog_in_core	*iclog)
2929 {
2930 	struct xlog		*log = iclog->ic_log;
2931 
2932 	spin_lock(&log->l_icloglock);
2933 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2934 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2935 
2936 	/*
2937 	 * If we got an error, either on the first buffer, or in the case of
2938 	 * split log writes, on the second, we shut down the file system and
2939 	 * no iclogs should ever be attempted to be written to disk again.
2940 	 */
2941 	if (!xlog_is_shutdown(log)) {
2942 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2943 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2944 	}
2945 
2946 	/*
2947 	 * Someone could be sleeping prior to writing out the next
2948 	 * iclog buffer, we wake them all, one will get to do the
2949 	 * I/O, the others get to wait for the result.
2950 	 */
2951 	wake_up_all(&iclog->ic_write_wait);
2952 	spin_unlock(&log->l_icloglock);
2953 	xlog_state_do_callback(log);
2954 }
2955 
2956 /*
2957  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2958  * sleep.  We wait on the flush queue on the head iclog as that should be
2959  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2960  * we will wait here and all new writes will sleep until a sync completes.
2961  *
2962  * The in-core logs are used in a circular fashion. They are not used
2963  * out-of-order even when an iclog past the head is free.
2964  *
2965  * return:
2966  *	* log_offset where xlog_write() can start writing into the in-core
2967  *		log's data space.
2968  *	* in-core log pointer to which xlog_write() should write.
2969  *	* boolean indicating this is a continued write to an in-core log.
2970  *		If this is the last write, then the in-core log's offset field
2971  *		needs to be incremented, depending on the amount of data which
2972  *		is copied.
2973  */
2974 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2975 xlog_state_get_iclog_space(
2976 	struct xlog		*log,
2977 	int			len,
2978 	struct xlog_in_core	**iclogp,
2979 	struct xlog_ticket	*ticket,
2980 	int			*continued_write,
2981 	int			*logoffsetp)
2982 {
2983 	int		  log_offset;
2984 	xlog_rec_header_t *head;
2985 	xlog_in_core_t	  *iclog;
2986 
2987 restart:
2988 	spin_lock(&log->l_icloglock);
2989 	if (xlog_is_shutdown(log)) {
2990 		spin_unlock(&log->l_icloglock);
2991 		return -EIO;
2992 	}
2993 
2994 	iclog = log->l_iclog;
2995 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2996 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2997 
2998 		/* Wait for log writes to have flushed */
2999 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3000 		goto restart;
3001 	}
3002 
3003 	head = &iclog->ic_header;
3004 
3005 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3006 	log_offset = iclog->ic_offset;
3007 
3008 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
3009 
3010 	/* On the 1st write to an iclog, figure out lsn.  This works
3011 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3012 	 * committing to.  If the offset is set, that's how many blocks
3013 	 * must be written.
3014 	 */
3015 	if (log_offset == 0) {
3016 		ticket->t_curr_res -= log->l_iclog_hsize;
3017 		xlog_tic_add_region(ticket,
3018 				    log->l_iclog_hsize,
3019 				    XLOG_REG_TYPE_LRHEADER);
3020 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3021 		head->h_lsn = cpu_to_be64(
3022 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3023 		ASSERT(log->l_curr_block >= 0);
3024 	}
3025 
3026 	/* If there is enough room to write everything, then do it.  Otherwise,
3027 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3028 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3029 	 * until you know exactly how many bytes get copied.  Therefore, wait
3030 	 * until later to update ic_offset.
3031 	 *
3032 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3033 	 * can fit into remaining data section.
3034 	 */
3035 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3036 		int		error = 0;
3037 
3038 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3039 
3040 		/*
3041 		 * If we are the only one writing to this iclog, sync it to
3042 		 * disk.  We need to do an atomic compare and decrement here to
3043 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3044 		 * xlog_state_release_iclog() when there is more than one
3045 		 * reference to the iclog.
3046 		 */
3047 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3048 			error = xlog_state_release_iclog(log, iclog);
3049 		spin_unlock(&log->l_icloglock);
3050 		if (error)
3051 			return error;
3052 		goto restart;
3053 	}
3054 
3055 	/* Do we have enough room to write the full amount in the remainder
3056 	 * of this iclog?  Or must we continue a write on the next iclog and
3057 	 * mark this iclog as completely taken?  In the case where we switch
3058 	 * iclogs (to mark it taken), this particular iclog will release/sync
3059 	 * to disk in xlog_write().
