• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9 
10 #define pr_fmt(fmt) "watchdog: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29 
30 #include <asm/interrupt.h>
31 #include <asm/paca.h>
32 #include <asm/nmi.h>
33 
34 /*
35  * The powerpc watchdog ensures that each CPU is able to service timers.
36  * The watchdog sets up a simple timer on each CPU to run once per timer
37  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
38  * the heartbeat.
39  *
40  * Then there are two systems to check that the heartbeat is still running.
41  * The local soft-NMI, and the SMP checker.
42  *
43  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
44  * are disabled with local_irq_disable(), platforms that use soft-masking
45  * can leave hardware interrupts enabled and handle them with a masked
46  * interrupt handler. The masked handler can send the timer interrupt to the
47  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
48  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
49  *
50  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
51  * with the current time, and take action if the difference exceeds the
52  * watchdog threshold.
53  *
54  * The limitation of the soft-NMI watchdog is that it does not work when
55  * interrupts are hard disabled or otherwise not being serviced. This is
56  * solved by also having a SMP watchdog where all CPUs check all other
57  * CPUs heartbeat.
58  *
59  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
60  * cpumask is kept, containing all CPUs which enable the watchdog. Each
61  * CPU clears their pending bit in their heartbeat timer. When the bitmask
62  * becomes empty, the last CPU to clear its pending bit updates a global
63  * timestamp and refills the pending bitmask.
64  *
65  * In the heartbeat timer, if any CPU notices that the global timestamp has
66  * not been updated for a period exceeding the watchdog threshold, then it
67  * means the CPU(s) with their bit still set in the pending mask have had
68  * their heartbeat stop, and action is taken.
69  *
70  * Some platforms implement true NMI IPIs, which can be used by the SMP
71  * watchdog to detect an unresponsive CPU and pull it out of its stuck
72  * state with the NMI IPI, to get crash/debug data from it. This way the
73  * SMP watchdog can detect hardware interrupts off lockups.
74  */
75 
76 static cpumask_t wd_cpus_enabled __read_mostly;
77 
78 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
79 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
80 
81 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
82 
83 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
84 static DEFINE_PER_CPU(u64, wd_timer_tb);
85 
86 /* SMP checker bits */
87 static unsigned long __wd_smp_lock;
88 static cpumask_t wd_smp_cpus_pending;
89 static cpumask_t wd_smp_cpus_stuck;
90 static u64 wd_smp_last_reset_tb;
91 
wd_smp_lock(unsigned long * flags)92 static inline void wd_smp_lock(unsigned long *flags)
93 {
94 	/*
95 	 * Avoid locking layers if possible.
96 	 * This may be called from low level interrupt handlers at some
97 	 * point in future.
98 	 */
99 	raw_local_irq_save(*flags);
100 	hard_irq_disable(); /* Make it soft-NMI safe */
101 	while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
102 		raw_local_irq_restore(*flags);
103 		spin_until_cond(!test_bit(0, &__wd_smp_lock));
104 		raw_local_irq_save(*flags);
105 		hard_irq_disable();
106 	}
107 }
108 
wd_smp_unlock(unsigned long * flags)109 static inline void wd_smp_unlock(unsigned long *flags)
110 {
111 	clear_bit_unlock(0, &__wd_smp_lock);
112 	raw_local_irq_restore(*flags);
113 }
114 
wd_lockup_ipi(struct pt_regs * regs)115 static void wd_lockup_ipi(struct pt_regs *regs)
116 {
117 	int cpu = raw_smp_processor_id();
118 	u64 tb = get_tb();
119 
120 	pr_emerg("CPU %d Hard LOCKUP\n", cpu);
121 	pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
122 		 cpu, tb, per_cpu(wd_timer_tb, cpu),
123 		 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
124 	print_modules();
125 	print_irqtrace_events(current);
126 	if (regs)
127 		show_regs(regs);
128 	else
129 		dump_stack();
130 
131 	/* Do not panic from here because that can recurse into NMI IPI layer */
132 }
133 
set_cpumask_stuck(const struct cpumask * cpumask,u64 tb)134 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
135 {
136 	cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
137 	cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
138 	/*
139 	 * See wd_smp_clear_cpu_pending()
140 	 */
141 	smp_mb();
142 	if (cpumask_empty(&wd_smp_cpus_pending)) {
143 		wd_smp_last_reset_tb = tb;
144 		cpumask_andnot(&wd_smp_cpus_pending,
145 				&wd_cpus_enabled,
146 				&wd_smp_cpus_stuck);
147 	}
148 }
set_cpu_stuck(int cpu,u64 tb)149 static void set_cpu_stuck(int cpu, u64 tb)
150 {
151 	set_cpumask_stuck(cpumask_of(cpu), tb);
152 }
153 
watchdog_smp_panic(int cpu,u64 tb)154 static void watchdog_smp_panic(int cpu, u64 tb)
155 {
156 	unsigned long flags;
157 	int c;
158 
159 	wd_smp_lock(&flags);
160 	/* Double check some things under lock */
161 	if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
162 		goto out;
163 	if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
164 		goto out;
165 	if (cpumask_weight(&wd_smp_cpus_pending) == 0)
166 		goto out;
167 
168 	pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
169 		 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
170 	pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
171 		 cpu, tb, wd_smp_last_reset_tb,
172 		 tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
173 
174 	if (!sysctl_hardlockup_all_cpu_backtrace) {
175 		/*
176 		 * Try to trigger the stuck CPUs, unless we are going to
177 		 * get a backtrace on all of them anyway.
