1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27
28 kmem_zone_t *xfs_trans_zone;
29
30 #if defined(CONFIG_TRACEPOINTS)
31 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)32 xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34 {
35 struct xfs_trans_res resv;
36 struct xfs_trans_res *res;
37 struct xfs_trans_res *end_res;
38 int i;
39
40 res = (struct xfs_trans_res *)M_RES(mp);
41 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 for (i = 0; res < end_res; i++, res++)
43 trace_xfs_trans_resv_calc(mp, i, res);
44 xfs_log_get_max_trans_res(mp, &resv);
45 trace_xfs_trans_resv_calc(mp, -1, &resv);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50
51 /*
52 * Initialize the precomputed transaction reservation values
53 * in the mount structure.
54 */
55 void
xfs_trans_init(struct xfs_mount * mp)56 xfs_trans_init(
57 struct xfs_mount *mp)
58 {
59 xfs_trans_resv_calc(mp, M_RES(mp));
60 xfs_trans_trace_reservations(mp);
61 }
62
63 /*
64 * Free the transaction structure. If there is more clean up
65 * to do when the structure is freed, add it here.
66 */
67 STATIC void
xfs_trans_free(struct xfs_trans * tp)68 xfs_trans_free(
69 struct xfs_trans *tp)
70 {
71 xfs_extent_busy_sort(&tp->t_busy);
72 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
73
74 trace_xfs_trans_free(tp, _RET_IP_);
75 xfs_trans_clear_context(tp);
76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 sb_end_intwrite(tp->t_mountp->m_super);
78 xfs_trans_free_dqinfo(tp);
79 kmem_cache_free(xfs_trans_zone, tp);
80 }
81
82 /*
83 * This is called to create a new transaction which will share the
84 * permanent log reservation of the given transaction. The remaining
85 * unused block and rt extent reservations are also inherited. This
86 * implies that the original transaction is no longer allowed to allocate
87 * blocks. Locks and log items, however, are no inherited. They must
88 * be added to the new transaction explicitly.
89 */
90 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)91 xfs_trans_dup(
92 struct xfs_trans *tp)
93 {
94 struct xfs_trans *ntp;
95
96 trace_xfs_trans_dup(tp, _RET_IP_);
97
98 ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
99
100 /*
101 * Initialize the new transaction structure.
102 */
103 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
104 ntp->t_mountp = tp->t_mountp;
105 INIT_LIST_HEAD(&ntp->t_items);
106 INIT_LIST_HEAD(&ntp->t_busy);
107 INIT_LIST_HEAD(&ntp->t_dfops);
108 ntp->t_firstblock = NULLFSBLOCK;
109
110 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
111 ASSERT(tp->t_ticket != NULL);
112
113 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
114 (tp->t_flags & XFS_TRANS_RESERVE) |
115 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
116 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
117 /* We gave our writer reference to the new transaction */
118 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
119 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
120
121 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
122 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
123 tp->t_blk_res = tp->t_blk_res_used;
124
125 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
126 tp->t_rtx_res = tp->t_rtx_res_used;
127
128 xfs_trans_switch_context(tp, ntp);
129
130 /* move deferred ops over to the new tp */
131 xfs_defer_move(ntp, tp);
132
133 xfs_trans_dup_dqinfo(tp, ntp);
134 return ntp;
135 }
136
137 /*
138 * This is called to reserve free disk blocks and log space for the
139 * given transaction. This must be done before allocating any resources
140 * within the transaction.
141 *
142 * This will return ENOSPC if there are not enough blocks available.
143 * It will sleep waiting for available log space.
144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
145 * is used by long running transactions. If any one of the reservations
146 * fails then they will all be backed out.
147 *
148 * This does not do quota reservations. That typically is done by the
149 * caller afterwards.
150 */
151 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)152 xfs_trans_reserve(
153 struct xfs_trans *tp,
154 struct xfs_trans_res *resp,
155 uint blocks,
156 uint rtextents)
157 {
158 struct xfs_mount *mp = tp->t_mountp;
159 int error = 0;
160 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
161
162 /*
163 * Attempt to reserve the needed disk blocks by decrementing
164 * the number needed from the number available. This will
165 * fail if the count would go below zero.
166 */
167 if (blocks > 0) {
168 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
169 if (error != 0)
170 return -ENOSPC;
171 tp->t_blk_res += blocks;
172 }
173
174 /*
175 * Reserve the log space needed for this transaction.
