• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 
20 struct workqueue_struct *xfs_discard_wq;
21 
22 /*
23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24  * recover, so we don't allow failure here. Also, we allocate in a context that
25  * we don't want to be issuing transactions from, so we need to tell the
26  * allocation code this as well.
27  *
28  * We don't reserve any space for the ticket - we are going to steal whatever
29  * space we require from transactions as they commit. To ensure we reserve all
30  * the space required, we need to set the current reservation of the ticket to
31  * zero so that we know to steal the initial transaction overhead from the
32  * first transaction commit.
33  */
34 static struct xlog_ticket *
xlog_cil_ticket_alloc(struct xlog * log)35 xlog_cil_ticket_alloc(
36 	struct xlog	*log)
37 {
38 	struct xlog_ticket *tic;
39 
40 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
41 
42 	/*
43 	 * set the current reservation to zero so we know to steal the basic
44 	 * transaction overhead reservation from the first transaction commit.
45 	 */
46 	tic->t_curr_res = 0;
47 	return tic;
48 }
49 
50 /*
51  * Unavoidable forward declaration - xlog_cil_push_work() calls
52  * xlog_cil_ctx_alloc() itself.
53  */
54 static void xlog_cil_push_work(struct work_struct *work);
55 
56 static struct xfs_cil_ctx *
xlog_cil_ctx_alloc(void)57 xlog_cil_ctx_alloc(void)
58 {
59 	struct xfs_cil_ctx	*ctx;
60 
61 	ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
62 	INIT_LIST_HEAD(&ctx->committing);
63 	INIT_LIST_HEAD(&ctx->busy_extents);
64 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
65 	return ctx;
66 }
67 
68 static void
xlog_cil_ctx_switch(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)69 xlog_cil_ctx_switch(
70 	struct xfs_cil		*cil,
71 	struct xfs_cil_ctx	*ctx)
72 {
73 	ctx->sequence = ++cil->xc_current_sequence;
74 	ctx->cil = cil;
75 	cil->xc_ctx = ctx;
76 }
77 
78 /*
79  * After the first stage of log recovery is done, we know where the head and
80  * tail of the log are. We need this log initialisation done before we can
81  * initialise the first CIL checkpoint context.
82  *
83  * Here we allocate a log ticket to track space usage during a CIL push.  This
84  * ticket is passed to xlog_write() directly so that we don't slowly leak log
85  * space by failing to account for space used by log headers and additional
86  * region headers for split regions.
87  */
88 void
xlog_cil_init_post_recovery(struct xlog * log)89 xlog_cil_init_post_recovery(
90 	struct xlog	*log)
91 {
92 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
93 	log->l_cilp->xc_ctx->sequence = 1;
94 }
95 
96 static inline int
xlog_cil_iovec_space(uint niovecs)97 xlog_cil_iovec_space(
98 	uint	niovecs)
99 {
100 	return round_up((sizeof(struct xfs_log_vec) +
101 					niovecs * sizeof(struct xfs_log_iovec)),
102 			sizeof(uint64_t));
103 }
104 
105 /*
106  * Allocate or pin log vector buffers for CIL insertion.
107  *
108  * The CIL currently uses disposable buffers for copying a snapshot of the
109  * modified items into the log during a push. The biggest problem with this is
110  * the requirement to allocate the disposable buffer during the commit if:
111  *	a) does not exist; or
112  *	b) it is too small
113  *
114  * If we do this allocation within xlog_cil_insert_format_items(), it is done
115  * under the xc_ctx_lock, which means that a CIL push cannot occur during
116  * the memory allocation. This means that we have a potential deadlock situation
117  * under low memory conditions when we have lots of dirty metadata pinned in
118  * the CIL and we need a CIL commit to occur to free memory.
119  *
120  * To avoid this, we need to move the memory allocation outside the
121  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
122  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
123  * vector buffers between the check and the formatting of the item into the
124  * log vector buffer within the xc_ctx_lock.
125  *
126  * Because the log vector buffer needs to be unchanged during the CIL push
127  * process, we cannot share the buffer between the transaction commit (which
128  * modifies the buffer) and the CIL push context that is writing the changes
129  * into the log. This means skipping preallocation of buffer space is
130  * unreliable, but we most definitely do not want to be allocating and freeing
131  * buffers unnecessarily during commits when overwrites can be done safely.
132  *
133  * The simplest solution to this problem is to allocate a shadow buffer when a
134  * log item is committed for the second time, and then to only use this buffer
135  * if necessary. The buffer can remain attached to the log item until such time
136  * it is needed, and this is the buffer that is reallocated to match the size of
137  * the incoming modification. Then during the formatting of the item we can swap
138  * the active buffer with the new one if we can't reuse the existing buffer. We
139  * don't free the old buffer as it may be reused on the next modification if
140  * it's size is right, otherwise we'll free and reallocate it at that point.
141  *
142  * This function builds a vector for the changes in each log item in the
143  * transaction. It then works out the length of the buffer needed for each log
144  * item, allocates them and attaches the vector to the log item in preparation
145  * for the formatting step which occurs under the xc_ctx_lock.
146  *
147  * While this means the memory footprint goes up, it avoids the repeated
148  * alloc/free pattern that repeated modifications of an item would otherwise
149  * cause, and hence minimises the CPU overhead of such behaviour.
150  */
151 static void
xlog_cil_alloc_shadow_bufs(struct xlog * log,struct xfs_trans * tp)152 xlog_cil_alloc_shadow_bufs(
153 	struct xlog		*log,
154 	struct xfs_trans	*tp)
155 {
156 	struct xfs_log_item	*lip;
157 
158 	list_for_each_entry(lip, &tp->t_items, li_trans) {
159 		struct xfs_log_vec *lv;
160 		int	niovecs = 0;
161 		int	nbytes = 0;
162 		int	buf_size;
163 		bool	ordered = false;
164 
165 		/* Skip items which aren't dirty in this transaction. */
166 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
167 			continue;
168 
169 		/* get number of vecs and size of data to be stored */
170 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
171 
172 		/*
173 		 * Ordered items need to be tracked but we do not wish to write
174 		 * them. We need a logvec to track the object, but we do not
175 		 * need an iovec or buffer to be allocated for copying data.
176 		 */
177 		if (niovecs == XFS_LOG_VEC_ORDERED) {
178 			ordered = true;
179 			niovecs = 0;
180 			nbytes = 0;
181 		}
182 
183 		/*
184 		 * We 64-bit align the length of each iovec so that the start
185 		 * of the next one is naturally aligned.  We'll need to
186 		 * account for that slack space here. Then round nbytes up
187 		 * to 64-bit alignment so that the initial buffer alignment is
188 		 * easy to calculate and verify.
189 		 */
190 		nbytes += niovecs * sizeof(uint64_t);
191 		nbytes = round_up(nbytes, sizeof(uint64_t));
192 
193 		/*
194 		 * The data buffer needs to start 64-bit aligned, so round up
195 		 * that space to ensure we can align it appropriately and not
196 		 * overrun the buffer.
