1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_attr.h"
17 #include "xfs_trans.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_symlink.h"
21 #include "xfs_dir2.h"
22 #include "xfs_iomap.h"
23 #include "xfs_error.h"
24 #include "xfs_ioctl.h"
25
26 #include <linux/posix_acl.h>
27 #include <linux/security.h>
28 #include <linux/iversion.h>
29 #include <linux/fiemap.h>
30
31 /*
32 * Directories have different lock order w.r.t. mmap_lock compared to regular
33 * files. This is due to readdir potentially triggering page faults on a user
34 * buffer inside filldir(), and this happens with the ilock on the directory
35 * held. For regular files, the lock order is the other way around - the
36 * mmap_lock is taken during the page fault, and then we lock the ilock to do
37 * block mapping. Hence we need a different class for the directory ilock so
38 * that lockdep can tell them apart.
39 */
40 static struct lock_class_key xfs_nondir_ilock_class;
41 static struct lock_class_key xfs_dir_ilock_class;
42
43 static int
xfs_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)44 xfs_initxattrs(
45 struct inode *inode,
46 const struct xattr *xattr_array,
47 void *fs_info)
48 {
49 const struct xattr *xattr;
50 struct xfs_inode *ip = XFS_I(inode);
51 int error = 0;
52
53 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
54 struct xfs_da_args args = {
55 .dp = ip,
56 .attr_filter = XFS_ATTR_SECURE,
57 .name = xattr->name,
58 .namelen = strlen(xattr->name),
59 .value = xattr->value,
60 .valuelen = xattr->value_len,
61 };
62 error = xfs_attr_set(&args);
63 if (error < 0)
64 break;
65 }
66 return error;
67 }
68
69 /*
70 * Hook in SELinux. This is not quite correct yet, what we really need
71 * here (as we do for default ACLs) is a mechanism by which creation of
72 * these attrs can be journalled at inode creation time (along with the
73 * inode, of course, such that log replay can't cause these to be lost).
74 */
75
76 STATIC int
xfs_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr)77 xfs_init_security(
78 struct inode *inode,
79 struct inode *dir,
80 const struct qstr *qstr)
81 {
82 return security_inode_init_security(inode, dir, qstr,
83 &xfs_initxattrs, NULL);
84 }
85
86 static void
xfs_dentry_to_name(struct xfs_name * namep,struct dentry * dentry)87 xfs_dentry_to_name(
88 struct xfs_name *namep,
89 struct dentry *dentry)
90 {
91 namep->name = dentry->d_name.name;
92 namep->len = dentry->d_name.len;
93 namep->type = XFS_DIR3_FT_UNKNOWN;
94 }
95
96 static int
xfs_dentry_mode_to_name(struct xfs_name * namep,struct dentry * dentry,int mode)97 xfs_dentry_mode_to_name(
98 struct xfs_name *namep,
99 struct dentry *dentry,
100 int mode)
101 {
102 namep->name = dentry->d_name.name;
103 namep->len = dentry->d_name.len;
104 namep->type = xfs_mode_to_ftype(mode);
105
106 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
107 return -EFSCORRUPTED;
108
109 return 0;
110 }
111
112 STATIC void
xfs_cleanup_inode(struct inode * dir,struct inode * inode,struct dentry * dentry)113 xfs_cleanup_inode(
114 struct inode *dir,
115 struct inode *inode,
116 struct dentry *dentry)
117 {
118 struct xfs_name teardown;
119
120 /* Oh, the horror.
121 * If we can't add the ACL or we fail in
122 * xfs_init_security we must back out.
123 * ENOSPC can hit here, among other things.
124 */
125 xfs_dentry_to_name(&teardown, dentry);
126
127 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
128 }
129
130 /*
131 * Check to see if we are likely to need an extended attribute to be added to
132 * the inode we are about to allocate. This allows the attribute fork to be
133 * created during the inode allocation, reducing the number of transactions we
134 * need to do in this fast path.
135 *
136 * The security checks are optimistic, but not guaranteed. The two LSMs that
137 * require xattrs to be added here (selinux and smack) are also the only two
138 * LSMs that add a sb->s_security structure to the superblock. Hence if security
139 * is enabled and sb->s_security is set, we have a pretty good idea that we are
140 * going to be asked to add a security xattr immediately after allocating the
141 * xfs inode and instantiating the VFS inode.
142 */
143 static inline bool
xfs_create_need_xattr(struct inode * dir,struct posix_acl * default_acl,struct posix_acl * acl)144 xfs_create_need_xattr(
145 struct inode *dir,
146 struct posix_acl *default_acl,
147 struct posix_acl *acl)
148 {
149 if (acl)
150 return true;
151 if (default_acl)
152 return true;
153 #if IS_ENABLED(CONFIG_SECURITY)
154 if (dir->i_sb->s_security)
155 return true;
156 #endif
157 return false;
158 }
159
160
161 STATIC int
xfs_generic_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev,bool tmpfile)162 xfs_generic_create(
163 struct user_namespace *mnt_userns,
164 struct inode *dir,
165 struct dentry *dentry,
166 umode_t mode,
167 dev_t rdev,
168 bool tmpfile) /* unnamed file */
169 {
170 struct inode *inode;
171 struct xfs_inode *ip = NULL;
172 struct posix_acl *default_acl, *acl;
173 struct xfs_name name;
174 int error;
175
176 /*
177 * Irix uses Missed'em'V split, but doesn't want to see
178 * the upper 5 bits of (14bit) major.
