• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Fence mechanism for dma-buf to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #ifndef __LINUX_DMA_FENCE_H
14 #define __LINUX_DMA_FENCE_H
15 
16 #include <linux/err.h>
17 #include <linux/wait.h>
18 #include <linux/list.h>
19 #include <linux/bitops.h>
20 #include <linux/kref.h>
21 #include <linux/sched.h>
22 #include <linux/printk.h>
23 #include <linux/rcupdate.h>
24 
25 struct dma_fence;
26 struct dma_fence_ops;
27 struct dma_fence_cb;
28 
29 /**
30  * struct dma_fence - software synchronization primitive
31  * @refcount: refcount for this fence
32  * @ops: dma_fence_ops associated with this fence
33  * @rcu: used for releasing fence with kfree_rcu
34  * @cb_list: list of all callbacks to call
35  * @lock: spin_lock_irqsave used for locking
36  * @context: execution context this fence belongs to, returned by
37  *           dma_fence_context_alloc()
38  * @seqno: the sequence number of this fence inside the execution context,
39  * can be compared to decide which fence would be signaled later.
40  * @flags: A mask of DMA_FENCE_FLAG_* defined below
41  * @timestamp: Timestamp when the fence was signaled.
42  * @error: Optional, only valid if < 0, must be set before calling
43  * dma_fence_signal, indicates that the fence has completed with an error.
44  *
45  * the flags member must be manipulated and read using the appropriate
46  * atomic ops (bit_*), so taking the spinlock will not be needed most
47  * of the time.
48  *
49  * DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled
50  * DMA_FENCE_FLAG_TIMESTAMP_BIT - timestamp recorded for fence signaling
51  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called
52  * DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
53  * implementer of the fence for its own purposes. Can be used in different
54  * ways by different fence implementers, so do not rely on this.
55  *
56  * Since atomic bitops are used, this is not guaranteed to be the case.
57  * Particularly, if the bit was set, but dma_fence_signal was called right
58  * before this bit was set, it would have been able to set the
59  * DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
60  * Adding a check for DMA_FENCE_FLAG_SIGNALED_BIT after setting
61  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
62  * after dma_fence_signal was called, any enable_signaling call will have either
63  * been completed, or never called at all.
64  */
65 struct dma_fence {
66 	spinlock_t *lock;
67 	const struct dma_fence_ops *ops;
68 	/*
69 	 * We clear the callback list on kref_put so that by the time we
70 	 * release the fence it is unused. No one should be adding to the
71 	 * cb_list that they don't themselves hold a reference for.
72 	 *
73 	 * The lifetime of the timestamp is similarly tied to both the
74 	 * rcu freelist and the cb_list. The timestamp is only set upon
75 	 * signaling while simultaneously notifying the cb_list. Ergo, we
76 	 * only use either the cb_list of timestamp. Upon destruction,
77 	 * neither are accessible, and so we can use the rcu. This means
78 	 * that the cb_list is *only* valid until the signal bit is set,
79 	 * and to read either you *must* hold a reference to the fence,
80 	 * and not just the rcu_read_lock.
81 	 *
82 	 * Listed in chronological order.
83 	 */
84 	union {
85 		struct list_head cb_list;
86 		/* @cb_list replaced by @timestamp on dma_fence_signal() */
87 		ktime_t timestamp;
88 		/* @timestamp replaced by @rcu on dma_fence_release() */
89 		struct rcu_head rcu;
90 	};
91 	u64 context;
92 	u64 seqno;
93 	unsigned long flags;
94 	struct kref refcount;
95 	int error;
96 };
97 
98 enum dma_fence_flag_bits {
99 	DMA_FENCE_FLAG_SIGNALED_BIT,
100 	DMA_FENCE_FLAG_TIMESTAMP_BIT,
101 	DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
102 	DMA_FENCE_FLAG_USER_BITS, /* must always be last member */
103 };
104 
105 typedef void (*dma_fence_func_t)(struct dma_fence *fence,
106 				 struct dma_fence_cb *cb);
107 
108 /**
109  * struct dma_fence_cb - callback for dma_fence_add_callback()
110  * @node: used by dma_fence_add_callback() to append this struct to fence::cb_list
111  * @func: dma_fence_func_t to call
112  *
113  * This struct will be initialized by dma_fence_add_callback(), additional
114  * data can be passed along by embedding dma_fence_cb in another struct.
