1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32 {
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66 }
67
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg->bounce_buf);
75 kfree(seg);
76 }
77
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
80 {
81 struct xhci_segment *seg;
82
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
88 }
89 xhci_segment_free(xhci, first);
90 }
91
92 /*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)99 static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
102 {
103 u32 val;
104
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
111
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120 }
121
122 /*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129 {
130 struct xhci_segment *next;
131 bool chain_links;
132
133 if (!ring || !first || !last)
134 return;
135
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
153 }
154 }
155
156 /*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
186 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
191 {
192 unsigned long key;
193 int ret;
194
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
199
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
207 }
208
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
211 {
212 unsigned long key;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
217 }
218
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
225 {
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
229
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
232
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
243
244 return 0;
245
246 remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
255
256 return ret;
257 }
258
xhci_remove_stream_mapping(struct xhci_ring * ring)259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 struct xhci_segment *seg;
262
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
265
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
271 }
272
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 if (!ring)
283 return;
284
285 trace_xhci_ring_free(ring);
286
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 }
292
293 kfree(ring);
294 }
295 EXPORT_SYMBOL_GPL(xhci_ring_free);
296
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)297 void xhci_initialize_ring_info(struct xhci_ring *ring,
298 unsigned int cycle_state)
299 {
300 /* The ring is empty, so the enqueue pointer == dequeue pointer */
301 ring->enqueue = ring->first_seg->trbs;
302 ring->enq_seg = ring->first_seg;
303 ring->dequeue = ring->enqueue;
304 ring->deq_seg = ring->first_seg;
305 /* The ring is initialized to 0. The producer must write 1 to the cycle
306 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
307 * compare CCS to the cycle bit to check ownership, so CCS = 1.
308 *
309 * New rings are initialized with cycle state equal to 1; if we are
310 * handling ring expansion, set the cycle state equal to the old ring.
311 */
312 ring->cycle_state = cycle_state;
313
314 /*
315 * Each segment has a link TRB, and leave an extra TRB for SW
316 * accounting purpose
317 */
318 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
319 }
320
321 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)322 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
323 struct xhci_segment **first, struct xhci_segment **last,
324 unsigned int num_segs, unsigned int cycle_state,
325 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
326 {
327 struct xhci_segment *prev;
328 bool chain_links;
329
330 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
331 chain_links = !!(xhci_link_trb_quirk(xhci) ||
332 (type == TYPE_ISOC &&
333 (xhci->quirks & XHCI_AMD_0x96_HOST)));
334
335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 if (!prev)
337 return -ENOMEM;
338 num_segs--;
339
340 *first = prev;
341 while (num_segs > 0) {
342 struct xhci_segment *next;
343
344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345 if (!next) {
346 prev = *first;
347 while (prev) {
348 next = prev->next;
349 xhci_segment_free(xhci, prev);
350 prev = next;
351 }
352 return -ENOMEM;
353 }
354 xhci_link_segments(prev, next, type, chain_links);
355
356 prev = next;
357 num_segs--;
358 }
359 xhci_link_segments(prev, *first, type, chain_links);
360 *last = prev;
361
362 return 0;
363 }
364
365 /*
366 * Create a new ring with zero or more segments.
367 *
368 * Link each segment together into a ring.
369 * Set the end flag and the cycle toggle bit on the last segment.
370 * See section 4.9.1 and figures 15 and 16.
371 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)372 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373 unsigned int num_segs, unsigned int cycle_state,
374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376 struct xhci_ring *ring;
377 int ret;
378 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
379
380 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
381 if (!ring)
382 return NULL;
383
384 ring->num_segs = num_segs;
385 ring->bounce_buf_len = max_packet;
386 INIT_LIST_HEAD(&ring->td_list);
387 ring->type = type;
388 if (num_segs == 0)
389 return ring;
390
391 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
392 &ring->last_seg, num_segs, cycle_state, type,
393 max_packet, flags);
394 if (ret)
395 goto fail;
396
397 /* Only event ring does not use link TRB */
398 if (type != TYPE_EVENT) {
399 /* See section 4.9.2.1 and 6.4.4.1 */
400 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
401 cpu_to_le32(LINK_TOGGLE);
402 }
403 xhci_initialize_ring_info(ring, cycle_state);
404 trace_xhci_ring_alloc(ring);
405 return ring;
406
407 fail:
408 kfree(ring);
409 return NULL;
410 }
411 EXPORT_SYMBOL_GPL(xhci_ring_alloc);
412
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)413 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
414 struct xhci_virt_device *virt_dev,
415 unsigned int ep_index)
416 {
417 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
418 virt_dev->eps[ep_index].ring = NULL;
419 }
420
421 /*
422 * Expand an existing ring.
423 * Allocate a new ring which has same segment numbers and link the two rings.
424 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)425 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
426 unsigned int num_trbs, gfp_t flags)
427 {
428 struct xhci_segment *first;
429 struct xhci_segment *last;
430 unsigned int num_segs;
431 unsigned int num_segs_needed;
432 int ret;
433
434 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
435 (TRBS_PER_SEGMENT - 1);
436
437 /* Allocate number of segments we needed, or double the ring size */
438 num_segs = ring->num_segs > num_segs_needed ?
439 ring->num_segs : num_segs_needed;
440
441 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
442 num_segs, ring->cycle_state, ring->type,
443 ring->bounce_buf_len, flags);
444 if (ret)
445 return -ENOMEM;
446
447 if (ring->type == TYPE_STREAM)
448 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
449 ring, first, last, flags);
450 if (ret) {
451 struct xhci_segment *next;
452 do {
453 next = first->next;
454 xhci_segment_free(xhci, first);
455 if (first == last)
456 break;
457 first = next;
458 } while (true);
459 return ret;
460 }
461
462 xhci_link_rings(xhci, ring, first, last, num_segs);
463 trace_xhci_ring_expansion(ring);
464 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
465 "ring expansion succeed, now has %d segments",
466 ring->num_segs);
467
468 return 0;
469 }
470
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)471 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
472 int type, gfp_t flags)
473 {
474 struct xhci_container_ctx *ctx;
475 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476
477 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 return NULL;
479
480 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
481 if (!ctx)
482 return NULL;
483
484 ctx->type = type;
485 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
486 if (type == XHCI_CTX_TYPE_INPUT)
487 ctx->size += CTX_SIZE(xhci->hcc_params);
488
489 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
490 if (!ctx->bytes) {
491 kfree(ctx);
492 return NULL;
493 }
494 return ctx;
495 }
496
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)497 void xhci_free_container_ctx(struct xhci_hcd *xhci,
498 struct xhci_container_ctx *ctx)
499 {
500 if (!ctx)
501 return;
502 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 kfree(ctx);
504 }
505
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)506 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
507 struct xhci_container_ctx *ctx)
508 {
509 if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 return NULL;
511
512 return (struct xhci_input_control_ctx *)ctx->bytes;
513 }
514
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)515 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
516 struct xhci_container_ctx *ctx)
517 {
518 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
519 return (struct xhci_slot_ctx *)ctx->bytes;
520
521 return (struct xhci_slot_ctx *)
522 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 }
524
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)525 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
526 struct xhci_container_ctx *ctx,
527 unsigned int ep_index)
528 {
529 /* increment ep index by offset of start of ep ctx array */
530 ep_index++;
531 if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 ep_index++;
533
534 return (struct xhci_ep_ctx *)
535 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536 }
537 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538
539 /***************** Streams structures manipulation *************************/
540
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)541 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
542 unsigned int num_stream_ctxs,
543 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544 {
545 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547
548 if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 dma_free_coherent(dev, size,
550 stream_ctx, dma);
551 else if (size <= SMALL_STREAM_ARRAY_SIZE)
552 return dma_pool_free(xhci->small_streams_pool,
553 stream_ctx, dma);
554 else
555 return dma_pool_free(xhci->medium_streams_pool,
556 stream_ctx, dma);
557 }
558
559 /*
560 * The stream context array for each endpoint with bulk streams enabled can
561 * vary in size, based on:
562 * - how many streams the endpoint supports,
563 * - the maximum primary stream array size the host controller supports,
564 * - and how many streams the device driver asks for.
565 *
566 * The stream context array must be a power of 2, and can be as small as
567 * 64 bytes or as large as 1MB.