179 */
180 if (S_ISCHR(mode) || S_ISBLK(mode)) {
181 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
182 return -EINVAL;
183 } else {
184 rdev = 0;
185 }
186
187 error = posix_acl_create(dir, &mode, &default_acl, &acl);
188 if (error)
189 return error;
190
191 /* Verify mode is valid also for tmpfile case */
192 error = xfs_dentry_mode_to_name(&name, dentry, mode);
193 if (unlikely(error))
194 goto out_free_acl;
195
196 if (!tmpfile) {
197 error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
198 xfs_create_need_xattr(dir, default_acl, acl),
199 &ip);
200 } else {
201 error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
202 }
203 if (unlikely(error))
204 goto out_free_acl;
205
206 inode = VFS_I(ip);
207
208 error = xfs_init_security(inode, dir, &dentry->d_name);
209 if (unlikely(error))
210 goto out_cleanup_inode;
211
212 #ifdef CONFIG_XFS_POSIX_ACL
213 if (default_acl) {
214 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
215 if (error)
216 goto out_cleanup_inode;
217 }
218 if (acl) {
219 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
220 if (error)
221 goto out_cleanup_inode;
222 }
223 #endif
224
225 xfs_setup_iops(ip);
226
227 if (tmpfile) {
228 /*
229 * The VFS requires that any inode fed to d_tmpfile must have
230 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
231 * However, we created the temp file with nlink == 0 because
232 * we're not allowed to put an inode with nlink > 0 on the
233 * unlinked list. Therefore we have to set nlink to 1 so that
234 * d_tmpfile can immediately set it back to zero.
235 */
236 set_nlink(inode, 1);
237 d_tmpfile(dentry, inode);
238 } else
239 d_instantiate(dentry, inode);
240
241 xfs_finish_inode_setup(ip);
242
243 out_free_acl:
244 posix_acl_release(default_acl);
245 posix_acl_release(acl);
246 return error;
247
248 out_cleanup_inode:
249 xfs_finish_inode_setup(ip);
250 if (!tmpfile)
251 xfs_cleanup_inode(dir, inode, dentry);
252 xfs_irele(ip);
253 goto out_free_acl;
254 }
255
256 STATIC int
xfs_vn_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)257 xfs_vn_mknod(
258 struct user_namespace *mnt_userns,
259 struct inode *dir,
260 struct dentry *dentry,
261 umode_t mode,
262 dev_t rdev)
263 {
264 return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false);
265 }
266
267 STATIC int
xfs_vn_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool flags)268 xfs_vn_create(
269 struct user_namespace *mnt_userns,
270 struct inode *dir,
271 struct dentry *dentry,
272 umode_t mode,
273 bool flags)
274 {
275 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false);
276 }
277
278 STATIC int
xfs_vn_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)279 xfs_vn_mkdir(
280 struct user_namespace *mnt_userns,
281 struct inode *dir,
282 struct dentry *dentry,
283 umode_t mode)
284 {
285 return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
286 false);
287 }
288
289 STATIC struct dentry *
xfs_vn_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)290 xfs_vn_lookup(
291 struct inode *dir,
292 struct dentry *dentry,
293 unsigned int flags)
294 {
295 struct inode *inode;
296 struct xfs_inode *cip;
297 struct xfs_name name;
298 int error;
299
300 if (dentry->d_name.len >= MAXNAMELEN)
301 return ERR_PTR(-ENAMETOOLONG);
302
303 xfs_dentry_to_name(&name, dentry);
304 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
305 if (likely(!error))
306 inode = VFS_I(cip);
307 else if (likely(error == -ENOENT))
308 inode = NULL;
309 else
310 inode = ERR_PTR(error);
311 return d_splice_alias(inode, dentry);
312 }
313
314 STATIC struct dentry *
xfs_vn_ci_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)315 xfs_vn_ci_lookup(
316 struct inode *dir,
317 struct dentry *dentry,
318 unsigned int flags)
319 {
320 struct xfs_inode *ip;
321 struct xfs_name xname;
322 struct xfs_name ci_name;
323 struct qstr dname;
324 int error;
325
326 if (dentry->d_name.len >= MAXNAMELEN)
327 return ERR_PTR(-ENAMETOOLONG);
328
329 xfs_dentry_to_name(&xname, dentry);
330 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
331 if (unlikely(error)) {
332 if (unlikely(error != -ENOENT))
333 return ERR_PTR(error);
334 /*
335 * call d_add(dentry, NULL) here when d_drop_negative_children
336 * is called in xfs_vn_mknod (ie. allow negative dentries
337 * with CI filesystems).