115  */
116 struct dma_fence_cb {
117 	struct list_head node;
118 	dma_fence_func_t func;
119 };
120 
121 /**
122  * struct dma_fence_ops - operations implemented for fence
123  *
124  */
125 struct dma_fence_ops {
126 	/**
127 	 * @use_64bit_seqno:
128 	 *
129 	 * True if this dma_fence implementation uses 64bit seqno, false
130 	 * otherwise.
131 	 */
132 	bool use_64bit_seqno;
133 
134 	/**
135 	 * @get_driver_name:
136 	 *
137 	 * Returns the driver name. This is a callback to allow drivers to
138 	 * compute the name at runtime, without having it to store permanently
139 	 * for each fence, or build a cache of some sort.
140 	 *
141 	 * This callback is mandatory.
142 	 */
143 	const char * (*get_driver_name)(struct dma_fence *fence);
144 
145 	/**
146 	 * @get_timeline_name:
147 	 *
148 	 * Return the name of the context this fence belongs to. This is a
149 	 * callback to allow drivers to compute the name at runtime, without
150 	 * having it to store permanently for each fence, or build a cache of
151 	 * some sort.
152 	 *
153 	 * This callback is mandatory.
154 	 */
155 	const char * (*get_timeline_name)(struct dma_fence *fence);
156 
157 	/**
158 	 * @enable_signaling:
159 	 *
160 	 * Enable software signaling of fence.
161 	 *
162 	 * For fence implementations that have the capability for hw->hw
163 	 * signaling, they can implement this op to enable the necessary
164 	 * interrupts, or insert commands into cmdstream, etc, to avoid these
165 	 * costly operations for the common case where only hw->hw
166 	 * synchronization is required.  This is called in the first
167 	 * dma_fence_wait() or dma_fence_add_callback() path to let the fence
168 	 * implementation know that there is another driver waiting on the
169 	 * signal (ie. hw->sw case).
170 	 *
171 	 * This function can be called from atomic context, but not
172 	 * from irq context, so normal spinlocks can be used.
173 	 *
174 	 * A return value of false indicates the fence already passed,
175 	 * or some failure occurred that made it impossible to enable
176 	 * signaling. True indicates successful enabling.
177 	 *
178 	 * &dma_fence.error may be set in enable_signaling, but only when false
179 	 * is returned.
180 	 *
181 	 * Since many implementations can call dma_fence_signal() even when before
182 	 * @enable_signaling has been called there's a race window, where the
183 	 * dma_fence_signal() might result in the final fence reference being
184 	 * released and its memory freed. To avoid this, implementations of this
185 	 * callback should grab their own reference using dma_fence_get(), to be
186 	 * released when the fence is signalled (through e.g. the interrupt
187 	 * handler).
188 	 *
189 	 * This callback is optional. If this callback is not present, then the
190 	 * driver must always have signaling enabled.
191 	 */
192 	bool (*enable_signaling)(struct dma_fence *fence);
193 
194 	/**
195 	 * @signaled:
196 	 *
197 	 * Peek whether the fence is signaled, as a fastpath optimization for
198 	 * e.g. dma_fence_wait() or dma_fence_add_callback(). Note that this
199 	 * callback does not need to make any guarantees beyond that a fence
200 	 * once indicates as signalled must always return true from this
201 	 * callback. This callback may return false even if the fence has
202 	 * completed already, in this case information hasn't propogated throug
203 	 * the system yet. See also dma_fence_is_signaled().
204 	 *
205 	 * May set &dma_fence.error if returning true.
206 	 *
207 	 * This callback is optional.
208 	 */
209 	bool (*signaled)(struct dma_fence *fence);
210 
211 	/**
212 	 * @wait:
213 	 *
214 	 * Custom wait implementation, defaults to dma_fence_default_wait() if
215 	 * not set.
