• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 
16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17 #include <asm/desc.h>
18 #endif
19 
20 struct lkdtm_list {
21 	struct list_head node;
22 };
23 
24 /*
25  * Make sure our attempts to over run the kernel stack doesn't trigger
26  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27  * recurse past the end of THREAD_SIZE by default.
28  */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8UL)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35 
36 static int recur_count = REC_NUM_DEFAULT;
37 
38 static DEFINE_SPINLOCK(lock_me_up);
39 
40 /*
41  * Make sure compiler does not optimize this function or stack frame away:
42  * - function marked noinline
43  * - stack variables are marked volatile
44  * - stack variables are written (memset()) and read (pr_info())
45  * - function has external effects (pr_info())
46  * */
recursive_loop(int remaining)47 static int noinline recursive_loop(int remaining)
48 {
49 	volatile char buf[REC_STACK_SIZE];
50 
51 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 		recur_count);
54 	if (!remaining)
55 		return 0;
56 	else
57 		return recursive_loop(remaining - 1);
58 }
59 
60 /* If the depth is negative, use the default, otherwise keep parameter. */
lkdtm_bugs_init(int * recur_param)61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 	if (*recur_param < 0)
64 		*recur_param = recur_count;
65 	else
66 		recur_count = *recur_param;
67 }
68 
lkdtm_PANIC(void)69 void lkdtm_PANIC(void)
70 {
71 	panic("dumptest");
72 }
73 
lkdtm_BUG(void)74 void lkdtm_BUG(void)
75 {
76 	BUG();
77 }
78 
79 static int warn_counter;
80 
lkdtm_WARNING(void)81 void lkdtm_WARNING(void)
82 {
83 	WARN_ON(++warn_counter);
84 }
85 
lkdtm_WARNING_MESSAGE(void)86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90 
lkdtm_EXCEPTION(void)91 void lkdtm_EXCEPTION(void)
92 {
93 	*((volatile int *) 0) = 0;
94 }
95 
lkdtm_LOOP(void)96 void lkdtm_LOOP(void)
97 {
98 	for (;;)
99 		;
100 }
101 
lkdtm_EXHAUST_STACK(void)102 void lkdtm_EXHAUST_STACK(void)
103 {
104 	pr_info("Calling function with %lu frame size to depth %d ...\n",
105 		REC_STACK_SIZE, recur_count);
106 	recursive_loop(recur_count);
107 	pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109 
__lkdtm_CORRUPT_STACK(void * stack)110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 	memset(stack, '\xff', 64);
113 }
114 
115 /* This should trip the stack canary, not corrupt the return address. */
lkdtm_CORRUPT_STACK(void)116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 	/* Use default char array length that triggers stack protection. */
119 	char data[8] __aligned(sizeof(void *));
120 
121 	pr_info("Corrupting stack containing char array ...\n");
122 	__lkdtm_CORRUPT_STACK((void *)&data);
123 }
124 
125 /* Same as above but will only get a canary with -fstack-protector-strong */
lkdtm_CORRUPT_STACK_STRONG(void)126 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127 {
128 	union {
129 		unsigned short shorts[4];
130 		unsigned long *ptr;
131 	} data __aligned(sizeof(void *));
132 
133 	pr_info("Corrupting stack containing union ...\n");
134 	__lkdtm_CORRUPT_STACK((void *)&data);
135 }
136 