178 		 */
179 		for_each_cpu(c, &wd_smp_cpus_pending) {
180 			if (c == cpu)
181 				continue;
182 			smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
183 		}
184 	}
185 
186 	/* Take the stuck CPUs out of the watch group */
187 	set_cpumask_stuck(&wd_smp_cpus_pending, tb);
188 
189 	wd_smp_unlock(&flags);
190 
191 	if (sysctl_hardlockup_all_cpu_backtrace)
192 		trigger_allbutself_cpu_backtrace();
193 
194 	/*
195 	 * Force flush any remote buffers that might be stuck in IRQ context
196 	 * and therefore could not run their irq_work.
197 	 */
198 	printk_trigger_flush();
199 
200 	if (hardlockup_panic)
201 		nmi_panic(NULL, "Hard LOCKUP");
202 
203 	return;
204 
205 out:
206 	wd_smp_unlock(&flags);
207 }
208 
wd_smp_clear_cpu_pending(int cpu,u64 tb)209 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
210 {
211 	if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
212 		if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
213 			struct pt_regs *regs = get_irq_regs();
214 			unsigned long flags;
215 
216 			wd_smp_lock(&flags);
217 
218 			pr_emerg("CPU %d became unstuck TB:%lld\n",
219 				 cpu, tb);
220 			print_irqtrace_events(current);
221 			if (regs)
222 				show_regs(regs);
223 			else
224 				dump_stack();
225 
226 			cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
227 			wd_smp_unlock(&flags);
228 		} else {
229 			/*
230 			 * The last CPU to clear pending should have reset the
231 			 * watchdog so we generally should not find it empty
232 			 * here if our CPU was clear. However it could happen
233 			 * due to a rare race with another CPU taking the
234 			 * last CPU out of the mask concurrently.
235 			 *
236 			 * We can't add a warning for it. But just in case
237 			 * there is a problem with the watchdog that is causing
238 			 * the mask to not be reset, try to kick it along here.
239 			 */
240 			if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
241 				goto none_pending;
242 		}
243 		return;
244 	}
245 
246 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
247 
248 	/*
249 	 * Order the store to clear pending with the load(s) to check all
250 	 * words in the pending mask to check they are all empty. This orders
251 	 * with the same barrier on another CPU. This prevents two CPUs
252 	 * clearing the last 2 pending bits, but neither seeing the other's
253 	 * store when checking if the mask is empty, and missing an empty
254 	 * mask, which ends with a false positive.
255 	 */
256 	smp_mb();
257 	if (cpumask_empty(&wd_smp_cpus_pending)) {
258 		unsigned long flags;
259 
260 none_pending:
261 		/*
262 		 * Double check under lock because more than one CPU could see
263 		 * a clear mask with the lockless check after clearing their
264 		 * pending bits.