568 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)569 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
570 unsigned int num_stream_ctxs, dma_addr_t *dma,
571 gfp_t mem_flags)
572 {
573 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
574 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
575
576 if (size > MEDIUM_STREAM_ARRAY_SIZE)
577 return dma_alloc_coherent(dev, size,
578 dma, mem_flags);
579 else if (size <= SMALL_STREAM_ARRAY_SIZE)
580 return dma_pool_alloc(xhci->small_streams_pool,
581 mem_flags, dma);
582 else
583 return dma_pool_alloc(xhci->medium_streams_pool,
584 mem_flags, dma);
585 }
586
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)587 struct xhci_ring *xhci_dma_to_transfer_ring(
588 struct xhci_virt_ep *ep,
589 u64 address)
590 {
591 if (ep->ep_state & EP_HAS_STREAMS)
592 return radix_tree_lookup(&ep->stream_info->trb_address_map,
593 address >> TRB_SEGMENT_SHIFT);
594 return ep->ring;
595 }
596
597 /*
598 * Change an endpoint's internal structure so it supports stream IDs. The
599 * number of requested streams includes stream 0, which cannot be used by device
600 * drivers.
601 *
602 * The number of stream contexts in the stream context array may be bigger than
603 * the number of streams the driver wants to use. This is because the number of
604 * stream context array entries must be a power of two.
605 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)606 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
607 unsigned int num_stream_ctxs,
608 unsigned int num_streams,
609 unsigned int max_packet, gfp_t mem_flags)
610 {
611 struct xhci_stream_info *stream_info;
612 u32 cur_stream;
613 struct xhci_ring *cur_ring;
614 u64 addr;
615 int ret;
616 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
617
618 xhci_dbg(xhci, "Allocating %u streams and %u "
619 "stream context array entries.\n",
620 num_streams, num_stream_ctxs);
621 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
622 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
623 return NULL;
624 }
625 xhci->cmd_ring_reserved_trbs++;
626
627 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
628 dev_to_node(dev));
629 if (!stream_info)
630 goto cleanup_trbs;
631
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
634
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kcalloc_node(
637 num_streams, sizeof(struct xhci_ring *), mem_flags,
638 dev_to_node(dev));
639 if (!stream_info->stream_rings)
640 goto cleanup_info;
641
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
645 mem_flags);
646 if (!stream_info->stream_ctx_array)
647 goto cleanup_ring_array;
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
653 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
654 if (!stream_info->free_streams_command)
655 goto cleanup_ctx;
656
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
662 */
663
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
681
682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 if (ret) {
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
686 goto cleanup_rings;
687 }
688 }
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
694 */
695
696 return stream_info;
697
698 cleanup_rings:
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
701 if (cur_ring) {
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
704 }
705 }
706 xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 xhci_free_stream_ctx(xhci,
709 stream_info->num_stream_ctxs,
710 stream_info->stream_ctx_array,
711 stream_info->ctx_array_dma);
712 cleanup_ring_array:
713 kfree(stream_info->stream_rings);
714 cleanup_info:
715 kfree(stream_info);
716 cleanup_trbs:
717 xhci->cmd_ring_reserved_trbs--;
718 return NULL;
719 }
720 /*
721 * Sets the MaxPStreams field and the Linear Stream Array field.
722 * Sets the dequeue pointer to the stream context array.
723 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)724 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
725 struct xhci_ep_ctx *ep_ctx,
726 struct xhci_stream_info *stream_info)
727 {
728 u32 max_primary_streams;
729 /* MaxPStreams is the number of stream context array entries, not the
730 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
731 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
732 */
733 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
734 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
735 "Setting number of stream ctx array entries to %u",
736 1 << (max_primary_streams + 1));
737 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
738 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
739 | EP_HAS_LSA);
740 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
741 }
742
743 /*
744 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
745 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
746 * not at the beginning of the ring).
747 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)748 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
749 struct xhci_virt_ep *ep)
750 {
751 dma_addr_t addr;
752 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
753 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
754 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
755 }
756
757 /* Frees all stream contexts associated with the endpoint,
758 *
759 * Caller should fix the endpoint context streams fields.
760 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)761 void xhci_free_stream_info(struct xhci_hcd *xhci,
762 struct xhci_stream_info *stream_info)
763 {
764 int cur_stream;
765 struct xhci_ring *cur_ring;
766
767 if (!stream_info)
768 return;
769
770 for (cur_stream = 1; cur_stream < stream_info->num_streams;
771 cur_stream++) {
772 cur_ring = stream_info->stream_rings[cur_stream];
773 if (cur_ring) {
774 xhci_ring_free(xhci, cur_ring);
775 stream_info->stream_rings[cur_stream] = NULL;
776 }
777 }
778 xhci_free_command(xhci, stream_info->free_streams_command);
779 xhci->cmd_ring_reserved_trbs--;
780 if (stream_info->stream_ctx_array)
781 xhci_free_stream_ctx(xhci,
782 stream_info->num_stream_ctxs,
783 stream_info->stream_ctx_array,
784 stream_info->ctx_array_dma);
785
786 kfree(stream_info->stream_rings);
787 kfree(stream_info);
788 }
789
790
791 /***************** Device context manipulation *************************/
792
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)793 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
794 struct xhci_virt_ep *ep)
795 {
796 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
797 0);
798 ep->xhci = xhci;
799 }
800
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)801 static void xhci_free_tt_info(struct xhci_hcd *xhci,
802 struct xhci_virt_device *virt_dev,
803 int slot_id)
804 {
805 struct list_head *tt_list_head;
806 struct xhci_tt_bw_info *tt_info, *next;
807 bool slot_found = false;
808
809 /* If the device never made it past the Set Address stage,
810 * it may not have the real_port set correctly.
811 */
812 if (virt_dev->real_port == 0 ||
813 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
814 xhci_dbg(xhci, "Bad real port.\n");
815 return;
816 }
817
818 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
819 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
820 /* Multi-TT hubs will have more than one entry */
821 if (tt_info->slot_id == slot_id) {
822 slot_found = true;
823 list_del(&tt_info->tt_list);
824 kfree(tt_info);
825 } else if (slot_found) {
826 break;
827 }
828 }
829 }
830
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)831 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
832 struct xhci_virt_device *virt_dev,
833 struct usb_device *hdev,
834 struct usb_tt *tt, gfp_t mem_flags)
835 {
836 struct xhci_tt_bw_info *tt_info;
837 unsigned int num_ports;
838 int i, j;
839 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
840
841 if (!tt->multi)
842 num_ports = 1;
843 else
844 num_ports = hdev->maxchild;
845
846 for (i = 0; i < num_ports; i++, tt_info++) {
847 struct xhci_interval_bw_table *bw_table;
848
849 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
850 dev_to_node(dev));
851 if (!tt_info)
852 goto free_tts;
853 INIT_LIST_HEAD(&tt_info->tt_list);
854 list_add(&tt_info->tt_list,
855 &xhci->rh_bw[virt_dev->real_port - 1].tts);
856 tt_info->slot_id = virt_dev->udev->slot_id;
857 if (tt->multi)
858 tt_info->ttport = i+1;
859 bw_table = &tt_info->bw_table;
860 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
861 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
862 }
863 return 0;
864
865 free_tts:
866 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
867 return -ENOMEM;
868 }
869
870
871 /* All the xhci_tds in the ring's TD list should be freed at this point.
872 * Should be called with xhci->lock held if there is any chance the TT lists
873 * will be manipulated by the configure endpoint, allocate device, or update
874 * hub functions while this function is removing the TT entries from the list.
875 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)876 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
877 {
878 struct xhci_virt_device *dev;
879 int i;
880 int old_active_eps = 0;
881
882 /* Slot ID 0 is reserved */
883 if (slot_id == 0 || !xhci->devs[slot_id])
884 return;
885
886 dev = xhci->devs[slot_id];
887
888 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
889 if (!dev)
890 return;
891
892 trace_xhci_free_virt_device(dev);
893
894 if (dev->tt_info)
895 old_active_eps = dev->tt_info->active_eps;
896
897 for (i = 0; i < 31; i++) {
898 if (dev->eps[i].ring)
899 xhci_ring_free(xhci, dev->eps[i].ring);
900 if (dev->eps[i].stream_info)
901 xhci_free_stream_info(xhci,
902 dev->eps[i].stream_info);
903 /*
904 * Endpoints are normally deleted from the bandwidth list when
905 * endpoints are dropped, before device is freed.
906 * If host is dying or being removed then endpoints aren't
907 * dropped cleanly, so delete the endpoint from list here.
908 * Only applicable for hosts with software bandwidth checking.
909 */
910
911 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
912 list_del_init(&dev->eps[i].bw_endpoint_list);
913 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
914 slot_id, i);
915 }
916 }
917 /* If this is a hub, free the TT(s) from the TT list */
918 xhci_free_tt_info(xhci, dev, slot_id);
919 /* If necessary, update the number of active TTs on this root port */
920 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
921
922 if (dev->in_ctx)
923 xhci_free_container_ctx(xhci, dev->in_ctx);
924 if (dev->out_ctx)
925 xhci_free_container_ctx(xhci, dev->out_ctx);
926
927 if (dev->udev && dev->udev->slot_id)
928 dev->udev->slot_id = 0;
929 kfree(xhci->devs[slot_id]);
930 xhci->devs[slot_id] = NULL;
931 }
932
933 /*
934 * Free a virt_device structure.
