1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77 #ifndef __GENKSYMS__
78 #include <trace/hooks/sched.h>
79 #endif
80
81 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
82
83 static int bprm_creds_from_file(struct linux_binprm *bprm);
84
85 int suid_dumpable = 0;
86
87 static LIST_HEAD(formats);
88 static DEFINE_RWLOCK(binfmt_lock);
89
__register_binfmt(struct linux_binfmt * fmt,int insert)90 void __register_binfmt(struct linux_binfmt * fmt, int insert)
91 {
92 write_lock(&binfmt_lock);
93 insert ? list_add(&fmt->lh, &formats) :
94 list_add_tail(&fmt->lh, &formats);
95 write_unlock(&binfmt_lock);
96 }
97
98 EXPORT_SYMBOL(__register_binfmt);
99
unregister_binfmt(struct linux_binfmt * fmt)100 void unregister_binfmt(struct linux_binfmt * fmt)
101 {
102 write_lock(&binfmt_lock);
103 list_del(&fmt->lh);
104 write_unlock(&binfmt_lock);
105 }
106
107 EXPORT_SYMBOL(unregister_binfmt);
108
put_binfmt(struct linux_binfmt * fmt)109 static inline void put_binfmt(struct linux_binfmt * fmt)
110 {
111 module_put(fmt->module);
112 }
113
path_noexec(const struct path * path)114 bool path_noexec(const struct path *path)
115 {
116 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
117 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
118 }
119
120 #ifdef CONFIG_USELIB
121 /*
122 * Note that a shared library must be both readable and executable due to
123 * security reasons.
124 *
125 * Also note that we take the address to load from from the file itself.
126 */
SYSCALL_DEFINE1(uselib,const char __user *,library)127 SYSCALL_DEFINE1(uselib, const char __user *, library)
128 {
129 struct linux_binfmt *fmt;
130 struct file *file;
131 struct filename *tmp = getname(library);
132 int error = PTR_ERR(tmp);
133 static const struct open_flags uselib_flags = {
134 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
135 .acc_mode = MAY_READ | MAY_EXEC,
136 .intent = LOOKUP_OPEN,
137 .lookup_flags = LOOKUP_FOLLOW,
138 };
139
140 if (IS_ERR(tmp))
141 goto out;
142
143 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
144 putname(tmp);
145 error = PTR_ERR(file);
146 if (IS_ERR(file))
147 goto out;
148
149 /*
150 * may_open() has already checked for this, so it should be
151 * impossible to trip now. But we need to be extra cautious
152 * and check again at the very end too.
153 */
154 error = -EACCES;
155 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
156 path_noexec(&file->f_path)))
157 goto exit;
158
159 fsnotify_open(file);
160
161 error = -ENOEXEC;
162
163 read_lock(&binfmt_lock);
164 list_for_each_entry(fmt, &formats, lh) {
165 if (!fmt->load_shlib)
166 continue;
167 if (!try_module_get(fmt->module))
168 continue;
169 read_unlock(&binfmt_lock);
170 error = fmt->load_shlib(file);
171 read_lock(&binfmt_lock);
172 put_binfmt(fmt);
173 if (error != -ENOEXEC)
174 break;
175 }
176 read_unlock(&binfmt_lock);
177 exit:
178 fput(file);
179 out:
180 return error;
181 }
182 #endif /* #ifdef CONFIG_USELIB */
183
184 #ifdef CONFIG_MMU
185 /*
186 * The nascent bprm->mm is not visible until exec_mmap() but it can
187 * use a lot of memory, account these pages in current->mm temporary
188 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
189 * change the counter back via acct_arg_size(0).
190 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)191 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
192 {
193 struct mm_struct *mm = current->mm;
194 long diff = (long)(pages - bprm->vma_pages);
195
196 if (!mm || !diff)
197 return;
198
199 bprm->vma_pages = pages;
200 add_mm_counter(mm, MM_ANONPAGES, diff);
201 }
202
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)203 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
204 int write)
205 {
206 struct page *page;
207 int ret;
208 unsigned int gup_flags = FOLL_FORCE;
209
210 #ifdef CONFIG_STACK_GROWSUP
211 if (write) {
212 ret = expand_downwards(bprm->vma, pos);
213 if (ret < 0)
214 return NULL;
215 }
216 #endif
217
218 if (write)
219 gup_flags |= FOLL_WRITE;
220
221 /*
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and bprm->mm is the new process's mm.
224 */
225 mmap_read_lock(bprm->mm);
226 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
227 &page, NULL, NULL);
228 mmap_read_unlock(bprm->mm);
229 if (ret <= 0)
230 return NULL;
231
232 if (write)
233 acct_arg_size(bprm, vma_pages(bprm->vma));
234
235 return page;
236 }
237
put_arg_page(struct page * page)238 static void put_arg_page(struct page *page)
239 {
240 put_page(page);
241 }
242
free_arg_pages(struct linux_binprm * bprm)243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
249 {
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252
__bprm_mm_init(struct linux_binprm * bprm)253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 int err;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
258
259 bprm->vma = vma = vm_area_alloc(mm);
260 if (!vma)
261 return -ENOMEM;
262 vma_set_anonymous(vma);
263
264 if (mmap_write_lock_killable(mm)) {
265 err = -EINTR;
266 goto err_free;
267 }
268
269 /*
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
274 */
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280
281 err = insert_vm_struct(mm, vma);
282 if (err)
283 goto err;
284
285 mm->stack_vm = mm->total_vm = 1;
286 mmap_write_unlock(mm);
287 bprm->p = vma->vm_end - sizeof(void *);
288 return 0;
289 err:
290 mmap_write_unlock(mm);
291 err_free:
292 bprm->vma = NULL;
293 VM_BUG_ON(vma->vm_file);
294 vm_area_free(vma);
295 return err;
296 }
297
valid_arg_len(struct linux_binprm * bprm,long len)298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300 return len <= MAX_ARG_STRLEN;
301 }
302
303 #else
304
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 int write)
311 {
312 struct page *page;
313
314 page = bprm->page[pos / PAGE_SIZE];
315 if (!page && write) {
316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 if (!page)
318 return NULL;
319 bprm->page[pos / PAGE_SIZE] = page;
320 }
321
322 return page;
323 }
324
put_arg_page(struct page * page)325 static void put_arg_page(struct page *page)
326 {
327 }
328
free_arg_page(struct linux_binprm * bprm,int i)329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331 if (bprm->page[i]) {
332 __free_page(bprm->page[i]);
333 bprm->page[i] = NULL;
334 }
335 }
336
free_arg_pages(struct linux_binprm * bprm)337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339 int i;
340
341 for (i = 0; i < MAX_ARG_PAGES; i++)
342 free_arg_page(bprm, i);
343 }
344
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 struct page *page)
347 {
348 }
349
__bprm_mm_init(struct linux_binprm * bprm)350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 return 0;
354 }
355
valid_arg_len(struct linux_binprm * bprm,long len)356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358 return len <= bprm->p;
359 }
360
361 #endif /* CONFIG_MMU */
362
363 /*
364 * Create a new mm_struct and populate it with a temporary stack
365 * vm_area_struct. We don't have enough context at this point to set the stack
366 * flags, permissions, and offset, so we use temporary values. We'll update
367 * them later in setup_arg_pages().