3060 	 */
3061 	if (len <= iclog->ic_size - iclog->ic_offset) {
3062 		*continued_write = 0;
3063 		iclog->ic_offset += len;
3064 	} else {
3065 		*continued_write = 1;
3066 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3067 	}
3068 	*iclogp = iclog;
3069 
3070 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3071 	spin_unlock(&log->l_icloglock);
3072 
3073 	*logoffsetp = log_offset;
3074 	return 0;
3075 }
3076 
3077 /*
3078  * The first cnt-1 times a ticket goes through here we don't need to move the
3079  * grant write head because the permanent reservation has reserved cnt times the
3080  * unit amount.  Release part of current permanent unit reservation and reset
3081  * current reservation to be one units worth.  Also move grant reservation head
3082  * forward.
3083  */
3084 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)3085 xfs_log_ticket_regrant(
3086 	struct xlog		*log,
3087 	struct xlog_ticket	*ticket)
3088 {
3089 	trace_xfs_log_ticket_regrant(log, ticket);
3090 
3091 	if (ticket->t_cnt > 0)
3092 		ticket->t_cnt--;
3093 
3094 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3095 					ticket->t_curr_res);
3096 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3097 					ticket->t_curr_res);
3098 	ticket->t_curr_res = ticket->t_unit_res;
3099 	xlog_tic_reset_res(ticket);
3100 
3101 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3102 
3103 	/* just return if we still have some of the pre-reserved space */
3104 	if (!ticket->t_cnt) {
3105 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3106 				     ticket->t_unit_res);
3107 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3108 
3109 		ticket->t_curr_res = ticket->t_unit_res;
3110 		xlog_tic_reset_res(ticket);
3111 	}
3112 
3113 	xfs_log_ticket_put(ticket);
3114 }
3115 
3116 /*
3117  * Give back the space left from a reservation.
3118  *
3119  * All the information we need to make a correct determination of space left
3120  * is present.  For non-permanent reservations, things are quite easy.  The
3121  * count should have been decremented to zero.  We only need to deal with the
3122  * space remaining in the current reservation part of the ticket.  If the
3123  * ticket contains a permanent reservation, there may be left over space which
3124  * needs to be released.  A count of N means that N-1 refills of the current
3125  * reservation can be done before we need to ask for more space.  The first
3126  * one goes to fill up the first current reservation.  Once we run out of
3127  * space, the count will stay at zero and the only space remaining will be
3128  * in the current reservation field.
3129  */
3130 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)3131 xfs_log_ticket_ungrant(
3132 	struct xlog		*log,
3133 	struct xlog_ticket	*ticket)
3134 {
3135 	int			bytes;
3136 
3137 	trace_xfs_log_ticket_ungrant(log, ticket);
3138 
3139 	if (ticket->t_cnt > 0)
3140 		ticket->t_cnt--;
3141 
3142 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3143 
3144 	/*
3145 	 * If this is a permanent reservation ticket, we may be able to free
3146 	 * up more space based on the remaining count.
3147 	 */
3148 	bytes = ticket->t_curr_res;
3149 	if (ticket->t_cnt > 0) {
3150 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3151 		bytes += ticket->t_unit_res*ticket->t_cnt;
3152 	}
3153 
3154 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3155 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3156 
3157 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3158 
3159 	xfs_log_space_wake(log->l_mp);
3160 	xfs_log_ticket_put(ticket);
3161 }
3162 
3163 /*
3164  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3165  * the current iclog pointer to the next iclog in the ring.
3166  */
3167 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3168 xlog_state_switch_iclogs(
3169 	struct xlog		*log,
3170 	struct xlog_in_core	*iclog,
3171 	int			eventual_size)
3172 {
3173 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3174 	assert_spin_locked(&log->l_icloglock);
3175 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3176 
3177 	if (!eventual_size)
3178 		eventual_size = iclog->ic_offset;
3179 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3180 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3181 	log->l_prev_block = log->l_curr_block;
3182 	log->l_prev_cycle = log->l_curr_cycle;
3183 
3184 	/* roll log?: ic_offset changed later */
3185 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3186 
3187 	/* Round up to next log-sunit */
3188 	if (log->l_iclog_roundoff > BBSIZE) {
3189 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3190 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3191 	}
3192 
3193 	if (log->l_curr_block >= log->l_logBBsize) {
3194 		/*
3195 		 * Rewind the current block before the cycle is bumped to make
3196 		 * sure that the combined LSN never transiently moves forward
3197 		 * when the log wraps to the next cycle. This is to support the
3198 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3199 		 * other cases should acquire l_icloglock.