338 */
339 return NULL;
340 }
341
342 /* if exact match, just splice and exit */
343 if (!ci_name.name)
344 return d_splice_alias(VFS_I(ip), dentry);
345
346 /* else case-insensitive match... */
347 dname.name = ci_name.name;
348 dname.len = ci_name.len;
349 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
350 kmem_free(ci_name.name);
351 return dentry;
352 }
353
354 STATIC int
xfs_vn_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)355 xfs_vn_link(
356 struct dentry *old_dentry,
357 struct inode *dir,
358 struct dentry *dentry)
359 {
360 struct inode *inode = d_inode(old_dentry);
361 struct xfs_name name;
362 int error;
363
364 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
365 if (unlikely(error))
366 return error;
367
368 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
369 if (unlikely(error))
370 return error;
371
372 ihold(inode);
373 d_instantiate(dentry, inode);
374 return 0;
375 }
376
377 STATIC int
xfs_vn_unlink(struct inode * dir,struct dentry * dentry)378 xfs_vn_unlink(
379 struct inode *dir,
380 struct dentry *dentry)
381 {
382 struct xfs_name name;
383 int error;
384
385 xfs_dentry_to_name(&name, dentry);
386
387 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
388 if (error)
389 return error;
390
391 /*
392 * With unlink, the VFS makes the dentry "negative": no inode,
393 * but still hashed. This is incompatible with case-insensitive
394 * mode, so invalidate (unhash) the dentry in CI-mode.
395 */
396 if (xfs_has_asciici(XFS_M(dir->i_sb)))
397 d_invalidate(dentry);
398 return 0;
399 }
400
401 STATIC int
xfs_vn_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)402 xfs_vn_symlink(
403 struct user_namespace *mnt_userns,
404 struct inode *dir,
405 struct dentry *dentry,
406 const char *symname)
407 {
408 struct inode *inode;
409 struct xfs_inode *cip = NULL;
410 struct xfs_name name;
411 int error;
412 umode_t mode;
413
414 mode = S_IFLNK |
415 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
416 error = xfs_dentry_mode_to_name(&name, dentry, mode);
417 if (unlikely(error))
418 goto out;
419
420 error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
421 if (unlikely(error))
422 goto out;
423
424 inode = VFS_I(cip);
425
426 error = xfs_init_security(inode, dir, &dentry->d_name);
427 if (unlikely(error))
428 goto out_cleanup_inode;
429
430 xfs_setup_iops(cip);
431
432 d_instantiate(dentry, inode);
433 xfs_finish_inode_setup(cip);
434 return 0;
435
436 out_cleanup_inode:
437 xfs_finish_inode_setup(cip);
438 xfs_cleanup_inode(dir, inode, dentry);
439 xfs_irele(cip);
440 out:
441 return error;
442 }
443
444 STATIC int
xfs_vn_rename(struct user_namespace * mnt_userns,struct inode * odir,struct dentry * odentry,struct inode * ndir,struct dentry * ndentry,unsigned int flags)445 xfs_vn_rename(
446 struct user_namespace *mnt_userns,
447 struct inode *odir,
448 struct dentry *odentry,
449 struct inode *ndir,
450 struct dentry *ndentry,
451 unsigned int flags)
452 {
453 struct inode *new_inode = d_inode(ndentry);
454 int omode = 0;
455 int error;
456 struct xfs_name oname;
457 struct xfs_name nname;
458
459 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
460 return -EINVAL;
461
462 /* if we are exchanging files, we need to set i_mode of both files */
463 if (flags & RENAME_EXCHANGE)
464 omode = d_inode(ndentry)->i_mode;
465
466 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
467 if (omode && unlikely(error))
468 return error;
469
470 error = xfs_dentry_mode_to_name(&nname, ndentry,
471 d_inode(odentry)->i_mode);
472 if (unlikely(error))
473 return error;
474
475 return xfs_rename(mnt_userns, XFS_I(odir), &oname,
476 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
477 new_inode ? XFS_I(new_inode) : NULL, flags);
478 }
479
480 /*
481 * careful here - this function can get called recursively, so
482 * we need to be very careful about how much stack we use.
483 * uio is kmalloced for this reason...
484 */
485 STATIC const char *
xfs_vn_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)486 xfs_vn_get_link(
487 struct dentry *dentry,
488 struct inode *inode,
489 struct delayed_call *done)
490 {
491 char *link;
492 int error = -ENOMEM;
493
494 if (!dentry)
495 return ERR_PTR(-ECHILD);
496
497 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
498 if (!link)
499 goto out_err;
500
501 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
502 if (unlikely(error))
503 goto out_kfree;
504
505 set_delayed_call(done, kfree_link, link);
506 return link;
507
508 out_kfree:
509 kfree(link);
510 out_err:
511 return ERR_PTR(error);
512 }
513
514 static uint32_t
xfs_stat_blksize(struct xfs_inode * ip)515 xfs_stat_blksize(
516 struct xfs_inode *ip)
517 {
518 struct xfs_mount *mp = ip->i_mount;
519
520 /*
521 * If the file blocks are being allocated from a realtime volume, then
522 * always return the realtime extent size.
523 */
524 if (XFS_IS_REALTIME_INODE(ip))
525 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
526
527 /*
528 * Allow large block sizes to be reported to userspace programs if the
529 * "largeio" mount option is used.
530 *
531 * If compatibility mode is specified, simply return the basic unit of
532 * caching so that we don't get inefficient read/modify/write I/O from
533 * user apps. Otherwise....
534 *
535 * If the underlying volume is a stripe, then return the stripe width in
536 * bytes as the recommended I/O size. It is not a stripe and we've set a
537 * default buffered I/O size, return that, otherwise return the compat
538 * default.