368 */
bprm_mm_init(struct linux_binprm * bprm)369 static int bprm_mm_init(struct linux_binprm *bprm)
370 {
371 int err;
372 struct mm_struct *mm = NULL;
373
374 bprm->mm = mm = mm_alloc();
375 err = -ENOMEM;
376 if (!mm)
377 goto err;
378
379 /* Save current stack limit for all calculations made during exec. */
380 task_lock(current->group_leader);
381 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
382 task_unlock(current->group_leader);
383
384 err = __bprm_mm_init(bprm);
385 if (err)
386 goto err;
387
388 return 0;
389
390 err:
391 if (mm) {
392 bprm->mm = NULL;
393 mmdrop(mm);
394 }
395
396 return err;
397 }
398
399 struct user_arg_ptr {
400 #ifdef CONFIG_COMPAT
401 bool is_compat;
402 #endif
403 union {
404 const char __user *const __user *native;
405 #ifdef CONFIG_COMPAT
406 const compat_uptr_t __user *compat;
407 #endif
408 } ptr;
409 };
410
get_user_arg_ptr(struct user_arg_ptr argv,int nr)411 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412 {
413 const char __user *native;
414
415 #ifdef CONFIG_COMPAT
416 if (unlikely(argv.is_compat)) {
417 compat_uptr_t compat;
418
419 if (get_user(compat, argv.ptr.compat + nr))
420 return ERR_PTR(-EFAULT);
421
422 return compat_ptr(compat);
423 }
424 #endif
425
426 if (get_user(native, argv.ptr.native + nr))
427 return ERR_PTR(-EFAULT);
428
429 return native;
430 }
431
432 /*
433 * count() counts the number of strings in array ARGV.
434 */
count(struct user_arg_ptr argv,int max)435 static int count(struct user_arg_ptr argv, int max)
436 {
437 int i = 0;
438
439 if (argv.ptr.native != NULL) {
440 for (;;) {
441 const char __user *p = get_user_arg_ptr(argv, i);
442
443 if (!p)
444 break;
445
446 if (IS_ERR(p))
447 return -EFAULT;
448
449 if (i >= max)
450 return -E2BIG;
451 ++i;
452
453 if (fatal_signal_pending(current))
454 return -ERESTARTNOHAND;
455 cond_resched();
456 }
457 }
458 return i;
459 }
460
count_strings_kernel(const char * const * argv)461 static int count_strings_kernel(const char *const *argv)
462 {
463 int i;
464
465 if (!argv)
466 return 0;
467
468 for (i = 0; argv[i]; ++i) {
469 if (i >= MAX_ARG_STRINGS)
470 return -E2BIG;
471 if (fatal_signal_pending(current))
472 return -ERESTARTNOHAND;
473 cond_resched();
474 }
475 return i;
476 }
477
bprm_stack_limits(struct linux_binprm * bprm)478 static int bprm_stack_limits(struct linux_binprm *bprm)
479 {
480 unsigned long limit, ptr_size;
481
482 /*
483 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
484 * (whichever is smaller) for the argv+env strings.
485 * This ensures that:
486 * - the remaining binfmt code will not run out of stack space,
487 * - the program will have a reasonable amount of stack left
488 * to work from.
489 */
490 limit = _STK_LIM / 4 * 3;
491 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
492 /*
493 * We've historically supported up to 32 pages (ARG_MAX)
494 * of argument strings even with small stacks
495 */
496 limit = max_t(unsigned long, limit, ARG_MAX);
497 /*
498 * We must account for the size of all the argv and envp pointers to
499 * the argv and envp strings, since they will also take up space in
500 * the stack. They aren't stored until much later when we can't
501 * signal to the parent that the child has run out of stack space.
502 * Instead, calculate it here so it's possible to fail gracefully.
503 *
504 * In the case of argc = 0, make sure there is space for adding a
505 * empty string (which will bump argc to 1), to ensure confused
506 * userspace programs don't start processing from argv[1], thinking
507 * argc can never be 0, to keep them from walking envp by accident.
508 * See do_execveat_common().
509 */
510 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
511 if (limit <= ptr_size)
512 return -E2BIG;
513 limit -= ptr_size;
514
515 bprm->argmin = bprm->p - limit;
516 return 0;
517 }
518
519 /*
520 * 'copy_strings()' copies argument/environment strings from the old
521 * processes's memory to the new process's stack. The call to get_user_pages()
522 * ensures the destination page is created and not swapped out.
523 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)524 static int copy_strings(int argc, struct user_arg_ptr argv,
525 struct linux_binprm *bprm)
526 {
527 struct page *kmapped_page = NULL;
528 char *kaddr = NULL;
529 unsigned long kpos = 0;
530 int ret;
531
532 while (argc-- > 0) {
533 const char __user *str;
534 int len;
535 unsigned long pos;
536
537 ret = -EFAULT;
538 str = get_user_arg_ptr(argv, argc);
539 if (IS_ERR(str))
540 goto out;
541
542 len = strnlen_user(str, MAX_ARG_STRLEN);
543 if (!len)
544 goto out;
545
546 ret = -E2BIG;
547 if (!valid_arg_len(bprm, len))
548 goto out;
549
550 /* We're going to work our way backwords. */
551 pos = bprm->p;
552 str += len;
553 bprm->p -= len;
554 #ifdef CONFIG_MMU
555 if (bprm->p < bprm->argmin)
556 goto out;
557 #endif
558
559 while (len > 0) {
560 int offset, bytes_to_copy;
561
562 if (fatal_signal_pending(current)) {
563 ret = -ERESTARTNOHAND;
564 goto out;
565 }
566 cond_resched();
567
568 offset = pos % PAGE_SIZE;
569 if (offset == 0)
570 offset = PAGE_SIZE;
571
572 bytes_to_copy = offset;
573 if (bytes_to_copy > len)
574 bytes_to_copy = len;
575
576 offset -= bytes_to_copy;
577 pos -= bytes_to_copy;
578 str -= bytes_to_copy;
579 len -= bytes_to_copy;
580
581 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
582 struct page *page;
583
584 page = get_arg_page(bprm, pos, 1);
585 if (!page) {
586 ret = -E2BIG;
587 goto out;
588 }
589
590 if (kmapped_page) {
591 flush_dcache_page(kmapped_page);
592 kunmap(kmapped_page);
593 put_arg_page(kmapped_page);
594 }
595 kmapped_page = page;
596 kaddr = kmap(kmapped_page);
597 kpos = pos & PAGE_MASK;
598 flush_arg_page(bprm, kpos, kmapped_page);
599 }
600 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
601 ret = -EFAULT;
602 goto out;
603 }
604 }
605 }
606 ret = 0;
607 out:
608 if (kmapped_page) {
609 flush_dcache_page(kmapped_page);
610 kunmap(kmapped_page);
611 put_arg_page(kmapped_page);
612 }
613 return ret;
614 }
615
616 /*
617 * Copy and argument/environment string from the kernel to the processes stack.
618 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)619 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
620 {
621 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
622 unsigned long pos = bprm->p;
623
624 if (len == 0)
625 return -EFAULT;
626 if (!valid_arg_len(bprm, len))
627 return -E2BIG;
628
629 /* We're going to work our way backwards. */
630 arg += len;
631 bprm->p -= len;
632 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
633 return -E2BIG;
634
635 while (len > 0) {
636 unsigned int bytes_to_copy = min_t(unsigned int, len,
637 min_not_zero(offset_in_page(pos), PAGE_SIZE));
638 struct page *page;
639 char *kaddr;
640
641 pos -= bytes_to_copy;
642 arg -= bytes_to_copy;
643 len -= bytes_to_copy;
644
645 page = get_arg_page(bprm, pos, 1);
646 if (!page)
647 return -E2BIG;
648 kaddr = kmap_atomic(page);
649 flush_arg_page(bprm, pos & PAGE_MASK, page);
650 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
651 flush_dcache_page(page);
652 kunmap_atomic(kaddr);
653 put_arg_page(page);
654 }
655
656 return 0;
657 }
658 EXPORT_SYMBOL(copy_string_kernel);
659
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)660 static int copy_strings_kernel(int argc, const char *const *argv,
661 struct linux_binprm *bprm)
662 {
663 while (argc-- > 0) {
664 int ret = copy_string_kernel(argv[argc], bprm);
665 if (ret < 0)
666 return ret;
667 if (fatal_signal_pending(current))
668 return -ERESTARTNOHAND;
669 cond_resched();
670 }
671 return 0;
672 }
673
674 #ifdef CONFIG_MMU
675
676 /*
677 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
678 * the binfmt code determines where the new stack should reside, we shift it to
679 * its final location. The process proceeds as follows:
680 *
681 * 1) Use shift to calculate the new vma endpoints.