197 		 */
198 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
199 
200 		/*
201 		 * if we have no shadow buffer, or it is too small, we need to
202 		 * reallocate it.
203 		 */
204 		if (!lip->li_lv_shadow ||
205 		    buf_size > lip->li_lv_shadow->lv_size) {
206 
207 			/*
208 			 * We free and allocate here as a realloc would copy
209 			 * unnecessary data. We don't use kmem_zalloc() for the
210 			 * same reason - we don't need to zero the data area in
211 			 * the buffer, only the log vector header and the iovec
212 			 * storage.
213 			 */
214 			kmem_free(lip->li_lv_shadow);
215 
216 			/*
217 			 * We are in transaction context, which means this
218 			 * allocation will pick up GFP_NOFS from the
219 			 * memalloc_nofs_save/restore context the transaction
220 			 * holds. This means we can use GFP_KERNEL here so the
221 			 * generic kvmalloc() code will run vmalloc on
222 			 * contiguous page allocation failure as we require.
223 			 */
224 			lv = kvmalloc(buf_size, GFP_KERNEL);
225 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
226 
227 			lv->lv_item = lip;
228 			lv->lv_size = buf_size;
229 			if (ordered)
230 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
231 			else
232 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
233 			lip->li_lv_shadow = lv;
234 		} else {
235 			/* same or smaller, optimise common overwrite case */
236 			lv = lip->li_lv_shadow;
237 			if (ordered)
238 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
239 			else
240 				lv->lv_buf_len = 0;
241 			lv->lv_bytes = 0;
242 			lv->lv_next = NULL;
243 		}
244 
245 		/* Ensure the lv is set up according to ->iop_size */
246 		lv->lv_niovecs = niovecs;
247 
248 		/* The allocated data region lies beyond the iovec region */
249 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
250 	}
251 
252 }
253 
254 /*
255  * Prepare the log item for insertion into the CIL. Calculate the difference in
256  * log space and vectors it will consume, and if it is a new item pin it as
257  * well.
258  */
259 STATIC void
xfs_cil_prepare_item(struct xlog * log,struct xfs_log_vec * lv,struct xfs_log_vec * old_lv,int * diff_len,int * diff_iovecs)260 xfs_cil_prepare_item(
261 	struct xlog		*log,
262 	struct xfs_log_vec	*lv,
263 	struct xfs_log_vec	*old_lv,
264 	int			*diff_len,
265 	int			*diff_iovecs)
266 {
267 	/* Account for the new LV being passed in */
268 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
269 		*diff_len += lv->lv_bytes;
270 		*diff_iovecs += lv->lv_niovecs;
271 	}
272 
273 	/*
274 	 * If there is no old LV, this is the first time we've seen the item in
275 	 * this CIL context and so we need to pin it. If we are replacing the
276 	 * old_lv, then remove the space it accounts for and make it the shadow
277 	 * buffer for later freeing. In both cases we are now switching to the
278 	 * shadow buffer, so update the pointer to it appropriately.
279 	 */
280 	if (!old_lv) {
281 		if (lv->lv_item->li_ops->iop_pin)
282 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
283 		lv->lv_item->li_lv_shadow = NULL;
284 	} else if (old_lv != lv) {
285 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
286 
287 		*diff_len -= old_lv->lv_bytes;
288 		*diff_iovecs -= old_lv->lv_niovecs;
289 		lv->lv_item->li_lv_shadow = old_lv;
290 	}
291 
292 	/* attach new log vector to log item */
293 	lv->lv_item->li_lv = lv;
294 
295 	/*
296 	 * If this is the first time the item is being committed to the
297 	 * CIL, store the sequence number on the log item so we can
298 	 * tell in future commits whether this is the first checkpoint
299 	 * the item is being committed into.
300 	 */
301 	if (!lv->lv_item->li_seq)
302 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
303 }
304 
305 /*
306  * Format log item into a flat buffers
307  *
308  * For delayed logging, we need to hold a formatted buffer containing all the
309  * changes on the log item. This enables us to relog the item in memory and
310  * write it out asynchronously without needing to relock the object that was
311  * modified at the time it gets written into the iclog.
312  *
313  * This function takes the prepared log vectors attached to each log item, and
314  * formats the changes into the log vector buffer. The buffer it uses is
315  * dependent on the current state of the vector in the CIL - the shadow lv is
316  * guaranteed to be large enough for the current modification, but we will only
317  * use that if we can't reuse the existing lv. If we can't reuse the existing
318  * lv, then simple swap it out for the shadow lv. We don't free it - that is
319  * done lazily either by th enext modification or the freeing of the log item.
320  *
321  * We don't set up region headers during this process; we simply copy the
322  * regions into the flat buffer. We can do this because we still have to do a
323  * formatting step to write the regions into the iclog buffer.  Writing the
324  * ophdrs during the iclog write means that we can support splitting large
325  * regions across iclog boundares without needing a change in the format of the
326  * item/region encapsulation.
327  *
328  * Hence what we need to do now is change the rewrite the vector array to point
329  * to the copied region inside the buffer we just allocated. This allows us to
330  * format the regions into the iclog as though they are being formatted
331  * directly out of the objects themselves.
332  */
333 static void
xlog_cil_insert_format_items(struct xlog * log,struct xfs_trans * tp,int * diff_len,int * diff_iovecs)334 xlog_cil_insert_format_items(
335 	struct xlog		*log,
336 	struct xfs_trans	*tp,
337 	int			*diff_len,
338 	int			*diff_iovecs)
339 {
340 	struct xfs_log_item	*lip;
341 
342 
343 	/* Bail out if we didn't find a log item.  */
344 	if (list_empty(&tp->t_items)) {
345 		ASSERT(0);
346 		return;
347 	}
348 
349 	list_for_each_entry(lip, &tp->t_items, li_trans) {
350 		struct xfs_log_vec *lv;
351 		struct xfs_log_vec *old_lv = NULL;
352 		struct xfs_log_vec *shadow;
353 		bool	ordered = false;
354 
355 		/* Skip items which aren't dirty in this transaction. */
356 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
357 			continue;
358 
359 		/*
360 		 * The formatting size information is already attached to
361 		 * the shadow lv on the log item.
362 		 */
363 		shadow = lip->li_lv_shadow;
364 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
365 			ordered = true;
366 
367 		/* Skip items that do not have any vectors for writing */
368 		if (!shadow->lv_niovecs && !ordered)
369 			continue;
370 
371 		/* compare to existing item size */
372 		old_lv = lip->li_lv;
373 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
374 			/* same or smaller, optimise common overwrite case */
375 			lv = lip->li_lv;
376 			lv->lv_next = NULL;
377 
378 			if (ordered)
379 				goto insert;
380 
381 			/*
382 			 * set the item up as though it is a new insertion so
383 			 * that the space reservation accounting is correct.