935 * If the virt_device added a tt_info (a hub) and has children pointing to
936 * that tt_info, then free the child first. Recursive.
937 * We can't rely on udev at this point to find child-parent relationships.
938 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)939 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
940 {
941 struct xhci_virt_device *vdev;
942 struct list_head *tt_list_head;
943 struct xhci_tt_bw_info *tt_info, *next;
944 int i;
945
946 vdev = xhci->devs[slot_id];
947 if (!vdev)
948 return;
949
950 if (vdev->real_port == 0 ||
951 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
952 xhci_dbg(xhci, "Bad vdev->real_port.\n");
953 goto out;
954 }
955
956 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
957 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
958 /* is this a hub device that added a tt_info to the tts list */
959 if (tt_info->slot_id == slot_id) {
960 /* are any devices using this tt_info? */
961 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
962 vdev = xhci->devs[i];
963 if (vdev && (vdev->tt_info == tt_info))
964 xhci_free_virt_devices_depth_first(
965 xhci, i);
966 }
967 }
968 }
969 out:
970 /* we are now at a leaf device */
971 xhci_debugfs_remove_slot(xhci, slot_id);
972 xhci_free_virt_device(xhci, slot_id);
973 }
974
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)975 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
976 struct usb_device *udev, gfp_t flags)
977 {
978 struct xhci_virt_device *dev;
979 int i;
980
981 /* Slot ID 0 is reserved */
982 if (slot_id == 0 || xhci->devs[slot_id]) {
983 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
984 return 0;
985 }
986
987 dev = kzalloc(sizeof(*dev), flags);
988 if (!dev)
989 return 0;
990
991 dev->slot_id = slot_id;
992
993 /* Allocate the (output) device context that will be used in the HC. */
994 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
995 if (!dev->out_ctx)
996 goto fail;
997
998 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
999 (unsigned long long)dev->out_ctx->dma);
1000
1001 /* Allocate the (input) device context for address device command */
1002 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1003 if (!dev->in_ctx)
1004 goto fail;
1005
1006 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1007 (unsigned long long)dev->in_ctx->dma);
1008
1009 /* Initialize the cancellation list and watchdog timers for each ep */
1010 for (i = 0; i < 31; i++) {
1011 dev->eps[i].ep_index = i;
1012 dev->eps[i].vdev = dev;
1013 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1014 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1015 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1016 }
1017
1018 /* Allocate endpoint 0 ring */
1019 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1020 if (!dev->eps[0].ring)
1021 goto fail;
1022
1023 dev->udev = udev;
1024
1025 /* Point to output device context in dcbaa. */
1026 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1027 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1028 slot_id,
1029 &xhci->dcbaa->dev_context_ptrs[slot_id],
1030 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1031
1032 trace_xhci_alloc_virt_device(dev);
1033
1034 xhci->devs[slot_id] = dev;
1035
1036 return 1;
1037 fail:
1038
1039 if (dev->in_ctx)
1040 xhci_free_container_ctx(xhci, dev->in_ctx);
1041 if (dev->out_ctx)
1042 xhci_free_container_ctx(xhci, dev->out_ctx);
1043 kfree(dev);
1044
1045 return 0;
1046 }
1047
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1048 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1049 struct usb_device *udev)
1050 {
1051 struct xhci_virt_device *virt_dev;
1052 struct xhci_ep_ctx *ep0_ctx;
1053 struct xhci_ring *ep_ring;
1054
1055 virt_dev = xhci->devs[udev->slot_id];
1056 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1057 ep_ring = virt_dev->eps[0].ring;
1058 /*
1059 * FIXME we don't keep track of the dequeue pointer very well after a
1060 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1061 * host to our enqueue pointer. This should only be called after a
1062 * configured device has reset, so all control transfers should have
1063 * been completed or cancelled before the reset.
1064 */
1065 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1066 ep_ring->enqueue)
1067 | ep_ring->cycle_state);
1068 }
1069
1070 /*
1071 * The xHCI roothub may have ports of differing speeds in any order in the port
1072 * status registers.
1073 *
1074 * The xHCI hardware wants to know the roothub port number that the USB device
1075 * is attached to (or the roothub port its ancestor hub is attached to). All we
1076 * know is the index of that port under either the USB 2.0 or the USB 3.0
1077 * roothub, but that doesn't give us the real index into the HW port status
1078 * registers. Call xhci_find_raw_port_number() to get real index.
1079 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1080 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1081 struct usb_device *udev)
1082 {
1083 struct usb_device *top_dev;
1084 struct usb_hcd *hcd;
1085
1086 if (udev->speed >= USB_SPEED_SUPER)
1087 hcd = xhci->shared_hcd;
1088 else
1089 hcd = xhci->main_hcd;
1090
1091 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1092 top_dev = top_dev->parent)
1093 /* Found device below root hub */;
1094
1095 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1096 }
1097
1098 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1099 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1100 {
1101 struct xhci_virt_device *dev;
1102 struct xhci_ep_ctx *ep0_ctx;
1103 struct xhci_slot_ctx *slot_ctx;
1104 u32 port_num;
1105 u32 max_packets;
1106 struct usb_device *top_dev;
1107
1108 dev = xhci->devs[udev->slot_id];
1109 /* Slot ID 0 is reserved */
1110 if (udev->slot_id == 0 || !dev) {
1111 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1112 udev->slot_id);
1113 return -EINVAL;
1114 }
1115 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1116 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1117
1118 /* 3) Only the control endpoint is valid - one endpoint context */
1119 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1120 switch (udev->speed) {
1121 case USB_SPEED_SUPER_PLUS:
1122 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1123 max_packets = MAX_PACKET(512);
1124 break;
1125 case USB_SPEED_SUPER:
1126 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1127 max_packets = MAX_PACKET(512);
1128 break;
1129 case USB_SPEED_HIGH:
1130 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1131 max_packets = MAX_PACKET(64);
1132 break;
1133 /* USB core guesses at a 64-byte max packet first for FS devices */
1134 case USB_SPEED_FULL:
1135 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1136 max_packets = MAX_PACKET(64);
1137 break;
1138 case USB_SPEED_LOW:
1139 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1140 max_packets = MAX_PACKET(8);
1141 break;
1142 case USB_SPEED_WIRELESS:
1143 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1144 return -EINVAL;
1145 default:
1146 /* Speed was set earlier, this shouldn't happen. */
1147 return -EINVAL;
1148 }
1149 /* Find the root hub port this device is under */
1150 port_num = xhci_find_real_port_number(xhci, udev);
1151 if (!port_num)
1152 return -EINVAL;
1153 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1154 /* Set the port number in the virtual_device to the faked port number */
1155 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1156 top_dev = top_dev->parent)
1157 /* Found device below root hub */;
1158 dev->fake_port = top_dev->portnum;
1159 dev->real_port = port_num;
1160 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1161 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1162
1163 /* Find the right bandwidth table that this device will be a part of.
1164 * If this is a full speed device attached directly to a root port (or a
1165 * decendent of one), it counts as a primary bandwidth domain, not a
1166 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1167 * will never be created for the HS root hub.
1168 */
1169 if (!udev->tt || !udev->tt->hub->parent) {
1170 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1171 } else {
1172 struct xhci_root_port_bw_info *rh_bw;
1173 struct xhci_tt_bw_info *tt_bw;
1174
1175 rh_bw = &xhci->rh_bw[port_num - 1];
1176 /* Find the right TT. */
1177 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1178 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1179 continue;
1180
1181 if (!dev->udev->tt->multi ||
1182 (udev->tt->multi &&
1183 tt_bw->ttport == dev->udev->ttport)) {
1184 dev->bw_table = &tt_bw->bw_table;
1185 dev->tt_info = tt_bw;
1186 break;
1187 }
1188 }
1189 if (!dev->tt_info)
1190 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1191 }
1192
1193 /* Is this a LS/FS device under an external HS hub? */
1194 if (udev->tt && udev->tt->hub->parent) {
1195 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1196 (udev->ttport << 8));
1197 if (udev->tt->multi)
1198 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1199 }
1200 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1201 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1202
1203 /* Step 4 - ring already allocated */
1204 /* Step 5 */
1205 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1206
1207 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1208 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1209 max_packets);
1210
1211 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1212 dev->eps[0].ring->cycle_state);
1213
1214 trace_xhci_setup_addressable_virt_device(dev);
1215
1216 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1217
1218 return 0;
1219 }
1220
1221 /*
1222 * Convert interval expressed as 2^(bInterval - 1) == interval into
1223 * straight exponent value 2^n == interval.