682 * 2) Extend vma to cover both the old and new ranges. This ensures the
683 * arguments passed to subsequent functions are consistent.
684 * 3) Move vma's page tables to the new range.
685 * 4) Free up any cleared pgd range.
686 * 5) Shrink the vma to cover only the new range.
687 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)688 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
689 {
690 struct mm_struct *mm = vma->vm_mm;
691 unsigned long old_start = vma->vm_start;
692 unsigned long old_end = vma->vm_end;
693 unsigned long length = old_end - old_start;
694 unsigned long new_start = old_start - shift;
695 unsigned long new_end = old_end - shift;
696 struct mmu_gather tlb;
697
698 BUG_ON(new_start > new_end);
699
700 /*
701 * ensure there are no vmas between where we want to go
702 * and where we are
703 */
704 if (vma != find_vma(mm, new_start))
705 return -EFAULT;
706
707 /*
708 * cover the whole range: [new_start, old_end)
709 */
710 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
711 return -ENOMEM;
712
713 /*
714 * move the page tables downwards, on failure we rely on
715 * process cleanup to remove whatever mess we made.
716 */
717 if (length != move_page_tables(vma, old_start,
718 vma, new_start, length, false))
719 return -ENOMEM;
720
721 lru_add_drain();
722 tlb_gather_mmu(&tlb, mm);
723 if (new_end > old_start) {
724 /*
725 * when the old and new regions overlap clear from new_end.
726 */
727 free_pgd_range(&tlb, new_end, old_end, new_end,
728 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
729 } else {
730 /*
731 * otherwise, clean from old_start; this is done to not touch
732 * the address space in [new_end, old_start) some architectures
733 * have constraints on va-space that make this illegal (IA64) -
734 * for the others its just a little faster.
735 */
736 free_pgd_range(&tlb, old_start, old_end, new_end,
737 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
738 }
739 tlb_finish_mmu(&tlb);
740
741 /*
742 * Shrink the vma to just the new range. Always succeeds.
743 */
744 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
745
746 return 0;
747 }
748
749 /*
750 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
751 * the stack is optionally relocated, and some extra space is added.
752 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)753 int setup_arg_pages(struct linux_binprm *bprm,
754 unsigned long stack_top,
755 int executable_stack)
756 {
757 unsigned long ret;
758 unsigned long stack_shift;
759 struct mm_struct *mm = current->mm;
760 struct vm_area_struct *vma = bprm->vma;
761 struct vm_area_struct *prev = NULL;
762 unsigned long vm_flags;
763 unsigned long stack_base;
764 unsigned long stack_size;
765 unsigned long stack_expand;
766 unsigned long rlim_stack;
767 struct mmu_gather tlb;
768
769 #ifdef CONFIG_STACK_GROWSUP
770 /* Limit stack size */
771 stack_base = bprm->rlim_stack.rlim_max;
772
773 stack_base = calc_max_stack_size(stack_base);
774
775 /* Add space for stack randomization. */
776 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
777
778 /* Make sure we didn't let the argument array grow too large. */
779 if (vma->vm_end - vma->vm_start > stack_base)
780 return -ENOMEM;
781
782 stack_base = PAGE_ALIGN(stack_top - stack_base);
783
784 stack_shift = vma->vm_start - stack_base;
785 mm->arg_start = bprm->p - stack_shift;
786 bprm->p = vma->vm_end - stack_shift;
787 #else
788 stack_top = arch_align_stack(stack_top);
789 stack_top = PAGE_ALIGN(stack_top);
790
791 if (unlikely(stack_top < mmap_min_addr) ||
792 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
793 return -ENOMEM;
794
795 stack_shift = vma->vm_end - stack_top;
796
797 bprm->p -= stack_shift;
798 mm->arg_start = bprm->p;
799 #endif
800
801 if (bprm->loader)
802 bprm->loader -= stack_shift;
803 bprm->exec -= stack_shift;
804
805 if (mmap_write_lock_killable(mm))
806 return -EINTR;
807
808 vm_flags = VM_STACK_FLAGS;
809
810 /*
811 * Adjust stack execute permissions; explicitly enable for
812 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
813 * (arch default) otherwise.
814 */
815 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
816 vm_flags |= VM_EXEC;
817 else if (executable_stack == EXSTACK_DISABLE_X)
818 vm_flags &= ~VM_EXEC;
819 vm_flags |= mm->def_flags;
820 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
821
822 tlb_gather_mmu(&tlb, mm);
823 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
824 vm_flags);
825 tlb_finish_mmu(&tlb);
826
827 if (ret)
828 goto out_unlock;
829 BUG_ON(prev != vma);
830
831 if (unlikely(vm_flags & VM_EXEC)) {
832 pr_warn_once("process '%pD4' started with executable stack\n",
833 bprm->file);
834 }
835
836 /* Move stack pages down in memory. */
837 if (stack_shift) {
838 ret = shift_arg_pages(vma, stack_shift);
839 if (ret)
840 goto out_unlock;
841 }
842
843 /* mprotect_fixup is overkill to remove the temporary stack flags */
844 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
845
846 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
847 stack_size = vma->vm_end - vma->vm_start;
848 /*
849 * Align this down to a page boundary as expand_stack
850 * will align it up.
851 */
852 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
853 #ifdef CONFIG_STACK_GROWSUP
854 if (stack_size + stack_expand > rlim_stack)
855 stack_base = vma->vm_start + rlim_stack;
856 else
857 stack_base = vma->vm_end + stack_expand;
858 #else
859 if (stack_size + stack_expand > rlim_stack)
860 stack_base = vma->vm_end - rlim_stack;
861 else
862 stack_base = vma->vm_start - stack_expand;
863 #endif
864 current->mm->start_stack = bprm->p;
865 ret = expand_stack(vma, stack_base);
866 if (ret)
867 ret = -EFAULT;
868
869 out_unlock:
870 mmap_write_unlock(mm);
871 return ret;
872 }
873 EXPORT_SYMBOL(setup_arg_pages);
874
875 #else
876
877 /*
878 * Transfer the program arguments and environment from the holding pages
879 * onto the stack. The provided stack pointer is adjusted accordingly.
880 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)881 int transfer_args_to_stack(struct linux_binprm *bprm,
882 unsigned long *sp_location)
883 {
884 unsigned long index, stop, sp;
885 int ret = 0;
886
887 stop = bprm->p >> PAGE_SHIFT;
888 sp = *sp_location;
889
890 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
891 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
892 char *src = kmap(bprm->page[index]) + offset;
893 sp -= PAGE_SIZE - offset;
894 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
895 ret = -EFAULT;
896 kunmap(bprm->page[index]);
897 if (ret)
898 goto out;
899 }
900
901 *sp_location = sp;
902
903 out:
904 return ret;
905 }
906 EXPORT_SYMBOL(transfer_args_to_stack);
907
908 #endif /* CONFIG_MMU */
909
do_open_execat(int fd,struct filename * name,int flags)910 static struct file *do_open_execat(int fd, struct filename *name, int flags)
911 {
912 struct file *file;
913 int err;
914 struct open_flags open_exec_flags = {
915 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
916 .acc_mode = MAY_EXEC,
917 .intent = LOOKUP_OPEN,
918 .lookup_flags = LOOKUP_FOLLOW,
919 };
920
921 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
922 return ERR_PTR(-EINVAL);
923 if (flags & AT_SYMLINK_NOFOLLOW)
924 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
925 if (flags & AT_EMPTY_PATH)
926 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
927
928 file = do_filp_open(fd, name, &open_exec_flags);
929 if (IS_ERR(file))
930 goto out;
931
932 /*
933 * may_open() has already checked for this, so it should be
934 * impossible to trip now. But we need to be extra cautious
935 * and check again at the very end too.
