• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 				struct xhci_segment *first)
80 {
81 	struct xhci_segment *seg;
82 
83 	seg = first->next;
84 	while (seg != first) {
85 		struct xhci_segment *next = seg->next;
86 		xhci_segment_free(xhci, seg);
87 		seg = next;
88 	}
89 	xhci_segment_free(xhci, first);
90 }
91 
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)99 static void xhci_link_segments(struct xhci_segment *prev,
100 			       struct xhci_segment *next,
101 			       enum xhci_ring_type type, bool chain_links)
102 {
103 	u32 val;
104 
105 	if (!prev || !next)
106 		return;
107 	prev->next = next;
108 	if (type != TYPE_EVENT) {
109 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 			cpu_to_le64(next->dma);
111 
112 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 		val &= ~TRB_TYPE_BITMASK;
115 		val |= TRB_TYPE(TRB_LINK);
116 		if (chain_links)
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 	bool chain_links;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 			 (ring->type == TYPE_ISOC &&
139 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
140 
141 	next = ring->enq_seg->next;
142 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 	xhci_link_segments(last, next, ring->type, chain_links);
144 	ring->num_segs += num_segs;
145 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146 
147 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 			&= ~cpu_to_le32(LINK_TOGGLE);
150 		last->trbs[TRBS_PER_SEGMENT-1].link.control
151 			|= cpu_to_le32(LINK_TOGGLE);
152 		ring->last_seg = last;
153 	}
154 }
155 
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *	0x10c90fff >> 10 = 0x43243
171  *	0x10c912c0 >> 10 = 0x43244
172  *	0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 		struct xhci_ring *ring,
189 		struct xhci_segment *seg,
190 		gfp_t mem_flags)
191 {
192 	unsigned long key;
193 	int ret;
194 
195 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 	/* Skip any segments that were already added. */
197 	if (radix_tree_lookup(trb_address_map, key))
198 		return 0;
199 
200 	ret = radix_tree_maybe_preload(mem_flags);
201 	if (ret)
202 		return ret;
203 	ret = radix_tree_insert(trb_address_map,
204 			key, ring);
205 	radix_tree_preload_end();
206 	return ret;
207 }
208 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 		struct xhci_segment *seg)
211 {
212 	unsigned long key;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	if (radix_tree_lookup(trb_address_map, key))
216 		radix_tree_delete(trb_address_map, key);
217 }
218 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)219 static int xhci_update_stream_segment_mapping(
220 		struct radix_tree_root *trb_address_map,
221 		struct xhci_ring *ring,
222 		struct xhci_segment *first_seg,
223 		struct xhci_segment *last_seg,
224 		gfp_t mem_flags)
225 {
226 	struct xhci_segment *seg;
227 	struct xhci_segment *failed_seg;
228 	int ret;
229 
230 	if (WARN_ON_ONCE(trb_address_map == NULL))
231 		return 0;
232 
233 	seg = first_seg;
234 	do {
235 		ret = xhci_insert_segment_mapping(trb_address_map,
236 				ring, seg, mem_flags);
237 		if (ret)
238 			goto remove_streams;
239 		if (seg == last_seg)
240 			return 0;
241 		seg = seg->next;
242 	} while (seg != first_seg);
243 
244 	return 0;
245 
246 remove_streams:
247 	failed_seg = seg;
248 	seg = first_seg;
249 	do {
250 		xhci_remove_segment_mapping(trb_address_map, seg);
251 		if (seg == failed_seg)
252 			return ret;
253 		seg = seg->next;
254 	} while (seg != first_seg);
255 
256 	return ret;
257 }
258 
xhci_remove_stream_mapping(struct xhci_ring * ring)259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 	struct xhci_segment *seg;
262 
263 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 		return;
265 
266 	seg = ring->first_seg;
267 	do {
268 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 		seg = seg->next;
270 	} while (seg != ring->first_seg);
271 }
272 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 			ring->first_seg, ring->last_seg, mem_flags);
277 }
278 
279 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 	if (!ring)
283 		return;
284 
285 	trace_xhci_ring_free(ring);
286 
287 	if (ring->first_seg) {
288 		if (ring->type == TYPE_STREAM)
289 			xhci_remove_stream_mapping(ring);
290 		xhci_free_segments_for_ring(xhci, ring->first_seg);
291 	}
292 
293 	kfree(ring);
294 }
295 EXPORT_SYMBOL_GPL(xhci_ring_free);
296 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)297 void xhci_initialize_ring_info(struct xhci_ring *ring,
298 			       unsigned int cycle_state)
299 {
300 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
301 	ring->enqueue = ring->first_seg->trbs;
302 	ring->enq_seg = ring->first_seg;
303 	ring->dequeue = ring->enqueue;
304 	ring->deq_seg = ring->first_seg;
305 	/* The ring is initialized to 0. The producer must write 1 to the cycle
306 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
307 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
308 	 *
309 	 * New rings are initialized with cycle state equal to 1; if we are
310 	 * handling ring expansion, set the cycle state equal to the old ring.
311 	 */
312 	ring->cycle_state = cycle_state;
313 
314 	/*
315 	 * Each segment has a link TRB, and leave an extra TRB for SW
316 	 * accounting purpose
317 	 */
318 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
319 }
320 
321 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)322 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
323 		struct xhci_segment **first, struct xhci_segment **last,
324 		unsigned int num_segs, unsigned int cycle_state,
325 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
326 {
327 	struct xhci_segment *prev;
328 	bool chain_links;
329 
330 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
331 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
332 			 (type == TYPE_ISOC &&
333 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
334 
335 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 	if (!prev)
337 		return -ENOMEM;
338 	num_segs--;
339 
340 	*first = prev;
341 	while (num_segs > 0) {
342 		struct xhci_segment	*next;
343 
344 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345 		if (!next) {
346 			prev = *first;
347 			while (prev) {
348 				next = prev->next;
349 				xhci_segment_free(xhci, prev);
350 				prev = next;
351 			}
352 			return -ENOMEM;
353 		}
354 		xhci_link_segments(prev, next, type, chain_links);
355 
356 		prev = next;
357 		num_segs--;
358 	}
359 	xhci_link_segments(prev, *first, type, chain_links);
360 	*last = prev;
361 
362 	return 0;
363 }
364 
365 /*
366  * Create a new ring with zero or more segments.
367  *
368  * Link each segment together into a ring.
369  * Set the end flag and the cycle toggle bit on the last segment.
370  * See section 4.9.1 and figures 15 and 16.
371  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)372 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373 		unsigned int num_segs, unsigned int cycle_state,
374 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376 	struct xhci_ring	*ring;
377 	int ret;
378 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
379 
380 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
381 	if (!ring)
382 		return NULL;
383 
384 	ring->num_segs = num_segs;
385 	ring->bounce_buf_len = max_packet;
386 	INIT_LIST_HEAD(&ring->td_list);
387 	ring->type = type;
388 	if (num_segs == 0)
389 		return ring;
390 
391 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
392 			&ring->last_seg, num_segs, cycle_state, type,
393 			max_packet, flags);
394 	if (ret)
395 		goto fail;
396 
397 	/* Only event ring does not use link TRB */
398 	if (type != TYPE_EVENT) {
399 		/* See section 4.9.2.1 and 6.4.4.1 */
400 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
401 			cpu_to_le32(LINK_TOGGLE);
402 	}
403 	xhci_initialize_ring_info(ring, cycle_state);
404 	trace_xhci_ring_alloc(ring);
405 	return ring;
406 
407 fail:
408 	kfree(ring);
409 	return NULL;
410 }
411 EXPORT_SYMBOL_GPL(xhci_ring_alloc);
412 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)413 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
414 		struct xhci_virt_device *virt_dev,
415 		unsigned int ep_index)
416 {
417 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
418 	virt_dev->eps[ep_index].ring = NULL;
419 }
420 
421 /*
422  * Expand an existing ring.
423  * Allocate a new ring which has same segment numbers and link the two rings.
424  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)425 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
426 				unsigned int num_trbs, gfp_t flags)
427 {
428 	struct xhci_segment	*first;
429 	struct xhci_segment	*last;
430 	unsigned int		num_segs;
431 	unsigned int		num_segs_needed;
432 	int			ret;
433 
434 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
435 				(TRBS_PER_SEGMENT - 1);
436 
437 	/* Allocate number of segments we needed, or double the ring size */
438 	num_segs = ring->num_segs > num_segs_needed ?