176 */
177 if (resp->tr_logres > 0) {
178 bool permanent = false;
179
180 ASSERT(tp->t_log_res == 0 ||
181 tp->t_log_res == resp->tr_logres);
182 ASSERT(tp->t_log_count == 0 ||
183 tp->t_log_count == resp->tr_logcount);
184
185 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
186 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
187 permanent = true;
188 } else {
189 ASSERT(tp->t_ticket == NULL);
190 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
191 }
192
193 if (tp->t_ticket != NULL) {
194 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
195 error = xfs_log_regrant(mp, tp->t_ticket);
196 } else {
197 error = xfs_log_reserve(mp,
198 resp->tr_logres,
199 resp->tr_logcount,
200 &tp->t_ticket, XFS_TRANSACTION,
201 permanent);
202 }
203
204 if (error)
205 goto undo_blocks;
206
207 tp->t_log_res = resp->tr_logres;
208 tp->t_log_count = resp->tr_logcount;
209 }
210
211 /*
212 * Attempt to reserve the needed realtime extents by decrementing
213 * the number needed from the number available. This will
214 * fail if the count would go below zero.
215 */
216 if (rtextents > 0) {
217 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
218 if (error) {
219 error = -ENOSPC;
220 goto undo_log;
221 }
222 tp->t_rtx_res += rtextents;
223 }
224
225 return 0;
226
227 /*
228 * Error cases jump to one of these labels to undo any
229 * reservations which have already been performed.
230 */
231 undo_log:
232 if (resp->tr_logres > 0) {
233 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
234 tp->t_ticket = NULL;
235 tp->t_log_res = 0;
236 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
237 }
238
239 undo_blocks:
240 if (blocks > 0) {
241 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
242 tp->t_blk_res = 0;
243 }
244 return error;
245 }
246
247 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)248 xfs_trans_alloc(
249 struct xfs_mount *mp,
250 struct xfs_trans_res *resp,
251 uint blocks,
252 uint rtextents,
253 uint flags,
254 struct xfs_trans **tpp)
255 {
256 struct xfs_trans *tp;
257 bool want_retry = true;
258 int error;
259
260 /*
261 * Allocate the handle before we do our freeze accounting and setting up
262 * GFP_NOFS allocation context so that we avoid lockdep false positives
263 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
264 */
265 retry:
266 tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
267 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
268 sb_start_intwrite(mp->m_super);
269 xfs_trans_set_context(tp);
270
271 /*
272 * Zero-reservation ("empty") transactions can't modify anything, so
273 * they're allowed to run while we're frozen.
274 */
275 WARN_ON(resp->tr_logres > 0 &&
276 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
277 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
278 xfs_has_lazysbcount(mp));
279
280 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
281 tp->t_flags = flags;
282 tp->t_mountp = mp;
283 INIT_LIST_HEAD(&tp->t_items);
284 INIT_LIST_HEAD(&tp->t_busy);
285 INIT_LIST_HEAD(&tp->t_dfops);
286 tp->t_firstblock = NULLFSBLOCK;
287
288 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
289 if (error == -ENOSPC && want_retry) {
290 xfs_trans_cancel(tp);
291
292 /*
293 * We weren't able to reserve enough space for the transaction.
294 * Flush the other speculative space allocations to free space.
295 * Do not perform a synchronous scan because callers can hold
296 * other locks.
297 */
298 xfs_blockgc_flush_all(mp);
299 want_retry = false;
300 goto retry;
301 }
302 if (error) {
303 xfs_trans_cancel(tp);
304 return error;
305 }
306
307 trace_xfs_trans_alloc(tp, _RET_IP_);
308
309 *tpp = tp;
310 return 0;
311 }
312
313 /*
314 * Create an empty transaction with no reservation. This is a defensive
315 * mechanism for routines that query metadata without actually modifying them --
316 * if the metadata being queried is somehow cross-linked (think a btree block
317 * pointer that points higher in the tree), we risk deadlock. However, blocks
318 * grabbed as part of a transaction can be re-grabbed. The verifiers will
319 * notice the corrupt block and the operation will fail back to userspace
320 * without deadlocking.
321 *
322 * Note the zero-length reservation; this transaction MUST be cancelled without
323 * any dirty data.
324 *
325 * Callers should obtain freeze protection to avoid a conflict with fs freezing
326 * where we can be grabbing buffers at the same time that freeze is trying to
327 * drain the buffer LRU list.
328 */
329 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)330 xfs_trans_alloc_empty(
331 struct xfs_mount *mp,
332 struct xfs_trans **tpp)
333 {
334 struct xfs_trans_res resv = {0};
335
336 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
337 }
338
339 /*
340 * Record the indicated change to the given field for application
341 * to the file system's superblock when the transaction commits.
342 * For now, just store the change in the transaction structure.
343 *
344 * Mark the transaction structure to indicate that the superblock
345 * needs to be updated before committing.
346 *
347 * Because we may not be keeping track of allocated/free inodes and
348 * used filesystem blocks in the superblock, we do not mark the
349 * superblock dirty in this transaction if we modify these fields.
350 * We still need to update the transaction deltas so that they get
351 * applied to the incore superblock, but we don't want them to
352 * cause the superblock to get locked and logged if these are the
353 * only fields in the superblock that the transaction modifies.