936 */
937 err = -EACCES;
938 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
939 path_noexec(&file->f_path)))
940 goto exit;
941
942 err = deny_write_access(file);
943 if (err)
944 goto exit;
945
946 if (name->name[0] != '\0')
947 fsnotify_open(file);
948
949 out:
950 return file;
951
952 exit:
953 fput(file);
954 return ERR_PTR(err);
955 }
956
open_exec(const char * name)957 struct file *open_exec(const char *name)
958 {
959 struct filename *filename = getname_kernel(name);
960 struct file *f = ERR_CAST(filename);
961
962 if (!IS_ERR(filename)) {
963 f = do_open_execat(AT_FDCWD, filename, 0);
964 putname(filename);
965 }
966 return f;
967 }
968 EXPORT_SYMBOL(open_exec);
969
970 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
971 defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)972 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
973 {
974 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
975 if (res > 0)
976 flush_icache_user_range(addr, addr + len);
977 return res;
978 }
979 EXPORT_SYMBOL(read_code);
980 #endif
981
982 /*
983 * Maps the mm_struct mm into the current task struct.
984 * On success, this function returns with exec_update_lock
985 * held for writing.
986 */
exec_mmap(struct mm_struct * mm)987 static int exec_mmap(struct mm_struct *mm)
988 {
989 struct task_struct *tsk;
990 struct mm_struct *old_mm, *active_mm;
991 int ret;
992
993 /* Notify parent that we're no longer interested in the old VM */
994 tsk = current;
995 old_mm = current->mm;
996 exec_mm_release(tsk, old_mm);
997 if (old_mm)
998 sync_mm_rss(old_mm);
999
1000 ret = down_write_killable(&tsk->signal->exec_update_lock);
1001 if (ret)
1002 return ret;
1003
1004 if (old_mm) {
1005 /*
1006 * Make sure that if there is a core dump in progress
1007 * for the old mm, we get out and die instead of going
1008 * through with the exec. We must hold mmap_lock around
1009 * checking core_state and changing tsk->mm.
1010 */
1011 mmap_read_lock(old_mm);
1012 if (unlikely(old_mm->core_state)) {
1013 mmap_read_unlock(old_mm);
1014 up_write(&tsk->signal->exec_update_lock);
1015 return -EINTR;
1016 }
1017 }
1018
1019 task_lock(tsk);
1020 membarrier_exec_mmap(mm);
1021
1022 local_irq_disable();
1023 active_mm = tsk->active_mm;
1024 tsk->active_mm = mm;
1025 tsk->mm = mm;
1026 /*
1027 * This prevents preemption while active_mm is being loaded and
1028 * it and mm are being updated, which could cause problems for
1029 * lazy tlb mm refcounting when these are updated by context
1030 * switches. Not all architectures can handle irqs off over
1031 * activate_mm yet.
1032 */
1033 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1034 local_irq_enable();
1035 activate_mm(active_mm, mm);
1036 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1037 local_irq_enable();
1038 tsk->mm->vmacache_seqnum = 0;
1039 lru_gen_add_mm(mm);
1040 vmacache_flush(tsk);
1041 task_unlock(tsk);
1042 lru_gen_use_mm(mm);
1043 if (old_mm) {
1044 mmap_read_unlock(old_mm);
1045 BUG_ON(active_mm != old_mm);
1046 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1047 mm_update_next_owner(old_mm);
1048 mmput(old_mm);
1049 return 0;
1050 }
1051 mmdrop(active_mm);
1052 return 0;
1053 }
1054
de_thread(struct task_struct * tsk)1055 static int de_thread(struct task_struct *tsk)
1056 {
1057 struct signal_struct *sig = tsk->signal;
1058 struct sighand_struct *oldsighand = tsk->sighand;
1059 spinlock_t *lock = &oldsighand->siglock;
1060
1061 if (thread_group_empty(tsk))
1062 goto no_thread_group;
1063
1064 /*
1065 * Kill all other threads in the thread group.
1066 */
1067 spin_lock_irq(lock);
1068 if (signal_group_exit(sig)) {
1069 /*
1070 * Another group action in progress, just
1071 * return so that the signal is processed.
1072 */
1073 spin_unlock_irq(lock);
1074 return -EAGAIN;
1075 }
1076
1077 sig->group_exit_task = tsk;
1078 sig->notify_count = zap_other_threads(tsk);
1079 if (!thread_group_leader(tsk))
1080 sig->notify_count--;
1081
1082 while (sig->notify_count) {
1083 __set_current_state(TASK_KILLABLE);
1084 spin_unlock_irq(lock);
1085 schedule();
1086 if (__fatal_signal_pending(tsk))
1087 goto killed;
1088 spin_lock_irq(lock);
1089 }
1090 spin_unlock_irq(lock);
1091
1092 /*
1093 * At this point all other threads have exited, all we have to
1094 * do is to wait for the thread group leader to become inactive,
1095 * and to assume its PID:
1096 */
1097 if (!thread_group_leader(tsk)) {
1098 struct task_struct *leader = tsk->group_leader;
1099
1100 for (;;) {
1101 cgroup_threadgroup_change_begin(tsk);
1102 write_lock_irq(&tasklist_lock);
1103 /*
1104 * Do this under tasklist_lock to ensure that
1105 * exit_notify() can't miss ->group_exit_task
1106 */
1107 sig->notify_count = -1;
1108 if (likely(leader->exit_state))
1109 break;
1110 __set_current_state(TASK_KILLABLE);
1111 write_unlock_irq(&tasklist_lock);
1112 cgroup_threadgroup_change_end(tsk);
1113 schedule();
1114 if (__fatal_signal_pending(tsk))
1115 goto killed;
1116 }
1117
1118 /*
1119 * The only record we have of the real-time age of a
1120 * process, regardless of execs it's done, is start_time.
1121 * All the past CPU time is accumulated in signal_struct
1122 * from sister threads now dead. But in this non-leader
1123 * exec, nothing survives from the original leader thread,
1124 * whose birth marks the true age of this process now.
1125 * When we take on its identity by switching to its PID, we
1126 * also take its birthdate (always earlier than our own).
1127 */
1128 tsk->start_time = leader->start_time;
1129 tsk->start_boottime = leader->start_boottime;
1130
1131 BUG_ON(!same_thread_group(leader, tsk));
1132 /*
1133 * An exec() starts a new thread group with the
1134 * TGID of the previous thread group. Rehash the
1135 * two threads with a switched PID, and release
1136 * the former thread group leader:
1137 */
1138
1139 /* Become a process group leader with the old leader's pid.
1140 * The old leader becomes a thread of the this thread group.
1141 */
1142 exchange_tids(tsk, leader);
1143 transfer_pid(leader, tsk, PIDTYPE_TGID);
1144 transfer_pid(leader, tsk, PIDTYPE_PGID);
1145 transfer_pid(leader, tsk, PIDTYPE_SID);
1146
1147 list_replace_rcu(&leader->tasks, &tsk->tasks);
1148 list_replace_init(&leader->sibling, &tsk->sibling);
1149
1150 tsk->group_leader = tsk;
1151 leader->group_leader = tsk;
1152
1153 tsk->exit_signal = SIGCHLD;
1154 leader->exit_signal = -1;
1155
1156 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1157 leader->exit_state = EXIT_DEAD;
1158
1159 /*
1160 * We are going to release_task()->ptrace_unlink() silently,
1161 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1162 * the tracer wont't block again waiting for this thread.