265 		 */
266 		wd_smp_lock(&flags);
267 		if (cpumask_empty(&wd_smp_cpus_pending)) {
268 			wd_smp_last_reset_tb = tb;
269 			cpumask_andnot(&wd_smp_cpus_pending,
270 					&wd_cpus_enabled,
271 					&wd_smp_cpus_stuck);
272 		}
273 		wd_smp_unlock(&flags);
274 	}
275 }
276 
watchdog_timer_interrupt(int cpu)277 static void watchdog_timer_interrupt(int cpu)
278 {
279 	u64 tb = get_tb();
280 
281 	per_cpu(wd_timer_tb, cpu) = tb;
282 
283 	wd_smp_clear_cpu_pending(cpu, tb);
284 
285 	if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
286 		watchdog_smp_panic(cpu, tb);
287 }
288 
DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)289 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
290 {
291 	unsigned long flags;
292 	int cpu = raw_smp_processor_id();
293 	u64 tb;
294 
295 	/* should only arrive from kernel, with irqs disabled */
296 	WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
297 
298 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
299 		return 0;
300 
301 	__this_cpu_inc(irq_stat.soft_nmi_irqs);
302 
303 	tb = get_tb();
304 	if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
305 		wd_smp_lock(&flags);
306 		if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
307 			wd_smp_unlock(&flags);
308 			return 0;
309 		}
310 		set_cpu_stuck(cpu, tb);
311 
312 		pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
313 			 cpu, (void *)regs->nip);
314 		pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
315 			 cpu, tb, per_cpu(wd_timer_tb, cpu),
316 			 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
317 		print_modules();
318 		print_irqtrace_events(current);
319 		show_regs(regs);
320 
321 		wd_smp_unlock(&flags);
322 
323 		if (sysctl_hardlockup_all_cpu_backtrace)
324 			trigger_allbutself_cpu_backtrace();
325 
326 		if (hardlockup_panic)
327 			nmi_panic(regs, "Hard LOCKUP");
328 	}
329 	if (wd_panic_timeout_tb < 0x7fffffff)
330 		mtspr(SPRN_DEC, wd_panic_timeout_tb);
331 
332 	return 0;
333 }
334 
watchdog_timer_fn(struct hrtimer * hrtimer)335 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
336 {
337 	int cpu = smp_processor_id();
338 
339 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
340 		return HRTIMER_NORESTART;
341 
342 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
343 		return HRTIMER_NORESTART;
344 
345 	watchdog_timer_interrupt(cpu);
346 
347 	hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
348 
349 	return HRTIMER_RESTART;
350 }
351 
arch_touch_nmi_watchdog(void)352 void arch_touch_nmi_watchdog(void)
353 {
354 	unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
355 	int cpu = smp_processor_id();
356 	u64 tb;
357 
358 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
359 		return;
360 
361 	tb = get_tb();
362 	if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
363 		per_cpu(wd_timer_tb, cpu) = tb;
364 		wd_smp_clear_cpu_pending(cpu, tb);
365 	}
366 }
367 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
368 
start_watchdog(void * arg)369 static void start_watchdog(void *arg)
370 {
371 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
372 	int cpu = smp_processor_id();
373 	unsigned long flags;
374 
375 	if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
376 		WARN_ON(1);
377 		return;
378 	}
379 
380 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
381 		return;
382 
383 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
384 		return;
385 
386 	wd_smp_lock(&flags);
387 	cpumask_set_cpu(cpu, &wd_cpus_enabled);
388 	if (cpumask_weight(&wd_cpus_enabled) == 1) {
389 		cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
390 		wd_smp_last_reset_tb = get_tb();
391 	}
392 	wd_smp_unlock(&flags);
393 
394 	*this_cpu_ptr(&wd_timer_tb) = get_tb();
395 
396 	hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
397 	hrtimer->function = watchdog_timer_fn;
398 	hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
399 		      HRTIMER_MODE_REL_PINNED);
400 }
401 
start_watchdog_on_cpu(unsigned int cpu)402 static int start_watchdog_on_cpu(unsigned int cpu)
403 {
404 	return smp_call_function_single(cpu, start_watchdog, NULL, true);
405 }
406 
stop_watchdog(void * arg)407 static void stop_watchdog(void *arg)
408 {
409 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
410 	int cpu = smp_processor_id();
411 	unsigned long flags;
412 
413 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
414 		return; /* Can happen in CPU unplug case */
415 
416 	hrtimer_cancel(hrtimer);
417 
418 	wd_smp_lock(&flags);
419 	cpumask_clear_cpu(cpu, &wd_cpus_enabled);
420 	wd_smp_unlock(&flags);
421 
422 	wd_smp_clear_cpu_pending(cpu, get_tb());
423 }
424 
stop_watchdog_on_cpu(unsigned int cpu)425 static int stop_watchdog_on_cpu(unsigned int cpu)
426 {
427 	return smp_call_function_single(cpu, stop_watchdog, NULL, true);
428 }
429 
watchdog_calc_timeouts(void)430 static void watchdog_calc_timeouts(void)
431 {
432 	wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
433 
434 	/* Have the SMP detector trigger a bit later */
435 	wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
436 
437 	/* 2/5 is the factor that the perf based detector uses */
438 	wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
439 }
440 
watchdog_nmi_stop(void)441 void watchdog_nmi_stop(void)
442 {
443 	int cpu;
444 
445 	for_each_cpu(cpu, &wd_cpus_enabled)
446 		stop_watchdog_on_cpu(cpu);
447 }
448 
watchdog_nmi_start(void)449 void watchdog_nmi_start(void)
450 {
451 	int cpu;
452 
453 	watchdog_calc_timeouts();
454 	for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
455 		start_watchdog_on_cpu(cpu);
456 }
457 
458 /*
459  * Invoked from core watchdog init.
460  */
watchdog_nmi_probe(void)461 int __init watchdog_nmi_probe(void)
462 {
463 	int err;
464 
465 	err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
466 					"powerpc/watchdog:online",
467 					start_watchdog_on_cpu,
468 					stop_watchdog_on_cpu);
469 	if (err < 0) {
470 		pr_warn("could not be initialized");
471 		return err;
472 	}
473 	return 0;
474 }
475