354 */
355 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)356 xfs_trans_mod_sb(
357 xfs_trans_t *tp,
358 uint field,
359 int64_t delta)
360 {
361 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
362 xfs_mount_t *mp = tp->t_mountp;
363
364 switch (field) {
365 case XFS_TRANS_SB_ICOUNT:
366 tp->t_icount_delta += delta;
367 if (xfs_has_lazysbcount(mp))
368 flags &= ~XFS_TRANS_SB_DIRTY;
369 break;
370 case XFS_TRANS_SB_IFREE:
371 tp->t_ifree_delta += delta;
372 if (xfs_has_lazysbcount(mp))
373 flags &= ~XFS_TRANS_SB_DIRTY;
374 break;
375 case XFS_TRANS_SB_FDBLOCKS:
376 /*
377 * Track the number of blocks allocated in the transaction.
378 * Make sure it does not exceed the number reserved. If so,
379 * shutdown as this can lead to accounting inconsistency.
380 */
381 if (delta < 0) {
382 tp->t_blk_res_used += (uint)-delta;
383 if (tp->t_blk_res_used > tp->t_blk_res)
384 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
385 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
386 int64_t blkres_delta;
387
388 /*
389 * Return freed blocks directly to the reservation
390 * instead of the global pool, being careful not to
391 * overflow the trans counter. This is used to preserve
392 * reservation across chains of transaction rolls that
393 * repeatedly free and allocate blocks.
394 */
395 blkres_delta = min_t(int64_t, delta,
396 UINT_MAX - tp->t_blk_res);
397 tp->t_blk_res += blkres_delta;
398 delta -= blkres_delta;
399 }
400 tp->t_fdblocks_delta += delta;
401 if (xfs_has_lazysbcount(mp))
402 flags &= ~XFS_TRANS_SB_DIRTY;
403 break;
404 case XFS_TRANS_SB_RES_FDBLOCKS:
405 /*
406 * The allocation has already been applied to the
407 * in-core superblock's counter. This should only
408 * be applied to the on-disk superblock.
409 */
410 tp->t_res_fdblocks_delta += delta;
411 if (xfs_has_lazysbcount(mp))
412 flags &= ~XFS_TRANS_SB_DIRTY;
413 break;
414 case XFS_TRANS_SB_FREXTENTS:
415 /*
416 * Track the number of blocks allocated in the
417 * transaction. Make sure it does not exceed the
418 * number reserved.
419 */
420 if (delta < 0) {
421 tp->t_rtx_res_used += (uint)-delta;
422 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
423 }
424 tp->t_frextents_delta += delta;
425 break;
426 case XFS_TRANS_SB_RES_FREXTENTS:
427 /*
428 * The allocation has already been applied to the
429 * in-core superblock's counter. This should only
430 * be applied to the on-disk superblock.
431 */
432 ASSERT(delta < 0);
433 tp->t_res_frextents_delta += delta;
434 break;
435 case XFS_TRANS_SB_DBLOCKS:
436 tp->t_dblocks_delta += delta;
437 break;
438 case XFS_TRANS_SB_AGCOUNT:
439 ASSERT(delta > 0);
440 tp->t_agcount_delta += delta;
441 break;
442 case XFS_TRANS_SB_IMAXPCT:
443 tp->t_imaxpct_delta += delta;
444 break;
445 case XFS_TRANS_SB_REXTSIZE:
446 tp->t_rextsize_delta += delta;
447 break;
448 case XFS_TRANS_SB_RBMBLOCKS:
449 tp->t_rbmblocks_delta += delta;
450 break;
451 case XFS_TRANS_SB_RBLOCKS:
452 tp->t_rblocks_delta += delta;
453 break;
454 case XFS_TRANS_SB_REXTENTS:
455 tp->t_rextents_delta += delta;
456 break;
457 case XFS_TRANS_SB_REXTSLOG:
458 tp->t_rextslog_delta += delta;
459 break;
460 default:
461 ASSERT(0);
462 return;
463 }
464
465 tp->t_flags |= flags;
466 }
467
468 /*
469 * xfs_trans_apply_sb_deltas() is called from the commit code
470 * to bring the superblock buffer into the current transaction
471 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
472 *
473 * For now we just look at each field allowed to change and change
474 * it if necessary.