1163 */
1164 if (unlikely(leader->ptrace))
1165 __wake_up_parent(leader, leader->parent);
1166 write_unlock_irq(&tasklist_lock);
1167 cgroup_threadgroup_change_end(tsk);
1168
1169 release_task(leader);
1170 }
1171
1172 sig->group_exit_task = NULL;
1173 sig->notify_count = 0;
1174
1175 no_thread_group:
1176 /* we have changed execution domain */
1177 tsk->exit_signal = SIGCHLD;
1178
1179 BUG_ON(!thread_group_leader(tsk));
1180 return 0;
1181
1182 killed:
1183 /* protects against exit_notify() and __exit_signal() */
1184 read_lock(&tasklist_lock);
1185 sig->group_exit_task = NULL;
1186 sig->notify_count = 0;
1187 read_unlock(&tasklist_lock);
1188 return -EAGAIN;
1189 }
1190
1191
1192 /*
1193 * This function makes sure the current process has its own signal table,
1194 * so that flush_signal_handlers can later reset the handlers without
1195 * disturbing other processes. (Other processes might share the signal
1196 * table via the CLONE_SIGHAND option to clone().)
1197 */
unshare_sighand(struct task_struct * me)1198 static int unshare_sighand(struct task_struct *me)
1199 {
1200 struct sighand_struct *oldsighand = me->sighand;
1201
1202 if (refcount_read(&oldsighand->count) != 1) {
1203 struct sighand_struct *newsighand;
1204 /*
1205 * This ->sighand is shared with the CLONE_SIGHAND
1206 * but not CLONE_THREAD task, switch to the new one.
1207 */
1208 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1209 if (!newsighand)
1210 return -ENOMEM;
1211
1212 refcount_set(&newsighand->count, 1);
1213
1214 write_lock_irq(&tasklist_lock);
1215 spin_lock(&oldsighand->siglock);
1216 memcpy(newsighand->action, oldsighand->action,
1217 sizeof(newsighand->action));
1218 rcu_assign_pointer(me->sighand, newsighand);
1219 spin_unlock(&oldsighand->siglock);
1220 write_unlock_irq(&tasklist_lock);
1221
1222 __cleanup_sighand(oldsighand);
1223 }
1224 return 0;
1225 }
1226
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1227 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1228 {
1229 task_lock(tsk);
1230 strncpy(buf, tsk->comm, buf_size);
1231 task_unlock(tsk);
1232 return buf;
1233 }
1234 EXPORT_SYMBOL_GPL(__get_task_comm);
1235
1236 /*
1237 * These functions flushes out all traces of the currently running executable
1238 * so that a new one can be started
1239 */
1240
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1241 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1242 {
1243 task_lock(tsk);
1244 trace_task_rename(tsk, buf);
1245 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1246 task_unlock(tsk);
1247 perf_event_comm(tsk, exec);
1248 trace_android_rvh_set_task_comm(tsk, exec);
1249 }
1250
1251 /*
1252 * Calling this is the point of no return. None of the failures will be
1253 * seen by userspace since either the process is already taking a fatal
1254 * signal (via de_thread() or coredump), or will have SEGV raised
1255 * (after exec_mmap()) by search_binary_handler (see below).
1256 */
begin_new_exec(struct linux_binprm * bprm)1257 int begin_new_exec(struct linux_binprm * bprm)
1258 {
1259 struct task_struct *me = current;
1260 int retval;
1261
1262 /* Once we are committed compute the creds */
1263 retval = bprm_creds_from_file(bprm);
1264 if (retval)
1265 return retval;
1266
1267 /*
1268 * Ensure all future errors are fatal.
1269 */
1270 bprm->point_of_no_return = true;
1271
1272 /*
1273 * Make this the only thread in the thread group.
1274 */
1275 retval = de_thread(me);
1276 if (retval)
1277 goto out;
1278
1279 /*
1280 * Cancel any io_uring activity across execve
1281 */
1282 io_uring_task_cancel();
1283
1284 /* Ensure the files table is not shared. */
1285 retval = unshare_files();
1286 if (retval)
1287 goto out;
1288
1289 /*
1290 * Must be called _before_ exec_mmap() as bprm->mm is
1291 * not visibile until then. This also enables the update
1292 * to be lockless.
1293 */
1294 retval = set_mm_exe_file(bprm->mm, bprm->file);
1295 if (retval)
1296 goto out;
1297
1298 /* If the binary is not readable then enforce mm->dumpable=0 */
1299 would_dump(bprm, bprm->file);
1300 if (bprm->have_execfd)
1301 would_dump(bprm, bprm->executable);
1302
1303 /*
1304 * Release all of the old mmap stuff
1305 */
1306 acct_arg_size(bprm, 0);
1307 retval = exec_mmap(bprm->mm);
1308 if (retval)
1309 goto out;
1310
1311 bprm->mm = NULL;
1312
1313 #ifdef CONFIG_POSIX_TIMERS
1314 spin_lock_irq(&me->sighand->siglock);
1315 posix_cpu_timers_exit(me);
1316 spin_unlock_irq(&me->sighand->siglock);
1317 exit_itimers(me);
1318 flush_itimer_signals();
1319 #endif
1320
1321 /*
1322 * Make the signal table private.
1323 */
1324 retval = unshare_sighand(me);
1325 if (retval)
1326 goto out_unlock;
1327
1328 /*
1329 * Ensure that the uaccess routines can actually operate on userspace
1330 * pointers:
1331 */
1332 force_uaccess_begin();
1333
1334 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1335 PF_NOFREEZE | PF_NO_SETAFFINITY);
1336 flush_thread();
1337 me->personality &= ~bprm->per_clear;
1338
1339 clear_syscall_work_syscall_user_dispatch(me);
1340
1341 /*
1342 * We have to apply CLOEXEC before we change whether the process is
1343 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1344 * trying to access the should-be-closed file descriptors of a process
1345 * undergoing exec(2).
1346 */
1347 do_close_on_exec(me->files);
1348
1349 if (bprm->secureexec) {
1350 /* Make sure parent cannot signal privileged process. */
1351 me->pdeath_signal = 0;
1352
1353 /*
1354 * For secureexec, reset the stack limit to sane default to
1355 * avoid bad behavior from the prior rlimits. This has to
1356 * happen before arch_pick_mmap_layout(), which examines
1357 * RLIMIT_STACK, but after the point of no return to avoid
1358 * needing to clean up the change on failure.
1359 */
1360 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1361 bprm->rlim_stack.rlim_cur = _STK_LIM;
1362 }
1363
1364 me->sas_ss_sp = me->sas_ss_size = 0;
1365
1366 /*
1367 * Figure out dumpability. Note that this checking only of current
1368 * is wrong, but userspace depends on it. This should be testing
1369 * bprm->secureexec instead.
1370 */
1371 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1372 !(uid_eq(current_euid(), current_uid()) &&
1373 gid_eq(current_egid(), current_gid())))
1374 set_dumpable(current->mm, suid_dumpable);
1375 else
1376 set_dumpable(current->mm, SUID_DUMP_USER);
1377
1378 perf_event_exec();
1379 __set_task_comm(me, kbasename(bprm->filename), true);
1380
1381 /* An exec changes our domain. We are no longer part of the thread
1382 group */
1383 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1384 flush_signal_handlers(me, 0);
1385
1386 retval = set_cred_ucounts(bprm->cred);
1387 if (retval < 0)
1388 goto out_unlock;
1389
1390 /*
1391 * install the new credentials for this executable
1392 */
1393 security_bprm_committing_creds(bprm);
1394
1395 commit_creds(bprm->cred);
1396 bprm->cred = NULL;
1397
1398 /*
1399 * Disable monitoring for regular users
1400 * when executing setuid binaries. Must
1401 * wait until new credentials are committed
1402 * by commit_creds() above
1403 */
1404 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1405 perf_event_exit_task(me);
1406 /*
1407 * cred_guard_mutex must be held at least to this point to prevent
1408 * ptrace_attach() from altering our determination of the task's
1409 * credentials; any time after this it may be unlocked.