1224 *
1225 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1226 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1227 struct usb_host_endpoint *ep)
1228 {
1229 unsigned int interval;
1230
1231 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1232 if (interval != ep->desc.bInterval - 1)
1233 dev_warn(&udev->dev,
1234 "ep %#x - rounding interval to %d %sframes\n",
1235 ep->desc.bEndpointAddress,
1236 1 << interval,
1237 udev->speed == USB_SPEED_FULL ? "" : "micro");
1238
1239 if (udev->speed == USB_SPEED_FULL) {
1240 /*
1241 * Full speed isoc endpoints specify interval in frames,
1242 * not microframes. We are using microframes everywhere,
1243 * so adjust accordingly.
1244 */
1245 interval += 3; /* 1 frame = 2^3 uframes */
1246 }
1247
1248 return interval;
1249 }
1250
1251 /*
1252 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1253 * microframes, rounded down to nearest power of 2.
1254 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1255 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1256 struct usb_host_endpoint *ep, unsigned int desc_interval,
1257 unsigned int min_exponent, unsigned int max_exponent)
1258 {
1259 unsigned int interval;
1260
1261 interval = fls(desc_interval) - 1;
1262 interval = clamp_val(interval, min_exponent, max_exponent);
1263 if ((1 << interval) != desc_interval)
1264 dev_dbg(&udev->dev,
1265 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1266 ep->desc.bEndpointAddress,
1267 1 << interval,
1268 desc_interval);
1269
1270 return interval;
1271 }
1272
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1273 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1274 struct usb_host_endpoint *ep)
1275 {
1276 if (ep->desc.bInterval == 0)
1277 return 0;
1278 return xhci_microframes_to_exponent(udev, ep,
1279 ep->desc.bInterval, 0, 15);
1280 }
1281
1282
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1283 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1284 struct usb_host_endpoint *ep)
1285 {
1286 return xhci_microframes_to_exponent(udev, ep,
1287 ep->desc.bInterval * 8, 3, 10);
1288 }
1289
1290 /* Return the polling or NAK interval.
1291 *
1292 * The polling interval is expressed in "microframes". If xHCI's Interval field
1293 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1294 *
1295 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1296 * is set to 0.
1297 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1298 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1299 struct usb_host_endpoint *ep)
1300 {
1301 unsigned int interval = 0;
1302
1303 switch (udev->speed) {
1304 case USB_SPEED_HIGH:
1305 /* Max NAK rate */
1306 if (usb_endpoint_xfer_control(&ep->desc) ||
1307 usb_endpoint_xfer_bulk(&ep->desc)) {
1308 interval = xhci_parse_microframe_interval(udev, ep);
1309 break;
1310 }
1311 fallthrough; /* SS and HS isoc/int have same decoding */
1312
1313 case USB_SPEED_SUPER_PLUS:
1314 case USB_SPEED_SUPER:
1315 if (usb_endpoint_xfer_int(&ep->desc) ||
1316 usb_endpoint_xfer_isoc(&ep->desc)) {
1317 interval = xhci_parse_exponent_interval(udev, ep);
1318 }
1319 break;
1320
1321 case USB_SPEED_FULL:
1322 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1323 interval = xhci_parse_exponent_interval(udev, ep);
1324 break;
1325 }
1326 /*
1327 * Fall through for interrupt endpoint interval decoding
1328 * since it uses the same rules as low speed interrupt
1329 * endpoints.
1330 */
1331 fallthrough;
1332
1333 case USB_SPEED_LOW:
1334 if (usb_endpoint_xfer_int(&ep->desc) ||
1335 usb_endpoint_xfer_isoc(&ep->desc)) {
1336
1337 interval = xhci_parse_frame_interval(udev, ep);
1338 }
1339 break;
1340
1341 default:
1342 BUG();
1343 }
1344 return interval;
1345 }
1346
1347 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1348 * High speed endpoint descriptors can define "the number of additional
1349 * transaction opportunities per microframe", but that goes in the Max Burst
1350 * endpoint context field.
1351 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1352 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1353 struct usb_host_endpoint *ep)
1354 {
1355 if (udev->speed < USB_SPEED_SUPER ||
1356 !usb_endpoint_xfer_isoc(&ep->desc))
1357 return 0;
1358 return ep->ss_ep_comp.bmAttributes;
1359 }
1360
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1361 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1362 struct usb_host_endpoint *ep)
1363 {
1364 /* Super speed and Plus have max burst in ep companion desc */
1365 if (udev->speed >= USB_SPEED_SUPER)
1366 return ep->ss_ep_comp.bMaxBurst;
1367
1368 if (udev->speed == USB_SPEED_HIGH &&
1369 (usb_endpoint_xfer_isoc(&ep->desc) ||
1370 usb_endpoint_xfer_int(&ep->desc)))
1371 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1372
1373 return 0;
1374 }
1375
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1376 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1377 {
1378 int in;
1379
1380 in = usb_endpoint_dir_in(&ep->desc);
1381
1382 switch (usb_endpoint_type(&ep->desc)) {
1383 case USB_ENDPOINT_XFER_CONTROL:
1384 return CTRL_EP;
1385 case USB_ENDPOINT_XFER_BULK:
1386 return in ? BULK_IN_EP : BULK_OUT_EP;
1387 case USB_ENDPOINT_XFER_ISOC:
1388 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1389 case USB_ENDPOINT_XFER_INT:
1390 return in ? INT_IN_EP : INT_OUT_EP;
1391 }
1392 return 0;
1393 }
1394
1395 /* Return the maximum endpoint service interval time (ESIT) payload.
1396 * Basically, this is the maxpacket size, multiplied by the burst size
1397 * and mult size.
1398 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1399 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1400 struct usb_host_endpoint *ep)
1401 {
1402 int max_burst;
1403 int max_packet;
1404
1405 /* Only applies for interrupt or isochronous endpoints */
1406 if (usb_endpoint_xfer_control(&ep->desc) ||
1407 usb_endpoint_xfer_bulk(&ep->desc))
1408 return 0;
1409
1410 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1411 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1412 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1413 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1414 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1415 else if (udev->speed >= USB_SPEED_SUPER)
1416 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1417
1418 max_packet = usb_endpoint_maxp(&ep->desc);
1419 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1420 /* A 0 in max burst means 1 transfer per ESIT */
1421 return max_packet * max_burst;
1422 }
1423
1424 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1425 * Drivers will have to call usb_alloc_streams() to do that.
1426 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1427 int xhci_endpoint_init(struct xhci_hcd *xhci,
1428 struct xhci_virt_device *virt_dev,
1429 struct usb_device *udev,
1430 struct usb_host_endpoint *ep,
1431 gfp_t mem_flags)
1432 {
1433 unsigned int ep_index;
1434 struct xhci_ep_ctx *ep_ctx;
1435 struct xhci_ring *ep_ring;
1436 unsigned int max_packet;
1437 enum xhci_ring_type ring_type;
1438 u32 max_esit_payload;
1439 u32 endpoint_type;
1440 unsigned int max_burst;
1441 unsigned int interval;
1442 unsigned int mult;
1443 unsigned int avg_trb_len;
1444 unsigned int err_count = 0;
1445
1446 ep_index = xhci_get_endpoint_index(&ep->desc);
1447 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1448
1449 endpoint_type = xhci_get_endpoint_type(ep);
1450 if (!endpoint_type)
1451 return -EINVAL;
1452
1453 ring_type = usb_endpoint_type(&ep->desc);
1454
1455 /*
1456 * Get values to fill the endpoint context, mostly from ep descriptor.