384 			 */
385 			*diff_iovecs -= lv->lv_niovecs;
386 			*diff_len -= lv->lv_bytes;
387 
388 			/* Ensure the lv is set up according to ->iop_size */
389 			lv->lv_niovecs = shadow->lv_niovecs;
390 
391 			/* reset the lv buffer information for new formatting */
392 			lv->lv_buf_len = 0;
393 			lv->lv_bytes = 0;
394 			lv->lv_buf = (char *)lv +
395 					xlog_cil_iovec_space(lv->lv_niovecs);
396 		} else {
397 			/* switch to shadow buffer! */
398 			lv = shadow;
399 			lv->lv_item = lip;
400 			if (ordered) {
401 				/* track as an ordered logvec */
402 				ASSERT(lip->li_lv == NULL);
403 				goto insert;
404 			}
405 		}
406 
407 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
408 		lip->li_ops->iop_format(lip, lv);
409 insert:
410 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
411 	}
412 }
413 
414 /*
415  * Insert the log items into the CIL and calculate the difference in space
416  * consumed by the item. Add the space to the checkpoint ticket and calculate
417  * if the change requires additional log metadata. If it does, take that space
418  * as well. Remove the amount of space we added to the checkpoint ticket from
419  * the current transaction ticket so that the accounting works out correctly.
420  */
421 static void
xlog_cil_insert_items(struct xlog * log,struct xfs_trans * tp)422 xlog_cil_insert_items(
423 	struct xlog		*log,
424 	struct xfs_trans	*tp)
425 {
426 	struct xfs_cil		*cil = log->l_cilp;
427 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
428 	struct xfs_log_item	*lip;
429 	int			len = 0;
430 	int			diff_iovecs = 0;
431 	int			iclog_space;
432 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
433 
434 	ASSERT(tp);
435 
436 	/*
437 	 * We can do this safely because the context can't checkpoint until we
438 	 * are done so it doesn't matter exactly how we update the CIL.
439 	 */
440 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
441 
442 	spin_lock(&cil->xc_cil_lock);
443 
444 	/* account for space used by new iovec headers  */
445 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
446 	len += iovhdr_res;
447 	ctx->nvecs += diff_iovecs;
448 
449 	/* attach the transaction to the CIL if it has any busy extents */
450 	if (!list_empty(&tp->t_busy))
451 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
452 
453 	/*
454 	 * Now transfer enough transaction reservation to the context ticket
455 	 * for the checkpoint. The context ticket is special - the unit
456 	 * reservation has to grow as well as the current reservation as we
457 	 * steal from tickets so we can correctly determine the space used
458 	 * during the transaction commit.
459 	 */
460 	if (ctx->ticket->t_curr_res == 0) {
461 		ctx_res = ctx->ticket->t_unit_res;
462 		ctx->ticket->t_curr_res = ctx_res;
463 		tp->t_ticket->t_curr_res -= ctx_res;
464 	}
465 
466 	/* do we need space for more log record headers? */
467 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
468 	if (len > 0 && (ctx->space_used / iclog_space !=
469 				(ctx->space_used + len) / iclog_space)) {
470 		split_res = (len + iclog_space - 1) / iclog_space;
471 		/* need to take into account split region headers, too */
472 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
473 		ctx->ticket->t_unit_res += split_res;
474 		ctx->ticket->t_curr_res += split_res;
475 		tp->t_ticket->t_curr_res -= split_res;
476 		ASSERT(tp->t_ticket->t_curr_res >= len);
477 	}
478 	tp->t_ticket->t_curr_res -= len;
479 	ctx->space_used += len;
480 
481 	/*
482 	 * If we've overrun the reservation, dump the tx details before we move
483 	 * the log items. Shutdown is imminent...
484 	 */
485 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
486 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
487 		xfs_warn(log->l_mp,
488 			 "  log items: %d bytes (iov hdrs: %d bytes)",
489 			 len, iovhdr_res);
490 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
491 			 split_res);
492 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
493 		xlog_print_trans(tp);
494 	}
495 
496 	/*
497 	 * Now (re-)position everything modified at the tail of the CIL.
498 	 * We do this here so we only need to take the CIL lock once during
499 	 * the transaction commit.
500 	 */
501 	list_for_each_entry(lip, &tp->t_items, li_trans) {
502 
503 		/* Skip items which aren't dirty in this transaction. */
504 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
505 			continue;
506 
507 		/*
508 		 * Only move the item if it isn't already at the tail. This is
509 		 * to prevent a transient list_empty() state when reinserting
510 		 * an item that is already the only item in the CIL.
511 		 */
512 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
513 			list_move_tail(&lip->li_cil, &cil->xc_cil);
514 	}
515 
516 	spin_unlock(&cil->xc_cil_lock);
517 
518 	if (tp->t_ticket->t_curr_res < 0)
519 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
520 }
521 
522 static void
xlog_cil_free_logvec(struct xfs_log_vec * log_vector)523 xlog_cil_free_logvec(
524 	struct xfs_log_vec	*log_vector)
525 {
526 	struct xfs_log_vec	*lv;
527 
528 	for (lv = log_vector; lv; ) {
529 		struct xfs_log_vec *next = lv->lv_next;
530 		kmem_free(lv);
531 		lv = next;
532 	}
533 }
534 
535 static void
xlog_discard_endio_work(struct work_struct * work)536 xlog_discard_endio_work(
537 	struct work_struct	*work)
538 {
539 	struct xfs_cil_ctx	*ctx =
540 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
541 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
542 
543 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
544 	kmem_free(ctx);
545 }
546 
547 /*
548  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
549  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
550  * get the execution delayed up to 30 seconds for weird reasons.
551  */
552 static void
xlog_discard_endio(struct bio * bio)553 xlog_discard_endio(
554 	struct bio		*bio)
555 {
556 	struct xfs_cil_ctx	*ctx = bio->bi_private;
557 
558 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
559 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
560 	bio_put(bio);
561 }
562 
563 static void
xlog_discard_busy_extents(struct xfs_mount * mp,struct xfs_cil_ctx * ctx)564 xlog_discard_busy_extents(
565 	struct xfs_mount	*mp,
566 	struct xfs_cil_ctx	*ctx)
567 {
568 	struct list_head	*list = &ctx->busy_extents;
569 	struct xfs_extent_busy	*busyp;
570 	struct bio		*bio = NULL;
571 	struct blk_plug		plug;
572 	int			error = 0;
573 
574 	ASSERT(xfs_has_discard(mp));
575 
576 	blk_start_plug(&plug);
577 	list_for_each_entry(busyp, list, list) {
578 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
579 					 busyp->length);
580 
581 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
582 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
583 				XFS_FSB_TO_BB(mp, busyp->length),
584 				GFP_NOFS, 0, &bio);
585 		if (error && error != -EOPNOTSUPP) {
586 			xfs_info(mp,
587 	 "discard failed for extent [0x%llx,%u], error %d",
588 				 (unsigned long long)busyp->bno,
589 				 busyp->length,
590 				 error);
591 			break;
592 		}
593 	}
594 
595 	if (bio) {
596 		bio->bi_private = ctx;
597 		bio->bi_end_io = xlog_discard_endio;
598 		submit_bio(bio);
599 	} else {
600 		xlog_discard_endio_work(&ctx->discard_endio_work);
601 	}
602 	blk_finish_plug(&plug);
603 }
604 
605 /*
606  * Mark all items committed and clear busy extents. We free the log vector
607  * chains in a separate pass so that we unpin the log items as quickly as
608  * possible.