475 */
476 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)477 xfs_trans_apply_sb_deltas(
478 xfs_trans_t *tp)
479 {
480 xfs_dsb_t *sbp;
481 struct xfs_buf *bp;
482 int whole = 0;
483
484 bp = xfs_trans_getsb(tp);
485 sbp = bp->b_addr;
486
487 /*
488 * Only update the superblock counters if we are logging them
489 */
490 if (!xfs_has_lazysbcount((tp->t_mountp))) {
491 if (tp->t_icount_delta)
492 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
493 if (tp->t_ifree_delta)
494 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
495 if (tp->t_fdblocks_delta)
496 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
497 if (tp->t_res_fdblocks_delta)
498 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
499 }
500
501 if (tp->t_frextents_delta)
502 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
503 if (tp->t_res_frextents_delta)
504 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
505
506 if (tp->t_dblocks_delta) {
507 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
508 whole = 1;
509 }
510 if (tp->t_agcount_delta) {
511 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
512 whole = 1;
513 }
514 if (tp->t_imaxpct_delta) {
515 sbp->sb_imax_pct += tp->t_imaxpct_delta;
516 whole = 1;
517 }
518 if (tp->t_rextsize_delta) {
519 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
520 whole = 1;
521 }
522 if (tp->t_rbmblocks_delta) {
523 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
524 whole = 1;
525 }
526 if (tp->t_rblocks_delta) {
527 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
528 whole = 1;
529 }
530 if (tp->t_rextents_delta) {
531 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
532 whole = 1;
533 }
534 if (tp->t_rextslog_delta) {
535 sbp->sb_rextslog += tp->t_rextslog_delta;
536 whole = 1;
537 }
538
539 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
540 if (whole)
541 /*
542 * Log the whole thing, the fields are noncontiguous.
543 */
544 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
545 else
546 /*
547 * Since all the modifiable fields are contiguous, we
548 * can get away with this.
549 */
550 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
551 offsetof(xfs_dsb_t, sb_frextents) +
552 sizeof(sbp->sb_frextents) - 1);
553 }
554
555 /*
556 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
557 * apply superblock counter changes to the in-core superblock. The
558 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
559 * applied to the in-core superblock. The idea is that that has already been
560 * done.
561 *
562 * If we are not logging superblock counters, then the inode allocated/free and
563 * used block counts are not updated in the on disk superblock. In this case,
564 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
565 * still need to update the incore superblock with the changes.
566 *
567 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
568 * so we don't need to take the counter lock on every update.
569 */
570 #define XFS_ICOUNT_BATCH 128
571
572 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)573 xfs_trans_unreserve_and_mod_sb(
574 struct xfs_trans *tp)
575 {
576 struct xfs_mount *mp = tp->t_mountp;
577 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
578 int64_t blkdelta = 0;
579 int64_t rtxdelta = 0;
580 int64_t idelta = 0;
581 int64_t ifreedelta = 0;
582 int error;
583
584 /* calculate deltas */
585 if (tp->t_blk_res > 0)
586 blkdelta = tp->t_blk_res;
587 if ((tp->t_fdblocks_delta != 0) &&
588 (xfs_has_lazysbcount(mp) ||
589 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
590 blkdelta += tp->t_fdblocks_delta;
591
592 if (tp->t_rtx_res > 0)
593 rtxdelta = tp->t_rtx_res;
594 if ((tp->t_frextents_delta != 0) &&
595 (tp->t_flags & XFS_TRANS_SB_DIRTY))
596 rtxdelta += tp->t_frextents_delta;
597
598 if (xfs_has_lazysbcount(mp) ||
599 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
600 idelta = tp->t_icount_delta;
601 ifreedelta = tp->t_ifree_delta;
602 }
603
604 /* apply the per-cpu counters */
605 if (blkdelta) {
606 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
607 ASSERT(!error);
608 }
609
610 if (idelta)
611 percpu_counter_add_batch(&mp->m_icount, idelta,
612 XFS_ICOUNT_BATCH);
613
614 if (ifreedelta)
615 percpu_counter_add(&mp->m_ifree, ifreedelta);
616
617 if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
618 return;
619
620 /* apply remaining deltas */
621 spin_lock(&mp->m_sb_lock);
622 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
623 mp->m_sb.sb_icount += idelta;
624 mp->m_sb.sb_ifree += ifreedelta;
625 mp->m_sb.sb_frextents += rtxdelta;
626 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
627 mp->m_sb.sb_agcount += tp->t_agcount_delta;
628 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
629 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
630 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
631 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
632 mp->m_sb.sb_rextents += tp->t_rextents_delta;
633 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
634 spin_unlock(&mp->m_sb_lock);
635
636 /*
637 * Debug checks outside of the spinlock so they don't lock up the
638 * machine if they fail.
639 */
640 ASSERT(mp->m_sb.sb_imax_pct >= 0);
641 ASSERT(mp->m_sb.sb_rextslog >= 0);
642 return;
643 }
644
645 /* Add the given log item to the transaction's list of log items. */
646 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)647 xfs_trans_add_item(
648 struct xfs_trans *tp,
649 struct xfs_log_item *lip)
650 {
651 ASSERT(lip->li_mountp == tp->t_mountp);
652 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
653 ASSERT(list_empty(&lip->li_trans));
654 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
655
656 list_add_tail(&lip->li_trans, &tp->t_items);
657 trace_xfs_trans_add_item(tp, _RET_IP_);
658 }
659
660 /*
661 * Unlink the log item from the transaction. the log item is no longer
662 * considered dirty in this transaction, as the linked transaction has
663 * finished, either by abort or commit completion.