539 */
540 if (xfs_has_large_iosize(mp)) {
541 if (mp->m_swidth)
542 return XFS_FSB_TO_B(mp, mp->m_swidth);
543 if (xfs_has_allocsize(mp))
544 return 1U << mp->m_allocsize_log;
545 }
546
547 return PAGE_SIZE;
548 }
549
550 STATIC int
xfs_vn_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)551 xfs_vn_getattr(
552 struct user_namespace *mnt_userns,
553 const struct path *path,
554 struct kstat *stat,
555 u32 request_mask,
556 unsigned int query_flags)
557 {
558 struct inode *inode = d_inode(path->dentry);
559 struct xfs_inode *ip = XFS_I(inode);
560 struct xfs_mount *mp = ip->i_mount;
561
562 trace_xfs_getattr(ip);
563
564 if (xfs_is_shutdown(mp))
565 return -EIO;
566
567 stat->size = XFS_ISIZE(ip);
568 stat->dev = inode->i_sb->s_dev;
569 stat->mode = inode->i_mode;
570 stat->nlink = inode->i_nlink;
571 stat->uid = i_uid_into_mnt(mnt_userns, inode);
572 stat->gid = i_gid_into_mnt(mnt_userns, inode);
573 stat->ino = ip->i_ino;
574 stat->atime = inode->i_atime;
575 stat->mtime = inode->i_mtime;
576 stat->ctime = inode->i_ctime;
577 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
578
579 if (xfs_has_v3inodes(mp)) {
580 if (request_mask & STATX_BTIME) {
581 stat->result_mask |= STATX_BTIME;
582 stat->btime = ip->i_crtime;
583 }
584 }
585
586 /*
587 * Note: If you add another clause to set an attribute flag, please
588 * update attributes_mask below.
589 */
590 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
591 stat->attributes |= STATX_ATTR_IMMUTABLE;
592 if (ip->i_diflags & XFS_DIFLAG_APPEND)
593 stat->attributes |= STATX_ATTR_APPEND;
594 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
595 stat->attributes |= STATX_ATTR_NODUMP;
596
597 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
598 STATX_ATTR_APPEND |
599 STATX_ATTR_NODUMP);
600
601 switch (inode->i_mode & S_IFMT) {
602 case S_IFBLK:
603 case S_IFCHR:
604 stat->blksize = BLKDEV_IOSIZE;
605 stat->rdev = inode->i_rdev;
606 break;
607 default:
608 stat->blksize = xfs_stat_blksize(ip);
609 stat->rdev = 0;
610 break;
611 }
612
613 return 0;
614 }
615
616 static int
xfs_vn_change_ok(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)617 xfs_vn_change_ok(
618 struct user_namespace *mnt_userns,
619 struct dentry *dentry,
620 struct iattr *iattr)
621 {
622 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
623
624 if (xfs_is_readonly(mp))
625 return -EROFS;
626
627 if (xfs_is_shutdown(mp))
628 return -EIO;
629
630 return setattr_prepare(mnt_userns, dentry, iattr);
631 }
632
633 /*
634 * Set non-size attributes of an inode.
635 *
636 * Caution: The caller of this function is responsible for calling
637 * setattr_prepare() or otherwise verifying the change is fine.
638 */
639 static int
xfs_setattr_nonsize(struct user_namespace * mnt_userns,struct xfs_inode * ip,struct iattr * iattr)640 xfs_setattr_nonsize(
641 struct user_namespace *mnt_userns,
642 struct xfs_inode *ip,
643 struct iattr *iattr)
644 {
645 xfs_mount_t *mp = ip->i_mount;
646 struct inode *inode = VFS_I(ip);
647 int mask = iattr->ia_valid;
648 xfs_trans_t *tp;
649 int error;
650 kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID;
651 kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID;
652 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
653 struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL;
654
655 ASSERT((mask & ATTR_SIZE) == 0);
656
657 /*
658 * If disk quotas is on, we make sure that the dquots do exist on disk,
659 * before we start any other transactions. Trying to do this later
660 * is messy. We don't care to take a readlock to look at the ids
661 * in inode here, because we can't hold it across the trans_reserve.
662 * If the IDs do change before we take the ilock, we're covered
663 * because the i_*dquot fields will get updated anyway.
664 */
665 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
666 uint qflags = 0;
667
668 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
669 uid = iattr->ia_uid;
670 qflags |= XFS_QMOPT_UQUOTA;
671 } else {
672 uid = inode->i_uid;
673 }
674 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
675 gid = iattr->ia_gid;
676 qflags |= XFS_QMOPT_GQUOTA;
677 } else {
678 gid = inode->i_gid;
679 }
680
681 /*
682 * We take a reference when we initialize udqp and gdqp,
683 * so it is important that we never blindly double trip on
684 * the same variable. See xfs_create() for an example.
685 */
686 ASSERT(udqp == NULL);
687 ASSERT(gdqp == NULL);
688 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
689 qflags, &udqp, &gdqp, NULL);
690 if (error)
691 return error;
692 }
693
694 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
695 capable(CAP_FOWNER), &tp);
696 if (error)
697 goto out_dqrele;
698
699 /*
700 * Change file ownership. Must be the owner or privileged.
701 */
702 if (mask & (ATTR_UID|ATTR_GID)) {
703 /*
704 * These IDs could have changed since we last looked at them.
705 * But, we're assured that if the ownership did change
706 * while we didn't have the inode locked, inode's dquot(s)
707 * would have changed also.
708 */
709 iuid = inode->i_uid;
710 igid = inode->i_gid;
711 gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
712 uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
713
714 /*
715 * Change the ownerships and register quota modifications
716 * in the transaction.