137 static pid_t stack_pid;
138 static unsigned long stack_addr;
139 
lkdtm_REPORT_STACK(void)140 void lkdtm_REPORT_STACK(void)
141 {
142 	volatile uintptr_t magic;
143 	pid_t pid = task_pid_nr(current);
144 
145 	if (pid != stack_pid) {
146 		pr_info("Starting stack offset tracking for pid %d\n", pid);
147 		stack_pid = pid;
148 		stack_addr = (uintptr_t)&magic;
149 	}
150 
151 	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152 }
153 
lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)154 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
155 {
156 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
157 	u32 *p;
158 	u32 val = 0x12345678;
159 
160 	p = (u32 *)(data + 1);
161 	if (*p == 0)
162 		val = 0x87654321;
163 	*p = val;
164 
165 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
166 		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
167 }
168 
lkdtm_SOFTLOCKUP(void)169 void lkdtm_SOFTLOCKUP(void)
170 {
171 	preempt_disable();
172 	for (;;)
173 		cpu_relax();
174 }
175 
lkdtm_HARDLOCKUP(void)176 void lkdtm_HARDLOCKUP(void)
177 {
178 	local_irq_disable();
179 	for (;;)
180 		cpu_relax();
181 }
182 
lkdtm_SPINLOCKUP(void)183 void lkdtm_SPINLOCKUP(void)
184 {
185 	/* Must be called twice to trigger. */
186 	spin_lock(&lock_me_up);
187 	/* Let sparse know we intended to exit holding the lock. */
188 	__release(&lock_me_up);
189 }
190 
lkdtm_HUNG_TASK(void)191 void lkdtm_HUNG_TASK(void)
192 {
193 	set_current_state(TASK_UNINTERRUPTIBLE);
194 	schedule();
195 }
196 
197 volatile unsigned int huge = INT_MAX - 2;
198 volatile unsigned int ignored;
199 
lkdtm_OVERFLOW_SIGNED(void)200 void lkdtm_OVERFLOW_SIGNED(void)
201 {
202 	int value;
203 
204 	value = huge;
205 	pr_info("Normal signed addition ...\n");
206 	value += 1;
207 	ignored = value;
208 
209 	pr_info("Overflowing signed addition ...\n");
210 	value += 4;
211 	ignored = value;
212 }
213 
214 
lkdtm_OVERFLOW_UNSIGNED(void)215 void lkdtm_OVERFLOW_UNSIGNED(void)
216 {
217 	unsigned int value;
218 
219 	value = huge;
220 	pr_info("Normal unsigned addition ...\n");
221 	value += 1;
222 	ignored = value;
223 
224 	pr_info("Overflowing unsigned addition ...\n");
225 	value += 4;
226 	ignored = value;
227 }
228 
229 /* Intentionally using old-style flex array definition of 1 byte. */
230 struct array_bounds_flex_array {
231 	int one;
232 	int two;
233 	char data[1];
234 };
235 
236 struct array_bounds {
237 	int one;
238 	int two;
239 	char data[8];
240 	int three;
241 };
242 
lkdtm_ARRAY_BOUNDS(void)243 void lkdtm_ARRAY_BOUNDS(void)
244 {
245 	struct array_bounds_flex_array *not_checked;
246 	struct array_bounds *checked;
247 	volatile int i;
248 
249 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
250 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
251 	if (!not_checked || !checked) {
252 		kfree(not_checked);
253 		kfree(checked);
254 		return;
255 	}
256 
257 	pr_info("Array access within bounds ...\n");
258 	/* For both, touch all bytes in the actual member size. */
259 	for (i = 0; i < sizeof(checked->data); i++)
260 		checked->data[i] = 'A';
261 	/*
262 	 * For the uninstrumented flex array member, also touch 1 byte
263 	 * beyond to verify it is correctly uninstrumented.