664 */
665 void
xfs_trans_del_item(struct xfs_log_item * lip)666 xfs_trans_del_item(
667 struct xfs_log_item *lip)
668 {
669 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
670 list_del_init(&lip->li_trans);
671 }
672
673 /* Detach and unlock all of the items in a transaction */
674 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)675 xfs_trans_free_items(
676 struct xfs_trans *tp,
677 bool abort)
678 {
679 struct xfs_log_item *lip, *next;
680
681 trace_xfs_trans_free_items(tp, _RET_IP_);
682
683 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
684 xfs_trans_del_item(lip);
685 if (abort)
686 set_bit(XFS_LI_ABORTED, &lip->li_flags);
687 if (lip->li_ops->iop_release)
688 lip->li_ops->iop_release(lip);
689 }
690 }
691
692 static inline void
xfs_log_item_batch_insert(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)693 xfs_log_item_batch_insert(
694 struct xfs_ail *ailp,
695 struct xfs_ail_cursor *cur,
696 struct xfs_log_item **log_items,
697 int nr_items,
698 xfs_lsn_t commit_lsn)
699 {
700 int i;
701
702 spin_lock(&ailp->ail_lock);
703 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
704 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
705
706 for (i = 0; i < nr_items; i++) {
707 struct xfs_log_item *lip = log_items[i];
708
709 if (lip->li_ops->iop_unpin)
710 lip->li_ops->iop_unpin(lip, 0);
711 }
712 }
713
714 /*
715 * Bulk operation version of xfs_trans_committed that takes a log vector of
716 * items to insert into the AIL. This uses bulk AIL insertion techniques to
717 * minimise lock traffic.
718 *
719 * If we are called with the aborted flag set, it is because a log write during
720 * a CIL checkpoint commit has failed. In this case, all the items in the
721 * checkpoint have already gone through iop_committed and iop_committing, which
722 * means that checkpoint commit abort handling is treated exactly the same
723 * as an iclog write error even though we haven't started any IO yet. Hence in
724 * this case all we need to do is iop_committed processing, followed by an
725 * iop_unpin(aborted) call.
726 *
727 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
728 * at the end of the AIL, the insert cursor avoids the need to walk
729 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
730 * call. This saves a lot of needless list walking and is a net win, even
731 * though it slightly increases that amount of AIL lock traffic to set it up
732 * and tear it down.
733 */
734 void
xfs_trans_committed_bulk(struct xfs_ail * ailp,struct xfs_log_vec * log_vector,xfs_lsn_t commit_lsn,bool aborted)735 xfs_trans_committed_bulk(
736 struct xfs_ail *ailp,
737 struct xfs_log_vec *log_vector,
738 xfs_lsn_t commit_lsn,
739 bool aborted)
740 {
741 #define LOG_ITEM_BATCH_SIZE 32
742 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
743 struct xfs_log_vec *lv;
744 struct xfs_ail_cursor cur;
745 int i = 0;
746
747 spin_lock(&ailp->ail_lock);
748 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
749 spin_unlock(&ailp->ail_lock);
750
751 /* unpin all the log items */
752 for (lv = log_vector; lv; lv = lv->lv_next ) {
753 struct xfs_log_item *lip = lv->lv_item;
754 xfs_lsn_t item_lsn;
755
756 if (aborted)
757 set_bit(XFS_LI_ABORTED, &lip->li_flags);
758
759 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
760 lip->li_ops->iop_release(lip);
761 continue;
762 }
763
764 if (lip->li_ops->iop_committed)
765 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
766 else
767 item_lsn = commit_lsn;
768
769 /* item_lsn of -1 means the item needs no further processing */
770 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
771 continue;
772
773 /*
774 * if we are aborting the operation, no point in inserting the
775 * object into the AIL as we are in a shutdown situation.
776 */
777 if (aborted) {
778 ASSERT(xfs_is_shutdown(ailp->ail_mount));
779 if (lip->li_ops->iop_unpin)
780 lip->li_ops->iop_unpin(lip, 1);
781 continue;
782 }
783
784 if (item_lsn != commit_lsn) {
785
786 /*
787 * Not a bulk update option due to unusual item_lsn.
788 * Push into AIL immediately, rechecking the lsn once
789 * we have the ail lock. Then unpin the item. This does
790 * not affect the AIL cursor the bulk insert path is
791 * using.
792 */
793 spin_lock(&ailp->ail_lock);
794 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
795 xfs_trans_ail_update(ailp, lip, item_lsn);
796 else
797 spin_unlock(&ailp->ail_lock);
798 if (lip->li_ops->iop_unpin)
799 lip->li_ops->iop_unpin(lip, 0);
800 continue;
801 }
802
803 /* Item is a candidate for bulk AIL insert. */
804 log_items[i++] = lv->lv_item;
805 if (i >= LOG_ITEM_BATCH_SIZE) {
806 xfs_log_item_batch_insert(ailp, &cur, log_items,
807 LOG_ITEM_BATCH_SIZE, commit_lsn);
808 i = 0;
809 }
810 }
811
812 /* make sure we insert the remainder! */
813 if (i)
814 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
815
816 spin_lock(&ailp->ail_lock);
817 xfs_trans_ail_cursor_done(&cur);
818 spin_unlock(&ailp->ail_lock);
819 }
820
821 /*
822 * Commit the given transaction to the log.