717 */
718 if (!uid_eq(iuid, uid)) {
719 if (XFS_IS_UQUOTA_ON(mp)) {
720 ASSERT(mask & ATTR_UID);
721 ASSERT(udqp);
722 olddquot1 = xfs_qm_vop_chown(tp, ip,
723 &ip->i_udquot, udqp);
724 }
725 }
726 if (!gid_eq(igid, gid)) {
727 if (XFS_IS_GQUOTA_ON(mp)) {
728 ASSERT(xfs_has_pquotino(mp) ||
729 !XFS_IS_PQUOTA_ON(mp));
730 ASSERT(mask & ATTR_GID);
731 ASSERT(gdqp);
732 olddquot2 = xfs_qm_vop_chown(tp, ip,
733 &ip->i_gdquot, gdqp);
734 }
735 }
736 }
737
738 setattr_copy(mnt_userns, inode, iattr);
739 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
740
741 XFS_STATS_INC(mp, xs_ig_attrchg);
742
743 if (xfs_has_wsync(mp))
744 xfs_trans_set_sync(tp);
745 error = xfs_trans_commit(tp);
746
747 /*
748 * Release any dquot(s) the inode had kept before chown.
749 */
750 xfs_qm_dqrele(olddquot1);
751 xfs_qm_dqrele(olddquot2);
752 xfs_qm_dqrele(udqp);
753 xfs_qm_dqrele(gdqp);
754
755 if (error)
756 return error;
757
758 /*
759 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
760 * update. We could avoid this with linked transactions
761 * and passing down the transaction pointer all the way
762 * to attr_set. No previous user of the generic
763 * Posix ACL code seems to care about this issue either.
764 */
765 if (mask & ATTR_MODE) {
766 error = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
767 if (error)
768 return error;
769 }
770
771 return 0;
772
773 out_dqrele:
774 xfs_qm_dqrele(udqp);
775 xfs_qm_dqrele(gdqp);
776 return error;
777 }
778
779 /*
780 * Truncate file. Must have write permission and not be a directory.
781 *
782 * Caution: The caller of this function is responsible for calling
783 * setattr_prepare() or otherwise verifying the change is fine.
784 */
785 STATIC int
xfs_setattr_size(struct user_namespace * mnt_userns,struct xfs_inode * ip,struct iattr * iattr)786 xfs_setattr_size(
787 struct user_namespace *mnt_userns,
788 struct xfs_inode *ip,
789 struct iattr *iattr)
790 {
791 struct xfs_mount *mp = ip->i_mount;
792 struct inode *inode = VFS_I(ip);
793 xfs_off_t oldsize, newsize;
794 struct xfs_trans *tp;
795 int error;
796 uint lock_flags = 0;
797 bool did_zeroing = false;
798
799 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
800 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
801 ASSERT(S_ISREG(inode->i_mode));
802 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
803 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
804
805 oldsize = inode->i_size;
806 newsize = iattr->ia_size;
807
808 /*
809 * Short circuit the truncate case for zero length files.
810 */
811 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
812 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
813 return 0;
814
815 /*
816 * Use the regular setattr path to update the timestamps.
817 */
818 iattr->ia_valid &= ~ATTR_SIZE;
819 return xfs_setattr_nonsize(mnt_userns, ip, iattr);
820 }
821
822 /*
823 * Make sure that the dquots are attached to the inode.
824 */
825 error = xfs_qm_dqattach(ip);
826 if (error)
827 return error;
828
829 /*
830 * Wait for all direct I/O to complete.
831 */
832 inode_dio_wait(inode);
833
834 /*
835 * File data changes must be complete before we start the transaction to
836 * modify the inode. This needs to be done before joining the inode to
837 * the transaction because the inode cannot be unlocked once it is a
838 * part of the transaction.
839 *
840 * Start with zeroing any data beyond EOF that we may expose on file
841 * extension, or zeroing out the rest of the block on a downward
842 * truncate.
843 */
844 if (newsize > oldsize) {
845 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
846 error = iomap_zero_range(inode, oldsize, newsize - oldsize,
847 &did_zeroing, &xfs_buffered_write_iomap_ops);
848 } else {
849 /*
850 * iomap won't detect a dirty page over an unwritten block (or a
851 * cow block over a hole) and subsequently skips zeroing the
852 * newly post-EOF portion of the page. Flush the new EOF to
853 * convert the block before the pagecache truncate.
854 */
855 error = filemap_write_and_wait_range(inode->i_mapping, newsize,
856 newsize);
857 if (error)
858 return error;
859 error = iomap_truncate_page(inode, newsize, &did_zeroing,
860 &xfs_buffered_write_iomap_ops);
861 }
862
863 if (error)
864 return error;
865
866 /*
867 * We've already locked out new page faults, so now we can safely remove
868 * pages from the page cache knowing they won't get refaulted until we
869 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
870 * complete. The truncate_setsize() call also cleans partial EOF page
871 * PTEs on extending truncates and hence ensures sub-page block size
872 * filesystems are correctly handled, too.
873 *
874 * We have to do all the page cache truncate work outside the
875 * transaction context as the "lock" order is page lock->log space
876 * reservation as defined by extent allocation in the writeback path.
877 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
878 * having already truncated the in-memory version of the file (i.e. made
879 * user visible changes). There's not much we can do about this, except
880 * to hope that the caller sees ENOMEM and retries the truncate
881 * operation.