1457 * The average TRB buffer lengt for bulk endpoints is unclear as we
1458 * have no clue on scatter gather list entry size. For Isoc and Int,
1459 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1460 */
1461 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1462 interval = xhci_get_endpoint_interval(udev, ep);
1463
1464 /* Periodic endpoint bInterval limit quirk */
1465 if (usb_endpoint_xfer_int(&ep->desc) ||
1466 usb_endpoint_xfer_isoc(&ep->desc)) {
1467 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1468 udev->speed >= USB_SPEED_HIGH &&
1469 interval >= 7) {
1470 interval = 6;
1471 }
1472 }
1473
1474 mult = xhci_get_endpoint_mult(udev, ep);
1475 max_packet = usb_endpoint_maxp(&ep->desc);
1476 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1477 avg_trb_len = max_esit_payload;
1478
1479 /* FIXME dig Mult and streams info out of ep companion desc */
1480
1481 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1482 if (!usb_endpoint_xfer_isoc(&ep->desc))
1483 err_count = 3;
1484 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1485 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1486 if (udev->speed == USB_SPEED_HIGH)
1487 max_packet = 512;
1488 if (udev->speed == USB_SPEED_FULL) {
1489 max_packet = rounddown_pow_of_two(max_packet);
1490 max_packet = clamp_val(max_packet, 8, 64);
1491 }
1492 }
1493 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1494 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1495 avg_trb_len = 8;
1496 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1497 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1498 mult = 0;
1499
1500 /* Set up the endpoint ring */
1501 virt_dev->eps[ep_index].new_ring =
1502 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1503 if (!virt_dev->eps[ep_index].new_ring)
1504 return -ENOMEM;
1505
1506 virt_dev->eps[ep_index].skip = false;
1507 ep_ring = virt_dev->eps[ep_index].new_ring;
1508
1509 /* Fill the endpoint context */
1510 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1511 EP_INTERVAL(interval) |
1512 EP_MULT(mult));
1513 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1514 MAX_PACKET(max_packet) |
1515 MAX_BURST(max_burst) |
1516 ERROR_COUNT(err_count));
1517 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1518 ep_ring->cycle_state);
1519
1520 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1521 EP_AVG_TRB_LENGTH(avg_trb_len));
1522
1523 return 0;
1524 }
1525
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1526 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1527 struct xhci_virt_device *virt_dev,
1528 struct usb_host_endpoint *ep)
1529 {
1530 unsigned int ep_index;
1531 struct xhci_ep_ctx *ep_ctx;
1532
1533 ep_index = xhci_get_endpoint_index(&ep->desc);
1534 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1535
1536 ep_ctx->ep_info = 0;
1537 ep_ctx->ep_info2 = 0;
1538 ep_ctx->deq = 0;
1539 ep_ctx->tx_info = 0;
1540 /* Don't free the endpoint ring until the set interface or configuration
1541 * request succeeds.
1542 */
1543 }
1544
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1545 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1546 {
1547 bw_info->ep_interval = 0;
1548 bw_info->mult = 0;
1549 bw_info->num_packets = 0;
1550 bw_info->max_packet_size = 0;
1551 bw_info->type = 0;
1552 bw_info->max_esit_payload = 0;
1553 }
1554
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1555 void xhci_update_bw_info(struct xhci_hcd *xhci,
1556 struct xhci_container_ctx *in_ctx,
1557 struct xhci_input_control_ctx *ctrl_ctx,
1558 struct xhci_virt_device *virt_dev)
1559 {
1560 struct xhci_bw_info *bw_info;
1561 struct xhci_ep_ctx *ep_ctx;
1562 unsigned int ep_type;
1563 int i;
1564
1565 for (i = 1; i < 31; i++) {
1566 bw_info = &virt_dev->eps[i].bw_info;
1567
1568 /* We can't tell what endpoint type is being dropped, but
1569 * unconditionally clearing the bandwidth info for non-periodic
1570 * endpoints should be harmless because the info will never be
1571 * set in the first place.
1572 */
1573 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1574 /* Dropped endpoint */
1575 xhci_clear_endpoint_bw_info(bw_info);
1576 continue;
1577 }
1578
1579 if (EP_IS_ADDED(ctrl_ctx, i)) {
1580 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1581 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1582
1583 /* Ignore non-periodic endpoints */
1584 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1585 ep_type != ISOC_IN_EP &&
1586 ep_type != INT_IN_EP)
1587 continue;
1588
1589 /* Added or changed endpoint */
1590 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1591 le32_to_cpu(ep_ctx->ep_info));
1592 /* Number of packets and mult are zero-based in the
1593 * input context, but we want one-based for the
1594 * interval table.
1595 */
1596 bw_info->mult = CTX_TO_EP_MULT(
1597 le32_to_cpu(ep_ctx->ep_info)) + 1;
1598 bw_info->num_packets = CTX_TO_MAX_BURST(
1599 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1600 bw_info->max_packet_size = MAX_PACKET_DECODED(
1601 le32_to_cpu(ep_ctx->ep_info2));
1602 bw_info->type = ep_type;
1603 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1604 le32_to_cpu(ep_ctx->tx_info));
1605 }
1606 }
1607 }
1608
1609 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1610 * Useful when you want to change one particular aspect of the endpoint and then
1611 * issue a configure endpoint command.
1612 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1613 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1614 struct xhci_container_ctx *in_ctx,
1615 struct xhci_container_ctx *out_ctx,
1616 unsigned int ep_index)
1617 {
1618 struct xhci_ep_ctx *out_ep_ctx;
1619 struct xhci_ep_ctx *in_ep_ctx;
1620
1621 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1622 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1623
1624 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1625 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1626 in_ep_ctx->deq = out_ep_ctx->deq;
1627 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1628 if (xhci->quirks & XHCI_MTK_HOST) {
1629 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1630 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1631 }
1632 }
1633
1634 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1635 * Useful when you want to change one particular aspect of the endpoint and then
1636 * issue a configure endpoint command. Only the context entries field matters,
1637 * but we'll copy the whole thing anyway.
1638 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1639 void xhci_slot_copy(struct xhci_hcd *xhci,
1640 struct xhci_container_ctx *in_ctx,
1641 struct xhci_container_ctx *out_ctx)
1642 {
1643 struct xhci_slot_ctx *in_slot_ctx;
1644 struct xhci_slot_ctx *out_slot_ctx;
1645
1646 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1647 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1648
1649 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1650 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1651 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1652 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1653 }
1654
1655 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1656 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1657 {
1658 int i;
1659 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1660 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1661
1662 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1663 "Allocating %d scratchpad buffers", num_sp);
1664
1665 if (!num_sp)
1666 return 0;
1667
1668 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1669 dev_to_node(dev));
1670 if (!xhci->scratchpad)
1671 goto fail_sp;
1672
1673 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1674 num_sp * sizeof(u64),
1675 &xhci->scratchpad->sp_dma, flags);
1676 if (!xhci->scratchpad->sp_array)
1677 goto fail_sp2;
1678
1679 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1680 flags, dev_to_node(dev));
1681 if (!xhci->scratchpad->sp_buffers)
1682 goto fail_sp3;
1683
1684 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1685 for (i = 0; i < num_sp; i++) {
1686 dma_addr_t dma;
1687 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1688 flags);
1689 if (!buf)
1690 goto fail_sp4;
1691
1692 xhci->scratchpad->sp_array[i] = dma;
1693 xhci->scratchpad->sp_buffers[i] = buf;
1694 }
1695
1696 return 0;
1697
1698 fail_sp4:
1699 for (i = i - 1; i >= 0; i--) {
1700 dma_free_coherent(dev, xhci->page_size,
1701 xhci->scratchpad->sp_buffers[i],
1702 xhci->scratchpad->sp_array[i]);
1703 }
1704
1705 kfree(xhci->scratchpad->sp_buffers);
1706
1707 fail_sp3:
1708 dma_free_coherent(dev, num_sp * sizeof(u64),
1709 xhci->scratchpad->sp_array,
1710 xhci->scratchpad->sp_dma);
1711
1712 fail_sp2:
1713 kfree(xhci->scratchpad);
1714 xhci->scratchpad = NULL;
1715
1716 fail_sp:
1717 return -ENOMEM;
1718 }
1719
scratchpad_free(struct xhci_hcd * xhci)1720 static void scratchpad_free(struct xhci_hcd *xhci)
1721 {
1722 int num_sp;
1723 int i;
1724 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1725
1726 if (!xhci->scratchpad)
1727 return;
1728
1729 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1730
1731 for (i = 0; i < num_sp; i++) {
1732 dma_free_coherent(dev, xhci->page_size,
1733 xhci->scratchpad->sp_buffers[i],
1734 xhci->scratchpad->sp_array[i]);
1735 }
1736 kfree(xhci->scratchpad->sp_buffers);
1737 dma_free_coherent(dev, num_sp * sizeof(u64),
1738 xhci->scratchpad->sp_array,
1739 xhci->scratchpad->sp_dma);
1740 kfree(xhci->scratchpad);
1741 xhci->scratchpad = NULL;
1742 }
1743
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1744 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1745 bool allocate_completion, gfp_t mem_flags)
1746 {
1747 struct xhci_command *command;
1748 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1749
1750 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1751 if (!command)
1752 return NULL;
1753
1754 if (allocate_completion) {
1755 command->completion =
1756 kzalloc_node(sizeof(struct completion), mem_flags,
1757 dev_to_node(dev));
1758 if (!command->completion) {
1759 kfree(command);
1760 return NULL;
1761 }
1762 init_completion(command->completion);
1763 }
1764
1765 command->status = 0;
1766 INIT_LIST_HEAD(&command->cmd_list);
1767 return command;
1768 }
1769 EXPORT_SYMBOL_GPL(xhci_alloc_command);
1770
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1771 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1772 bool allocate_completion, gfp_t mem_flags)
1773 {
1774 struct xhci_command *command;
1775
1776 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1777 if (!command)
1778 return NULL;
1779
1780 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1781 mem_flags);
1782 if (!command->in_ctx) {
1783 kfree(command->completion);
1784 kfree(command);
1785 return NULL;
1786 }
1787 return command;
1788 }
1789
xhci_urb_free_priv(struct urb_priv * urb_priv)1790 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1791 {
1792 kfree(urb_priv);
1793 }
1794
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1795 void xhci_free_command(struct xhci_hcd *xhci,
1796 struct xhci_command *command)