216 	 *
217 	 * The dma_fence_default_wait implementation should work for any fence, as long
218 	 * as @enable_signaling works correctly. This hook allows drivers to
219 	 * have an optimized version for the case where a process context is
220 	 * already available, e.g. if @enable_signaling for the general case
221 	 * needs to set up a worker thread.
222 	 *
223 	 * Must return -ERESTARTSYS if the wait is intr = true and the wait was
224 	 * interrupted, and remaining jiffies if fence has signaled, or 0 if wait
225 	 * timed out. Can also return other error values on custom implementations,
226 	 * which should be treated as if the fence is signaled. For example a hardware
227 	 * lockup could be reported like that.
228 	 *
229 	 * This callback is optional.
230 	 */
231 	signed long (*wait)(struct dma_fence *fence,
232 			    bool intr, signed long timeout);
233 
234 	/**
235 	 * @release:
236 	 *
237 	 * Called on destruction of fence to release additional resources.
238 	 * Can be called from irq context.  This callback is optional. If it is
239 	 * NULL, then dma_fence_free() is instead called as the default
240 	 * implementation.
241 	 */
242 	void (*release)(struct dma_fence *fence);
243 
244 	/**
245 	 * @fence_value_str:
246 	 *
247 	 * Callback to fill in free-form debug info specific to this fence, like
248 	 * the sequence number.
249 	 *
250 	 * This callback is optional.
251 	 */
252 	void (*fence_value_str)(struct dma_fence *fence, char *str, int size);
253 
254 	/**
255 	 * @timeline_value_str:
256 	 *
257 	 * Fills in the current value of the timeline as a string, like the
258 	 * sequence number. Note that the specific fence passed to this function
259 	 * should not matter, drivers should only use it to look up the
260 	 * corresponding timeline structures.
261 	 */
262 	void (*timeline_value_str)(struct dma_fence *fence,
263 				   char *str, int size);
264 };
265 
266 void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
267 		    spinlock_t *lock, u64 context, u64 seqno);
268 
269 void dma_fence_release(struct kref *kref);
270 void dma_fence_free(struct dma_fence *fence);
271 
272 /**
273  * dma_fence_put - decreases refcount of the fence
274  * @fence: fence to reduce refcount of
275  */
dma_fence_put(struct dma_fence * fence)276 static inline void dma_fence_put(struct dma_fence *fence)
277 {
278 	if (fence)
279 		kref_put(&fence->refcount, dma_fence_release);
280 }
281 
282 /**
283  * dma_fence_get - increases refcount of the fence
284  * @fence: fence to increase refcount of
285  *
286  * Returns the same fence, with refcount increased by 1.
287  */
dma_fence_get(struct dma_fence * fence)288 static inline struct dma_fence *dma_fence_get(struct dma_fence *fence)
289 {
290 	if (fence)
291 		kref_get(&fence->refcount);
292 	return fence;
293 }
294 
295 /**
296  * dma_fence_get_rcu - get a fence from a dma_resv_list with
297  *                     rcu read lock
298  * @fence: fence to increase refcount of
299  *
300  * Function returns NULL if no refcount could be obtained, or the fence.
301  */
dma_fence_get_rcu(struct dma_fence * fence)302 static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
303 {
304 	if (kref_get_unless_zero(&fence->refcount))
305 		return fence;
306 	else
307 		return NULL;
308 }
309 
310 /**
311  * dma_fence_get_rcu_safe  - acquire a reference to an RCU tracked fence
312  * @fencep: pointer to fence to increase refcount of
313  *
314  * Function returns NULL if no refcount could be obtained, or the fence.
315  * This function handles acquiring a reference to a fence that may be
316  * reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
317  * so long as the caller is using RCU on the pointer to the fence.
318  *
319  * An alternative mechanism is to employ a seqlock to protect a bunch of
320  * fences, such as used by struct dma_resv. When using a seqlock,
321  * the seqlock must be taken before and checked after a reference to the
322  * fence is acquired (as shown here).
323  *
324  * The caller is required to hold the RCU read lock.