609  */
610 static void
xlog_cil_committed(struct xfs_cil_ctx * ctx)611 xlog_cil_committed(
612 	struct xfs_cil_ctx	*ctx)
613 {
614 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
615 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
616 
617 	/*
618 	 * If the I/O failed, we're aborting the commit and already shutdown.
619 	 * Wake any commit waiters before aborting the log items so we don't
620 	 * block async log pushers on callbacks. Async log pushers explicitly do
621 	 * not wait on log force completion because they may be holding locks
622 	 * required to unpin items.
623 	 */
624 	if (abort) {
625 		spin_lock(&ctx->cil->xc_push_lock);
626 		wake_up_all(&ctx->cil->xc_start_wait);
627 		wake_up_all(&ctx->cil->xc_commit_wait);
628 		spin_unlock(&ctx->cil->xc_push_lock);
629 	}
630 
631 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
632 					ctx->start_lsn, abort);
633 
634 	xfs_extent_busy_sort(&ctx->busy_extents);
635 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
636 			      xfs_has_discard(mp) && !abort);
637 
638 	spin_lock(&ctx->cil->xc_push_lock);
639 	list_del(&ctx->committing);
640 	spin_unlock(&ctx->cil->xc_push_lock);
641 
642 	xlog_cil_free_logvec(ctx->lv_chain);
643 
644 	if (!list_empty(&ctx->busy_extents))
645 		xlog_discard_busy_extents(mp, ctx);
646 	else
647 		kmem_free(ctx);
648 }
649 
650 void
xlog_cil_process_committed(struct list_head * list)651 xlog_cil_process_committed(
652 	struct list_head	*list)
653 {
654 	struct xfs_cil_ctx	*ctx;
655 
656 	while ((ctx = list_first_entry_or_null(list,
657 			struct xfs_cil_ctx, iclog_entry))) {
658 		list_del(&ctx->iclog_entry);
659 		xlog_cil_committed(ctx);
660 	}
661 }
662 
663 /*
664 * Record the LSN of the iclog we were just granted space to start writing into.
665 * If the context doesn't have a start_lsn recorded, then this iclog will
666 * contain the start record for the checkpoint. Otherwise this write contains
667 * the commit record for the checkpoint.
668 */
669 void
xlog_cil_set_ctx_write_state(struct xfs_cil_ctx * ctx,struct xlog_in_core * iclog)670 xlog_cil_set_ctx_write_state(
671 	struct xfs_cil_ctx	*ctx,
672 	struct xlog_in_core	*iclog)
673 {
674 	struct xfs_cil		*cil = ctx->cil;
675 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
676 
677 	ASSERT(!ctx->commit_lsn);
678 	if (!ctx->start_lsn) {
679 		spin_lock(&cil->xc_push_lock);
680 		/*
681 		 * The LSN we need to pass to the log items on transaction
682 		 * commit is the LSN reported by the first log vector write, not
683 		 * the commit lsn. If we use the commit record lsn then we can
684 		 * move the grant write head beyond the tail LSN and overwrite
685 		 * it.
686 		 */
687 		ctx->start_lsn = lsn;
688 		wake_up_all(&cil->xc_start_wait);
689 		spin_unlock(&cil->xc_push_lock);
690 
691 		/*
692 		 * Make sure the metadata we are about to overwrite in the log
693 		 * has been flushed to stable storage before this iclog is
694 		 * issued.
695 		 */
696 		spin_lock(&cil->xc_log->l_icloglock);
697 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
698 		spin_unlock(&cil->xc_log->l_icloglock);
699 		return;
700 	}
701 
702 	/*
703 	 * Take a reference to the iclog for the context so that we still hold
704 	 * it when xlog_write is done and has released it. This means the
705 	 * context controls when the iclog is released for IO.
706 	 */
707 	atomic_inc(&iclog->ic_refcnt);
708 
709 	/*
710 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
711 	 * iclog for an entire commit record, so we can attach the context
712 	 * callbacks now.  This needs to be done before we make the commit_lsn
713 	 * visible to waiters so that checkpoints with commit records in the
714 	 * same iclog order their IO completion callbacks in the same order that
715 	 * the commit records appear in the iclog.
716 	 */
717 	spin_lock(&cil->xc_log->l_icloglock);
718 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
719 	spin_unlock(&cil->xc_log->l_icloglock);
720 
721 	/*
722 	 * Now we can record the commit LSN and wake anyone waiting for this
723 	 * sequence to have the ordered commit record assigned to a physical
724 	 * location in the log.
725 	 */
726 	spin_lock(&cil->xc_push_lock);
727 	ctx->commit_iclog = iclog;
728 	ctx->commit_lsn = lsn;
729 	wake_up_all(&cil->xc_commit_wait);
730 	spin_unlock(&cil->xc_push_lock);
731 }
732 
733 
734 /*
735  * Ensure that the order of log writes follows checkpoint sequence order. This
736  * relies on the context LSN being zero until the log write has guaranteed the
737  * LSN that the log write will start at via xlog_state_get_iclog_space().
738  */
739 enum _record_type {
740 	_START_RECORD,
741 	_COMMIT_RECORD,
742 };
743 
744 static int
xlog_cil_order_write(struct xfs_cil * cil,xfs_csn_t sequence,enum _record_type record)745 xlog_cil_order_write(
746 	struct xfs_cil		*cil,
747 	xfs_csn_t		sequence,
748 	enum _record_type	record)
749 {
750 	struct xfs_cil_ctx	*ctx;
751 
752 restart:
753 	spin_lock(&cil->xc_push_lock);
754 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
755 		/*
756 		 * Avoid getting stuck in this loop because we were woken by the
757 		 * shutdown, but then went back to sleep once already in the
758 		 * shutdown state.
759 		 */
760 		if (xlog_is_shutdown(cil->xc_log)) {
761 			spin_unlock(&cil->xc_push_lock);
762 			return -EIO;
763 		}
764 
765 		/*
766 		 * Higher sequences will wait for this one so skip them.
767 		 * Don't wait for our own sequence, either.