439 			ring->num_segs : num_segs_needed;
440 
441 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
442 			num_segs, ring->cycle_state, ring->type,
443 			ring->bounce_buf_len, flags);
444 	if (ret)
445 		return -ENOMEM;
446 
447 	if (ring->type == TYPE_STREAM)
448 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
449 						ring, first, last, flags);
450 	if (ret) {
451 		struct xhci_segment *next;
452 		do {
453 			next = first->next;
454 			xhci_segment_free(xhci, first);
455 			if (first == last)
456 				break;
457 			first = next;
458 		} while (true);
459 		return ret;
460 	}
461 
462 	xhci_link_rings(xhci, ring, first, last, num_segs);
463 	trace_xhci_ring_expansion(ring);
464 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
465 			"ring expansion succeed, now has %d segments",
466 			ring->num_segs);
467 
468 	return 0;
469 }
470 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)471 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
472 						    int type, gfp_t flags)
473 {
474 	struct xhci_container_ctx *ctx;
475 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476 
477 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 		return NULL;
479 
480 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
481 	if (!ctx)
482 		return NULL;
483 
484 	ctx->type = type;
485 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
486 	if (type == XHCI_CTX_TYPE_INPUT)
487 		ctx->size += CTX_SIZE(xhci->hcc_params);
488 
489 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
490 	if (!ctx->bytes) {
491 		kfree(ctx);
492 		return NULL;
493 	}
494 	return ctx;
495 }
496 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)497 void xhci_free_container_ctx(struct xhci_hcd *xhci,
498 			     struct xhci_container_ctx *ctx)
499 {
500 	if (!ctx)
501 		return;
502 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 	kfree(ctx);
504 }
505 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)506 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
507 					      struct xhci_container_ctx *ctx)
508 {
509 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 		return NULL;
511 
512 	return (struct xhci_input_control_ctx *)ctx->bytes;
513 }
514 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)515 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
516 					struct xhci_container_ctx *ctx)
517 {
518 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
519 		return (struct xhci_slot_ctx *)ctx->bytes;
520 
521 	return (struct xhci_slot_ctx *)
522 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 }
524 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)525 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
526 				    struct xhci_container_ctx *ctx,
527 				    unsigned int ep_index)
528 {
529 	/* increment ep index by offset of start of ep ctx array */
530 	ep_index++;
531 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 		ep_index++;
533 
534 	return (struct xhci_ep_ctx *)
535 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536 }
537 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538 
539 /***************** Streams structures manipulation *************************/
540 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)541 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
542 		unsigned int num_stream_ctxs,
543 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544 {
545 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547 
548 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 		dma_free_coherent(dev, size,
550 				stream_ctx, dma);
551 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
552 		return dma_pool_free(xhci->small_streams_pool,
553 				stream_ctx, dma);
554 	else
555 		return dma_pool_free(xhci->medium_streams_pool,
556 				stream_ctx, dma);
557 }
558 
559 /*
560  * The stream context array for each endpoint with bulk streams enabled can
561  * vary in size, based on:
562  *  - how many streams the endpoint supports,
563  *  - the maximum primary stream array size the host controller supports,
564  *  - and how many streams the device driver asks for.
565  *
566  * The stream context array must be a power of 2, and can be as small as
567  * 64 bytes or as large as 1MB.
568  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)569 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
570 		unsigned int num_stream_ctxs, dma_addr_t *dma,
571 		gfp_t mem_flags)
572 {
573 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
574 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
575 
576 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
577 		return dma_alloc_coherent(dev, size,
578 				dma, mem_flags);
579 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
580 		return dma_pool_alloc(xhci->small_streams_pool,
581 				mem_flags, dma);
582 	else
583 		return dma_pool_alloc(xhci->medium_streams_pool,
584 				mem_flags, dma);
585 }
586 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)587 struct xhci_ring *xhci_dma_to_transfer_ring(
588 		struct xhci_virt_ep *ep,
589 		u64 address)
590 {
591 	if (ep->ep_state & EP_HAS_STREAMS)
592 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
593 				address >> TRB_SEGMENT_SHIFT);
594 	return ep->ring;
595 }
596 
597 /*
598  * Change an endpoint's internal structure so it supports stream IDs.  The
599  * number of requested streams includes stream 0, which cannot be used by device
600  * drivers.
601  *
602  * The number of stream contexts in the stream context array may be bigger than
603  * the number of streams the driver wants to use.  This is because the number of
604  * stream context array entries must be a power of two.
605  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)606 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
607 		unsigned int num_stream_ctxs,
608 		unsigned int num_streams,
609 		unsigned int max_packet, gfp_t mem_flags)
610 {
611 	struct xhci_stream_info *stream_info;
612 	u32 cur_stream;
613 	struct xhci_ring *cur_ring;
614 	u64 addr;
615 	int ret;
616 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
617 
618 	xhci_dbg(xhci, "Allocating %u streams and %u "
619 			"stream context array entries.\n",
620 			num_streams, num_stream_ctxs);
621 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
622 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
623 		return NULL;
624 	}
625 	xhci->cmd_ring_reserved_trbs++;
626 
627 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
628 			dev_to_node(dev));
629 	if (!stream_info)
630 		goto cleanup_trbs;
631 
632 	stream_info->num_streams = num_streams;
633 	stream_info->num_stream_ctxs = num_stream_ctxs;
634 
635 	/* Initialize the array of virtual pointers to stream rings. */
636 	stream_info->stream_rings = kcalloc_node(
637 			num_streams, sizeof(struct xhci_ring *), mem_flags,
638 			dev_to_node(dev));
639 	if (!stream_info->stream_rings)
640 		goto cleanup_info;
641 
642 	/* Initialize the array of DMA addresses for stream rings for the HW. */
643 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 			num_stream_ctxs, &stream_info->ctx_array_dma,
645 			mem_flags);
646 	if (!stream_info->stream_ctx_array)
647 		goto cleanup_ring_array;
648 	memset(stream_info->stream_ctx_array, 0,
649 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650 
651 	/* Allocate everything needed to free the stream rings later */
652 	stream_info->free_streams_command =
653 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
654 	if (!stream_info->free_streams_command)
655 		goto cleanup_ctx;
656 
657 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658 
659 	/* Allocate rings for all the streams that the driver will use,
660 	 * and add their segment DMA addresses to the radix tree.
661 	 * Stream 0 is reserved.
662 	 */
663 
664 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 		stream_info->stream_rings[cur_stream] =
666 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 					mem_flags);
668 		cur_ring = stream_info->stream_rings[cur_stream];
669 		if (!cur_ring)
670 			goto cleanup_rings;
671 		cur_ring->stream_id = cur_stream;
672 		cur_ring->trb_address_map = &stream_info->trb_address_map;
673 		/* Set deq ptr, cycle bit, and stream context type */
674 		addr = cur_ring->first_seg->dma |
675 			SCT_FOR_CTX(SCT_PRI_TR) |
676 			cur_ring->cycle_state;
677 		stream_info->stream_ctx_array[cur_stream].stream_ring =
678 			cpu_to_le64(addr);
679 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 				cur_stream, (unsigned long long) addr);
681 
682 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 		if (ret) {
684 			xhci_ring_free(xhci, cur_ring);
685 			stream_info->stream_rings[cur_stream] = NULL;
686 			goto cleanup_rings;
687 		}
688 	}
689 	/* Leave the other unused stream ring pointers in the stream context
690 	 * array initialized to zero.  This will cause the xHC to give us an
691 	 * error if the device asks for a stream ID we don't have setup (if it
692 	 * was any other way, the host controller would assume the ring is
693 	 * "empty" and wait forever for data to be queued to that stream ID).
694 	 */
695 
696 	return stream_info;
697 
698 cleanup_rings:
699 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 		cur_ring = stream_info->stream_rings[cur_stream];
701 		if (cur_ring) {
702 			xhci_ring_free(xhci, cur_ring);
703 			stream_info->stream_rings[cur_stream] = NULL;
704 		}
705 	}
706 	xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 	xhci_free_stream_ctx(xhci,
709 		stream_info->num_stream_ctxs,
710 		stream_info->stream_ctx_array,
711 		stream_info->ctx_array_dma);
712 cleanup_ring_array:
713 	kfree(stream_info->stream_rings);
714 cleanup_info:
715 	kfree(stream_info);
716 cleanup_trbs:
717 	xhci->cmd_ring_reserved_trbs--;
718 	return NULL;
719 }
720 /*
721  * Sets the MaxPStreams field and the Linear Stream Array field.
722  * Sets the dequeue pointer to the stream context array.
723  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)724 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
725 		struct xhci_ep_ctx *ep_ctx,
726 		struct xhci_stream_info *stream_info)
727 {
728 	u32 max_primary_streams;
729 	/* MaxPStreams is the number of stream context array entries, not the
730 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
731 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
732 	 */
733 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
734 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
735 			"Setting number of stream ctx array entries to %u",
736 			1 << (max_primary_streams + 1));
737 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
738 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
739 				       | EP_HAS_LSA);
740 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
741 }
742 
743 /*
744  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
745  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
746  * not at the beginning of the ring).
747  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)748 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
749 		struct xhci_virt_ep *ep)
750 {
751 	dma_addr_t addr;
752 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
753 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
754 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
755 }
756 
757 /* Frees all stream contexts associated with the endpoint,
758  *
759  * Caller should fix the endpoint context streams fields.
760  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)761 void xhci_free_stream_info(struct xhci_hcd *xhci,
762 		struct xhci_stream_info *stream_info)
763 {
764 	int cur_stream;
765 	struct xhci_ring *cur_ring;
766 
767 	if (!stream_info)
768 		return;
769 
770 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
771 			cur_stream++) {
772 		cur_ring = stream_info->stream_rings[cur_stream];
773 		if (cur_ring) {
774 			xhci_ring_free(xhci, cur_ring);
775 			stream_info->stream_rings[cur_stream] = NULL;
776 		}
777 	}
778 	xhci_free_command(xhci, stream_info->free_streams_command);
779 	xhci->cmd_ring_reserved_trbs--;
780 	if (stream_info->stream_ctx_array)
781 		xhci_free_stream_ctx(xhci,
782 				stream_info->num_stream_ctxs,
783 				stream_info->stream_ctx_array,
784 				stream_info->ctx_array_dma);
785 
786 	kfree(stream_info->stream_rings);
787 	kfree(stream_info);
788 }
789 
790 
791 /***************** Device context manipulation *************************/
792 
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)793 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
794 		struct xhci_virt_ep *ep)
795 {
796 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
797 		    0);
798 	ep->xhci = xhci;
799 }
800 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)801 static void xhci_free_tt_info(struct xhci_hcd *xhci,
802 		struct xhci_virt_device *virt_dev,
803 		int slot_id)
804 {
805 	struct list_head *tt_list_head;
806 	struct xhci_tt_bw_info *tt_info, *next;
807 	bool slot_found = false;
808 
809 	/* If the device never made it past the Set Address stage,
810 	 * it may not have the real_port set correctly.