1410 */
1411 security_bprm_committed_creds(bprm);
1412
1413 /* Pass the opened binary to the interpreter. */
1414 if (bprm->have_execfd) {
1415 retval = get_unused_fd_flags(0);
1416 if (retval < 0)
1417 goto out_unlock;
1418 fd_install(retval, bprm->executable);
1419 bprm->executable = NULL;
1420 bprm->execfd = retval;
1421 }
1422 return 0;
1423
1424 out_unlock:
1425 up_write(&me->signal->exec_update_lock);
1426 if (!bprm->cred)
1427 mutex_unlock(&me->signal->cred_guard_mutex);
1428
1429 out:
1430 return retval;
1431 }
1432 EXPORT_SYMBOL(begin_new_exec);
1433
would_dump(struct linux_binprm * bprm,struct file * file)1434 void would_dump(struct linux_binprm *bprm, struct file *file)
1435 {
1436 struct inode *inode = file_inode(file);
1437 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1438 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1439 struct user_namespace *old, *user_ns;
1440 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1441
1442 /* Ensure mm->user_ns contains the executable */
1443 user_ns = old = bprm->mm->user_ns;
1444 while ((user_ns != &init_user_ns) &&
1445 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1446 user_ns = user_ns->parent;
1447
1448 if (old != user_ns) {
1449 bprm->mm->user_ns = get_user_ns(user_ns);
1450 put_user_ns(old);
1451 }
1452 }
1453 }
1454 EXPORT_SYMBOL(would_dump);
1455
setup_new_exec(struct linux_binprm * bprm)1456 void setup_new_exec(struct linux_binprm * bprm)
1457 {
1458 /* Setup things that can depend upon the personality */
1459 struct task_struct *me = current;
1460
1461 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1462
1463 arch_setup_new_exec();
1464
1465 /* Set the new mm task size. We have to do that late because it may
1466 * depend on TIF_32BIT which is only updated in flush_thread() on
1467 * some architectures like powerpc
1468 */
1469 me->mm->task_size = TASK_SIZE;
1470 up_write(&me->signal->exec_update_lock);
1471 mutex_unlock(&me->signal->cred_guard_mutex);
1472 }
1473 EXPORT_SYMBOL(setup_new_exec);
1474
1475 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1476 void finalize_exec(struct linux_binprm *bprm)
1477 {
1478 /* Store any stack rlimit changes before starting thread. */
1479 task_lock(current->group_leader);
1480 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1481 task_unlock(current->group_leader);
1482 }
1483 EXPORT_SYMBOL(finalize_exec);
1484
1485 /*
1486 * Prepare credentials and lock ->cred_guard_mutex.
1487 * setup_new_exec() commits the new creds and drops the lock.
1488 * Or, if exec fails before, free_bprm() should release ->cred
1489 * and unlock.
1490 */
prepare_bprm_creds(struct linux_binprm * bprm)1491 static int prepare_bprm_creds(struct linux_binprm *bprm)
1492 {
1493 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1494 return -ERESTARTNOINTR;
1495
1496 bprm->cred = prepare_exec_creds();
1497 if (likely(bprm->cred))
1498 return 0;
1499
1500 mutex_unlock(¤t->signal->cred_guard_mutex);
1501 return -ENOMEM;
1502 }
1503
free_bprm(struct linux_binprm * bprm)1504 static void free_bprm(struct linux_binprm *bprm)
1505 {
1506 if (bprm->mm) {
1507 acct_arg_size(bprm, 0);
1508 mmput(bprm->mm);
1509 }
1510 free_arg_pages(bprm);
1511 if (bprm->cred) {
1512 mutex_unlock(¤t->signal->cred_guard_mutex);
1513 abort_creds(bprm->cred);
1514 }
1515 if (bprm->file) {
1516 allow_write_access(bprm->file);
1517 fput(bprm->file);
1518 }
1519 if (bprm->executable)
1520 fput(bprm->executable);
1521 /* If a binfmt changed the interp, free it. */
1522 if (bprm->interp != bprm->filename)
1523 kfree(bprm->interp);
1524 kfree(bprm->fdpath);
1525 kfree(bprm);
1526 }
1527
alloc_bprm(int fd,struct filename * filename)1528 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1529 {
1530 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1531 int retval = -ENOMEM;
1532 if (!bprm)
1533 goto out;
1534
1535 if (fd == AT_FDCWD || filename->name[0] == '/') {
1536 bprm->filename = filename->name;
1537 } else {
1538 if (filename->name[0] == '\0')
1539 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1540 else
1541 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1542 fd, filename->name);
1543 if (!bprm->fdpath)
1544 goto out_free;
1545
1546 bprm->filename = bprm->fdpath;
1547 }
1548 bprm->interp = bprm->filename;
1549
1550 retval = bprm_mm_init(bprm);
1551 if (retval)
1552 goto out_free;
1553 return bprm;
1554
1555 out_free:
1556 free_bprm(bprm);
1557 out:
1558 return ERR_PTR(retval);
1559 }
1560
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1561 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1562 {
1563 /* If a binfmt changed the interp, free it first. */
1564 if (bprm->interp != bprm->filename)
1565 kfree(bprm->interp);
1566 bprm->interp = kstrdup(interp, GFP_KERNEL);
1567 if (!bprm->interp)
1568 return -ENOMEM;
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(bprm_change_interp);
1572
1573 /*
1574 * determine how safe it is to execute the proposed program
1575 * - the caller must hold ->cred_guard_mutex to protect against
1576 * PTRACE_ATTACH or seccomp thread-sync
1577 */
check_unsafe_exec(struct linux_binprm * bprm)1578 static void check_unsafe_exec(struct linux_binprm *bprm)
1579 {
1580 struct task_struct *p = current, *t;
1581 unsigned n_fs;
1582
1583 if (p->ptrace)
1584 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1585
1586 /*
1587 * This isn't strictly necessary, but it makes it harder for LSMs to
1588 * mess up.
1589 */
1590 if (task_no_new_privs(current))
1591 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1592
1593 t = p;
1594 n_fs = 1;
1595 spin_lock(&p->fs->lock);
1596 rcu_read_lock();
1597 while_each_thread(p, t) {
1598 if (t->fs == p->fs)
1599 n_fs++;
1600 }
1601 rcu_read_unlock();
1602
1603 if (p->fs->users > n_fs)
1604 bprm->unsafe |= LSM_UNSAFE_SHARE;
1605 else
1606 p->fs->in_exec = 1;
1607 spin_unlock(&p->fs->lock);
1608 }
1609
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1610 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1611 {
1612 /* Handle suid and sgid on files */
1613 struct user_namespace *mnt_userns;
1614 struct inode *inode;
1615 unsigned int mode;
1616 kuid_t uid;
1617 kgid_t gid;
1618
1619 if (!mnt_may_suid(file->f_path.mnt))
1620 return;
1621
1622 if (task_no_new_privs(current))
1623 return;
1624
1625 inode = file->f_path.dentry->d_inode;
1626 mode = READ_ONCE(inode->i_mode);
1627 if (!(mode & (S_ISUID|S_ISGID)))
1628 return;
1629
1630 mnt_userns = file_mnt_user_ns(file);
1631
1632 /* Be careful if suid/sgid is set */
1633 inode_lock(inode);
1634
1635 /* reload atomically mode/uid/gid now that lock held */
1636 mode = inode->i_mode;
1637 uid = i_uid_into_mnt(mnt_userns, inode);
1638 gid = i_gid_into_mnt(mnt_userns, inode);
1639 inode_unlock(inode);
1640
1641 /* We ignore suid/sgid if there are no mappings for them in the ns */
1642 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1643 !kgid_has_mapping(bprm->cred->user_ns, gid))
1644 return;
1645
1646 if (mode & S_ISUID) {
1647 bprm->per_clear |= PER_CLEAR_ON_SETID;
1648 bprm->cred->euid = uid;
1649 }
1650
1651 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1652 bprm->per_clear |= PER_CLEAR_ON_SETID;
1653 bprm->cred->egid = gid;
1654 }
1655 }
1656
1657 /*
1658 * Compute brpm->cred based upon the final binary.