768 		 */
769 		if (ctx->sequence >= sequence)
770 			continue;
771 
772 		/* Wait until the LSN for the record has been recorded. */
773 		switch (record) {
774 		case _START_RECORD:
775 			if (!ctx->start_lsn) {
776 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
777 				goto restart;
778 			}
779 			break;
780 		case _COMMIT_RECORD:
781 			if (!ctx->commit_lsn) {
782 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
783 				goto restart;
784 			}
785 			break;
786 		}
787 	}
788 	spin_unlock(&cil->xc_push_lock);
789 	return 0;
790 }
791 
792 /*
793  * Write out the log vector change now attached to the CIL context. This will
794  * write a start record that needs to be strictly ordered in ascending CIL
795  * sequence order so that log recovery will always use in-order start LSNs when
796  * replaying checkpoints.
797  */
798 static int
xlog_cil_write_chain(struct xfs_cil_ctx * ctx,struct xfs_log_vec * chain)799 xlog_cil_write_chain(
800 	struct xfs_cil_ctx	*ctx,
801 	struct xfs_log_vec	*chain)
802 {
803 	struct xlog		*log = ctx->cil->xc_log;
804 	int			error;
805 
806 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
807 	if (error)
808 		return error;
809 	return xlog_write(log, ctx, chain, ctx->ticket, XLOG_START_TRANS);
810 }
811 
812 /*
813  * Write out the commit record of a checkpoint transaction to close off a
814  * running log write. These commit records are strictly ordered in ascending CIL
815  * sequence order so that log recovery will always replay the checkpoints in the
816  * correct order.
817  */
818 static int
xlog_cil_write_commit_record(struct xfs_cil_ctx * ctx)819 xlog_cil_write_commit_record(
820 	struct xfs_cil_ctx	*ctx)
821 {
822 	struct xlog		*log = ctx->cil->xc_log;
823 	struct xfs_log_iovec	reg = {
824 		.i_addr = NULL,
825 		.i_len = 0,
826 		.i_type = XLOG_REG_TYPE_COMMIT,
827 	};
828 	struct xfs_log_vec	vec = {
829 		.lv_niovecs = 1,
830 		.lv_iovecp = &reg,
831 	};
832 	int			error;
833 
834 	if (xlog_is_shutdown(log))
835 		return -EIO;
836 
837 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
838 	if (error)
839 		return error;
840 
841 	error = xlog_write(log, ctx, &vec, ctx->ticket, XLOG_COMMIT_TRANS);
842 	if (error)
843 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
844 	return error;
845 }
846 
847 /*
848  * Push the Committed Item List to the log.
849  *
850  * If the current sequence is the same as xc_push_seq we need to do a flush. If
851  * xc_push_seq is less than the current sequence, then it has already been
852  * flushed and we don't need to do anything - the caller will wait for it to
853  * complete if necessary.
854  *
855  * xc_push_seq is checked unlocked against the sequence number for a match.
856  * Hence we can allow log forces to run racily and not issue pushes for the
857  * same sequence twice.  If we get a race between multiple pushes for the same
858  * sequence they will block on the first one and then abort, hence avoiding
859  * needless pushes.
860  */
861 static void
xlog_cil_push_work(struct work_struct * work)862 xlog_cil_push_work(
863 	struct work_struct	*work)
864 {
865 	struct xfs_cil_ctx	*ctx =
866 		container_of(work, struct xfs_cil_ctx, push_work);
867 	struct xfs_cil		*cil = ctx->cil;
868 	struct xlog		*log = cil->xc_log;
869 	struct xfs_log_vec	*lv;
870 	struct xfs_cil_ctx	*new_ctx;
871 	struct xlog_ticket	*tic;
872 	int			num_iovecs;
873 	int			error = 0;
874 	struct xfs_trans_header thdr;
875 	struct xfs_log_iovec	lhdr;
876 	struct xfs_log_vec	lvhdr = { NULL };
877 	xfs_csn_t		push_seq;
878 	bool			push_commit_stable;
879 
880 	new_ctx = xlog_cil_ctx_alloc();
881 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
882 
883 	down_write(&cil->xc_ctx_lock);
884 
885 	spin_lock(&cil->xc_push_lock);
886 	push_seq = cil->xc_push_seq;
887 	ASSERT(push_seq <= ctx->sequence);
888 	push_commit_stable = cil->xc_push_commit_stable;
889 	cil->xc_push_commit_stable = false;
890 
891 	/*
892 	 * As we are about to switch to a new, empty CIL context, we no longer
893 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
894 	 * the hard push throttle may have caught so they can start committing
895 	 * to the new context. The ctx->xc_push_lock provides the serialisation
896 	 * necessary for safely using the lockless waitqueue_active() check in
897 	 * this context.
898 	 */
899 	if (waitqueue_active(&cil->xc_push_wait))
900 		wake_up_all(&cil->xc_push_wait);
901 
902 	/*
903 	 * Check if we've anything to push. If there is nothing, then we don't
904 	 * move on to a new sequence number and so we have to be able to push
905 	 * this sequence again later.
906 	 */
907 	if (list_empty(&cil->xc_cil)) {
908 		cil->xc_push_seq = 0;
909 		spin_unlock(&cil->xc_push_lock);
910 		goto out_skip;
911 	}
912 
913 
914 	/* check for a previously pushed sequence */
915 	if (push_seq < ctx->sequence) {
916 		spin_unlock(&cil->xc_push_lock);
917 		goto out_skip;
918 	}
919 
920 	/*
921 	 * We are now going to push this context, so add it to the committing
922 	 * list before we do anything else. This ensures that anyone waiting on
923 	 * this push can easily detect the difference between a "push in
924 	 * progress" and "CIL is empty, nothing to do".
925 	 *
926 	 * IOWs, a wait loop can now check for:
927 	 *	the current sequence not being found on the committing list;
928 	 *	an empty CIL; and
929 	 *	an unchanged sequence number
930 	 * to detect a push that had nothing to do and therefore does not need
931 	 * waiting on. If the CIL is not empty, we get put on the committing
932 	 * list before emptying the CIL and bumping the sequence number. Hence
933 	 * an empty CIL and an unchanged sequence number means we jumped out
934 	 * above after doing nothing.
935 	 *
936 	 * Hence the waiter will either find the commit sequence on the
937 	 * committing list or the sequence number will be unchanged and the CIL
938 	 * still dirty. In that latter case, the push has not yet started, and
939 	 * so the waiter will have to continue trying to check the CIL
940 	 * committing list until it is found. In extreme cases of delay, the
941 	 * sequence may fully commit between the attempts the wait makes to wait
942 	 * on the commit sequence.
943 	 */
944 	list_add(&ctx->committing, &cil->xc_committing);
945 	spin_unlock(&cil->xc_push_lock);
946 
947 	/*
948 	 * Pull all the log vectors off the items in the CIL, and remove the
949 	 * items from the CIL. We don't need the CIL lock here because it's only
950 	 * needed on the transaction commit side which is currently locked out
951 	 * by the flush lock.