3200 		 */
3201 		log->l_curr_block -= log->l_logBBsize;
3202 		ASSERT(log->l_curr_block >= 0);
3203 		smp_wmb();
3204 		log->l_curr_cycle++;
3205 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3206 			log->l_curr_cycle++;
3207 	}
3208 	ASSERT(iclog == log->l_iclog);
3209 	log->l_iclog = iclog->ic_next;
3210 }
3211 
3212 /*
3213  * Force the iclog to disk and check if the iclog has been completed before
3214  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3215  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3216  * If completion has already occurred, tell the caller so that it can avoid an
3217  * unnecessary wait on the iclog.
3218  */
3219 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)3220 xlog_force_and_check_iclog(
3221 	struct xlog_in_core	*iclog,
3222 	bool			*completed)
3223 {
3224 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3225 	int			error;
3226 
3227 	*completed = false;
3228 	error = xlog_force_iclog(iclog);
3229 	if (error)
3230 		return error;
3231 
3232 	/*
3233 	 * If the iclog has already been completed and reused the header LSN
3234 	 * will have been rewritten by completion
3235 	 */
3236 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3237 		*completed = true;
3238 	return 0;
3239 }
3240 
3241 /*
3242  * Write out all data in the in-core log as of this exact moment in time.
3243  *
3244  * Data may be written to the in-core log during this call.  However,
3245  * we don't guarantee this data will be written out.  A change from past
3246  * implementation means this routine will *not* write out zero length LRs.
3247  *
3248  * Basically, we try and perform an intelligent scan of the in-core logs.
3249  * If we determine there is no flushable data, we just return.  There is no
3250  * flushable data if:
3251  *
3252  *	1. the current iclog is active and has no data; the previous iclog
3253  *		is in the active or dirty state.
3254  *	2. the current iclog is drity, and the previous iclog is in the
3255  *		active or dirty state.
3256  *
3257  * We may sleep if:
3258  *
3259  *	1. the current iclog is not in the active nor dirty state.
3260  *	2. the current iclog dirty, and the previous iclog is not in the
3261  *		active nor dirty state.
3262  *	3. the current iclog is active, and there is another thread writing
3263  *		to this particular iclog.
3264  *	4. a) the current iclog is active and has no other writers
3265  *	   b) when we return from flushing out this iclog, it is still
3266  *		not in the active nor dirty state.
3267  */
3268 int
xfs_log_force(struct xfs_mount * mp,uint flags)3269 xfs_log_force(
3270 	struct xfs_mount	*mp,
3271 	uint			flags)
3272 {
3273 	struct xlog		*log = mp->m_log;
3274 	struct xlog_in_core	*iclog;
3275 
3276 	XFS_STATS_INC(mp, xs_log_force);
3277 	trace_xfs_log_force(mp, 0, _RET_IP_);
3278 
3279 	xlog_cil_force(log);
3280 
3281 	spin_lock(&log->l_icloglock);
3282 	if (xlog_is_shutdown(log))
3283 		goto out_error;
3284 
3285 	iclog = log->l_iclog;
3286 	trace_xlog_iclog_force(iclog, _RET_IP_);
3287 
3288 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3289 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3290 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3291 		/*
3292 		 * If the head is dirty or (active and empty), then we need to
3293 		 * look at the previous iclog.
3294 		 *
3295 		 * If the previous iclog is active or dirty we are done.  There
3296 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3297 		 * previous iclog and go to sleep.
3298 		 */
3299 		iclog = iclog->ic_prev;
3300 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3301 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3302 			/* We have exclusive access to this iclog. */
3303 			bool	completed;
3304 
3305 			if (xlog_force_and_check_iclog(iclog, &completed))
3306 				goto out_error;
3307 
3308 			if (completed)
3309 				goto out_unlock;
3310 		} else {
3311 			/*
3312 			 * Someone else is still writing to this iclog, so we
3313 			 * need to ensure that when they release the iclog it
3314 			 * gets synced immediately as we may be waiting on it.
3315 			 */
3316 			xlog_state_switch_iclogs(log, iclog, 0);
3317 		}
3318 	}
3319 
3320 	/*
3321 	 * The iclog we are about to wait on may contain the checkpoint pushed
3322 	 * by the above xlog_cil_force() call, but it may not have been pushed
3323 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3324 	 * are flushed when this iclog is written.