811 	 */
812 	if (virt_dev->real_port == 0 ||
813 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
814 		xhci_dbg(xhci, "Bad real port.\n");
815 		return;
816 	}
817 
818 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
819 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
820 		/* Multi-TT hubs will have more than one entry */
821 		if (tt_info->slot_id == slot_id) {
822 			slot_found = true;
823 			list_del(&tt_info->tt_list);
824 			kfree(tt_info);
825 		} else if (slot_found) {
826 			break;
827 		}
828 	}
829 }
830 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)831 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
832 		struct xhci_virt_device *virt_dev,
833 		struct usb_device *hdev,
834 		struct usb_tt *tt, gfp_t mem_flags)
835 {
836 	struct xhci_tt_bw_info		*tt_info;
837 	unsigned int			num_ports;
838 	int				i, j;
839 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
840 
841 	if (!tt->multi)
842 		num_ports = 1;
843 	else
844 		num_ports = hdev->maxchild;
845 
846 	for (i = 0; i < num_ports; i++, tt_info++) {
847 		struct xhci_interval_bw_table *bw_table;
848 
849 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
850 				dev_to_node(dev));
851 		if (!tt_info)
852 			goto free_tts;
853 		INIT_LIST_HEAD(&tt_info->tt_list);
854 		list_add(&tt_info->tt_list,
855 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
856 		tt_info->slot_id = virt_dev->udev->slot_id;
857 		if (tt->multi)
858 			tt_info->ttport = i+1;
859 		bw_table = &tt_info->bw_table;
860 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
861 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
862 	}
863 	return 0;
864 
865 free_tts:
866 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
867 	return -ENOMEM;
868 }
869 
870 
871 /* All the xhci_tds in the ring's TD list should be freed at this point.
872  * Should be called with xhci->lock held if there is any chance the TT lists
873  * will be manipulated by the configure endpoint, allocate device, or update
874  * hub functions while this function is removing the TT entries from the list.
875  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)876 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
877 {
878 	struct xhci_virt_device *dev;
879 	int i;
880 	int old_active_eps = 0;
881 
882 	/* Slot ID 0 is reserved */
883 	if (slot_id == 0 || !xhci->devs[slot_id])
884 		return;
885 
886 	dev = xhci->devs[slot_id];
887 
888 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
889 	if (!dev)
890 		return;
891 
892 	trace_xhci_free_virt_device(dev);
893 
894 	if (dev->tt_info)
895 		old_active_eps = dev->tt_info->active_eps;
896 
897 	for (i = 0; i < 31; i++) {
898 		if (dev->eps[i].ring)
899 			xhci_ring_free(xhci, dev->eps[i].ring);
900 		if (dev->eps[i].stream_info)
901 			xhci_free_stream_info(xhci,
902 					dev->eps[i].stream_info);
903 		/*
904 		 * Endpoints are normally deleted from the bandwidth list when
905 		 * endpoints are dropped, before device is freed.
906 		 * If host is dying or being removed then endpoints aren't
907 		 * dropped cleanly, so delete the endpoint from list here.
908 		 * Only applicable for hosts with software bandwidth checking.
909 		 */
910 
911 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
912 			list_del_init(&dev->eps[i].bw_endpoint_list);
913 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
914 				 slot_id, i);
915 		}
916 	}
917 	/* If this is a hub, free the TT(s) from the TT list */
918 	xhci_free_tt_info(xhci, dev, slot_id);
919 	/* If necessary, update the number of active TTs on this root port */
920 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
921 
922 	if (dev->in_ctx)
923 		xhci_free_container_ctx(xhci, dev->in_ctx);
924 	if (dev->out_ctx)
925 		xhci_free_container_ctx(xhci, dev->out_ctx);
926 
927 	if (dev->udev && dev->udev->slot_id)
928 		dev->udev->slot_id = 0;
929 	kfree(xhci->devs[slot_id]);
930 	xhci->devs[slot_id] = NULL;
931 }
932 
933 /*
934  * Free a virt_device structure.
935  * If the virt_device added a tt_info (a hub) and has children pointing to
936  * that tt_info, then free the child first. Recursive.
937  * We can't rely on udev at this point to find child-parent relationships.
938  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)939 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
940 {
941 	struct xhci_virt_device *vdev;
942 	struct list_head *tt_list_head;
943 	struct xhci_tt_bw_info *tt_info, *next;
944 	int i;
945 
946 	vdev = xhci->devs[slot_id];
947 	if (!vdev)
948 		return;
949 
950 	if (vdev->real_port == 0 ||
951 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
952 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
953 		goto out;
954 	}
955 
956 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
957 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
958 		/* is this a hub device that added a tt_info to the tts list */
959 		if (tt_info->slot_id == slot_id) {
960 			/* are any devices using this tt_info? */
961 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
962 				vdev = xhci->devs[i];
963 				if (vdev && (vdev->tt_info == tt_info))
964 					xhci_free_virt_devices_depth_first(
965 						xhci, i);
966 			}
967 		}
968 	}
969 out:
970 	/* we are now at a leaf device */
971 	xhci_debugfs_remove_slot(xhci, slot_id);
972 	xhci_free_virt_device(xhci, slot_id);
973 }
974 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)975 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
976 		struct usb_device *udev, gfp_t flags)
977 {
978 	struct xhci_virt_device *dev;
979 	int i;
980 
981 	/* Slot ID 0 is reserved */
982 	if (slot_id == 0 || xhci->devs[slot_id]) {
983 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
984 		return 0;
985 	}
986 
987 	dev = kzalloc(sizeof(*dev), flags);
988 	if (!dev)
989 		return 0;
990 
991 	dev->slot_id = slot_id;
992 
993 	/* Allocate the (output) device context that will be used in the HC. */
994 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
995 	if (!dev->out_ctx)
996 		goto fail;
997 
998 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
999 			(unsigned long long)dev->out_ctx->dma);
1000 
1001 	/* Allocate the (input) device context for address device command */
1002 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1003 	if (!dev->in_ctx)
1004 		goto fail;
1005 
1006 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1007 			(unsigned long long)dev->in_ctx->dma);
1008 
1009 	/* Initialize the cancellation list and watchdog timers for each ep */
1010 	for (i = 0; i < 31; i++) {
1011 		dev->eps[i].ep_index = i;
1012 		dev->eps[i].vdev = dev;
1013 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1014 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1015 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1016 	}
1017 
1018 	/* Allocate endpoint 0 ring */
1019 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1020 	if (!dev->eps[0].ring)
1021 		goto fail;
1022 
1023 	dev->udev = udev;
1024 
1025 	/* Point to output device context in dcbaa. */
1026 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1027 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1028 		 slot_id,
1029 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1030 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1031 
1032 	trace_xhci_alloc_virt_device(dev);
1033 
1034 	xhci->devs[slot_id] = dev;
1035 
1036 	return 1;
1037 fail:
1038 
1039 	if (dev->in_ctx)
1040 		xhci_free_container_ctx(xhci, dev->in_ctx);
1041 	if (dev->out_ctx)
1042 		xhci_free_container_ctx(xhci, dev->out_ctx);
1043 	kfree(dev);
1044 
1045 	return 0;
1046 }
1047 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1048 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1049 		struct usb_device *udev)
1050 {
1051 	struct xhci_virt_device *virt_dev;
1052 	struct xhci_ep_ctx	*ep0_ctx;
1053 	struct xhci_ring	*ep_ring;
1054 
1055 	virt_dev = xhci->devs[udev->slot_id];
1056 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1057 	ep_ring = virt_dev->eps[0].ring;
1058 	/*
1059 	 * FIXME we don't keep track of the dequeue pointer very well after a
1060 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1061 	 * host to our enqueue pointer.  This should only be called after a
1062 	 * configured device has reset, so all control transfers should have
1063 	 * been completed or cancelled before the reset.
1064 	 */
1065 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1066 							ep_ring->enqueue)
1067 				   | ep_ring->cycle_state);
1068 }
1069 
1070 /*
1071  * The xHCI roothub may have ports of differing speeds in any order in the port
1072  * status registers.
1073  *
1074  * The xHCI hardware wants to know the roothub port number that the USB device
1075  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1076  * know is the index of that port under either the USB 2.0 or the USB 3.0
1077  * roothub, but that doesn't give us the real index into the HW port status
1078  * registers. Call xhci_find_raw_port_number() to get real index.