823 *
824 * XFS disk error handling mechanism is not based on a typical
825 * transaction abort mechanism. Logically after the filesystem
826 * gets marked 'SHUTDOWN', we can't let any new transactions
827 * be durable - ie. committed to disk - because some metadata might
828 * be inconsistent. In such cases, this returns an error, and the
829 * caller may assume that all locked objects joined to the transaction
830 * have already been unlocked as if the commit had succeeded.
831 * Do not reference the transaction structure after this call.
832 */
833 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)834 __xfs_trans_commit(
835 struct xfs_trans *tp,
836 bool regrant)
837 {
838 struct xfs_mount *mp = tp->t_mountp;
839 xfs_csn_t commit_seq = 0;
840 int error = 0;
841 int sync = tp->t_flags & XFS_TRANS_SYNC;
842
843 trace_xfs_trans_commit(tp, _RET_IP_);
844
845 /*
846 * Finish deferred items on final commit. Only permanent transactions
847 * should ever have deferred ops.
848 */
849 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
850 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
851 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
852 error = xfs_defer_finish_noroll(&tp);
853 if (error)
854 goto out_unreserve;
855 }
856
857 /*
858 * If there is nothing to be logged by the transaction,
859 * then unlock all of the items associated with the
860 * transaction and free the transaction structure.
861 * Also make sure to return any reserved blocks to
862 * the free pool.
863 */
864 if (!(tp->t_flags & XFS_TRANS_DIRTY))
865 goto out_unreserve;
866
867 if (xfs_is_shutdown(mp)) {
868 error = -EIO;
869 goto out_unreserve;
870 }
871
872 ASSERT(tp->t_ticket != NULL);
873
874 /*
875 * If we need to update the superblock, then do it now.
876 */
877 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
878 xfs_trans_apply_sb_deltas(tp);
879 xfs_trans_apply_dquot_deltas(tp);
880
881 xlog_cil_commit(mp->m_log, tp, &commit_seq, regrant);
882
883 xfs_trans_free(tp);
884
885 /*
886 * If the transaction needs to be synchronous, then force the
887 * log out now and wait for it.
888 */
889 if (sync) {
890 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
891 XFS_STATS_INC(mp, xs_trans_sync);
892 } else {
893 XFS_STATS_INC(mp, xs_trans_async);
894 }
895
896 return error;
897
898 out_unreserve:
899 xfs_trans_unreserve_and_mod_sb(tp);
900
901 /*
902 * It is indeed possible for the transaction to be not dirty but
903 * the dqinfo portion to be. All that means is that we have some
904 * (non-persistent) quota reservations that need to be unreserved.
905 */
906 xfs_trans_unreserve_and_mod_dquots(tp);
907 if (tp->t_ticket) {
908 if (regrant && !xlog_is_shutdown(mp->m_log))
909 xfs_log_ticket_regrant(mp->m_log, tp->t_ticket);
910 else
911 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
912 tp->t_ticket = NULL;
913 }
914 xfs_trans_free_items(tp, !!error);
915 xfs_trans_free(tp);
916
917 XFS_STATS_INC(mp, xs_trans_empty);
918 return error;
919 }
920
921 int
xfs_trans_commit(struct xfs_trans * tp)922 xfs_trans_commit(
923 struct xfs_trans *tp)
924 {
925 return __xfs_trans_commit(tp, false);
926 }
927
928 /*
929 * Unlock all of the transaction's items and free the transaction.
930 * The transaction must not have modified any of its items, because
931 * there is no way to restore them to their previous state.
932 *
933 * If the transaction has made a log reservation, make sure to release
934 * it as well.
935 */
936 void
xfs_trans_cancel(struct xfs_trans * tp)937 xfs_trans_cancel(
938 struct xfs_trans *tp)
939 {
940 struct xfs_mount *mp = tp->t_mountp;
941 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
942
943 trace_xfs_trans_cancel(tp, _RET_IP_);
944
945 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
946 xfs_defer_cancel(tp);
947
948 /*
949 * See if the caller is relying on us to shut down the
950 * filesystem. This happens in paths where we detect
951 * corruption and decide to give up.