1797 {
1798 xhci_free_container_ctx(xhci,
1799 command->in_ctx);
1800 kfree(command->completion);
1801 kfree(command);
1802 }
1803 EXPORT_SYMBOL_GPL(xhci_free_command);
1804
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1805 int xhci_alloc_erst(struct xhci_hcd *xhci,
1806 struct xhci_ring *evt_ring,
1807 struct xhci_erst *erst,
1808 gfp_t flags)
1809 {
1810 size_t size;
1811 unsigned int val;
1812 struct xhci_segment *seg;
1813 struct xhci_erst_entry *entry;
1814
1815 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1816 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1817 size, &erst->erst_dma_addr, flags);
1818 if (!erst->entries)
1819 return -ENOMEM;
1820
1821 erst->num_entries = evt_ring->num_segs;
1822
1823 seg = evt_ring->first_seg;
1824 for (val = 0; val < evt_ring->num_segs; val++) {
1825 entry = &erst->entries[val];
1826 entry->seg_addr = cpu_to_le64(seg->dma);
1827 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1828 entry->rsvd = 0;
1829 seg = seg->next;
1830 }
1831
1832 return 0;
1833 }
1834 EXPORT_SYMBOL_GPL(xhci_alloc_erst);
1835
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1836 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837 {
1838 size_t size;
1839 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840
1841 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842 if (erst->entries)
1843 dma_free_coherent(dev, size,
1844 erst->entries,
1845 erst->erst_dma_addr);
1846 erst->entries = NULL;
1847 }
1848 EXPORT_SYMBOL_GPL(xhci_free_erst);
1849
xhci_mem_cleanup(struct xhci_hcd * xhci)1850 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1851 {
1852 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1853 int i, j, num_ports;
1854
1855 cancel_delayed_work_sync(&xhci->cmd_timer);
1856
1857 xhci_free_erst(xhci, &xhci->erst);
1858
1859 if (xhci->event_ring)
1860 xhci_ring_free(xhci, xhci->event_ring);
1861 xhci->event_ring = NULL;
1862 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1863
1864 if (xhci->lpm_command)
1865 xhci_free_command(xhci, xhci->lpm_command);
1866 xhci->lpm_command = NULL;
1867 if (xhci->cmd_ring)
1868 xhci_ring_free(xhci, xhci->cmd_ring);
1869 xhci->cmd_ring = NULL;
1870 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1871 xhci_cleanup_command_queue(xhci);
1872
1873 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1874 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1875 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1876 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1877 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1878 while (!list_empty(ep))
1879 list_del_init(ep->next);
1880 }
1881 }
1882
1883 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1884 xhci_free_virt_devices_depth_first(xhci, i);
1885
1886 dma_pool_destroy(xhci->segment_pool);
1887 xhci->segment_pool = NULL;
1888 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1889
1890 dma_pool_destroy(xhci->device_pool);
1891 xhci->device_pool = NULL;
1892 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1893
1894 dma_pool_destroy(xhci->small_streams_pool);
1895 xhci->small_streams_pool = NULL;
1896 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1897 "Freed small stream array pool");
1898
1899 dma_pool_destroy(xhci->medium_streams_pool);
1900 xhci->medium_streams_pool = NULL;
1901 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1902 "Freed medium stream array pool");
1903
1904 if (xhci->dcbaa)
1905 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1906 xhci->dcbaa, xhci->dcbaa->dma);
1907 xhci->dcbaa = NULL;
1908
1909 scratchpad_free(xhci);
1910
1911 if (!xhci->rh_bw)
1912 goto no_bw;
1913
1914 for (i = 0; i < num_ports; i++) {
1915 struct xhci_tt_bw_info *tt, *n;
1916 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1917 list_del(&tt->tt_list);
1918 kfree(tt);
1919 }
1920 }
1921
1922 no_bw:
1923 xhci->cmd_ring_reserved_trbs = 0;
1924 xhci->usb2_rhub.num_ports = 0;
1925 xhci->usb3_rhub.num_ports = 0;
1926 xhci->num_active_eps = 0;
1927 kfree(xhci->usb2_rhub.ports);
1928 kfree(xhci->usb3_rhub.ports);
1929 kfree(xhci->hw_ports);
1930 kfree(xhci->rh_bw);
1931 kfree(xhci->ext_caps);
1932 for (i = 0; i < xhci->num_port_caps; i++)
1933 kfree(xhci->port_caps[i].psi);
1934 kfree(xhci->port_caps);
1935 xhci->num_port_caps = 0;
1936
1937 xhci->usb2_rhub.ports = NULL;
1938 xhci->usb3_rhub.ports = NULL;
1939 xhci->hw_ports = NULL;
1940 xhci->rh_bw = NULL;
1941 xhci->ext_caps = NULL;
1942 xhci->port_caps = NULL;
1943
1944 xhci->page_size = 0;
1945 xhci->page_shift = 0;
1946 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1947 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1948 }
1949
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1950 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1951 struct xhci_segment *input_seg,
1952 union xhci_trb *start_trb,
1953 union xhci_trb *end_trb,
1954 dma_addr_t input_dma,
1955 struct xhci_segment *result_seg,
1956 char *test_name, int test_number)
1957 {
1958 unsigned long long start_dma;
1959 unsigned long long end_dma;
1960 struct xhci_segment *seg;
1961
1962 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1963 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1964
1965 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1966 if (seg != result_seg) {
1967 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1968 test_name, test_number);
1969 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1970 "input DMA 0x%llx\n",
1971 input_seg,
1972 (unsigned long long) input_dma);
1973 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1974 "ending TRB %p (0x%llx DMA)\n",
1975 start_trb, start_dma,
1976 end_trb, end_dma);
1977 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1978 result_seg, seg);
1979 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1980 true);
1981 return -1;
1982 }
1983 return 0;
1984 }
1985
1986 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1987 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1988 {
1989 struct {
1990 dma_addr_t input_dma;
1991 struct xhci_segment *result_seg;
1992 } simple_test_vector [] = {
1993 /* A zeroed DMA field should fail */
1994 { 0, NULL },
1995 /* One TRB before the ring start should fail */
1996 { xhci->event_ring->first_seg->dma - 16, NULL },
1997 /* One byte before the ring start should fail */
1998 { xhci->event_ring->first_seg->dma - 1, NULL },
1999 /* Starting TRB should succeed */
2000 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2001 /* Ending TRB should succeed */
2002 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2003 xhci->event_ring->first_seg },
2004 /* One byte after the ring end should fail */
2005 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2006 /* One TRB after the ring end should fail */
2007 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2008 /* An address of all ones should fail */
2009 { (dma_addr_t) (~0), NULL },
2010 };
2011 struct {
2012 struct xhci_segment *input_seg;
2013 union xhci_trb *start_trb;
2014 union xhci_trb *end_trb;
2015 dma_addr_t input_dma;
2016 struct xhci_segment *result_seg;
2017 } complex_test_vector [] = {
2018 /* Test feeding a valid DMA address from a different ring */
2019 { .input_seg = xhci->event_ring->first_seg,
2020 .start_trb = xhci->event_ring->first_seg->trbs,
2021 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2022 .input_dma = xhci->cmd_ring->first_seg->dma,
2023 .result_seg = NULL,
2024 },
2025 /* Test feeding a valid end TRB from a different ring */
2026 { .input_seg = xhci->event_ring->first_seg,
2027 .start_trb = xhci->event_ring->first_seg->trbs,
2028 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029 .input_dma = xhci->cmd_ring->first_seg->dma,
2030 .result_seg = NULL,
2031 },
2032 /* Test feeding a valid start and end TRB from a different ring */
2033 { .input_seg = xhci->event_ring->first_seg,
2034 .start_trb = xhci->cmd_ring->first_seg->trbs,
2035 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2036 .input_dma = xhci->cmd_ring->first_seg->dma,
2037 .result_seg = NULL,
2038 },
2039 /* TRB in this ring, but after this TD */
2040 { .input_seg = xhci->event_ring->first_seg,
2041 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2042 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2043 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2044 .result_seg = NULL,
2045 },
2046 /* TRB in this ring, but before this TD */
2047 { .input_seg = xhci->event_ring->first_seg,
2048 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2049 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2050 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2051 .result_seg = NULL,
2052 },
2053 /* TRB in this ring, but after this wrapped TD */
2054 { .input_seg = xhci->event_ring->first_seg,
2055 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2056 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2057 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2058 .result_seg = NULL,
2059 },
2060 /* TRB in this ring, but before this wrapped TD */
2061 { .input_seg = xhci->event_ring->first_seg,
2062 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2063 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2064 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2065 .result_seg = NULL,
2066 },
2067 /* TRB not in this ring, and we have a wrapped TD */
2068 { .input_seg = xhci->event_ring->first_seg,
2069 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2070 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2071 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2072 .result_seg = NULL,
2073 },
2074 };
2075
2076 unsigned int num_tests;
2077 int i, ret;
2078
2079 num_tests = ARRAY_SIZE(simple_test_vector);
2080 for (i = 0; i < num_tests; i++) {
2081 ret = xhci_test_trb_in_td(xhci,
2082 xhci->event_ring->first_seg,
2083 xhci->event_ring->first_seg->trbs,
2084 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2085 simple_test_vector[i].input_dma,
2086 simple_test_vector[i].result_seg,
2087 "Simple", i);
2088 if (ret < 0)
2089 return ret;
2090 }
2091
2092 num_tests = ARRAY_SIZE(complex_test_vector);
2093 for (i = 0; i < num_tests; i++) {
2094 ret = xhci_test_trb_in_td(xhci,
2095 complex_test_vector[i].input_seg,
2096 complex_test_vector[i].start_trb,
2097 complex_test_vector[i].end_trb,
2098 complex_test_vector[i].input_dma,
2099 complex_test_vector[i].result_seg,
2100 "Complex", i);
2101 if (ret < 0)
2102 return ret;
2103 }
2104 xhci_dbg(xhci, "TRB math tests passed.\n");
2105 return 0;
2106 }
2107
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2108 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2109 {
2110 u64 temp;
2111 dma_addr_t deq;
2112
2113 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2114 xhci->event_ring->dequeue);
2115 if (!deq)
2116 xhci_warn(xhci, "WARN something wrong with SW event ring "
2117 "dequeue ptr.\n");
2118 /* Update HC event ring dequeue pointer */
2119 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2120 temp &= ERST_PTR_MASK;
2121 /* Don't clear the EHB bit (which is RW1C) because
2122 * there might be more events to service.