1079  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1080 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1081 		struct usb_device *udev)
1082 {
1083 	struct usb_device *top_dev;
1084 	struct usb_hcd *hcd;
1085 
1086 	if (udev->speed >= USB_SPEED_SUPER)
1087 		hcd = xhci->shared_hcd;
1088 	else
1089 		hcd = xhci->main_hcd;
1090 
1091 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1092 			top_dev = top_dev->parent)
1093 		/* Found device below root hub */;
1094 
1095 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1096 }
1097 
1098 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1099 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1100 {
1101 	struct xhci_virt_device *dev;
1102 	struct xhci_ep_ctx	*ep0_ctx;
1103 	struct xhci_slot_ctx    *slot_ctx;
1104 	u32			port_num;
1105 	u32			max_packets;
1106 	struct usb_device *top_dev;
1107 
1108 	dev = xhci->devs[udev->slot_id];
1109 	/* Slot ID 0 is reserved */
1110 	if (udev->slot_id == 0 || !dev) {
1111 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1112 				udev->slot_id);
1113 		return -EINVAL;
1114 	}
1115 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1116 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1117 
1118 	/* 3) Only the control endpoint is valid - one endpoint context */
1119 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1120 	switch (udev->speed) {
1121 	case USB_SPEED_SUPER_PLUS:
1122 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1123 		max_packets = MAX_PACKET(512);
1124 		break;
1125 	case USB_SPEED_SUPER:
1126 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1127 		max_packets = MAX_PACKET(512);
1128 		break;
1129 	case USB_SPEED_HIGH:
1130 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1131 		max_packets = MAX_PACKET(64);
1132 		break;
1133 	/* USB core guesses at a 64-byte max packet first for FS devices */
1134 	case USB_SPEED_FULL:
1135 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1136 		max_packets = MAX_PACKET(64);
1137 		break;
1138 	case USB_SPEED_LOW:
1139 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1140 		max_packets = MAX_PACKET(8);
1141 		break;
1142 	case USB_SPEED_WIRELESS:
1143 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1144 		return -EINVAL;
1145 	default:
1146 		/* Speed was set earlier, this shouldn't happen. */
1147 		return -EINVAL;
1148 	}
1149 	/* Find the root hub port this device is under */
1150 	port_num = xhci_find_real_port_number(xhci, udev);
1151 	if (!port_num)
1152 		return -EINVAL;
1153 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1154 	/* Set the port number in the virtual_device to the faked port number */
1155 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1156 			top_dev = top_dev->parent)
1157 		/* Found device below root hub */;
1158 	dev->fake_port = top_dev->portnum;
1159 	dev->real_port = port_num;
1160 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1161 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1162 
1163 	/* Find the right bandwidth table that this device will be a part of.
1164 	 * If this is a full speed device attached directly to a root port (or a
1165 	 * decendent of one), it counts as a primary bandwidth domain, not a
1166 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1167 	 * will never be created for the HS root hub.
1168 	 */
1169 	if (!udev->tt || !udev->tt->hub->parent) {
1170 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1171 	} else {
1172 		struct xhci_root_port_bw_info *rh_bw;
1173 		struct xhci_tt_bw_info *tt_bw;
1174 
1175 		rh_bw = &xhci->rh_bw[port_num - 1];
1176 		/* Find the right TT. */
1177 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1178 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1179 				continue;
1180 
1181 			if (!dev->udev->tt->multi ||
1182 					(udev->tt->multi &&
1183 					 tt_bw->ttport == dev->udev->ttport)) {
1184 				dev->bw_table = &tt_bw->bw_table;
1185 				dev->tt_info = tt_bw;
1186 				break;
1187 			}
1188 		}
1189 		if (!dev->tt_info)
1190 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1191 	}
1192 
1193 	/* Is this a LS/FS device under an external HS hub? */
1194 	if (udev->tt && udev->tt->hub->parent) {
1195 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1196 						(udev->ttport << 8));
1197 		if (udev->tt->multi)
1198 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1199 	}
1200 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1201 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1202 
1203 	/* Step 4 - ring already allocated */
1204 	/* Step 5 */
1205 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1206 
1207 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1208 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1209 					 max_packets);
1210 
1211 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1212 				   dev->eps[0].ring->cycle_state);
1213 
1214 	trace_xhci_setup_addressable_virt_device(dev);
1215 
1216 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1217 
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Convert interval expressed as 2^(bInterval - 1) == interval into
1223  * straight exponent value 2^n == interval.
1224  *
1225  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1226 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1227 		struct usb_host_endpoint *ep)
1228 {
1229 	unsigned int interval;
1230 
1231 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1232 	if (interval != ep->desc.bInterval - 1)
1233 		dev_warn(&udev->dev,
1234 			 "ep %#x - rounding interval to %d %sframes\n",
1235 			 ep->desc.bEndpointAddress,
1236 			 1 << interval,
1237 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1238 
1239 	if (udev->speed == USB_SPEED_FULL) {
1240 		/*
1241 		 * Full speed isoc endpoints specify interval in frames,
1242 		 * not microframes. We are using microframes everywhere,
1243 		 * so adjust accordingly.
1244 		 */
1245 		interval += 3;	/* 1 frame = 2^3 uframes */
1246 	}
1247 
1248 	return interval;
1249 }
1250 
1251 /*
1252  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1253  * microframes, rounded down to nearest power of 2.
1254  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1255 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1256 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1257 		unsigned int min_exponent, unsigned int max_exponent)
1258 {
1259 	unsigned int interval;
1260 
1261 	interval = fls(desc_interval) - 1;
1262 	interval = clamp_val(interval, min_exponent, max_exponent);
1263 	if ((1 << interval) != desc_interval)
1264 		dev_dbg(&udev->dev,
1265 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1266 			 ep->desc.bEndpointAddress,
1267 			 1 << interval,
1268 			 desc_interval);
1269 
1270 	return interval;
1271 }
1272 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1273 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1274 		struct usb_host_endpoint *ep)
1275 {
1276 	if (ep->desc.bInterval == 0)
1277 		return 0;
1278 	return xhci_microframes_to_exponent(udev, ep,
1279 			ep->desc.bInterval, 0, 15);
1280 }
1281 
1282 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1283 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1284 		struct usb_host_endpoint *ep)
1285 {
1286 	return xhci_microframes_to_exponent(udev, ep,
1287 			ep->desc.bInterval * 8, 3, 10);
1288 }
1289 
1290 /* Return the polling or NAK interval.
1291  *
1292  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1293  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1294  *
1295  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1296  * is set to 0.
1297  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1298 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1299 		struct usb_host_endpoint *ep)
1300 {
1301 	unsigned int interval = 0;
1302 
1303 	switch (udev->speed) {
1304 	case USB_SPEED_HIGH:
1305 		/* Max NAK rate */
1306 		if (usb_endpoint_xfer_control(&ep->desc) ||
1307 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1308 			interval = xhci_parse_microframe_interval(udev, ep);
1309 			break;
1310 		}
1311 		fallthrough;	/* SS and HS isoc/int have same decoding */
1312 
1313 	case USB_SPEED_SUPER_PLUS:
1314 	case USB_SPEED_SUPER:
1315 		if (usb_endpoint_xfer_int(&ep->desc) ||
1316 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1317 			interval = xhci_parse_exponent_interval(udev, ep);
1318 		}
1319 		break;
1320 
1321 	case USB_SPEED_FULL:
1322 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1323 			interval = xhci_parse_exponent_interval(udev, ep);
1324 			break;
1325 		}
1326 		/*
1327 		 * Fall through for interrupt endpoint interval decoding
1328 		 * since it uses the same rules as low speed interrupt
1329 		 * endpoints.
1330 		 */
1331 		fallthrough;
1332 
1333 	case USB_SPEED_LOW:
1334 		if (usb_endpoint_xfer_int(&ep->desc) ||
1335 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1336 
1337 			interval = xhci_parse_frame_interval(udev, ep);
1338 		}
1339 		break;
1340 
1341 	default:
1342 		BUG();
1343 	}
1344 	return interval;
1345 }
1346 
1347 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1348  * High speed endpoint descriptors can define "the number of additional
1349  * transaction opportunities per microframe", but that goes in the Max Burst
1350  * endpoint context field.
1351  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1352 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1353 		struct usb_host_endpoint *ep)
1354 {
1355 	if (udev->speed < USB_SPEED_SUPER ||
1356 			!usb_endpoint_xfer_isoc(&ep->desc))
1357 		return 0;
1358 	return ep->ss_ep_comp.bmAttributes;
1359 }
1360 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1361 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1362 				       struct usb_host_endpoint *ep)
1363 {
1364 	/* Super speed and Plus have max burst in ep companion desc */
1365 	if (udev->speed >= USB_SPEED_SUPER)
1366 		return ep->ss_ep_comp.bMaxBurst;
1367 
1368 	if (udev->speed == USB_SPEED_HIGH &&
1369 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1370 	     usb_endpoint_xfer_int(&ep->desc)))
1371 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1372 
1373 	return 0;
1374 }
1375 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1376 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1377 {
1378 	int in;
1379 
1380 	in = usb_endpoint_dir_in(&ep->desc);
1381 
1382 	switch (usb_endpoint_type(&ep->desc)) {
1383 	case USB_ENDPOINT_XFER_CONTROL:
1384 		return CTRL_EP;
1385 	case USB_ENDPOINT_XFER_BULK:
1386 		return in ? BULK_IN_EP : BULK_OUT_EP;
1387 	case USB_ENDPOINT_XFER_ISOC:
1388 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1389 	case USB_ENDPOINT_XFER_INT:
1390 		return in ? INT_IN_EP : INT_OUT_EP;
1391 	}
1392 	return 0;
1393 }
1394 
1395 /* Return the maximum endpoint service interval time (ESIT) payload.
1396  * Basically, this is the maxpacket size, multiplied by the burst size
1397  * and mult size.
1398  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1399 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1400 		struct usb_host_endpoint *ep)
1401 {
1402 	int max_burst;
1403 	int max_packet;
1404 
1405 	/* Only applies for interrupt or isochronous endpoints */
1406 	if (usb_endpoint_xfer_control(&ep->desc) ||
1407 			usb_endpoint_xfer_bulk(&ep->desc))
1408 		return 0;
1409 
1410 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1411 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1412 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1413 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1414 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1415 	else if (udev->speed >= USB_SPEED_SUPER)
1416 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1417 
1418 	max_packet = usb_endpoint_maxp(&ep->desc);
1419 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1420 	/* A 0 in max burst means 1 transfer per ESIT */
1421 	return max_packet * max_burst;
1422 }
1423 
1424 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1425  * Drivers will have to call usb_alloc_streams() to do that.