1659 */
bprm_creds_from_file(struct linux_binprm * bprm)1660 static int bprm_creds_from_file(struct linux_binprm *bprm)
1661 {
1662 /* Compute creds based on which file? */
1663 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1664
1665 bprm_fill_uid(bprm, file);
1666 return security_bprm_creds_from_file(bprm, file);
1667 }
1668
1669 /*
1670 * Fill the binprm structure from the inode.
1671 * Read the first BINPRM_BUF_SIZE bytes
1672 *
1673 * This may be called multiple times for binary chains (scripts for example).
1674 */
prepare_binprm(struct linux_binprm * bprm)1675 static int prepare_binprm(struct linux_binprm *bprm)
1676 {
1677 loff_t pos = 0;
1678
1679 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1680 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1681 }
1682
1683 /*
1684 * Arguments are '\0' separated strings found at the location bprm->p
1685 * points to; chop off the first by relocating brpm->p to right after
1686 * the first '\0' encountered.
1687 */
remove_arg_zero(struct linux_binprm * bprm)1688 int remove_arg_zero(struct linux_binprm *bprm)
1689 {
1690 int ret = 0;
1691 unsigned long offset;
1692 char *kaddr;
1693 struct page *page;
1694
1695 if (!bprm->argc)
1696 return 0;
1697
1698 do {
1699 offset = bprm->p & ~PAGE_MASK;
1700 page = get_arg_page(bprm, bprm->p, 0);
1701 if (!page) {
1702 ret = -EFAULT;
1703 goto out;
1704 }
1705 kaddr = kmap_atomic(page);
1706
1707 for (; offset < PAGE_SIZE && kaddr[offset];
1708 offset++, bprm->p++)
1709 ;
1710
1711 kunmap_atomic(kaddr);
1712 put_arg_page(page);
1713 } while (offset == PAGE_SIZE);
1714
1715 bprm->p++;
1716 bprm->argc--;
1717 ret = 0;
1718
1719 out:
1720 return ret;
1721 }
1722 EXPORT_SYMBOL(remove_arg_zero);
1723
1724 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1725 /*
1726 * cycle the list of binary formats handler, until one recognizes the image
1727 */
search_binary_handler(struct linux_binprm * bprm)1728 static int search_binary_handler(struct linux_binprm *bprm)
1729 {
1730 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1731 struct linux_binfmt *fmt;
1732 int retval;
1733
1734 retval = prepare_binprm(bprm);
1735 if (retval < 0)
1736 return retval;
1737
1738 retval = security_bprm_check(bprm);
1739 if (retval)
1740 return retval;
1741
1742 retval = -ENOENT;
1743 retry:
1744 read_lock(&binfmt_lock);
1745 list_for_each_entry(fmt, &formats, lh) {
1746 if (!try_module_get(fmt->module))
1747 continue;
1748 read_unlock(&binfmt_lock);
1749
1750 retval = fmt->load_binary(bprm);
1751
1752 read_lock(&binfmt_lock);
1753 put_binfmt(fmt);
1754 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1755 read_unlock(&binfmt_lock);
1756 return retval;
1757 }
1758 }
1759 read_unlock(&binfmt_lock);
1760
1761 if (need_retry) {
1762 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1763 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1764 return retval;
1765 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1766 return retval;
1767 need_retry = false;
1768 goto retry;
1769 }
1770
1771 return retval;
1772 }
1773
exec_binprm(struct linux_binprm * bprm)1774 static int exec_binprm(struct linux_binprm *bprm)
1775 {
1776 pid_t old_pid, old_vpid;
1777 int ret, depth;
1778
1779 /* Need to fetch pid before load_binary changes it */
1780 old_pid = current->pid;
1781 rcu_read_lock();
1782 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1783 rcu_read_unlock();
1784
1785 /* This allows 4 levels of binfmt rewrites before failing hard. */
1786 for (depth = 0;; depth++) {
1787 struct file *exec;
1788 if (depth > 5)
1789 return -ELOOP;
1790
1791 ret = search_binary_handler(bprm);
1792 if (ret < 0)
1793 return ret;
1794 if (!bprm->interpreter)
1795 break;
1796
1797 exec = bprm->file;
1798 bprm->file = bprm->interpreter;
1799 bprm->interpreter = NULL;
1800
1801 allow_write_access(exec);
1802 if (unlikely(bprm->have_execfd)) {
1803 if (bprm->executable) {
1804 fput(exec);
1805 return -ENOEXEC;
1806 }
1807 bprm->executable = exec;
1808 } else
1809 fput(exec);
1810 }
1811
1812 audit_bprm(bprm);
1813 trace_sched_process_exec(current, old_pid, bprm);
1814 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1815 proc_exec_connector(current);
1816 return 0;
1817 }
1818
1819 /*
1820 * sys_execve() executes a new program.
1821 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1822 static int bprm_execve(struct linux_binprm *bprm,
1823 int fd, struct filename *filename, int flags)
1824 {
1825 struct file *file;
1826 int retval;
1827
1828 retval = prepare_bprm_creds(bprm);
1829 if (retval)
1830 return retval;
1831
1832 check_unsafe_exec(bprm);
1833 current->in_execve = 1;
1834
1835 file = do_open_execat(fd, filename, flags);
1836 retval = PTR_ERR(file);
1837 if (IS_ERR(file))
1838 goto out_unmark;
1839
1840 sched_exec();
1841
1842 bprm->file = file;
1843 /*
1844 * Record that a name derived from an O_CLOEXEC fd will be
1845 * inaccessible after exec. This allows the code in exec to
1846 * choose to fail when the executable is not mmaped into the
1847 * interpreter and an open file descriptor is not passed to
1848 * the interpreter. This makes for a better user experience
1849 * than having the interpreter start and then immediately fail
1850 * when it finds the executable is inaccessible.
1851 */
1852 if (bprm->fdpath && get_close_on_exec(fd))
1853 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1854
1855 /* Set the unchanging part of bprm->cred */
1856 retval = security_bprm_creds_for_exec(bprm);
1857 if (retval)
1858 goto out;
1859
1860 retval = exec_binprm(bprm);
1861 if (retval < 0)
1862 goto out;
1863
1864 /* execve succeeded */
1865 current->fs->in_exec = 0;
1866 current->in_execve = 0;
1867 rseq_execve(current);
1868 acct_update_integrals(current);
1869 task_numa_free(current, false);
1870 return retval;
1871
1872 out:
1873 /*
1874 * If past the point of no return ensure the code never
1875 * returns to the userspace process. Use an existing fatal
1876 * signal if present otherwise terminate the process with
1877 * SIGSEGV.