952 	 */
953 	lv = NULL;
954 	num_iovecs = 0;
955 	while (!list_empty(&cil->xc_cil)) {
956 		struct xfs_log_item	*item;
957 
958 		item = list_first_entry(&cil->xc_cil,
959 					struct xfs_log_item, li_cil);
960 		list_del_init(&item->li_cil);
961 		if (!ctx->lv_chain)
962 			ctx->lv_chain = item->li_lv;
963 		else
964 			lv->lv_next = item->li_lv;
965 		lv = item->li_lv;
966 		item->li_lv = NULL;
967 		num_iovecs += lv->lv_niovecs;
968 	}
969 
970 	/*
971 	 * Switch the contexts so we can drop the context lock and move out
972 	 * of a shared context. We can't just go straight to the commit record,
973 	 * though - we need to synchronise with previous and future commits so
974 	 * that the commit records are correctly ordered in the log to ensure
975 	 * that we process items during log IO completion in the correct order.
976 	 *
977 	 * For example, if we get an EFI in one checkpoint and the EFD in the
978 	 * next (e.g. due to log forces), we do not want the checkpoint with
979 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
980 	 * we must strictly order the commit records of the checkpoints so
981 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
982 	 * correct order; and b) the checkpoints are replayed in correct order
983 	 * in log recovery.
984 	 *
985 	 * Hence we need to add this context to the committing context list so
986 	 * that higher sequences will wait for us to write out a commit record
987 	 * before they do.
988 	 *
989 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
990 	 * structure atomically with the addition of this sequence to the
991 	 * committing list. This also ensures that we can do unlocked checks
992 	 * against the current sequence in log forces without risking
993 	 * deferencing a freed context pointer.
994 	 */
995 	spin_lock(&cil->xc_push_lock);
996 	xlog_cil_ctx_switch(cil, new_ctx);
997 	spin_unlock(&cil->xc_push_lock);
998 	up_write(&cil->xc_ctx_lock);
999 
1000 	/*
1001 	 * Build a checkpoint transaction header and write it to the log to
1002 	 * begin the transaction. We need to account for the space used by the
1003 	 * transaction header here as it is not accounted for in xlog_write().
1004 	 *
1005 	 * The LSN we need to pass to the log items on transaction commit is
1006 	 * the LSN reported by the first log vector write. If we use the commit
1007 	 * record lsn then we can move the tail beyond the grant write head.
1008 	 */
1009 	tic = ctx->ticket;
1010 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1011 	thdr.th_type = XFS_TRANS_CHECKPOINT;
1012 	thdr.th_tid = tic->t_tid;
1013 	thdr.th_num_items = num_iovecs;
1014 	lhdr.i_addr = &thdr;
1015 	lhdr.i_len = sizeof(xfs_trans_header_t);
1016 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
1017 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
1018 
1019 	lvhdr.lv_niovecs = 1;
1020 	lvhdr.lv_iovecp = &lhdr;
1021 	lvhdr.lv_next = ctx->lv_chain;
1022 
1023 	error = xlog_cil_write_chain(ctx, &lvhdr);
1024 	if (error)
1025 		goto out_abort_free_ticket;
1026 
1027 	error = xlog_cil_write_commit_record(ctx);
1028 	if (error)
1029 		goto out_abort_free_ticket;
1030 
1031 	xfs_log_ticket_ungrant(log, tic);
1032 
1033 	/*
1034 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1035 	 * to complete before we submit the commit_iclog. We can't use state
1036 	 * checks for this - ACTIVE can be either a past completed iclog or a
1037 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1038 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1039 	 * In the latter case, if it's a future iclog and we wait on it, the we
1040 	 * will hang because it won't get processed through to ic_force_wait
1041 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1042 	 * iclog header lsn and compare it to the commit lsn to determine if we
1043 	 * need to wait on iclogs or not.
1044 	 */
1045 	spin_lock(&log->l_icloglock);
1046 	if (ctx->start_lsn != ctx->commit_lsn) {
1047 		xfs_lsn_t	plsn;
1048 
1049 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1050 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1051 			/*
1052 			 * Waiting on ic_force_wait orders the completion of
1053 			 * iclogs older than ic_prev. Hence we only need to wait
1054 			 * on the most recent older iclog here.
1055 			 */
1056 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1057 			spin_lock(&log->l_icloglock);
1058 		}
1059 
1060 		/*
1061 		 * We need to issue a pre-flush so that the ordering for this
1062 		 * checkpoint is correctly preserved down to stable storage.
1063 		 */
1064 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1065 	}
1066 
1067 	/*
1068 	 * The commit iclog must be written to stable storage to guarantee
1069 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1070 	 * storage.
1071 	 *
1072 	 * If the push caller needs the commit to be immediately stable and the
1073 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1074 	 * will be written when released, switch it's state to WANT_SYNC right
1075 	 * now.
1076 	 */
1077 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1078 	if (push_commit_stable &&
1079 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1080 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1081 	xlog_state_release_iclog(log, ctx->commit_iclog);
1082 
1083 	/* Not safe to reference ctx now! */
1084 
1085 	spin_unlock(&log->l_icloglock);
1086 	return;
1087 
1088 out_skip:
1089 	up_write(&cil->xc_ctx_lock);
1090 	xfs_log_ticket_put(new_ctx->ticket);
1091 	kmem_free(new_ctx);
1092 	return;
1093 
1094 out_abort_free_ticket:
1095 	xfs_log_ticket_ungrant(log, tic);
1096 	ASSERT(xlog_is_shutdown(log));
1097 	if (!ctx->commit_iclog) {
1098 		xlog_cil_committed(ctx);
1099 		return;
1100 	}
1101 	spin_lock(&log->l_icloglock);
1102 	xlog_state_release_iclog(log, ctx->commit_iclog);
1103 	/* Not safe to reference ctx now! */
1104 	spin_unlock(&log->l_icloglock);
1105 }
1106 
1107 /*
1108  * We need to push CIL every so often so we don't cache more than we can fit in
1109  * the log. The limit really is that a checkpoint can't be more than half the
1110  * log (the current checkpoint is not allowed to overwrite the previous
1111  * checkpoint), but commit latency and memory usage limit this to a smaller
1112  * size.
1113  */
1114 static void
xlog_cil_push_background(struct xlog * log)1115 xlog_cil_push_background(
1116 	struct xlog	*log) __releases(cil->xc_ctx_lock)
1117 {
1118 	struct xfs_cil	*cil = log->l_cilp;
1119 
1120 	/*
1121 	 * The cil won't be empty because we are called while holding the
1122 	 * context lock so whatever we added to the CIL will still be there
1123 	 */
1124 	ASSERT(!list_empty(&cil->xc_cil));
1125 
1126 	/*
1127 	 * Don't do a background push if we haven't used up all the
1128 	 * space available yet.