1426  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1427 int xhci_endpoint_init(struct xhci_hcd *xhci,
1428 		struct xhci_virt_device *virt_dev,
1429 		struct usb_device *udev,
1430 		struct usb_host_endpoint *ep,
1431 		gfp_t mem_flags)
1432 {
1433 	unsigned int ep_index;
1434 	struct xhci_ep_ctx *ep_ctx;
1435 	struct xhci_ring *ep_ring;
1436 	unsigned int max_packet;
1437 	enum xhci_ring_type ring_type;
1438 	u32 max_esit_payload;
1439 	u32 endpoint_type;
1440 	unsigned int max_burst;
1441 	unsigned int interval;
1442 	unsigned int mult;
1443 	unsigned int avg_trb_len;
1444 	unsigned int err_count = 0;
1445 
1446 	ep_index = xhci_get_endpoint_index(&ep->desc);
1447 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1448 
1449 	endpoint_type = xhci_get_endpoint_type(ep);
1450 	if (!endpoint_type)
1451 		return -EINVAL;
1452 
1453 	ring_type = usb_endpoint_type(&ep->desc);
1454 
1455 	/*
1456 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1457 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1458 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1459 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1460 	 */
1461 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1462 	interval = xhci_get_endpoint_interval(udev, ep);
1463 
1464 	/* Periodic endpoint bInterval limit quirk */
1465 	if (usb_endpoint_xfer_int(&ep->desc) ||
1466 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1467 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1468 		    udev->speed >= USB_SPEED_HIGH &&
1469 		    interval >= 7) {
1470 			interval = 6;
1471 		}
1472 	}
1473 
1474 	mult = xhci_get_endpoint_mult(udev, ep);
1475 	max_packet = usb_endpoint_maxp(&ep->desc);
1476 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1477 	avg_trb_len = max_esit_payload;
1478 
1479 	/* FIXME dig Mult and streams info out of ep companion desc */
1480 
1481 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1482 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1483 		err_count = 3;
1484 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1485 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1486 		if (udev->speed == USB_SPEED_HIGH)
1487 			max_packet = 512;
1488 		if (udev->speed == USB_SPEED_FULL) {
1489 			max_packet = rounddown_pow_of_two(max_packet);
1490 			max_packet = clamp_val(max_packet, 8, 64);
1491 		}
1492 	}
1493 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1494 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1495 		avg_trb_len = 8;
1496 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1497 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1498 		mult = 0;
1499 
1500 	/* Set up the endpoint ring */
1501 	virt_dev->eps[ep_index].new_ring =
1502 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1503 	if (!virt_dev->eps[ep_index].new_ring)
1504 		return -ENOMEM;
1505 
1506 	virt_dev->eps[ep_index].skip = false;
1507 	ep_ring = virt_dev->eps[ep_index].new_ring;
1508 
1509 	/* Fill the endpoint context */
1510 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1511 				      EP_INTERVAL(interval) |
1512 				      EP_MULT(mult));
1513 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1514 				       MAX_PACKET(max_packet) |
1515 				       MAX_BURST(max_burst) |
1516 				       ERROR_COUNT(err_count));
1517 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1518 				  ep_ring->cycle_state);
1519 
1520 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1521 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1522 
1523 	return 0;
1524 }
1525 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1526 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1527 		struct xhci_virt_device *virt_dev,
1528 		struct usb_host_endpoint *ep)
1529 {
1530 	unsigned int ep_index;
1531 	struct xhci_ep_ctx *ep_ctx;
1532 
1533 	ep_index = xhci_get_endpoint_index(&ep->desc);
1534 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1535 
1536 	ep_ctx->ep_info = 0;
1537 	ep_ctx->ep_info2 = 0;
1538 	ep_ctx->deq = 0;
1539 	ep_ctx->tx_info = 0;
1540 	/* Don't free the endpoint ring until the set interface or configuration
1541 	 * request succeeds.
1542 	 */
1543 }
1544 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1545 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1546 {
1547 	bw_info->ep_interval = 0;
1548 	bw_info->mult = 0;
1549 	bw_info->num_packets = 0;
1550 	bw_info->max_packet_size = 0;
1551 	bw_info->type = 0;
1552 	bw_info->max_esit_payload = 0;
1553 }
1554 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1555 void xhci_update_bw_info(struct xhci_hcd *xhci,
1556 		struct xhci_container_ctx *in_ctx,
1557 		struct xhci_input_control_ctx *ctrl_ctx,
1558 		struct xhci_virt_device *virt_dev)
1559 {
1560 	struct xhci_bw_info *bw_info;
1561 	struct xhci_ep_ctx *ep_ctx;
1562 	unsigned int ep_type;
1563 	int i;
1564 
1565 	for (i = 1; i < 31; i++) {
1566 		bw_info = &virt_dev->eps[i].bw_info;
1567 
1568 		/* We can't tell what endpoint type is being dropped, but
1569 		 * unconditionally clearing the bandwidth info for non-periodic
1570 		 * endpoints should be harmless because the info will never be
1571 		 * set in the first place.
1572 		 */
1573 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1574 			/* Dropped endpoint */
1575 			xhci_clear_endpoint_bw_info(bw_info);
1576 			continue;
1577 		}
1578 
1579 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1580 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1581 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1582 
1583 			/* Ignore non-periodic endpoints */
1584 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1585 					ep_type != ISOC_IN_EP &&
1586 					ep_type != INT_IN_EP)
1587 				continue;
1588 
1589 			/* Added or changed endpoint */
1590 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1591 					le32_to_cpu(ep_ctx->ep_info));
1592 			/* Number of packets and mult are zero-based in the
1593 			 * input context, but we want one-based for the
1594 			 * interval table.
1595 			 */
1596 			bw_info->mult = CTX_TO_EP_MULT(
1597 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1598 			bw_info->num_packets = CTX_TO_MAX_BURST(
1599 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1600 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1601 					le32_to_cpu(ep_ctx->ep_info2));
1602 			bw_info->type = ep_type;
1603 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1604 					le32_to_cpu(ep_ctx->tx_info));
1605 		}
1606 	}
1607 }
1608 
1609 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1610  * Useful when you want to change one particular aspect of the endpoint and then
1611  * issue a configure endpoint command.
1612  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1613 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1614 		struct xhci_container_ctx *in_ctx,
1615 		struct xhci_container_ctx *out_ctx,
1616 		unsigned int ep_index)
1617 {
1618 	struct xhci_ep_ctx *out_ep_ctx;
1619 	struct xhci_ep_ctx *in_ep_ctx;
1620 
1621 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1622 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1623 
1624 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1625 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1626 	in_ep_ctx->deq = out_ep_ctx->deq;
1627 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1628 	if (xhci->quirks & XHCI_MTK_HOST) {
1629 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1630 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1631 	}
1632 }
1633 
1634 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1635  * Useful when you want to change one particular aspect of the endpoint and then
1636  * issue a configure endpoint command.  Only the context entries field matters,
1637  * but we'll copy the whole thing anyway.