882 *
883 * And we update in-core i_size and truncate page cache beyond newsize
884 * before writeback the [i_disk_size, newsize] range, so we're
885 * guaranteed not to write stale data past the new EOF on truncate down.
886 */
887 truncate_setsize(inode, newsize);
888
889 /*
890 * We are going to log the inode size change in this transaction so
891 * any previous writes that are beyond the on disk EOF and the new
892 * EOF that have not been written out need to be written here. If we
893 * do not write the data out, we expose ourselves to the null files
894 * problem. Note that this includes any block zeroing we did above;
895 * otherwise those blocks may not be zeroed after a crash.
896 */
897 if (did_zeroing ||
898 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
899 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
900 ip->i_disk_size, newsize - 1);
901 if (error)
902 return error;
903 }
904
905 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
906 if (error)
907 return error;
908
909 lock_flags |= XFS_ILOCK_EXCL;
910 xfs_ilock(ip, XFS_ILOCK_EXCL);
911 xfs_trans_ijoin(tp, ip, 0);
912
913 /*
914 * Only change the c/mtime if we are changing the size or we are
915 * explicitly asked to change it. This handles the semantic difference
916 * between truncate() and ftruncate() as implemented in the VFS.
917 *
918 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
919 * special case where we need to update the times despite not having
920 * these flags set. For all other operations the VFS set these flags
921 * explicitly if it wants a timestamp update.
922 */
923 if (newsize != oldsize &&
924 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
925 iattr->ia_ctime = iattr->ia_mtime =
926 current_time(inode);
927 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
928 }
929
930 /*
931 * The first thing we do is set the size to new_size permanently on
932 * disk. This way we don't have to worry about anyone ever being able
933 * to look at the data being freed even in the face of a crash.
934 * What we're getting around here is the case where we free a block, it
935 * is allocated to another file, it is written to, and then we crash.
936 * If the new data gets written to the file but the log buffers
937 * containing the free and reallocation don't, then we'd end up with
938 * garbage in the blocks being freed. As long as we make the new size
939 * permanent before actually freeing any blocks it doesn't matter if
940 * they get written to.
941 */
942 ip->i_disk_size = newsize;
943 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
944
945 if (newsize <= oldsize) {
946 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
947 if (error)
948 goto out_trans_cancel;
949
950 /*
951 * Truncated "down", so we're removing references to old data
952 * here - if we delay flushing for a long time, we expose
953 * ourselves unduly to the notorious NULL files problem. So,
954 * we mark this inode and flush it when the file is closed,
955 * and do not wait the usual (long) time for writeout.
956 */
957 xfs_iflags_set(ip, XFS_ITRUNCATED);
958
959 /* A truncate down always removes post-EOF blocks. */
960 xfs_inode_clear_eofblocks_tag(ip);
961 }
962
963 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
964 setattr_copy(mnt_userns, inode, iattr);
965 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
966
967 XFS_STATS_INC(mp, xs_ig_attrchg);
968
969 if (xfs_has_wsync(mp))
970 xfs_trans_set_sync(tp);
971
972 error = xfs_trans_commit(tp);
973 out_unlock:
974 if (lock_flags)
975 xfs_iunlock(ip, lock_flags);
976 return error;
977
978 out_trans_cancel:
979 xfs_trans_cancel(tp);
980 goto out_unlock;
981 }
982
983 int
xfs_vn_setattr_size(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)984 xfs_vn_setattr_size(
985 struct user_namespace *mnt_userns,
986 struct dentry *dentry,
987 struct iattr *iattr)
988 {
989 struct xfs_inode *ip = XFS_I(d_inode(dentry));
990 int error;
991
992 trace_xfs_setattr(ip);
993
994 error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
995 if (error)
996 return error;
997 return xfs_setattr_size(mnt_userns, ip, iattr);
998 }
999
1000 STATIC int
xfs_vn_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)1001 xfs_vn_setattr(
1002 struct user_namespace *mnt_userns,
1003 struct dentry *dentry,
1004 struct iattr *iattr)
1005 {
1006 struct inode *inode = d_inode(dentry);
1007 struct xfs_inode *ip = XFS_I(inode);
1008 int error;
1009
1010 if (iattr->ia_valid & ATTR_SIZE) {