3325 	 */
3326 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3327 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3328 
3329 	if (flags & XFS_LOG_SYNC)
3330 		return xlog_wait_on_iclog(iclog);
3331 out_unlock:
3332 	spin_unlock(&log->l_icloglock);
3333 	return 0;
3334 out_error:
3335 	spin_unlock(&log->l_icloglock);
3336 	return -EIO;
3337 }
3338 
3339 /*
3340  * Force the log to a specific LSN.
3341  *
3342  * If an iclog with that lsn can be found:
3343  *	If it is in the DIRTY state, just return.
3344  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3345  *		state and go to sleep or return.
3346  *	If it is in any other state, go to sleep or return.
3347  *
3348  * Synchronous forces are implemented with a wait queue.  All callers trying
3349  * to force a given lsn to disk must wait on the queue attached to the
3350  * specific in-core log.  When given in-core log finally completes its write
3351  * to disk, that thread will wake up all threads waiting on the queue.
3352  */
3353 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3354 xlog_force_lsn(
3355 	struct xlog		*log,
3356 	xfs_lsn_t		lsn,
3357 	uint			flags,
3358 	int			*log_flushed,
3359 	bool			already_slept)
3360 {
3361 	struct xlog_in_core	*iclog;
3362 	bool			completed;
3363 
3364 	spin_lock(&log->l_icloglock);
3365 	if (xlog_is_shutdown(log))
3366 		goto out_error;
3367 
3368 	iclog = log->l_iclog;
3369 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3370 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3371 		iclog = iclog->ic_next;
3372 		if (iclog == log->l_iclog)
3373 			goto out_unlock;
3374 	}
3375 
3376 	switch (iclog->ic_state) {
3377 	case XLOG_STATE_ACTIVE:
3378 		/*
3379 		 * We sleep here if we haven't already slept (e.g. this is the
3380 		 * first time we've looked at the correct iclog buf) and the
3381 		 * buffer before us is going to be sync'ed.  The reason for this
3382 		 * is that if we are doing sync transactions here, by waiting
3383 		 * for the previous I/O to complete, we can allow a few more
3384 		 * transactions into this iclog before we close it down.
3385 		 *
3386 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3387 		 * refcnt so we can release the log (which drops the ref count).
3388 		 * The state switch keeps new transaction commits from using
3389 		 * this buffer.  When the current commits finish writing into
3390 		 * the buffer, the refcount will drop to zero and the buffer
3391 		 * will go out then.
3392 		 */
3393 		if (!already_slept &&
3394 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3395 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3396 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3397 					&log->l_icloglock);
3398 			return -EAGAIN;
3399 		}
3400 		if (xlog_force_and_check_iclog(iclog, &completed))
3401 			goto out_error;
3402 		if (log_flushed)
3403 			*log_flushed = 1;
3404 		if (completed)
3405 			goto out_unlock;
3406 		break;
3407 	case XLOG_STATE_WANT_SYNC:
3408 		/*
3409 		 * This iclog may contain the checkpoint pushed by the
3410 		 * xlog_cil_force_seq() call, but there are other writers still
3411 		 * accessing it so it hasn't been pushed to disk yet. Like the
3412 		 * ACTIVE case above, we need to make sure caches are flushed
3413 		 * when this iclog is written.
3414 		 */
3415 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3416 		break;
3417 	default:
3418 		/*
3419 		 * The entire checkpoint was written by the CIL force and is on
3420 		 * its way to disk already. It will be stable when it
3421 		 * completes, so we don't need to manipulate caches here at all.
3422 		 * We just need to wait for completion if necessary.
3423 		 */
3424 		break;
3425 	}
3426 
3427 	if (flags & XFS_LOG_SYNC)
3428 		return xlog_wait_on_iclog(iclog);
3429 out_unlock:
3430 	spin_unlock(&log->l_icloglock);
3431 	return 0;
3432 out_error:
3433 	spin_unlock(&log->l_icloglock);
3434 	return -EIO;
3435 }
3436 
3437 /*
3438  * Force the log to a specific checkpoint sequence.
3439  *
3440  * First force the CIL so that all the required changes have been flushed to the
3441  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3442  * the iclog that needs to be flushed to stable storage. If the caller needs
3443  * a synchronous log force, we will wait on the iclog with the LSN returned by
3444  * xlog_cil_force_seq() to be completed.