1638  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1639 void xhci_slot_copy(struct xhci_hcd *xhci,
1640 		struct xhci_container_ctx *in_ctx,
1641 		struct xhci_container_ctx *out_ctx)
1642 {
1643 	struct xhci_slot_ctx *in_slot_ctx;
1644 	struct xhci_slot_ctx *out_slot_ctx;
1645 
1646 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1647 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1648 
1649 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1650 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1651 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1652 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1653 }
1654 
1655 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1656 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1657 {
1658 	int i;
1659 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1660 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1661 
1662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1663 			"Allocating %d scratchpad buffers", num_sp);
1664 
1665 	if (!num_sp)
1666 		return 0;
1667 
1668 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1669 				dev_to_node(dev));
1670 	if (!xhci->scratchpad)
1671 		goto fail_sp;
1672 
1673 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1674 				     num_sp * sizeof(u64),
1675 				     &xhci->scratchpad->sp_dma, flags);
1676 	if (!xhci->scratchpad->sp_array)
1677 		goto fail_sp2;
1678 
1679 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1680 					flags, dev_to_node(dev));
1681 	if (!xhci->scratchpad->sp_buffers)
1682 		goto fail_sp3;
1683 
1684 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1685 	for (i = 0; i < num_sp; i++) {
1686 		dma_addr_t dma;
1687 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1688 					       flags);
1689 		if (!buf)
1690 			goto fail_sp4;
1691 
1692 		xhci->scratchpad->sp_array[i] = dma;
1693 		xhci->scratchpad->sp_buffers[i] = buf;
1694 	}
1695 
1696 	return 0;
1697 
1698  fail_sp4:
1699 	for (i = i - 1; i >= 0; i--) {
1700 		dma_free_coherent(dev, xhci->page_size,
1701 				    xhci->scratchpad->sp_buffers[i],
1702 				    xhci->scratchpad->sp_array[i]);
1703 	}
1704 
1705 	kfree(xhci->scratchpad->sp_buffers);
1706 
1707  fail_sp3:
1708 	dma_free_coherent(dev, num_sp * sizeof(u64),
1709 			    xhci->scratchpad->sp_array,
1710 			    xhci->scratchpad->sp_dma);
1711 
1712  fail_sp2:
1713 	kfree(xhci->scratchpad);
1714 	xhci->scratchpad = NULL;
1715 
1716  fail_sp:
1717 	return -ENOMEM;
1718 }
1719 
scratchpad_free(struct xhci_hcd * xhci)1720 static void scratchpad_free(struct xhci_hcd *xhci)
1721 {
1722 	int num_sp;
1723 	int i;
1724 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1725 
1726 	if (!xhci->scratchpad)
1727 		return;
1728 
1729 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1730 
1731 	for (i = 0; i < num_sp; i++) {
1732 		dma_free_coherent(dev, xhci->page_size,
1733 				    xhci->scratchpad->sp_buffers[i],
1734 				    xhci->scratchpad->sp_array[i]);
1735 	}
1736 	kfree(xhci->scratchpad->sp_buffers);
1737 	dma_free_coherent(dev, num_sp * sizeof(u64),
1738 			    xhci->scratchpad->sp_array,
1739 			    xhci->scratchpad->sp_dma);
1740 	kfree(xhci->scratchpad);
1741 	xhci->scratchpad = NULL;
1742 }
1743 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1744 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1745 		bool allocate_completion, gfp_t mem_flags)
1746 {
1747 	struct xhci_command *command;
1748 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1749 
1750 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1751 	if (!command)
1752 		return NULL;
1753 
1754 	if (allocate_completion) {
1755 		command->completion =
1756 			kzalloc_node(sizeof(struct completion), mem_flags,
1757 				dev_to_node(dev));
1758 		if (!command->completion) {
1759 			kfree(command);
1760 			return NULL;
1761 		}
1762 		init_completion(command->completion);
1763 	}
1764 
1765 	command->status = 0;
1766 	INIT_LIST_HEAD(&command->cmd_list);
1767 	return command;
1768 }
1769 EXPORT_SYMBOL_GPL(xhci_alloc_command);
1770 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1771 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1772 		bool allocate_completion, gfp_t mem_flags)
1773 {
1774 	struct xhci_command *command;
1775 
1776 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1777 	if (!command)
1778 		return NULL;
1779 
1780 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1781 						   mem_flags);
1782 	if (!command->in_ctx) {
1783 		kfree(command->completion);
1784 		kfree(command);
1785 		return NULL;
1786 	}
1787 	return command;
1788 }
1789 
xhci_urb_free_priv(struct urb_priv * urb_priv)1790 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1791 {
1792 	kfree(urb_priv);
1793 }
1794 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1795 void xhci_free_command(struct xhci_hcd *xhci,
1796 		struct xhci_command *command)
1797 {
1798 	xhci_free_container_ctx(xhci,
1799 			command->in_ctx);
1800 	kfree(command->completion);
1801 	kfree(command);
1802 }
1803 EXPORT_SYMBOL_GPL(xhci_free_command);
1804 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1805 int xhci_alloc_erst(struct xhci_hcd *xhci,
1806 		    struct xhci_ring *evt_ring,
1807 		    struct xhci_erst *erst,
1808 		    gfp_t flags)
1809 {
1810 	size_t size;
1811 	unsigned int val;
1812 	struct xhci_segment *seg;
1813 	struct xhci_erst_entry *entry;
1814 
1815 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1816 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1817 					   size, &erst->erst_dma_addr, flags);
1818 	if (!erst->entries)
1819 		return -ENOMEM;
1820 
1821 	erst->num_entries = evt_ring->num_segs;
1822 
1823 	seg = evt_ring->first_seg;
1824 	for (val = 0; val < evt_ring->num_segs; val++) {
1825 		entry = &erst->entries[val];
1826 		entry->seg_addr = cpu_to_le64(seg->dma);
1827 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1828 		entry->rsvd = 0;
1829 		seg = seg->next;
1830 	}
1831 
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL_GPL(xhci_alloc_erst);
1835 
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1836 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837 {
1838 	size_t size;
1839 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840 
1841 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842 	if (erst->entries)
1843 		dma_free_coherent(dev, size,
1844 				erst->entries,
1845 				erst->erst_dma_addr);
1846 	erst->entries = NULL;
1847 }
1848 EXPORT_SYMBOL_GPL(xhci_free_erst);
1849 
xhci_mem_cleanup(struct xhci_hcd * xhci)1850 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1851 {
1852 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1853 	int i, j, num_ports;
1854 
1855 	cancel_delayed_work_sync(&xhci->cmd_timer);
1856 
1857 	xhci_free_erst(xhci, &xhci->erst);
1858 
1859 	if (xhci->event_ring)
1860 		xhci_ring_free(xhci, xhci->event_ring);
1861 	xhci->event_ring = NULL;
1862 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1863 
1864 	if (xhci->lpm_command)
1865 		xhci_free_command(xhci, xhci->lpm_command);
1866 	xhci->lpm_command = NULL;
1867 	if (xhci->cmd_ring)
1868 		xhci_ring_free(xhci, xhci->cmd_ring);
1869 	xhci->cmd_ring = NULL;
1870 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1871 	xhci_cleanup_command_queue(xhci);
1872 
1873 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1874 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1875 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1876 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1877 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1878 			while (!list_empty(ep))
1879 				list_del_init(ep->next);
1880 		}
1881 	}
1882 
1883 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1884 		xhci_free_virt_devices_depth_first(xhci, i);
1885 
1886 	dma_pool_destroy(xhci->segment_pool);
1887 	xhci->segment_pool = NULL;
1888 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1889 
1890 	dma_pool_destroy(xhci->device_pool);
1891 	xhci->device_pool = NULL;
1892 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1893 
1894 	dma_pool_destroy(xhci->small_streams_pool);
1895 	xhci->small_streams_pool = NULL;
1896 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1897 			"Freed small stream array pool");
1898 
1899 	dma_pool_destroy(xhci->medium_streams_pool);
1900 	xhci->medium_streams_pool = NULL;
1901 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1902 			"Freed medium stream array pool");
1903 
1904 	if (xhci->dcbaa)
1905 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1906 				xhci->dcbaa, xhci->dcbaa->dma);
1907 	xhci->dcbaa = NULL;
1908 
1909 	scratchpad_free(xhci);
1910 
1911 	if (!xhci->rh_bw)
1912 		goto no_bw;
1913 
1914 	for (i = 0; i < num_ports; i++) {
1915 		struct xhci_tt_bw_info *tt, *n;
1916 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1917 			list_del(&tt->tt_list);
1918 			kfree(tt);
1919 		}
1920 	}
1921 
1922 no_bw:
1923 	xhci->cmd_ring_reserved_trbs = 0;
1924 	xhci->usb2_rhub.num_ports = 0;
1925 	xhci->usb3_rhub.num_ports = 0;
1926 	xhci->num_active_eps = 0;
1927 	kfree(xhci->usb2_rhub.ports);
1928 	kfree(xhci->usb3_rhub.ports);
1929 	kfree(xhci->hw_ports);
1930 	kfree(xhci->rh_bw);
1931 	kfree(xhci->ext_caps);
1932 	for (i = 0; i < xhci->num_port_caps; i++)
1933 		kfree(xhci->port_caps[i].psi);
1934 	kfree(xhci->port_caps);
1935 	xhci->num_port_caps = 0;
1936 
1937 	xhci->usb2_rhub.ports = NULL;
1938 	xhci->usb3_rhub.ports = NULL;
1939 	xhci->hw_ports = NULL;
1940 	xhci->rh_bw = NULL;
1941 	xhci->ext_caps = NULL;
1942 	xhci->port_caps = NULL;
1943 
1944 	xhci->page_size = 0;
1945 	xhci->page_shift = 0;
1946 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1947 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1948 }
1949 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1950 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1951 		struct xhci_segment *input_seg,
1952 		union xhci_trb *start_trb,
1953 		union xhci_trb *end_trb,
1954 		dma_addr_t input_dma,
1955 		struct xhci_segment *result_seg,
1956 		char *test_name, int test_number)
1957 {
1958 	unsigned long long start_dma;
1959 	unsigned long long end_dma;
1960 	struct xhci_segment *seg;
1961 
1962 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1963 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1964 
1965 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1966 	if (seg != result_seg) {
1967 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1968 				test_name, test_number);
1969 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1970 				"input DMA 0x%llx\n",
1971 				input_seg,
1972 				(unsigned long long) input_dma);
1973 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1974 				"ending TRB %p (0x%llx DMA)\n",
1975 				start_trb, start_dma,
1976 				end_trb, end_dma);
1977 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1978 				result_seg, seg);
1979 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1980 			  true);
1981 		return -1;
1982 	}
1983 	return 0;
1984 }
1985 
1986 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1987 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1988 {
1989 	struct {
1990 		dma_addr_t		input_dma;
1991 		struct xhci_segment	*result_seg;
1992 	} simple_test_vector [] = {
1993 		/* A zeroed DMA field should fail */
1994 		{ 0, NULL },
1995 		/* One TRB before the ring start should fail */
1996 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1997 		/* One byte before the ring start should fail */
1998 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1999 		/* Starting TRB should succeed */