952 */
953 if (dirty && !xfs_is_shutdown(mp)) {
954 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
955 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
956 }
957 #ifdef DEBUG
958 if (!dirty && !xfs_is_shutdown(mp)) {
959 struct xfs_log_item *lip;
960
961 list_for_each_entry(lip, &tp->t_items, li_trans)
962 ASSERT(!xlog_item_is_intent_done(lip));
963 }
964 #endif
965 xfs_trans_unreserve_and_mod_sb(tp);
966 xfs_trans_unreserve_and_mod_dquots(tp);
967
968 if (tp->t_ticket) {
969 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
970 tp->t_ticket = NULL;
971 }
972
973 xfs_trans_free_items(tp, dirty);
974 xfs_trans_free(tp);
975 }
976
977 /*
978 * Roll from one trans in the sequence of PERMANENT transactions to
979 * the next: permanent transactions are only flushed out when
980 * committed with xfs_trans_commit(), but we still want as soon
981 * as possible to let chunks of it go to the log. So we commit the
982 * chunk we've been working on and get a new transaction to continue.
983 */
984 int
xfs_trans_roll(struct xfs_trans ** tpp)985 xfs_trans_roll(
986 struct xfs_trans **tpp)
987 {
988 struct xfs_trans *trans = *tpp;
989 struct xfs_trans_res tres;
990 int error;
991
992 trace_xfs_trans_roll(trans, _RET_IP_);
993
994 /*
995 * Copy the critical parameters from one trans to the next.
996 */
997 tres.tr_logres = trans->t_log_res;
998 tres.tr_logcount = trans->t_log_count;
999
1000 *tpp = xfs_trans_dup(trans);
1001
1002 /*
1003 * Commit the current transaction.
1004 * If this commit failed, then it'd just unlock those items that
1005 * are not marked ihold. That also means that a filesystem shutdown
1006 * is in progress. The caller takes the responsibility to cancel
1007 * the duplicate transaction that gets returned.
1008 */
1009 error = __xfs_trans_commit(trans, true);
1010 if (error)
1011 return error;
1012
1013 /*
1014 * Reserve space in the log for the next transaction.
1015 * This also pushes items in the "AIL", the list of logged items,
1016 * out to disk if they are taking up space at the tail of the log
1017 * that we want to use. This requires that either nothing be locked
1018 * across this call, or that anything that is locked be logged in
1019 * the prior and the next transactions.
1020 */
1021 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1022 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1023 }
1024
1025 /*
1026 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1027 *
1028 * The caller must ensure that the on-disk dquots attached to this inode have
1029 * already been allocated and initialized. The caller is responsible for
1030 * releasing ILOCK_EXCL if a new transaction is returned.
1031 */
1032 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1033 xfs_trans_alloc_inode(
1034 struct xfs_inode *ip,
1035 struct xfs_trans_res *resv,
1036 unsigned int dblocks,
1037 unsigned int rblocks,
1038 bool force,
1039 struct xfs_trans **tpp)
1040 {
1041 struct xfs_trans *tp;
1042 struct xfs_mount *mp = ip->i_mount;
1043 bool retried = false;
1044 int error;
1045
1046 retry:
1047 error = xfs_trans_alloc(mp, resv, dblocks,
1048 rblocks / mp->m_sb.sb_rextsize,
1049 force ? XFS_TRANS_RESERVE : 0, &tp);
1050 if (error)
1051 return error;
1052
1053 xfs_ilock(ip, XFS_ILOCK_EXCL);
1054 xfs_trans_ijoin(tp, ip, 0);
1055
1056 error = xfs_qm_dqattach_locked(ip, false);
1057 if (error) {
1058 /* Caller should have allocated the dquots! */
1059 ASSERT(error != -ENOENT);
1060 goto out_cancel;
1061 }
1062
1063 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1064 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1065 xfs_trans_cancel(tp);
1066 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1067 xfs_blockgc_free_quota(ip, 0);
1068 retried = true;
1069 goto retry;
1070 }
1071 if (error)
1072 goto out_cancel;
1073
1074 *tpp = tp;
1075 return 0;
1076
1077 out_cancel:
1078 xfs_trans_cancel(tp);
1079 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1080 return error;
1081 }
1082
1083 /*
1084 * Allocate an transaction in preparation for inode creation by reserving quota
1085 * against the given dquots. Callers are not required to hold any inode locks.
1086 */
1087 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1088 xfs_trans_alloc_icreate(
1089 struct xfs_mount *mp,
1090 struct xfs_trans_res *resv,
1091 struct xfs_dquot *udqp,
1092 struct xfs_dquot *gdqp,
1093 struct xfs_dquot *pdqp,
1094 unsigned int dblocks,
1095 struct xfs_trans **tpp)
1096 {
1097 struct xfs_trans *tp;
1098 bool retried = false;
1099 int error;
1100
1101 retry:
1102 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1103 if (error)
1104 return error;
1105
1106 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1107 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1108 xfs_trans_cancel(tp);
1109 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1110 retried = true;
1111 goto retry;
1112 }
1113 if (error) {
1114 xfs_trans_cancel(tp);
1115 return error;
1116 }
1117
1118 *tpp = tp;
1119 return 0;
1120 }
1121
1122 /*
1123 * Allocate an transaction, lock and join the inode to it, and reserve quota
1124 * in preparation for inode attribute changes that include uid, gid, or prid
1125 * changes.