3445  */
3446 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3447 xfs_log_force_seq(
3448 	struct xfs_mount	*mp,
3449 	xfs_csn_t		seq,
3450 	uint			flags,
3451 	int			*log_flushed)
3452 {
3453 	struct xlog		*log = mp->m_log;
3454 	xfs_lsn_t		lsn;
3455 	int			ret;
3456 	ASSERT(seq != 0);
3457 
3458 	XFS_STATS_INC(mp, xs_log_force);
3459 	trace_xfs_log_force(mp, seq, _RET_IP_);
3460 
3461 	lsn = xlog_cil_force_seq(log, seq);
3462 	if (lsn == NULLCOMMITLSN)
3463 		return 0;
3464 
3465 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3466 	if (ret == -EAGAIN) {
3467 		XFS_STATS_INC(mp, xs_log_force_sleep);
3468 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3469 	}
3470 	return ret;
3471 }
3472 
3473 /*
3474  * Free a used ticket when its refcount falls to zero.
3475  */
3476 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3477 xfs_log_ticket_put(
3478 	xlog_ticket_t	*ticket)
3479 {
3480 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 	if (atomic_dec_and_test(&ticket->t_ref))
3482 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3483 }
3484 
3485 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3486 xfs_log_ticket_get(
3487 	xlog_ticket_t	*ticket)
3488 {
3489 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3490 	atomic_inc(&ticket->t_ref);
3491 	return ticket;
3492 }
3493 
3494 /*
3495  * Figure out the total log space unit (in bytes) that would be
3496  * required for a log ticket.
3497  */
3498 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes)3499 xlog_calc_unit_res(
3500 	struct xlog		*log,
3501 	int			unit_bytes)
3502 {
3503 	int			iclog_space;
3504 	uint			num_headers;
3505 
3506 	/*
3507 	 * Permanent reservations have up to 'cnt'-1 active log operations
3508 	 * in the log.  A unit in this case is the amount of space for one
3509 	 * of these log operations.  Normal reservations have a cnt of 1
3510 	 * and their unit amount is the total amount of space required.
3511 	 *
3512 	 * The following lines of code account for non-transaction data
3513 	 * which occupy space in the on-disk log.
3514 	 *
3515 	 * Normal form of a transaction is:
3516 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3517 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3518 	 *
3519 	 * We need to account for all the leadup data and trailer data
3520 	 * around the transaction data.
3521 	 * And then we need to account for the worst case in terms of using
3522 	 * more space.
3523 	 * The worst case will happen if:
3524 	 * - the placement of the transaction happens to be such that the
3525 	 *   roundoff is at its maximum
3526 	 * - the transaction data is synced before the commit record is synced
3527 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3528 	 *   Therefore the commit record is in its own Log Record.
3529 	 *   This can happen as the commit record is called with its
3530 	 *   own region to xlog_write().
3531 	 *   This then means that in the worst case, roundoff can happen for
3532 	 *   the commit-rec as well.
3533 	 *   The commit-rec is smaller than padding in this scenario and so it is
3534 	 *   not added separately.
3535 	 */
3536 
3537 	/* for trans header */
3538 	unit_bytes += sizeof(xlog_op_header_t);
3539 	unit_bytes += sizeof(xfs_trans_header_t);
3540 
3541 	/* for start-rec */
3542 	unit_bytes += sizeof(xlog_op_header_t);
3543 
3544 	/*
3545 	 * for LR headers - the space for data in an iclog is the size minus
3546 	 * the space used for the headers. If we use the iclog size, then we
3547 	 * undercalculate the number of headers required.
3548 	 *
3549 	 * Furthermore - the addition of op headers for split-recs might
3550 	 * increase the space required enough to require more log and op
3551 	 * headers, so take that into account too.
3552 	 *
3553 	 * IMPORTANT: This reservation makes the assumption that if this
3554 	 * transaction is the first in an iclog and hence has the LR headers
3555 	 * accounted to it, then the remaining space in the iclog is
3556 	 * exclusively for this transaction.  i.e. if the transaction is larger
3557 	 * than the iclog, it will be the only thing in that iclog.
3558 	 * Fundamentally, this means we must pass the entire log vector to
3559 	 * xlog_write to guarantee this.