2000 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2001 		/* Ending TRB should succeed */
2002 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2003 			xhci->event_ring->first_seg },
2004 		/* One byte after the ring end should fail */
2005 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2006 		/* One TRB after the ring end should fail */
2007 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2008 		/* An address of all ones should fail */
2009 		{ (dma_addr_t) (~0), NULL },
2010 	};
2011 	struct {
2012 		struct xhci_segment	*input_seg;
2013 		union xhci_trb		*start_trb;
2014 		union xhci_trb		*end_trb;
2015 		dma_addr_t		input_dma;
2016 		struct xhci_segment	*result_seg;
2017 	} complex_test_vector [] = {
2018 		/* Test feeding a valid DMA address from a different ring */
2019 		{	.input_seg = xhci->event_ring->first_seg,
2020 			.start_trb = xhci->event_ring->first_seg->trbs,
2021 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2022 			.input_dma = xhci->cmd_ring->first_seg->dma,
2023 			.result_seg = NULL,
2024 		},
2025 		/* Test feeding a valid end TRB from a different ring */
2026 		{	.input_seg = xhci->event_ring->first_seg,
2027 			.start_trb = xhci->event_ring->first_seg->trbs,
2028 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029 			.input_dma = xhci->cmd_ring->first_seg->dma,
2030 			.result_seg = NULL,
2031 		},
2032 		/* Test feeding a valid start and end TRB from a different ring */
2033 		{	.input_seg = xhci->event_ring->first_seg,
2034 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2035 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2036 			.input_dma = xhci->cmd_ring->first_seg->dma,
2037 			.result_seg = NULL,
2038 		},
2039 		/* TRB in this ring, but after this TD */
2040 		{	.input_seg = xhci->event_ring->first_seg,
2041 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2042 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2043 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2044 			.result_seg = NULL,
2045 		},
2046 		/* TRB in this ring, but before this TD */
2047 		{	.input_seg = xhci->event_ring->first_seg,
2048 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2049 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2050 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2051 			.result_seg = NULL,
2052 		},
2053 		/* TRB in this ring, but after this wrapped TD */
2054 		{	.input_seg = xhci->event_ring->first_seg,
2055 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2056 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2057 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2058 			.result_seg = NULL,
2059 		},
2060 		/* TRB in this ring, but before this wrapped TD */
2061 		{	.input_seg = xhci->event_ring->first_seg,
2062 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2063 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2064 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2065 			.result_seg = NULL,
2066 		},
2067 		/* TRB not in this ring, and we have a wrapped TD */
2068 		{	.input_seg = xhci->event_ring->first_seg,
2069 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2070 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2071 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2072 			.result_seg = NULL,
2073 		},
2074 	};
2075 
2076 	unsigned int num_tests;
2077 	int i, ret;
2078 
2079 	num_tests = ARRAY_SIZE(simple_test_vector);
2080 	for (i = 0; i < num_tests; i++) {
2081 		ret = xhci_test_trb_in_td(xhci,
2082 				xhci->event_ring->first_seg,
2083 				xhci->event_ring->first_seg->trbs,
2084 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2085 				simple_test_vector[i].input_dma,
2086 				simple_test_vector[i].result_seg,
2087 				"Simple", i);
2088 		if (ret < 0)
2089 			return ret;
2090 	}
2091 
2092 	num_tests = ARRAY_SIZE(complex_test_vector);
2093 	for (i = 0; i < num_tests; i++) {
2094 		ret = xhci_test_trb_in_td(xhci,
2095 				complex_test_vector[i].input_seg,
2096 				complex_test_vector[i].start_trb,
2097 				complex_test_vector[i].end_trb,
2098 				complex_test_vector[i].input_dma,
2099 				complex_test_vector[i].result_seg,
2100 				"Complex", i);
2101 		if (ret < 0)
2102 			return ret;
2103 	}
2104 	xhci_dbg(xhci, "TRB math tests passed.\n");
2105 	return 0;
2106 }
2107 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2108 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2109 {
2110 	u64 temp;
2111 	dma_addr_t deq;
2112 
2113 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2114 			xhci->event_ring->dequeue);
2115 	if (!deq)
2116 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2117 				"dequeue ptr.\n");
2118 	/* Update HC event ring dequeue pointer */
2119 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2120 	temp &= ERST_PTR_MASK;
2121 	/* Don't clear the EHB bit (which is RW1C) because
2122 	 * there might be more events to service.
2123 	 */
2124 	temp &= ~ERST_EHB;
2125 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2126 			"// Write event ring dequeue pointer, "
2127 			"preserving EHB bit");
2128 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2129 			&xhci->ir_set->erst_dequeue);
2130 }
2131 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2132 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2133 		__le32 __iomem *addr, int max_caps)
2134 {
2135 	u32 temp, port_offset, port_count;
2136 	int i;
2137 	u8 major_revision, minor_revision, tmp_minor_revision;
2138 	struct xhci_hub *rhub;
2139 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2140 	struct xhci_port_cap *port_cap;
2141 
2142 	temp = readl(addr);
2143 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2144 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2145 
2146 	if (major_revision == 0x03) {
2147 		rhub = &xhci->usb3_rhub;
2148 		/*
2149 		 * Some hosts incorrectly use sub-minor version for minor
2150 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2151 		 * for bcdUSB 0x310). Since there is no USB release with sub
2152 		 * minor version 0x301 to 0x309, we can assume that they are
2153 		 * incorrect and fix it here.
2154 		 */
2155 		if (minor_revision > 0x00 && minor_revision < 0x10)
2156 			minor_revision <<= 4;
2157 		/*
2158 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2159 		 * but only support Gen1.
2160 		 */
2161 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2162 			tmp_minor_revision = minor_revision;
2163 			minor_revision = 0;
2164 		}
2165 
2166 	} else if (major_revision <= 0x02) {
2167 		rhub = &xhci->usb2_rhub;
2168 	} else {
2169 		xhci_warn(xhci, "Ignoring unknown port speed, "
2170 				"Ext Cap %p, revision = 0x%x\n",
2171 				addr, major_revision);
2172 		/* Ignoring port protocol we can't understand. FIXME */
2173 		return;
2174 	}
2175 
2176 	/* Port offset and count in the third dword, see section 7.2 */
2177 	temp = readl(addr + 2);
2178 	port_offset = XHCI_EXT_PORT_OFF(temp);
2179 	port_count = XHCI_EXT_PORT_COUNT(temp);
2180 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2181 			"Ext Cap %p, port offset = %u, "
2182 			"count = %u, revision = 0x%x",
2183 			addr, port_offset, port_count, major_revision);
2184 	/* Port count includes the current port offset */
2185 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2186 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2187 		return;
2188 
2189 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2190 	if (xhci->num_port_caps > max_caps)
2191 		return;
2192 
2193 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2194 
2195 	if (port_cap->psi_count) {
2196 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2197 					     sizeof(*port_cap->psi),
2198 					     GFP_KERNEL, dev_to_node(dev));
2199 		if (!port_cap->psi)
2200 			port_cap->psi_count = 0;
2201 
2202 		port_cap->psi_uid_count++;
2203 		for (i = 0; i < port_cap->psi_count; i++) {
2204 			port_cap->psi[i] = readl(addr + 4 + i);
2205 
2206 			/* count unique ID values, two consecutive entries can
2207 			 * have the same ID if link is assymetric
2208 			 */
2209 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2210 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2211 				port_cap->psi_uid_count++;
2212 
2213 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2214 			    major_revision == 0x03 &&
2215 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2216 				minor_revision = tmp_minor_revision;
2217 
2218 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2219 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2220 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2221 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2222 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2223 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2224 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2225 		}
2226 	}
2227 
2228 	rhub->maj_rev = major_revision;
2229 
2230 	if (rhub->min_rev < minor_revision)
2231 		rhub->min_rev = minor_revision;
2232 
2233 	port_cap->maj_rev = major_revision;
2234 	port_cap->min_rev = minor_revision;
2235 
2236 	/* cache usb2 port capabilities */
2237 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2238 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2239 
2240 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2241 		 (temp & XHCI_HLC)) {
2242 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2243 			       "xHCI 1.0: support USB2 hardware lpm");
2244 		xhci->hw_lpm_support = 1;
2245 	}
2246 
2247 	port_offset--;
2248 	for (i = port_offset; i < (port_offset + port_count); i++) {
2249 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2250 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2251 		if (hw_port->rhub) {
2252 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2253 					" port %u\n", addr, i);
2254 			xhci_warn(xhci, "Port was marked as USB %u, "
2255 					"duplicated as USB %u\n",
2256 					hw_port->rhub->maj_rev, major_revision);
2257 			/* Only adjust the roothub port counts if we haven't
2258 			 * found a similar duplicate.
2259 			 */
2260 			if (hw_port->rhub != rhub &&
2261 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2262 				hw_port->rhub->num_ports--;
2263 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2264 			}
2265 			continue;
2266 		}
2267 		hw_port->rhub = rhub;
2268 		hw_port->port_cap = port_cap;
2269 		rhub->num_ports++;
2270 	}
2271 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2272 }
2273 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2274 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2275 					struct xhci_hub *rhub, gfp_t flags)
2276 {
2277 	int port_index = 0;
2278 	int i;
2279 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2280 
2281 	if (!rhub->num_ports)
2282 		return;
2283 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2284 			flags, dev_to_node(dev));
2285 	if (!rhub->ports)
2286 		return;
2287 
2288 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2289 		if (xhci->hw_ports[i].rhub != rhub ||
2290 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2291 			continue;
2292 		xhci->hw_ports[i].hcd_portnum = port_index;
2293 		rhub->ports[port_index] = &xhci->hw_ports[i];
2294 		port_index++;
2295 		if (port_index == rhub->num_ports)
2296 			break;
2297 	}
2298 }
2299 
2300 /*
2301  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2302  * specify what speeds each port is supposed to be.  We can't count on the port
2303  * speed bits in the PORTSC register being correct until a device is connected,
2304  * but we need to set up the two fake roothubs with the correct number of USB
2305  * 3.0 and USB 2.0 ports at host controller initialization time.