2123 */
2124 temp &= ~ERST_EHB;
2125 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2126 "// Write event ring dequeue pointer, "
2127 "preserving EHB bit");
2128 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2129 &xhci->ir_set->erst_dequeue);
2130 }
2131
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2132 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2133 __le32 __iomem *addr, int max_caps)
2134 {
2135 u32 temp, port_offset, port_count;
2136 int i;
2137 u8 major_revision, minor_revision, tmp_minor_revision;
2138 struct xhci_hub *rhub;
2139 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2140 struct xhci_port_cap *port_cap;
2141
2142 temp = readl(addr);
2143 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2144 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2145
2146 if (major_revision == 0x03) {
2147 rhub = &xhci->usb3_rhub;
2148 /*
2149 * Some hosts incorrectly use sub-minor version for minor
2150 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2151 * for bcdUSB 0x310). Since there is no USB release with sub
2152 * minor version 0x301 to 0x309, we can assume that they are
2153 * incorrect and fix it here.
2154 */
2155 if (minor_revision > 0x00 && minor_revision < 0x10)
2156 minor_revision <<= 4;
2157 /*
2158 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2159 * but only support Gen1.
2160 */
2161 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2162 tmp_minor_revision = minor_revision;
2163 minor_revision = 0;
2164 }
2165
2166 } else if (major_revision <= 0x02) {
2167 rhub = &xhci->usb2_rhub;
2168 } else {
2169 xhci_warn(xhci, "Ignoring unknown port speed, "
2170 "Ext Cap %p, revision = 0x%x\n",
2171 addr, major_revision);
2172 /* Ignoring port protocol we can't understand. FIXME */
2173 return;
2174 }
2175
2176 /* Port offset and count in the third dword, see section 7.2 */
2177 temp = readl(addr + 2);
2178 port_offset = XHCI_EXT_PORT_OFF(temp);
2179 port_count = XHCI_EXT_PORT_COUNT(temp);
2180 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2181 "Ext Cap %p, port offset = %u, "
2182 "count = %u, revision = 0x%x",
2183 addr, port_offset, port_count, major_revision);
2184 /* Port count includes the current port offset */
2185 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2186 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2187 return;
2188
2189 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2190 if (xhci->num_port_caps > max_caps)
2191 return;
2192
2193 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2194
2195 if (port_cap->psi_count) {
2196 port_cap->psi = kcalloc_node(port_cap->psi_count,
2197 sizeof(*port_cap->psi),
2198 GFP_KERNEL, dev_to_node(dev));
2199 if (!port_cap->psi)
2200 port_cap->psi_count = 0;
2201
2202 port_cap->psi_uid_count++;
2203 for (i = 0; i < port_cap->psi_count; i++) {
2204 port_cap->psi[i] = readl(addr + 4 + i);
2205
2206 /* count unique ID values, two consecutive entries can
2207 * have the same ID if link is assymetric
2208 */
2209 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2210 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2211 port_cap->psi_uid_count++;
2212
2213 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2214 major_revision == 0x03 &&
2215 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2216 minor_revision = tmp_minor_revision;
2217
2218 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2219 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2220 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2221 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2222 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2223 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2224 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2225 }
2226 }
2227
2228 rhub->maj_rev = major_revision;
2229
2230 if (rhub->min_rev < minor_revision)
2231 rhub->min_rev = minor_revision;
2232
2233 port_cap->maj_rev = major_revision;
2234 port_cap->min_rev = minor_revision;
2235
2236 /* cache usb2 port capabilities */
2237 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2238 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2239
2240 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2241 (temp & XHCI_HLC)) {
2242 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2243 "xHCI 1.0: support USB2 hardware lpm");
2244 xhci->hw_lpm_support = 1;
2245 }
2246
2247 port_offset--;
2248 for (i = port_offset; i < (port_offset + port_count); i++) {
2249 struct xhci_port *hw_port = &xhci->hw_ports[i];
2250 /* Duplicate entry. Ignore the port if the revisions differ. */
2251 if (hw_port->rhub) {
2252 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2253 " port %u\n", addr, i);
2254 xhci_warn(xhci, "Port was marked as USB %u, "
2255 "duplicated as USB %u\n",
2256 hw_port->rhub->maj_rev, major_revision);
2257 /* Only adjust the roothub port counts if we haven't
2258 * found a similar duplicate.
2259 */
2260 if (hw_port->rhub != rhub &&
2261 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2262 hw_port->rhub->num_ports--;
2263 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2264 }
2265 continue;
2266 }
2267 hw_port->rhub = rhub;
2268 hw_port->port_cap = port_cap;
2269 rhub->num_ports++;
2270 }
2271 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2272 }
2273
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2274 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2275 struct xhci_hub *rhub, gfp_t flags)
2276 {
2277 int port_index = 0;
2278 int i;
2279 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2280
2281 if (!rhub->num_ports)
2282 return;
2283 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2284 flags, dev_to_node(dev));
2285 if (!rhub->ports)
2286 return;
2287
2288 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2289 if (xhci->hw_ports[i].rhub != rhub ||
2290 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2291 continue;
2292 xhci->hw_ports[i].hcd_portnum = port_index;
2293 rhub->ports[port_index] = &xhci->hw_ports[i];
2294 port_index++;
2295 if (port_index == rhub->num_ports)
2296 break;
2297 }
2298 }
2299
2300 /*
2301 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2302 * specify what speeds each port is supposed to be. We can't count on the port
2303 * speed bits in the PORTSC register being correct until a device is connected,
2304 * but we need to set up the two fake roothubs with the correct number of USB
2305 * 3.0 and USB 2.0 ports at host controller initialization time.