1011 uint iolock;
1012
1013 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1014 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1015
1016 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1017 if (error) {
1018 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1019 return error;
1020 }
1021
1022 error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1023 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1024 } else {
1025 trace_xfs_setattr(ip);
1026
1027 error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1028 if (!error)
1029 error = xfs_setattr_nonsize(mnt_userns, ip, iattr);
1030 }
1031
1032 return error;
1033 }
1034
1035 STATIC int
xfs_vn_update_time(struct inode * inode,struct timespec64 * now,int flags)1036 xfs_vn_update_time(
1037 struct inode *inode,
1038 struct timespec64 *now,
1039 int flags)
1040 {
1041 struct xfs_inode *ip = XFS_I(inode);
1042 struct xfs_mount *mp = ip->i_mount;
1043 int log_flags = XFS_ILOG_TIMESTAMP;
1044 struct xfs_trans *tp;
1045 int error;
1046
1047 trace_xfs_update_time(ip);
1048
1049 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1050 if (!((flags & S_VERSION) &&
1051 inode_maybe_inc_iversion(inode, false)))
1052 return generic_update_time(inode, now, flags);
1053
1054 /* Capture the iversion update that just occurred */
1055 log_flags |= XFS_ILOG_CORE;
1056 }
1057
1058 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1059 if (error)
1060 return error;
1061
1062 xfs_ilock(ip, XFS_ILOCK_EXCL);
1063 if (flags & S_CTIME)
1064 inode->i_ctime = *now;
1065 if (flags & S_MTIME)
1066 inode->i_mtime = *now;
1067 if (flags & S_ATIME)
1068 inode->i_atime = *now;
1069
1070 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1071 xfs_trans_log_inode(tp, ip, log_flags);
1072 return xfs_trans_commit(tp);
1073 }
1074
1075 STATIC int
xfs_vn_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 length)1076 xfs_vn_fiemap(
1077 struct inode *inode,
1078 struct fiemap_extent_info *fieinfo,
1079 u64 start,
1080 u64 length)
1081 {
1082 int error;
1083
1084 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1085 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1086 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1087 error = iomap_fiemap(inode, fieinfo, start, length,
1088 &xfs_xattr_iomap_ops);
1089 } else {
1090 error = iomap_fiemap(inode, fieinfo, start, length,
1091 &xfs_read_iomap_ops);
1092 }
1093 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1094
1095 return error;
1096 }
1097
1098 STATIC int
xfs_vn_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1099 xfs_vn_tmpfile(
1100 struct user_namespace *mnt_userns,
1101 struct inode *dir,
1102 struct dentry *dentry,
1103 umode_t mode)
1104 {
1105 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true);
1106 }
1107
1108 static const struct inode_operations xfs_inode_operations = {
1109 .get_acl = xfs_get_acl,
1110 .set_acl = xfs_set_acl,
1111 .getattr = xfs_vn_getattr,
1112 .setattr = xfs_vn_setattr,
1113 .listxattr = xfs_vn_listxattr,
1114 .fiemap = xfs_vn_fiemap,
1115 .update_time = xfs_vn_update_time,
1116 .fileattr_get = xfs_fileattr_get,
1117 .fileattr_set = xfs_fileattr_set,
1118 };
1119
1120 static const struct inode_operations xfs_dir_inode_operations = {
1121 .create = xfs_vn_create,
1122 .lookup = xfs_vn_lookup,
1123 .link = xfs_vn_link,
1124 .unlink = xfs_vn_unlink,
1125 .symlink = xfs_vn_symlink,
1126 .mkdir = xfs_vn_mkdir,
1127 /*
1128 * Yes, XFS uses the same method for rmdir and unlink.
1129 *
1130 * There are some subtile differences deeper in the code,
1131 * but we use S_ISDIR to check for those.
1132 */
1133 .rmdir = xfs_vn_unlink,
1134 .mknod = xfs_vn_mknod,
1135 .rename = xfs_vn_rename,
1136 .get_acl = xfs_get_acl,
1137 .set_acl = xfs_set_acl,
1138 .getattr = xfs_vn_getattr,
1139 .setattr = xfs_vn_setattr,
1140 .listxattr = xfs_vn_listxattr,
1141 .update_time = xfs_vn_update_time,
1142 .tmpfile = xfs_vn_tmpfile,
1143 .fileattr_get = xfs_fileattr_get,
1144 .fileattr_set = xfs_fileattr_set,
1145 };
1146
1147 static const struct inode_operations xfs_dir_ci_inode_operations = {
1148 .create = xfs_vn_create,
1149 .lookup = xfs_vn_ci_lookup,
1150 .link = xfs_vn_link,
1151 .unlink = xfs_vn_unlink,
1152 .symlink = xfs_vn_symlink,
1153 .mkdir = xfs_vn_mkdir,
1154 /*
1155 * Yes, XFS uses the same method for rmdir and unlink.
1156 *
1157 * There are some subtile differences deeper in the code,
1158 * but we use S_ISDIR to check for those.