2306  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2307 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2308 {
2309 	void __iomem *base;
2310 	u32 offset;
2311 	unsigned int num_ports;
2312 	int i, j;
2313 	int cap_count = 0;
2314 	u32 cap_start;
2315 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2316 
2317 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2318 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2319 				flags, dev_to_node(dev));
2320 	if (!xhci->hw_ports)
2321 		return -ENOMEM;
2322 
2323 	for (i = 0; i < num_ports; i++) {
2324 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2325 			NUM_PORT_REGS * i;
2326 		xhci->hw_ports[i].hw_portnum = i;
2327 	}
2328 
2329 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2330 				   dev_to_node(dev));
2331 	if (!xhci->rh_bw)
2332 		return -ENOMEM;
2333 	for (i = 0; i < num_ports; i++) {
2334 		struct xhci_interval_bw_table *bw_table;
2335 
2336 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2337 		bw_table = &xhci->rh_bw[i].bw_table;
2338 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2339 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2340 	}
2341 	base = &xhci->cap_regs->hc_capbase;
2342 
2343 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2344 	if (!cap_start) {
2345 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2346 		return -ENODEV;
2347 	}
2348 
2349 	offset = cap_start;
2350 	/* count extended protocol capability entries for later caching */
2351 	while (offset) {
2352 		cap_count++;
2353 		offset = xhci_find_next_ext_cap(base, offset,
2354 						      XHCI_EXT_CAPS_PROTOCOL);
2355 	}
2356 
2357 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2358 				flags, dev_to_node(dev));
2359 	if (!xhci->ext_caps)
2360 		return -ENOMEM;
2361 
2362 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2363 				flags, dev_to_node(dev));
2364 	if (!xhci->port_caps)
2365 		return -ENOMEM;
2366 
2367 	offset = cap_start;
2368 
2369 	while (offset) {
2370 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2371 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2372 		    num_ports)
2373 			break;
2374 		offset = xhci_find_next_ext_cap(base, offset,
2375 						XHCI_EXT_CAPS_PROTOCOL);
2376 	}
2377 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2378 		xhci_warn(xhci, "No ports on the roothubs?\n");
2379 		return -ENODEV;
2380 	}
2381 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2382 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2383 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2384 
2385 	/* Place limits on the number of roothub ports so that the hub
2386 	 * descriptors aren't longer than the USB core will allocate.
2387 	 */
2388 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2389 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390 				"Limiting USB 3.0 roothub ports to %u.",
2391 				USB_SS_MAXPORTS);
2392 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2393 	}
2394 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2395 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396 				"Limiting USB 2.0 roothub ports to %u.",
2397 				USB_MAXCHILDREN);
2398 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2399 	}
2400 
2401 	/*
2402 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2403 	 * Not sure how the USB core will handle a hub with no ports...
2404 	 */
2405 
2406 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2407 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2408 
2409 	return 0;
2410 }
2411 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2412 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2413 {
2414 	dma_addr_t	dma;
2415 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2416 	unsigned int	val, val2;
2417 	u64		val_64;
2418 	u32		page_size, temp;
2419 	int		i, ret;
2420 
2421 	INIT_LIST_HEAD(&xhci->cmd_list);
2422 
2423 	/* init command timeout work */
2424 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2425 	init_completion(&xhci->cmd_ring_stop_completion);
2426 
2427 	page_size = readl(&xhci->op_regs->page_size);
2428 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429 			"Supported page size register = 0x%x", page_size);
2430 	for (i = 0; i < 16; i++) {
2431 		if ((0x1 & page_size) != 0)
2432 			break;
2433 		page_size = page_size >> 1;
2434 	}
2435 	if (i < 16)
2436 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2438 	else
2439 		xhci_warn(xhci, "WARN: no supported page size\n");
2440 	/* Use 4K pages, since that's common and the minimum the HC supports */
2441 	xhci->page_shift = 12;
2442 	xhci->page_size = 1 << xhci->page_shift;
2443 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444 			"HCD page size set to %iK", xhci->page_size / 1024);
2445 
2446 	/*
2447 	 * Program the Number of Device Slots Enabled field in the CONFIG
2448 	 * register with the max value of slots the HC can handle.
2449 	 */
2450 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2451 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452 			"// xHC can handle at most %d device slots.", val);
2453 	val2 = readl(&xhci->op_regs->config_reg);
2454 	val |= (val2 & ~HCS_SLOTS_MASK);
2455 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2456 			"// Setting Max device slots reg = 0x%x.", val);
2457 	writel(val, &xhci->op_regs->config_reg);
2458 
2459 	/*
2460 	 * xHCI section 5.4.6 - doorbell array must be
2461 	 * "physically contiguous and 64-byte (cache line) aligned".
2462 	 */
2463 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2464 			flags);
2465 	if (!xhci->dcbaa)
2466 		goto fail;
2467 	xhci->dcbaa->dma = dma;
2468 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2469 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2470 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2471 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2472 
2473 	/*
2474 	 * Initialize the ring segment pool.  The ring must be a contiguous
2475 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2476 	 * however, the command ring segment needs 64-byte aligned segments
2477 	 * and our use of dma addresses in the trb_address_map radix tree needs
2478 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2479 	 */
2480 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2481 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2482 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2483 	else
2484 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2485 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2486 
2487 	/* See Table 46 and Note on Figure 55 */
2488 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2489 			2112, 64, xhci->page_size);
2490 	if (!xhci->segment_pool || !xhci->device_pool)
2491 		goto fail;
2492 
2493 	/* Linear stream context arrays don't have any boundary restrictions,
2494 	 * and only need to be 16-byte aligned.
2495 	 */
2496 	xhci->small_streams_pool =
2497 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2498 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2499 	xhci->medium_streams_pool =
2500 		dma_pool_create("xHCI 1KB stream ctx arrays",
2501 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2502 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2503 	 * will be allocated with dma_alloc_coherent()
2504 	 */
2505 
2506 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2507 		goto fail;
2508 
2509 	/* Set up the command ring to have one segments for now. */
2510 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2511 	if (!xhci->cmd_ring)
2512 		goto fail;
2513 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2514 			"Allocated command ring at %p", xhci->cmd_ring);
2515 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2516 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2517 
2518 	/* Set the address in the Command Ring Control register */
2519 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2520 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2521 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2522 		xhci->cmd_ring->cycle_state;
2523 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2524 			"// Setting command ring address to 0x%016llx", val_64);
2525 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2526 
2527 	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2528 	if (!xhci->lpm_command)
2529 		goto fail;
2530 
2531 	/* Reserve one command ring TRB for disabling LPM.
2532 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2533 	 * disabling LPM, we only need to reserve one TRB for all devices.
2534 	 */
2535 	xhci->cmd_ring_reserved_trbs++;
2536 
2537 	val = readl(&xhci->cap_regs->db_off);
2538 	val &= DBOFF_MASK;
2539 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540 			"// Doorbell array is located at offset 0x%x"
2541 			" from cap regs base addr", val);
2542 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2543 	/* Set ir_set to interrupt register set 0 */
2544 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2545 
2546 	/*
2547 	 * Event ring setup: Allocate a normal ring, but also setup
2548 	 * the event ring segment table (ERST).  Section 4.9.3.
2549 	 */
2550 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2551 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2552 					0, flags);
2553 	if (!xhci->event_ring)
2554 		goto fail;
2555 	if (xhci_check_trb_in_td_math(xhci) < 0)
2556 		goto fail;
2557 
2558 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2559 	if (ret)
2560 		goto fail;
2561 
2562 	/* set ERST count with the number of entries in the segment table */
2563 	val = readl(&xhci->ir_set->erst_size);
2564 	val &= ERST_SIZE_MASK;
2565 	val |= ERST_NUM_SEGS;
2566 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2567 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2568 			val);
2569 	writel(val, &xhci->ir_set->erst_size);
2570 
2571 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2572 			"// Set ERST entries to point to event ring.");
2573 	/* set the segment table base address */
2574 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2575 			"// Set ERST base address for ir_set 0 = 0x%llx",
2576 			(unsigned long long)xhci->erst.erst_dma_addr);
2577 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2578 	val_64 &= ERST_PTR_MASK;
2579 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2580 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2581 
2582 	/* Set the event ring dequeue address */
2583 	xhci_set_hc_event_deq(xhci);
2584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2585 			"Wrote ERST address to ir_set 0.");
2586 
2587 	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2588 
2589 	/*
2590 	 * XXX: Might need to set the Interrupter Moderation Register to
2591 	 * something other than the default (~1ms minimum between interrupts).
2592 	 * See section 5.5.1.2.
2593 	 */
2594 	for (i = 0; i < MAX_HC_SLOTS; i++)
2595 		xhci->devs[i] = NULL;
2596 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2597 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2598 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2599 		/* Only the USB 2.0 completions will ever be used. */
2600 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2601 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2602 	}
2603 
2604 	if (scratchpad_alloc(xhci, flags))
2605 		goto fail;
2606 	if (xhci_setup_port_arrays(xhci, flags))
2607 		goto fail;
2608 
2609 	/* Enable USB 3.0 device notifications for function remote wake, which
2610 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2611 	 * U3 (device suspend).
2612 	 */
2613 	temp = readl(&xhci->op_regs->dev_notification);
2614 	temp &= ~DEV_NOTE_MASK;
2615 	temp |= DEV_NOTE_FWAKE;
2616 	writel(temp, &xhci->op_regs->dev_notification);
2617 
2618 	return 0;
2619 
2620 fail:
2621 	xhci_halt(xhci);
2622 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2623 	xhci_mem_cleanup(xhci);
2624 	return -ENOMEM;
2625 }
2626