1126 *
1127 * The caller must ensure that the on-disk dquots attached to this inode have
1128 * already been allocated and initialized. The ILOCK will be dropped when the
1129 * transaction is committed or cancelled.
1130 */
1131 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1132 xfs_trans_alloc_ichange(
1133 struct xfs_inode *ip,
1134 struct xfs_dquot *new_udqp,
1135 struct xfs_dquot *new_gdqp,
1136 struct xfs_dquot *new_pdqp,
1137 bool force,
1138 struct xfs_trans **tpp)
1139 {
1140 struct xfs_trans *tp;
1141 struct xfs_mount *mp = ip->i_mount;
1142 struct xfs_dquot *udqp;
1143 struct xfs_dquot *gdqp;
1144 struct xfs_dquot *pdqp;
1145 bool retried = false;
1146 int error;
1147
1148 retry:
1149 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1150 if (error)
1151 return error;
1152
1153 xfs_ilock(ip, XFS_ILOCK_EXCL);
1154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1155
1156 error = xfs_qm_dqattach_locked(ip, false);
1157 if (error) {
1158 /* Caller should have allocated the dquots! */
1159 ASSERT(error != -ENOENT);
1160 goto out_cancel;
1161 }
1162
1163 /*
1164 * For each quota type, skip quota reservations if the inode's dquots
1165 * now match the ones that came from the caller, or the caller didn't
1166 * pass one in. The inode's dquots can change if we drop the ILOCK to
1167 * perform a blockgc scan, so we must preserve the caller's arguments.
1168 */
1169 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1170 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1171 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1172 if (udqp || gdqp || pdqp) {
1173 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1174
1175 if (force)
1176 qflags |= XFS_QMOPT_FORCE_RES;
1177
1178 /*
1179 * Reserve enough quota to handle blocks on disk and reserved
1180 * for a delayed allocation. We'll actually transfer the
1181 * delalloc reservation between dquots at chown time, even
1182 * though that part is only semi-transactional.
1183 */
1184 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1185 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1186 1, qflags);
1187 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1188 xfs_trans_cancel(tp);
1189 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1190 retried = true;
1191 goto retry;
1192 }
1193 if (error)
1194 goto out_cancel;
1195 }
1196
1197 *tpp = tp;
1198 return 0;
1199
1200 out_cancel:
1201 xfs_trans_cancel(tp);
1202 return error;
1203 }
1204
1205 /*
1206 * Allocate an transaction, lock and join the directory and child inodes to it,
1207 * and reserve quota for a directory update. If there isn't sufficient space,
1208 * @dblocks will be set to zero for a reservationless directory update and
1209 * @nospace_error will be set to a negative errno describing the space
1210 * constraint we hit.
1211 *
1212 * The caller must ensure that the on-disk dquots attached to this inode have
1213 * already been allocated and initialized. The ILOCKs will be dropped when the
1214 * transaction is committed or cancelled.
1215 */
1216 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1217 xfs_trans_alloc_dir(
1218 struct xfs_inode *dp,
1219 struct xfs_trans_res *resv,
1220 struct xfs_inode *ip,
1221 unsigned int *dblocks,
1222 struct xfs_trans **tpp,
1223 int *nospace_error)
1224 {
1225 struct xfs_trans *tp;
1226 struct xfs_mount *mp = ip->i_mount;
1227 unsigned int resblks;
1228 bool retried = false;
1229 int error;
1230
1231 retry:
1232 *nospace_error = 0;
1233 resblks = *dblocks;
1234 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1235 if (error == -ENOSPC) {
1236 *nospace_error = error;
1237 resblks = 0;
1238 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1239 }
1240 if (error)
1241 return error;
1242
1243 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1244
1245 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1246 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1247
1248 error = xfs_qm_dqattach_locked(dp, false);
1249 if (error) {
1250 /* Caller should have allocated the dquots! */
1251 ASSERT(error != -ENOENT);
1252 goto out_cancel;
1253 }
1254
1255 error = xfs_qm_dqattach_locked(ip, false);
1256 if (error) {
1257 /* Caller should have allocated the dquots! */
1258 ASSERT(error != -ENOENT);
1259 goto out_cancel;
1260 }
1261
1262 if (resblks == 0)
1263 goto done;
1264
1265 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1266 if (error == -EDQUOT || error == -ENOSPC) {
1267 if (!retried) {
1268 xfs_trans_cancel(tp);
1269 xfs_blockgc_free_quota(dp, 0);
1270 retried = true;
1271 goto retry;
1272 }
1273
1274 *nospace_error = error;
1275 resblks = 0;
1276 error = 0;
1277 }
1278 if (error)
1279 goto out_cancel;
1280
1281 done:
1282 *tpp = tp;
1283 *dblocks = resblks;
1284 return 0;
1285
1286 out_cancel:
1287 xfs_trans_cancel(tp);
1288 return error;
1289 }
1290