1129 	 */
1130 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
1131 		up_read(&cil->xc_ctx_lock);
1132 		return;
1133 	}
1134 
1135 	spin_lock(&cil->xc_push_lock);
1136 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1137 		cil->xc_push_seq = cil->xc_current_sequence;
1138 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1139 	}
1140 
1141 	/*
1142 	 * Drop the context lock now, we can't hold that if we need to sleep
1143 	 * because we are over the blocking threshold. The push_lock is still
1144 	 * held, so blocking threshold sleep/wakeup is still correctly
1145 	 * serialised here.
1146 	 */
1147 	up_read(&cil->xc_ctx_lock);
1148 
1149 	/*
1150 	 * If we are well over the space limit, throttle the work that is being
1151 	 * done until the push work on this context has begun. Enforce the hard
1152 	 * throttle on all transaction commits once it has been activated, even
1153 	 * if the committing transactions have resulted in the space usage
1154 	 * dipping back down under the hard limit.
1155 	 *
1156 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1157 	 * using the lockless waitqueue_active() check in this context.
1158 	 */
1159 	if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1160 	    waitqueue_active(&cil->xc_push_wait)) {
1161 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1162 		ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1163 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1164 		return;
1165 	}
1166 
1167 	spin_unlock(&cil->xc_push_lock);
1168 
1169 }
1170 
1171 /*
1172  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1173  * number that is passed. When it returns, the work will be queued for
1174  * @push_seq, but it won't be completed.
1175  *
1176  * If the caller is performing a synchronous force, we will flush the workqueue
1177  * to get previously queued work moving to minimise the wait time they will
1178  * undergo waiting for all outstanding pushes to complete. The caller is
1179  * expected to do the required waiting for push_seq to complete.
1180  *
1181  * If the caller is performing an async push, we need to ensure that the
1182  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1183  * don't do this, then the commit record may remain sitting in memory in an
1184  * ACTIVE iclog. This then requires another full log force to push to disk,
1185  * which defeats the purpose of having an async, non-blocking CIL force
1186  * mechanism. Hence in this case we need to pass a flag to the push work to
1187  * indicate it needs to flush the commit record itself.
1188  */
1189 static void
xlog_cil_push_now(struct xlog * log,xfs_lsn_t push_seq,bool async)1190 xlog_cil_push_now(
1191 	struct xlog	*log,
1192 	xfs_lsn_t	push_seq,
1193 	bool		async)
1194 {
1195 	struct xfs_cil	*cil = log->l_cilp;
1196 
1197 	if (!cil)
1198 		return;
1199 
1200 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1201 
1202 	/* start on any pending background push to minimise wait time on it */
1203 	if (!async)
1204 		flush_workqueue(cil->xc_push_wq);
1205 
1206 	/*
1207 	 * If the CIL is empty or we've already pushed the sequence then
1208 	 * there's no work we need to do.
1209 	 */
1210 	spin_lock(&cil->xc_push_lock);
1211 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1212 		spin_unlock(&cil->xc_push_lock);
1213 		return;
1214 	}
1215 
1216 	cil->xc_push_seq = push_seq;
1217 	cil->xc_push_commit_stable = async;
1218 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1219 	spin_unlock(&cil->xc_push_lock);
1220 }
1221 
1222 bool
xlog_cil_empty(struct xlog * log)1223 xlog_cil_empty(
1224 	struct xlog	*log)
1225 {
1226 	struct xfs_cil	*cil = log->l_cilp;
1227 	bool		empty = false;
1228 
1229 	spin_lock(&cil->xc_push_lock);
1230 	if (list_empty(&cil->xc_cil))
1231 		empty = true;
1232 	spin_unlock(&cil->xc_push_lock);
1233 	return empty;
1234 }
1235 
1236 /*
1237  * Commit a transaction with the given vector to the Committed Item List.
1238  *
1239  * To do this, we need to format the item, pin it in memory if required and
1240  * account for the space used by the transaction. Once we have done that we
1241  * need to release the unused reservation for the transaction, attach the
1242  * transaction to the checkpoint context so we carry the busy extents through
1243  * to checkpoint completion, and then unlock all the items in the transaction.
1244  *
1245  * Called with the context lock already held in read mode to lock out
1246  * background commit, returns without it held once background commits are
1247  * allowed again.
1248  */
1249 void
xlog_cil_commit(struct xlog * log,struct xfs_trans * tp,xfs_csn_t * commit_seq,bool regrant)1250 xlog_cil_commit(
1251 	struct xlog		*log,
1252 	struct xfs_trans	*tp,
1253 	xfs_csn_t		*commit_seq,
1254 	bool			regrant)
1255 {
1256 	struct xfs_cil		*cil = log->l_cilp;
1257 	struct xfs_log_item	*lip, *next;
1258 
1259 	/*
1260 	 * Do all necessary memory allocation before we lock the CIL.
1261 	 * This ensures the allocation does not deadlock with a CIL
1262 	 * push in memory reclaim (e.g. from kswapd).
1263 	 */
1264 	xlog_cil_alloc_shadow_bufs(log, tp);
1265 
1266 	/* lock out background commit */
1267 	down_read(&cil->xc_ctx_lock);
1268 
1269 	xlog_cil_insert_items(log, tp);
1270 
1271 	if (regrant && !xlog_is_shutdown(log))
1272 		xfs_log_ticket_regrant(log, tp->t_ticket);
1273 	else
1274 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1275 	tp->t_ticket = NULL;
1276 	xfs_trans_unreserve_and_mod_sb(tp);
1277 
1278 	/*
1279 	 * Once all the items of the transaction have been copied to the CIL,
1280 	 * the items can be unlocked and possibly freed.
1281 	 *
1282 	 * This needs to be done before we drop the CIL context lock because we
1283 	 * have to update state in the log items and unlock them before they go
1284 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1285 	 * we can run checkpoint completion before we've updated and unlocked
1286 	 * the log items. This affects (at least) processing of stale buffers,
1287 	 * inodes and EFIs.
1288 	 */
1289 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1290 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1291 		xfs_trans_del_item(lip);
1292 		if (lip->li_ops->iop_committing)
1293 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1294 	}
1295 	if (commit_seq)
1296 		*commit_seq = cil->xc_ctx->sequence;
1297 
1298 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1299 	xlog_cil_push_background(log);
1300 }
1301 
1302 /*
1303  * Flush the CIL to stable storage but don't wait for it to complete. This
1304  * requires the CIL push to ensure the commit record for the push hits the disk,
1305  * but otherwise is no different to a push done from a log force.
1306  */
1307 void
xlog_cil_flush(struct xlog * log)1308 xlog_cil_flush(
1309 	struct xlog	*log)
1310 {
1311 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1312 
1313 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1314 	xlog_cil_push_now(log, seq, true);
1315 }
1316 
1317 /*
1318  * Conditionally push the CIL based on the sequence passed in.
1319  *
1320  * We only need to push if we haven't already pushed the sequence number given.