3560 	 */
3561 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3562 	num_headers = howmany(unit_bytes, iclog_space);
3563 
3564 	/* for split-recs - ophdrs added when data split over LRs */
3565 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3566 
3567 	/* add extra header reservations if we overrun */
3568 	while (!num_headers ||
3569 	       howmany(unit_bytes, iclog_space) > num_headers) {
3570 		unit_bytes += sizeof(xlog_op_header_t);
3571 		num_headers++;
3572 	}
3573 	unit_bytes += log->l_iclog_hsize * num_headers;
3574 
3575 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3576 	unit_bytes += log->l_iclog_hsize;
3577 
3578 	/* roundoff padding for transaction data and one for commit record */
3579 	unit_bytes += 2 * log->l_iclog_roundoff;
3580 
3581 	return unit_bytes;
3582 }
3583 
3584 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3585 xfs_log_calc_unit_res(
3586 	struct xfs_mount	*mp,
3587 	int			unit_bytes)
3588 {
3589 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3590 }
3591 
3592 /*
3593  * Allocate and initialise a new log ticket.
3594  */
3595 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent)3596 xlog_ticket_alloc(
3597 	struct xlog		*log,
3598 	int			unit_bytes,
3599 	int			cnt,
3600 	char			client,
3601 	bool			permanent)
3602 {
3603 	struct xlog_ticket	*tic;
3604 	int			unit_res;
3605 
3606 	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3607 
3608 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3609 
3610 	atomic_set(&tic->t_ref, 1);
3611 	tic->t_task		= current;
3612 	INIT_LIST_HEAD(&tic->t_queue);
3613 	tic->t_unit_res		= unit_res;
3614 	tic->t_curr_res		= unit_res;
3615 	tic->t_cnt		= cnt;
3616 	tic->t_ocnt		= cnt;
3617 	tic->t_tid		= prandom_u32();
3618 	tic->t_clientid		= client;
3619 	if (permanent)
3620 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3621 
3622 	xlog_tic_reset_res(tic);
3623 
3624 	return tic;
3625 }
3626 
3627 #if defined(DEBUG)
3628 /*
3629  * Make sure that the destination ptr is within the valid data region of
3630  * one of the iclogs.  This uses backup pointers stored in a different
3631  * part of the log in case we trash the log structure.
3632  */
3633 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3634 xlog_verify_dest_ptr(
3635 	struct xlog	*log,
3636 	void		*ptr)
3637 {
3638 	int i;
3639 	int good_ptr = 0;
3640 
3641 	for (i = 0; i < log->l_iclog_bufs; i++) {
3642 		if (ptr >= log->l_iclog_bak[i] &&
3643 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3644 			good_ptr++;
3645 	}
3646 
3647 	if (!good_ptr)
3648 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3649 }
3650 
3651 /*
3652  * Check to make sure the grant write head didn't just over lap the tail.  If
3653  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3654  * the cycles differ by exactly one and check the byte count.
3655  *
3656  * This check is run unlocked, so can give false positives. Rather than assert
3657  * on failures, use a warn-once flag and a panic tag to allow the admin to
3658  * determine if they want to panic the machine when such an error occurs. For
3659  * debug kernels this will have the same effect as using an assert but, unlinke
3660  * an assert, it can be turned off at runtime.
3661  */
3662 STATIC void
xlog_verify_grant_tail(struct xlog * log)3663 xlog_verify_grant_tail(
3664 	struct xlog	*log)
3665 {
3666 	int		tail_cycle, tail_blocks;
3667 	int		cycle, space;
3668 
3669 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3670 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3671 	if (tail_cycle != cycle) {
3672 		if (cycle - 1 != tail_cycle &&
3673 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3674 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3675 				"%s: cycle - 1 != tail_cycle", __func__);
3676 		}
3677 
3678 		if (space > BBTOB(tail_blocks) &&
3679 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3680 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3681 				"%s: space > BBTOB(tail_blocks)", __func__);
3682 		}
3683 	}
3684 }
3685 
3686 /* check if it will fit */
3687 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3688 xlog_verify_tail_lsn(
3689 	struct xlog		*log,
3690 	struct xlog_in_core	*iclog)
3691 {
3692 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3693 	int		blocks;
3694 
3695     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3696 	blocks =
3697 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3698 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3699 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3700     } else {
3701 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3702 
3703 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3704 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3705 
3706 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3707 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3708 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3709     }
3710 }
3711 
3712 /*
3713  * Perform a number of checks on the iclog before writing to disk.
3714  *
3715  * 1. Make sure the iclogs are still circular
3716  * 2. Make sure we have a good magic number
3717  * 3. Make sure we don't have magic numbers in the data
3718  * 4. Check fields of each log operation header for:
3719  *	A. Valid client identifier
3720  *	B. tid ptr value falls in valid ptr space (user space code)
3721  *	C. Length in log record header is correct according to the
3722  *		individual operation headers within record.