264 	 */
265 	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
266 		not_checked->data[i] = 'A';
267 
268 	pr_info("Array access beyond bounds ...\n");
269 	for (i = 0; i < sizeof(checked->data) + 1; i++)
270 		checked->data[i] = 'B';
271 
272 	kfree(not_checked);
273 	kfree(checked);
274 	pr_err("FAIL: survived array bounds overflow!\n");
275 	if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
276 		pr_expected_config(CONFIG_UBSAN_TRAP);
277 	else
278 		pr_expected_config(CONFIG_UBSAN_BOUNDS);
279 }
280 
lkdtm_CORRUPT_LIST_ADD(void)281 void lkdtm_CORRUPT_LIST_ADD(void)
282 {
283 	/*
284 	 * Initially, an empty list via LIST_HEAD:
285 	 *	test_head.next = &test_head
286 	 *	test_head.prev = &test_head
287 	 */
288 	LIST_HEAD(test_head);
289 	struct lkdtm_list good, bad;
290 	void *target[2] = { };
291 	void *redirection = &target;
292 
293 	pr_info("attempting good list addition\n");
294 
295 	/*
296 	 * Adding to the list performs these actions:
297 	 *	test_head.next->prev = &good.node
298 	 *	good.node.next = test_head.next
299 	 *	good.node.prev = test_head
300 	 *	test_head.next = good.node
301 	 */
302 	list_add(&good.node, &test_head);
303 
304 	pr_info("attempting corrupted list addition\n");
305 	/*
306 	 * In simulating this "write what where" primitive, the "what" is
307 	 * the address of &bad.node, and the "where" is the address held
308 	 * by "redirection".
309 	 */
310 	test_head.next = redirection;
311 	list_add(&bad.node, &test_head);
312 
313 	if (target[0] == NULL && target[1] == NULL)
314 		pr_err("Overwrite did not happen, but no BUG?!\n");
315 	else {
316 		pr_err("list_add() corruption not detected!\n");
317 		pr_expected_config(CONFIG_DEBUG_LIST);
318 	}
319 }
320 
lkdtm_CORRUPT_LIST_DEL(void)321 void lkdtm_CORRUPT_LIST_DEL(void)
322 {
323 	LIST_HEAD(test_head);
324 	struct lkdtm_list item;
325 	void *target[2] = { };
326 	void *redirection = &target;
327 
328 	list_add(&item.node, &test_head);
329 
330 	pr_info("attempting good list removal\n");
331 	list_del(&item.node);
332 
333 	pr_info("attempting corrupted list removal\n");
334 	list_add(&item.node, &test_head);
335 
336 	/* As with the list_add() test above, this corrupts "next". */
337 	item.node.next = redirection;
338 	list_del(&item.node);
339 
340 	if (target[0] == NULL && target[1] == NULL)
341 		pr_err("Overwrite did not happen, but no BUG?!\n");
342 	else {
343 		pr_err("list_del() corruption not detected!\n");
344 		pr_expected_config(CONFIG_DEBUG_LIST);
345 	}
346 }
347 
348 /* Test that VMAP_STACK is actually allocating with a leading guard page */
lkdtm_STACK_GUARD_PAGE_LEADING(void)349 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
350 {
351 	const unsigned char *stack = task_stack_page(current);
352 	const unsigned char *ptr = stack - 1;
353 	volatile unsigned char byte;
354 
355 	pr_info("attempting bad read from page below current stack\n");
356 
357 	byte = *ptr;
358 
359 	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
360 }
361 
362 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
lkdtm_STACK_GUARD_PAGE_TRAILING(void)363 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
364 {
365 	const unsigned char *stack = task_stack_page(current);
366 	const unsigned char *ptr = stack + THREAD_SIZE;
367 	volatile unsigned char byte;
368 
369 	pr_info("attempting bad read from page above current stack\n");
370 
371 	byte = *ptr;
372 
373 	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
374 }
375 
lkdtm_UNSET_SMEP(void)376 void lkdtm_UNSET_SMEP(void)
377 {
378 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
379 #define MOV_CR4_DEPTH	64
380 	void (*direct_write_cr4)(unsigned long val);
381 	unsigned char *insn;
382 	unsigned long cr4;
383 	int i;
384 
385 	cr4 = native_read_cr4();
386 
387 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
388 		pr_err("FAIL: SMEP not in use\n");
389 		return;
390 	}
391 	cr4 &= ~(X86_CR4_SMEP);
392 
393 	pr_info("trying to clear SMEP normally\n");
394 	native_write_cr4(cr4);
395 	if (cr4 == native_read_cr4()) {
396 		pr_err("FAIL: pinning SMEP failed!\n");
397 		cr4 |= X86_CR4_SMEP;
398 		pr_info("restoring SMEP\n");
399 		native_write_cr4(cr4);
400 		return;
401 	}
402 	pr_info("ok: SMEP did not get cleared\n");
403 
404 	/*
405 	 * To test the post-write pinning verification we need to call
406 	 * directly into the middle of native_write_cr4() where the
407 	 * cr4 write happens, skipping any pinning. This searches for
408 	 * the cr4 writing instruction.