1321  * Hence the only time we will trigger a push here is if the push sequence is
1322  * the same as the current context.
1323  *
1324  * We return the current commit lsn to allow the callers to determine if a
1325  * iclog flush is necessary following this call.
1326  */
1327 xfs_lsn_t
xlog_cil_force_seq(struct xlog * log,xfs_csn_t sequence)1328 xlog_cil_force_seq(
1329 	struct xlog	*log,
1330 	xfs_csn_t	sequence)
1331 {
1332 	struct xfs_cil		*cil = log->l_cilp;
1333 	struct xfs_cil_ctx	*ctx;
1334 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1335 
1336 	ASSERT(sequence <= cil->xc_current_sequence);
1337 
1338 	if (!sequence)
1339 		sequence = cil->xc_current_sequence;
1340 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1341 
1342 	/*
1343 	 * check to see if we need to force out the current context.
1344 	 * xlog_cil_push() handles racing pushes for the same sequence,
1345 	 * so no need to deal with it here.
1346 	 */
1347 restart:
1348 	xlog_cil_push_now(log, sequence, false);
1349 
1350 	/*
1351 	 * See if we can find a previous sequence still committing.
1352 	 * We need to wait for all previous sequence commits to complete
1353 	 * before allowing the force of push_seq to go ahead. Hence block
1354 	 * on commits for those as well.
1355 	 */
1356 	spin_lock(&cil->xc_push_lock);
1357 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1358 		/*
1359 		 * Avoid getting stuck in this loop because we were woken by the
1360 		 * shutdown, but then went back to sleep once already in the
1361 		 * shutdown state.
1362 		 */
1363 		if (xlog_is_shutdown(log))
1364 			goto out_shutdown;
1365 		if (ctx->sequence > sequence)
1366 			continue;
1367 		if (!ctx->commit_lsn) {
1368 			/*
1369 			 * It is still being pushed! Wait for the push to
1370 			 * complete, then start again from the beginning.
1371 			 */
1372 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1373 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1374 			goto restart;
1375 		}
1376 		if (ctx->sequence != sequence)
1377 			continue;
1378 		/* found it! */
1379 		commit_lsn = ctx->commit_lsn;
1380 	}
1381 
1382 	/*
1383 	 * The call to xlog_cil_push_now() executes the push in the background.
1384 	 * Hence by the time we have got here it our sequence may not have been
1385 	 * pushed yet. This is true if the current sequence still matches the
1386 	 * push sequence after the above wait loop and the CIL still contains
1387 	 * dirty objects. This is guaranteed by the push code first adding the
1388 	 * context to the committing list before emptying the CIL.
1389 	 *
1390 	 * Hence if we don't find the context in the committing list and the
1391 	 * current sequence number is unchanged then the CIL contents are
1392 	 * significant.  If the CIL is empty, if means there was nothing to push
1393 	 * and that means there is nothing to wait for. If the CIL is not empty,
1394 	 * it means we haven't yet started the push, because if it had started
1395 	 * we would have found the context on the committing list.
1396 	 */
1397 	if (sequence == cil->xc_current_sequence &&
1398 	    !list_empty(&cil->xc_cil)) {
1399 		spin_unlock(&cil->xc_push_lock);
1400 		goto restart;
1401 	}
1402 
1403 	spin_unlock(&cil->xc_push_lock);
1404 	return commit_lsn;
1405 
1406 	/*
1407 	 * We detected a shutdown in progress. We need to trigger the log force
1408 	 * to pass through it's iclog state machine error handling, even though
1409 	 * we are already in a shutdown state. Hence we can't return
1410 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1411 	 * LSN is already stable), so we return a zero LSN instead.
1412 	 */
1413 out_shutdown:
1414 	spin_unlock(&cil->xc_push_lock);
1415 	return 0;
1416 }
1417 
1418 /*
1419  * Check if the current log item was first committed in this sequence.
1420  * We can't rely on just the log item being in the CIL, we have to check
1421  * the recorded commit sequence number.
1422  *
1423  * Note: for this to be used in a non-racy manner, it has to be called with
1424  * CIL flushing locked out. As a result, it should only be used during the
1425  * transaction commit process when deciding what to format into the item.
1426  */
1427 bool
xfs_log_item_in_current_chkpt(struct xfs_log_item * lip)1428 xfs_log_item_in_current_chkpt(
1429 	struct xfs_log_item	*lip)
1430 {
1431 	struct xfs_cil		*cil = lip->li_mountp->m_log->l_cilp;
1432 
1433 	if (list_empty(&lip->li_cil))
1434 		return false;
1435 
1436 	/*
1437 	 * li_seq is written on the first commit of a log item to record the
1438 	 * first checkpoint it is written to. Hence if it is different to the
1439 	 * current sequence, we're in a new checkpoint.
1440 	 */
1441 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
1442 }
1443 
1444 /*
1445  * Perform initial CIL structure initialisation.
1446  */
1447 int
xlog_cil_init(struct xlog * log)1448 xlog_cil_init(
1449 	struct xlog	*log)
1450 {
1451 	struct xfs_cil	*cil;
1452 	struct xfs_cil_ctx *ctx;
1453 
1454 	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1455 	if (!cil)
1456 		return -ENOMEM;
1457 	/*
1458 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1459 	 * concurrency the log spinlocks will be exposed to.
1460 	 */
1461 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1462 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1463 			4, log->l_mp->m_super->s_id);
1464 	if (!cil->xc_push_wq)
1465 		goto out_destroy_cil;
1466 
1467 	INIT_LIST_HEAD(&cil->xc_cil);
1468 	INIT_LIST_HEAD(&cil->xc_committing);
1469 	spin_lock_init(&cil->xc_cil_lock);
1470 	spin_lock_init(&cil->xc_push_lock);
1471 	init_waitqueue_head(&cil->xc_push_wait);
1472 	init_rwsem(&cil->xc_ctx_lock);
1473 	init_waitqueue_head(&cil->xc_start_wait);
1474 	init_waitqueue_head(&cil->xc_commit_wait);
1475 	cil->xc_log = log;
1476 	log->l_cilp = cil;
1477 
1478 	ctx = xlog_cil_ctx_alloc();
1479 	xlog_cil_ctx_switch(cil, ctx);
1480 
1481 	return 0;
1482 
1483 out_destroy_cil:
1484 	kmem_free(cil);
1485 	return -ENOMEM;
1486 }
1487 
1488 void
xlog_cil_destroy(struct xlog * log)1489 xlog_cil_destroy(
1490 	struct xlog	*log)
1491 {
1492 	if (log->l_cilp->xc_ctx) {
1493 		if (log->l_cilp->xc_ctx->ticket)
1494 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1495 		kmem_free(log->l_cilp->xc_ctx);
1496 	}
1497 
1498 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1499 	destroy_workqueue(log->l_cilp->xc_push_wq);
1500 	kmem_free(log->l_cilp);
1501 }
1502 
1503