3723  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3724  *	log, check the preceding blocks of the physical log to make sure all
3725  *	the cycle numbers agree with the current cycle number.
3726  */
3727 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3728 xlog_verify_iclog(
3729 	struct xlog		*log,
3730 	struct xlog_in_core	*iclog,
3731 	int			count)
3732 {
3733 	xlog_op_header_t	*ophead;
3734 	xlog_in_core_t		*icptr;
3735 	xlog_in_core_2_t	*xhdr;
3736 	void			*base_ptr, *ptr, *p;
3737 	ptrdiff_t		field_offset;
3738 	uint8_t			clientid;
3739 	int			len, i, j, k, op_len;
3740 	int			idx;
3741 
3742 	/* check validity of iclog pointers */
3743 	spin_lock(&log->l_icloglock);
3744 	icptr = log->l_iclog;
3745 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3746 		ASSERT(icptr);
3747 
3748 	if (icptr != log->l_iclog)
3749 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3750 	spin_unlock(&log->l_icloglock);
3751 
3752 	/* check log magic numbers */
3753 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3754 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3755 
3756 	base_ptr = ptr = &iclog->ic_header;
3757 	p = &iclog->ic_header;
3758 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3759 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3760 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3761 				__func__);
3762 	}
3763 
3764 	/* check fields */
3765 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3766 	base_ptr = ptr = iclog->ic_datap;
3767 	ophead = ptr;
3768 	xhdr = iclog->ic_data;
3769 	for (i = 0; i < len; i++) {
3770 		ophead = ptr;
3771 
3772 		/* clientid is only 1 byte */
3773 		p = &ophead->oh_clientid;
3774 		field_offset = p - base_ptr;
3775 		if (field_offset & 0x1ff) {
3776 			clientid = ophead->oh_clientid;
3777 		} else {
3778 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3779 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3780 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3781 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3782 				clientid = xlog_get_client_id(
3783 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3784 			} else {
3785 				clientid = xlog_get_client_id(
3786 					iclog->ic_header.h_cycle_data[idx]);
3787 			}
3788 		}
3789 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3790 			xfs_warn(log->l_mp,
3791 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3792 				__func__, clientid, ophead,
3793 				(unsigned long)field_offset);
3794 
3795 		/* check length */
3796 		p = &ophead->oh_len;
3797 		field_offset = p - base_ptr;
3798 		if (field_offset & 0x1ff) {
3799 			op_len = be32_to_cpu(ophead->oh_len);
3800 		} else {
3801 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3802 				    (uintptr_t)iclog->ic_datap);
3803 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3804 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3805 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3806 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3807 			} else {
3808 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3809 			}
3810 		}
3811 		ptr += sizeof(xlog_op_header_t) + op_len;
3812 	}
3813 }
3814 #endif
3815 
3816 /*
3817  * Perform a forced shutdown on the log. This should be called once and once
3818  * only by the high level filesystem shutdown code to shut the log subsystem
3819  * down cleanly.
3820  *
3821  * Our main objectives here are to make sure that:
3822  *	a. if the shutdown was not due to a log IO error, flush the logs to
3823  *	   disk. Anything modified after this is ignored.
3824  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3825  *	   parties to find out. Nothing new gets queued after this is done.
3826  *	c. Tasks sleeping on log reservations, pinned objects and
3827  *	   other resources get woken up.
3828  *
3829  * Return true if the shutdown cause was a log IO error and we actually shut the
3830  * log down.
3831  */
3832 bool
xlog_force_shutdown(struct xlog * log,int shutdown_flags)3833 xlog_force_shutdown(
3834 	struct xlog	*log,
3835 	int		shutdown_flags)
3836 {
3837 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3838 
3839 	/*
3840 	 * If this happens during log recovery then we aren't using the runtime
3841 	 * log mechanisms yet so there's nothing to shut down.
3842 	 */
3843 	if (!log || xlog_in_recovery(log))
3844 		return false;
3845 
3846 	ASSERT(!xlog_is_shutdown(log));
3847 
3848 	/*
3849 	 * Flush all the completed transactions to disk before marking the log
3850 	 * being shut down. We need to do this first as shutting down the log
3851 	 * before the force will prevent the log force from flushing the iclogs
3852 	 * to disk.
3853 	 *
3854 	 * Re-entry due to a log IO error shutdown during the log force is
3855 	 * prevented by the atomicity of higher level shutdown code.