409 	 */
410 	insn = (unsigned char *)native_write_cr4;
411 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
412 		/* mov %rdi, %cr4 */
413 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
414 			break;
415 		/* mov %rdi,%rax; mov %rax, %cr4 */
416 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
417 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
418 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
419 			break;
420 	}
421 	if (i >= MOV_CR4_DEPTH) {
422 		pr_info("ok: cannot locate cr4 writing call gadget\n");
423 		return;
424 	}
425 	direct_write_cr4 = (void *)(insn + i);
426 
427 	pr_info("trying to clear SMEP with call gadget\n");
428 	direct_write_cr4(cr4);
429 	if (native_read_cr4() & X86_CR4_SMEP) {
430 		pr_info("ok: SMEP removal was reverted\n");
431 	} else {
432 		pr_err("FAIL: cleared SMEP not detected!\n");
433 		cr4 |= X86_CR4_SMEP;
434 		pr_info("restoring SMEP\n");
435 		native_write_cr4(cr4);
436 	}
437 #else
438 	pr_err("XFAIL: this test is x86_64-only\n");
439 #endif
440 }
441 
lkdtm_DOUBLE_FAULT(void)442 void lkdtm_DOUBLE_FAULT(void)
443 {
444 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
445 	/*
446 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
447 	 * a GDT TLS slot, which is okay because the current task will die
448 	 * anyway due to the double fault.
449 	 */
450 	struct desc_struct d = {
451 		.type = 3,	/* expand-up, writable, accessed data */
452 		.p = 1,		/* present */
453 		.d = 1,		/* 32-bit */
454 		.g = 0,		/* limit in bytes */
455 		.s = 1,		/* not system */
456 	};
457 
458 	local_irq_disable();
459 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
460 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
461 
462 	/*
463 	 * Put our zero-limit segment in SS and then trigger a fault.  The
464 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
465 	 * deliver the fault will recursively cause #SS and result in #DF.
466 	 * This whole process happens while NMIs and MCEs are blocked by the
467 	 * MOV SS window.  This is nice because an NMI with an invalid SS
468 	 * would also double-fault, resulting in the NMI or MCE being lost.
469 	 */
470 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
471 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
472 
473 	pr_err("FAIL: tried to double fault but didn't die\n");
474 #else
475 	pr_err("XFAIL: this test is ia32-only\n");
476 #endif
477 }
478 
479 #ifdef CONFIG_ARM64
change_pac_parameters(void)480 static noinline void change_pac_parameters(void)
481 {
482 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
483 		/* Reset the keys of current task */
484 		ptrauth_thread_init_kernel(current);
485 		ptrauth_thread_switch_kernel(current);
486 	}
487 }
488 #endif
489 
lkdtm_CORRUPT_PAC(void)490 noinline void lkdtm_CORRUPT_PAC(void)
491 {
492 #ifdef CONFIG_ARM64
493 #define CORRUPT_PAC_ITERATE	10
494 	int i;
495 
496 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
497 		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
498 
499 	if (!system_supports_address_auth()) {
500 		pr_err("FAIL: CPU lacks pointer authentication feature\n");
501 		return;
502 	}
503 
504 	pr_info("changing PAC parameters to force function return failure...\n");
505 	/*
506 	 * PAC is a hash value computed from input keys, return address and
507 	 * stack pointer. As pac has fewer bits so there is a chance of
508 	 * collision, so iterate few times to reduce the collision probability.
509 	 */
510 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
511 		change_pac_parameters();
512 
513 	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
514 #else
515 	pr_err("XFAIL: this test is arm64-only\n");
516 #endif
517 }
518