1159 */
1160 .rmdir = xfs_vn_unlink,
1161 .mknod = xfs_vn_mknod,
1162 .rename = xfs_vn_rename,
1163 .get_acl = xfs_get_acl,
1164 .set_acl = xfs_set_acl,
1165 .getattr = xfs_vn_getattr,
1166 .setattr = xfs_vn_setattr,
1167 .listxattr = xfs_vn_listxattr,
1168 .update_time = xfs_vn_update_time,
1169 .tmpfile = xfs_vn_tmpfile,
1170 .fileattr_get = xfs_fileattr_get,
1171 .fileattr_set = xfs_fileattr_set,
1172 };
1173
1174 static const struct inode_operations xfs_symlink_inode_operations = {
1175 .get_link = xfs_vn_get_link,
1176 .getattr = xfs_vn_getattr,
1177 .setattr = xfs_vn_setattr,
1178 .listxattr = xfs_vn_listxattr,
1179 .update_time = xfs_vn_update_time,
1180 };
1181
1182 /* Figure out if this file actually supports DAX. */
1183 static bool
xfs_inode_supports_dax(struct xfs_inode * ip)1184 xfs_inode_supports_dax(
1185 struct xfs_inode *ip)
1186 {
1187 struct xfs_mount *mp = ip->i_mount;
1188
1189 /* Only supported on regular files. */
1190 if (!S_ISREG(VFS_I(ip)->i_mode))
1191 return false;
1192
1193 /* Only supported on non-reflinked files. */
1194 if (xfs_is_reflink_inode(ip))
1195 return false;
1196
1197 /* Block size must match page size */
1198 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1199 return false;
1200
1201 /* Device has to support DAX too. */
1202 return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1203 }
1204
1205 static bool
xfs_inode_should_enable_dax(struct xfs_inode * ip)1206 xfs_inode_should_enable_dax(
1207 struct xfs_inode *ip)
1208 {
1209 if (!IS_ENABLED(CONFIG_FS_DAX))
1210 return false;
1211 if (xfs_has_dax_never(ip->i_mount))
1212 return false;
1213 if (!xfs_inode_supports_dax(ip))
1214 return false;
1215 if (xfs_has_dax_always(ip->i_mount))
1216 return true;
1217 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1218 return true;
1219 return false;
1220 }
1221
1222 void
xfs_diflags_to_iflags(struct xfs_inode * ip,bool init)1223 xfs_diflags_to_iflags(
1224 struct xfs_inode *ip,
1225 bool init)
1226 {
1227 struct inode *inode = VFS_I(ip);
1228 unsigned int xflags = xfs_ip2xflags(ip);
1229 unsigned int flags = 0;
1230
1231 ASSERT(!(IS_DAX(inode) && init));
1232
1233 if (xflags & FS_XFLAG_IMMUTABLE)
1234 flags |= S_IMMUTABLE;
1235 if (xflags & FS_XFLAG_APPEND)
1236 flags |= S_APPEND;
1237 if (xflags & FS_XFLAG_SYNC)
1238 flags |= S_SYNC;
1239 if (xflags & FS_XFLAG_NOATIME)
1240 flags |= S_NOATIME;
1241 if (init && xfs_inode_should_enable_dax(ip))
1242 flags |= S_DAX;
1243
1244 /*
1245 * S_DAX can only be set during inode initialization and is never set by
1246 * the VFS, so we cannot mask off S_DAX in i_flags.
1247 */
1248 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1249 inode->i_flags |= flags;
1250 }
1251
1252 /*
1253 * Initialize the Linux inode.
1254 *
1255 * When reading existing inodes from disk this is called directly from xfs_iget,
1256 * when creating a new inode it is called from xfs_ialloc after setting up the
1257 * inode. These callers have different criteria for clearing XFS_INEW, so leave
1258 * it up to the caller to deal with unlocking the inode appropriately.
1259 */
1260 void
xfs_setup_inode(struct xfs_inode * ip)1261 xfs_setup_inode(
1262 struct xfs_inode *ip)
1263 {
1264 struct inode *inode = &ip->i_vnode;
1265 gfp_t gfp_mask;
1266
1267 inode->i_ino = ip->i_ino;
1268 inode->i_state |= I_NEW;
1269
1270 inode_sb_list_add(inode);
1271 /* make the inode look hashed for the writeback code */
1272 inode_fake_hash(inode);
1273
1274 i_size_write(inode, ip->i_disk_size);
1275 xfs_diflags_to_iflags(ip, true);
1276
1277 if (S_ISDIR(inode->i_mode)) {
1278 /*
1279 * We set the i_rwsem class here to avoid potential races with
1280 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1281 * after a filehandle lookup has already found the inode in
1282 * cache before it has been unlocked via unlock_new_inode().
1283 */
1284 lockdep_set_class(&inode->i_rwsem,
1285 &inode->i_sb->s_type->i_mutex_dir_key);
1286 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1287 } else {
1288 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1289 }
1290
1291 /*
1292 * Ensure all page cache allocations are done from GFP_NOFS context to
1293 * prevent direct reclaim recursion back into the filesystem and blowing
1294 * stacks or deadlocking.
1295 */
1296 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1297 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1298
1299 /*
1300 * If there is no attribute fork no ACL can exist on this inode,
1301 * and it can't have any file capabilities attached to it either.
1302 */
1303 if (!XFS_IFORK_Q(ip)) {
1304 inode_has_no_xattr(inode);
1305 cache_no_acl(inode);
1306 }
1307 }
1308
1309 void
xfs_setup_iops(struct xfs_inode * ip)1310 xfs_setup_iops(
1311 struct xfs_inode *ip)
1312 {
1313 struct inode *inode = &ip->i_vnode;
1314
1315 switch (inode->i_mode & S_IFMT) {
1316 case S_IFREG:
1317 inode->i_op = &xfs_inode_operations;
1318 inode->i_fop = &xfs_file_operations;
1319 if (IS_DAX(inode))
1320 inode->i_mapping->a_ops = &xfs_dax_aops;
1321 else
1322 inode->i_mapping->a_ops = &xfs_address_space_operations;
1323 break;
1324 case S_IFDIR:
1325 if (xfs_has_asciici(XFS_M(inode->i_sb)))
1326 inode->i_op = &xfs_dir_ci_inode_operations;
1327 else
1328 inode->i_op = &xfs_dir_inode_operations;
1329 inode->i_fop = &xfs_dir_file_operations;
1330 break;
1331 case S_IFLNK:
1332 inode->i_op = &xfs_symlink_inode_operations;
1333 break;
1334 default:
1335 inode->i_op = &xfs_inode_operations;
1336 init_special_inode(inode, inode->i_mode, inode->i_rdev);
1337 break;
1338 }
1339 }
1340