3856 	 */
3857 	if (!log_error)
3858 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3859 
3860 	/*
3861 	 * Atomically set the shutdown state. If the shutdown state is already
3862 	 * set, there someone else is performing the shutdown and so we are done
3863 	 * here. This should never happen because we should only ever get called
3864 	 * once by the first shutdown caller.
3865 	 *
3866 	 * Much of the log state machine transitions assume that shutdown state
3867 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3868 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3869 	 * operation to set the shutdown state.
3870 	 */
3871 	spin_lock(&log->l_icloglock);
3872 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3873 		spin_unlock(&log->l_icloglock);
3874 		ASSERT(0);
3875 		return false;
3876 	}
3877 	spin_unlock(&log->l_icloglock);
3878 
3879 	/*
3880 	 * We don't want anybody waiting for log reservations after this. That
3881 	 * means we have to wake up everybody queued up on reserveq as well as
3882 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3883 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3884 	 * action is protected by the grant locks.
3885 	 */
3886 	xlog_grant_head_wake_all(&log->l_reserve_head);
3887 	xlog_grant_head_wake_all(&log->l_write_head);
3888 
3889 	/*
3890 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3891 	 * as if the log writes were completed. The abort handling in the log
3892 	 * item committed callback functions will do this again under lock to
3893 	 * avoid races.
3894 	 */
3895 	spin_lock(&log->l_cilp->xc_push_lock);
3896 	wake_up_all(&log->l_cilp->xc_start_wait);
3897 	wake_up_all(&log->l_cilp->xc_commit_wait);
3898 	spin_unlock(&log->l_cilp->xc_push_lock);
3899 
3900 	spin_lock(&log->l_icloglock);
3901 	xlog_state_shutdown_callbacks(log);
3902 	spin_unlock(&log->l_icloglock);
3903 
3904 	return log_error;
3905 }
3906 
3907 STATIC int
xlog_iclogs_empty(struct xlog * log)3908 xlog_iclogs_empty(
3909 	struct xlog	*log)
3910 {
3911 	xlog_in_core_t	*iclog;
3912 
3913 	iclog = log->l_iclog;
3914 	do {
3915 		/* endianness does not matter here, zero is zero in
3916 		 * any language.
3917 		 */
3918 		if (iclog->ic_header.h_num_logops)
3919 			return 0;
3920 		iclog = iclog->ic_next;
3921 	} while (iclog != log->l_iclog);
3922 	return 1;
3923 }
3924 
3925 /*
3926  * Verify that an LSN stamped into a piece of metadata is valid. This is
3927  * intended for use in read verifiers on v5 superblocks.
3928  */
3929 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3930 xfs_log_check_lsn(
3931 	struct xfs_mount	*mp,
3932 	xfs_lsn_t		lsn)
3933 {
3934 	struct xlog		*log = mp->m_log;
3935 	bool			valid;
3936 
3937 	/*
3938 	 * norecovery mode skips mount-time log processing and unconditionally
3939 	 * resets the in-core LSN. We can't validate in this mode, but
3940 	 * modifications are not allowed anyways so just return true.
3941 	 */
3942 	if (xfs_has_norecovery(mp))
3943 		return true;
3944 
3945 	/*
3946 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3947 	 * handled by recovery and thus safe to ignore here.
3948 	 */
3949 	if (lsn == NULLCOMMITLSN)
3950 		return true;
3951 
3952 	valid = xlog_valid_lsn(mp->m_log, lsn);
3953 
3954 	/* warn the user about what's gone wrong before verifier failure */
3955 	if (!valid) {
3956 		spin_lock(&log->l_icloglock);
3957 		xfs_warn(mp,
3958 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3959 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3960 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3961 			 log->l_curr_cycle, log->l_curr_block);
3962 		spin_unlock(&log->l_icloglock);
3963 	}
3964 
3965 	return valid;
3966 }
3967 
3968 /*
3969  * Notify the log that we're about to start using a feature that is protected
3970  * by a log incompat feature flag.  This will prevent log covering from
3971  * clearing those flags.
3972  */
3973 void
xlog_use_incompat_feat(struct xlog * log)3974 xlog_use_incompat_feat(
3975 	struct xlog		*log)
3976 {
3977 	down_read(&log->l_incompat_users);
3978 }
3979 
3980 /* Notify the log that we've finished using log incompat features. */
3981 void
xlog_drop_incompat_feat(struct xlog * log)3982 xlog_drop_incompat_feat(
3983 	struct xlog		*log)
3984 {
3985 	up_read(&log->l_incompat_users);
3986 }
3987