2306 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2307 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2308 {
2309 void __iomem *base;
2310 u32 offset;
2311 unsigned int num_ports;
2312 int i, j;
2313 int cap_count = 0;
2314 u32 cap_start;
2315 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2316
2317 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2318 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2319 flags, dev_to_node(dev));
2320 if (!xhci->hw_ports)
2321 return -ENOMEM;
2322
2323 for (i = 0; i < num_ports; i++) {
2324 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2325 NUM_PORT_REGS * i;
2326 xhci->hw_ports[i].hw_portnum = i;
2327 }
2328
2329 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2330 dev_to_node(dev));
2331 if (!xhci->rh_bw)
2332 return -ENOMEM;
2333 for (i = 0; i < num_ports; i++) {
2334 struct xhci_interval_bw_table *bw_table;
2335
2336 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2337 bw_table = &xhci->rh_bw[i].bw_table;
2338 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2339 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2340 }
2341 base = &xhci->cap_regs->hc_capbase;
2342
2343 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2344 if (!cap_start) {
2345 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2346 return -ENODEV;
2347 }
2348
2349 offset = cap_start;
2350 /* count extended protocol capability entries for later caching */
2351 while (offset) {
2352 cap_count++;
2353 offset = xhci_find_next_ext_cap(base, offset,
2354 XHCI_EXT_CAPS_PROTOCOL);
2355 }
2356
2357 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2358 flags, dev_to_node(dev));
2359 if (!xhci->ext_caps)
2360 return -ENOMEM;
2361
2362 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2363 flags, dev_to_node(dev));
2364 if (!xhci->port_caps)
2365 return -ENOMEM;
2366
2367 offset = cap_start;
2368
2369 while (offset) {
2370 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2371 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2372 num_ports)
2373 break;
2374 offset = xhci_find_next_ext_cap(base, offset,
2375 XHCI_EXT_CAPS_PROTOCOL);
2376 }
2377 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2378 xhci_warn(xhci, "No ports on the roothubs?\n");
2379 return -ENODEV;
2380 }
2381 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2382 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2383 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2384
2385 /* Place limits on the number of roothub ports so that the hub
2386 * descriptors aren't longer than the USB core will allocate.
2387 */
2388 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2389 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390 "Limiting USB 3.0 roothub ports to %u.",
2391 USB_SS_MAXPORTS);
2392 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2393 }
2394 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2395 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396 "Limiting USB 2.0 roothub ports to %u.",
2397 USB_MAXCHILDREN);
2398 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2399 }
2400
2401 /*
2402 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2403 * Not sure how the USB core will handle a hub with no ports...
2404 */
2405
2406 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2407 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2408
2409 return 0;
2410 }
2411
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2412 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2413 {
2414 dma_addr_t dma;
2415 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2416 unsigned int val, val2;
2417 u64 val_64;
2418 u32 page_size, temp;
2419 int i, ret;
2420
2421 INIT_LIST_HEAD(&xhci->cmd_list);
2422
2423 /* init command timeout work */
2424 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2425 init_completion(&xhci->cmd_ring_stop_completion);
2426
2427 page_size = readl(&xhci->op_regs->page_size);
2428 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429 "Supported page size register = 0x%x", page_size);
2430 for (i = 0; i < 16; i++) {
2431 if ((0x1 & page_size) != 0)
2432 break;
2433 page_size = page_size >> 1;
2434 }
2435 if (i < 16)
2436 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 "Supported page size of %iK", (1 << (i+12)) / 1024);
2438 else
2439 xhci_warn(xhci, "WARN: no supported page size\n");
2440 /* Use 4K pages, since that's common and the minimum the HC supports */
2441 xhci->page_shift = 12;
2442 xhci->page_size = 1 << xhci->page_shift;
2443 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444 "HCD page size set to %iK", xhci->page_size / 1024);
2445
2446 /*
2447 * Program the Number of Device Slots Enabled field in the CONFIG
2448 * register with the max value of slots the HC can handle.
2449 */
2450 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2451 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452 "// xHC can handle at most %d device slots.", val);
2453 val2 = readl(&xhci->op_regs->config_reg);
2454 val |= (val2 & ~HCS_SLOTS_MASK);
2455 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2456 "// Setting Max device slots reg = 0x%x.", val);
2457 writel(val, &xhci->op_regs->config_reg);
2458
2459 /*
2460 * xHCI section 5.4.6 - doorbell array must be
2461 * "physically contiguous and 64-byte (cache line) aligned".
2462 */
2463 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2464 flags);
2465 if (!xhci->dcbaa)
2466 goto fail;
2467 xhci->dcbaa->dma = dma;
2468 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2469 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2470 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2471 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2472
2473 /*
2474 * Initialize the ring segment pool. The ring must be a contiguous
2475 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2476 * however, the command ring segment needs 64-byte aligned segments
2477 * and our use of dma addresses in the trb_address_map radix tree needs
2478 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2479 */
2480 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2481 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2482 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2483 else
2484 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2485 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2486
2487 /* See Table 46 and Note on Figure 55 */
2488 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2489 2112, 64, xhci->page_size);
2490 if (!xhci->segment_pool || !xhci->device_pool)
2491 goto fail;
2492
2493 /* Linear stream context arrays don't have any boundary restrictions,
2494 * and only need to be 16-byte aligned.
2495 */
2496 xhci->small_streams_pool =
2497 dma_pool_create("xHCI 256 byte stream ctx arrays",
2498 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2499 xhci->medium_streams_pool =
2500 dma_pool_create("xHCI 1KB stream ctx arrays",
2501 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2502 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2503 * will be allocated with dma_alloc_coherent()
2504 */
2505
2506 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2507 goto fail;
2508
2509 /* Set up the command ring to have one segments for now. */
2510 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2511 if (!xhci->cmd_ring)
2512 goto fail;
2513 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2514 "Allocated command ring at %p", xhci->cmd_ring);
2515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2516 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2517
2518 /* Set the address in the Command Ring Control register */
2519 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2520 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2521 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2522 xhci->cmd_ring->cycle_state;
2523 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2524 "// Setting command ring address to 0x%016llx", val_64);
2525 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2526
2527 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2528 if (!xhci->lpm_command)
2529 goto fail;
2530
2531 /* Reserve one command ring TRB for disabling LPM.
2532 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2533 * disabling LPM, we only need to reserve one TRB for all devices.
2534 */
2535 xhci->cmd_ring_reserved_trbs++;
2536
2537 val = readl(&xhci->cap_regs->db_off);
2538 val &= DBOFF_MASK;
2539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540 "// Doorbell array is located at offset 0x%x"
2541 " from cap regs base addr", val);
2542 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2543 /* Set ir_set to interrupt register set 0 */
2544 xhci->ir_set = &xhci->run_regs->ir_set[0];
2545
2546 /*
2547 * Event ring setup: Allocate a normal ring, but also setup
2548 * the event ring segment table (ERST). Section 4.9.3.
2549 */
2550 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2551 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2552 0, flags);
2553 if (!xhci->event_ring)
2554 goto fail;
2555 if (xhci_check_trb_in_td_math(xhci) < 0)
2556 goto fail;
2557
2558 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2559 if (ret)
2560 goto fail;
2561
2562 /* set ERST count with the number of entries in the segment table */
2563 val = readl(&xhci->ir_set->erst_size);
2564 val &= ERST_SIZE_MASK;
2565 val |= ERST_NUM_SEGS;
2566 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2567 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2568 val);
2569 writel(val, &xhci->ir_set->erst_size);
2570
2571 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2572 "// Set ERST entries to point to event ring.");
2573 /* set the segment table base address */
2574 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2575 "// Set ERST base address for ir_set 0 = 0x%llx",
2576 (unsigned long long)xhci->erst.erst_dma_addr);
2577 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2578 val_64 &= ERST_PTR_MASK;
2579 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2580 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2581
2582 /* Set the event ring dequeue address */
2583 xhci_set_hc_event_deq(xhci);
2584 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2585 "Wrote ERST address to ir_set 0.");
2586
2587 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2588
2589 /*
2590 * XXX: Might need to set the Interrupter Moderation Register to
2591 * something other than the default (~1ms minimum between interrupts).
2592 * See section 5.5.1.2.
2593 */
2594 for (i = 0; i < MAX_HC_SLOTS; i++)
2595 xhci->devs[i] = NULL;
2596 for (i = 0; i < USB_MAXCHILDREN; i++) {
2597 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2598 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2599 /* Only the USB 2.0 completions will ever be used. */
2600 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2601 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2602 }
2603
2604 if (scratchpad_alloc(xhci, flags))
2605 goto fail;
2606 if (xhci_setup_port_arrays(xhci, flags))
2607 goto fail;
2608
2609 /* Enable USB 3.0 device notifications for function remote wake, which
2610 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2611 * U3 (device suspend).
2612 */
2613 temp = readl(&xhci->op_regs->dev_notification);
2614 temp &= ~DEV_NOTE_MASK;
2615 temp |= DEV_NOTE_FWAKE;
2616 writel(temp, &xhci->op_regs->dev_notification);
2617
2618 return 0;
2619
2620 fail:
2621 xhci_halt(xhci);
2622 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2623 xhci_mem_cleanup(xhci);
2624 return -ENOMEM;
2625 }
2626