1878 */
1879 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1880 force_fatal_sig(SIGSEGV);
1881
1882 out_unmark:
1883 current->fs->in_exec = 0;
1884 current->in_execve = 0;
1885
1886 return retval;
1887 }
1888
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1889 static int do_execveat_common(int fd, struct filename *filename,
1890 struct user_arg_ptr argv,
1891 struct user_arg_ptr envp,
1892 int flags)
1893 {
1894 struct linux_binprm *bprm;
1895 int retval;
1896
1897 if (IS_ERR(filename))
1898 return PTR_ERR(filename);
1899
1900 /*
1901 * We move the actual failure in case of RLIMIT_NPROC excess from
1902 * set*uid() to execve() because too many poorly written programs
1903 * don't check setuid() return code. Here we additionally recheck
1904 * whether NPROC limit is still exceeded.
1905 */
1906 if ((current->flags & PF_NPROC_EXCEEDED) &&
1907 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1908 retval = -EAGAIN;
1909 goto out_ret;
1910 }
1911
1912 /* We're below the limit (still or again), so we don't want to make
1913 * further execve() calls fail. */
1914 current->flags &= ~PF_NPROC_EXCEEDED;
1915
1916 bprm = alloc_bprm(fd, filename);
1917 if (IS_ERR(bprm)) {
1918 retval = PTR_ERR(bprm);
1919 goto out_ret;
1920 }
1921
1922 retval = count(argv, MAX_ARG_STRINGS);
1923 if (retval == 0)
1924 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1925 current->comm, bprm->filename);
1926 if (retval < 0)
1927 goto out_free;
1928 bprm->argc = retval;
1929
1930 retval = count(envp, MAX_ARG_STRINGS);
1931 if (retval < 0)
1932 goto out_free;
1933 bprm->envc = retval;
1934
1935 retval = bprm_stack_limits(bprm);
1936 if (retval < 0)
1937 goto out_free;
1938
1939 retval = copy_string_kernel(bprm->filename, bprm);
1940 if (retval < 0)
1941 goto out_free;
1942 bprm->exec = bprm->p;
1943
1944 retval = copy_strings(bprm->envc, envp, bprm);
1945 if (retval < 0)
1946 goto out_free;
1947
1948 retval = copy_strings(bprm->argc, argv, bprm);
1949 if (retval < 0)
1950 goto out_free;
1951
1952 /*
1953 * When argv is empty, add an empty string ("") as argv[0] to
1954 * ensure confused userspace programs that start processing
1955 * from argv[1] won't end up walking envp. See also
1956 * bprm_stack_limits().
1957 */
1958 if (bprm->argc == 0) {
1959 retval = copy_string_kernel("", bprm);
1960 if (retval < 0)
1961 goto out_free;
1962 bprm->argc = 1;
1963 }
1964
1965 retval = bprm_execve(bprm, fd, filename, flags);
1966 out_free:
1967 free_bprm(bprm);
1968
1969 out_ret:
1970 putname(filename);
1971 return retval;
1972 }
1973
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1974 int kernel_execve(const char *kernel_filename,
1975 const char *const *argv, const char *const *envp)
1976 {
1977 struct filename *filename;
1978 struct linux_binprm *bprm;
1979 int fd = AT_FDCWD;
1980 int retval;
1981
1982 filename = getname_kernel(kernel_filename);
1983 if (IS_ERR(filename))
1984 return PTR_ERR(filename);
1985
1986 bprm = alloc_bprm(fd, filename);
1987 if (IS_ERR(bprm)) {
1988 retval = PTR_ERR(bprm);
1989 goto out_ret;
1990 }
1991
1992 retval = count_strings_kernel(argv);
1993 if (WARN_ON_ONCE(retval == 0))
1994 retval = -EINVAL;
1995 if (retval < 0)
1996 goto out_free;
1997 bprm->argc = retval;
1998
1999 retval = count_strings_kernel(envp);
2000 if (retval < 0)
2001 goto out_free;
2002 bprm->envc = retval;
2003
2004 retval = bprm_stack_limits(bprm);
2005 if (retval < 0)
2006 goto out_free;
2007
2008 retval = copy_string_kernel(bprm->filename, bprm);
2009 if (retval < 0)
2010 goto out_free;
2011 bprm->exec = bprm->p;
2012
2013 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2014 if (retval < 0)
2015 goto out_free;
2016
2017 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2018 if (retval < 0)
2019 goto out_free;
2020
2021 retval = bprm_execve(bprm, fd, filename, 0);
2022 out_free:
2023 free_bprm(bprm);
2024 out_ret:
2025 putname(filename);
2026 return retval;
2027 }
2028
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2029 static int do_execve(struct filename *filename,
2030 const char __user *const __user *__argv,
2031 const char __user *const __user *__envp)
2032 {
2033 struct user_arg_ptr argv = { .ptr.native = __argv };
2034 struct user_arg_ptr envp = { .ptr.native = __envp };
2035 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2036 }
2037
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2038 static int do_execveat(int fd, struct filename *filename,
2039 const char __user *const __user *__argv,
2040 const char __user *const __user *__envp,
2041 int flags)
2042 {
2043 struct user_arg_ptr argv = { .ptr.native = __argv };
2044 struct user_arg_ptr envp = { .ptr.native = __envp };
2045
2046 return do_execveat_common(fd, filename, argv, envp, flags);
2047 }
2048
2049 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2050 static int compat_do_execve(struct filename *filename,
2051 const compat_uptr_t __user *__argv,
2052 const compat_uptr_t __user *__envp)
2053 {
2054 struct user_arg_ptr argv = {
2055 .is_compat = true,
2056 .ptr.compat = __argv,
2057 };
2058 struct user_arg_ptr envp = {
2059 .is_compat = true,
2060 .ptr.compat = __envp,
2061 };
2062 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2063 }
2064
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2065 static int compat_do_execveat(int fd, struct filename *filename,
2066 const compat_uptr_t __user *__argv,
2067 const compat_uptr_t __user *__envp,
2068 int flags)
2069 {
2070 struct user_arg_ptr argv = {
2071 .is_compat = true,
2072 .ptr.compat = __argv,
2073 };
2074 struct user_arg_ptr envp = {
2075 .is_compat = true,
2076 .ptr.compat = __envp,
2077 };
2078 return do_execveat_common(fd, filename, argv, envp, flags);
2079 }
2080 #endif
2081
set_binfmt(struct linux_binfmt * new)2082 void set_binfmt(struct linux_binfmt *new)
2083 {
2084 struct mm_struct *mm = current->mm;
2085
2086 if (mm->binfmt)
2087 module_put(mm->binfmt->module);
2088
2089 mm->binfmt = new;
2090 if (new)
2091 __module_get(new->module);
2092 }
2093 EXPORT_SYMBOL(set_binfmt);
2094
2095 /*
2096 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2097 */
set_dumpable(struct mm_struct * mm,int value)2098 void set_dumpable(struct mm_struct *mm, int value)
2099 {
2100 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2101 return;
2102
2103 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2104 }
2105
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2106 SYSCALL_DEFINE3(execve,
2107 const char __user *, filename,
2108 const char __user *const __user *, argv,
2109 const char __user *const __user *, envp)
2110 {
2111 return do_execve(getname(filename), argv, envp);
2112 }
2113
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2114 SYSCALL_DEFINE5(execveat,
2115 int, fd, const char __user *, filename,
2116 const char __user *const __user *, argv,
2117 const char __user *const __user *, envp,
2118 int, flags)
2119 {
2120 return do_execveat(fd,
2121 getname_uflags(filename, flags),
2122 argv, envp, flags);
2123 }
2124
2125 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2126 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2127 const compat_uptr_t __user *, argv,
2128 const compat_uptr_t __user *, envp)
2129 {
2130 return compat_do_execve(getname(filename), argv, envp);
2131 }
2132
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2133 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2134 const char __user *, filename,
2135 const compat_uptr_t __user *, argv,
2136 const compat_uptr_t __user *, envp,
2137 int, flags)
2138 {
2139 return compat_do_execveat(fd,
2140 getname_uflags(filename, flags),
2141 argv, envp, flags);
2142 }
2143 #endif
2144