325  */
326 static inline struct dma_fence *
dma_fence_get_rcu_safe(struct dma_fence __rcu ** fencep)327 dma_fence_get_rcu_safe(struct dma_fence __rcu **fencep)
328 {
329 	do {
330 		struct dma_fence *fence;
331 
332 		fence = rcu_dereference(*fencep);
333 		if (!fence)
334 			return NULL;
335 
336 		if (!dma_fence_get_rcu(fence))
337 			continue;
338 
339 		/* The atomic_inc_not_zero() inside dma_fence_get_rcu()
340 		 * provides a full memory barrier upon success (such as now).
341 		 * This is paired with the write barrier from assigning
342 		 * to the __rcu protected fence pointer so that if that
343 		 * pointer still matches the current fence, we know we
344 		 * have successfully acquire a reference to it. If it no
345 		 * longer matches, we are holding a reference to some other
346 		 * reallocated pointer. This is possible if the allocator
347 		 * is using a freelist like SLAB_TYPESAFE_BY_RCU where the
348 		 * fence remains valid for the RCU grace period, but it
349 		 * may be reallocated. When using such allocators, we are
350 		 * responsible for ensuring the reference we get is to
351 		 * the right fence, as below.
352 		 */
353 		if (fence == rcu_access_pointer(*fencep))
354 			return rcu_pointer_handoff(fence);
355 
356 		dma_fence_put(fence);
357 	} while (1);
358 }
359 
360 #ifdef CONFIG_LOCKDEP
361 bool dma_fence_begin_signalling(void);
362 void dma_fence_end_signalling(bool cookie);
363 void __dma_fence_might_wait(void);
364 #else
dma_fence_begin_signalling(void)365 static inline bool dma_fence_begin_signalling(void)
366 {
367 	return true;
368 }
dma_fence_end_signalling(bool cookie)369 static inline void dma_fence_end_signalling(bool cookie) {}
__dma_fence_might_wait(void)370 static inline void __dma_fence_might_wait(void) {}
371 #endif
372 
373 int dma_fence_signal(struct dma_fence *fence);
374 int dma_fence_signal_locked(struct dma_fence *fence);
375 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp);
376 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
377 				      ktime_t timestamp);
378 signed long dma_fence_default_wait(struct dma_fence *fence,
379 				   bool intr, signed long timeout);
380 int dma_fence_add_callback(struct dma_fence *fence,
381 			   struct dma_fence_cb *cb,
382 			   dma_fence_func_t func);
383 bool dma_fence_remove_callback(struct dma_fence *fence,
384 			       struct dma_fence_cb *cb);
385 void dma_fence_enable_sw_signaling(struct dma_fence *fence);
386 
387 /**
388  * dma_fence_is_signaled_locked - Return an indication if the fence
389  *                                is signaled yet.
390  * @fence: the fence to check
391  *
392  * Returns true if the fence was already signaled, false if not. Since this
393  * function doesn't enable signaling, it is not guaranteed to ever return
394  * true if dma_fence_add_callback(), dma_fence_wait() or
395  * dma_fence_enable_sw_signaling() haven't been called before.
396  *
397  * This function requires &dma_fence.lock to be held.
398  *
399  * See also dma_fence_is_signaled().
400  */
401 static inline bool
dma_fence_is_signaled_locked(struct dma_fence * fence)402 dma_fence_is_signaled_locked(struct dma_fence *fence)
403 {
404 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
405 		return true;
406 
407 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
408 		dma_fence_signal_locked(fence);
409 		return true;
410 	}
411 
412 	return false;
413 }
414 
415 /**
416  * dma_fence_is_signaled - Return an indication if the fence is signaled yet.
417  * @fence: the fence to check
418  *
419  * Returns true if the fence was already signaled, false if not. Since this
420  * function doesn't enable signaling, it is not guaranteed to ever return
421  * true if dma_fence_add_callback(), dma_fence_wait() or
422  * dma_fence_enable_sw_signaling() haven't been called before.
423  *
424  * It's recommended for seqno fences to call dma_fence_signal when the
425  * operation is complete, it makes it possible to prevent issues from
426  * wraparound between time of issue and time of use by checking the return
427  * value of this function before calling hardware-specific wait instructions.
428  *
429  * See also dma_fence_is_signaled_locked().
430  */
431 static inline bool
dma_fence_is_signaled(struct dma_fence * fence)432 dma_fence_is_signaled(struct dma_fence *fence)
433 {
434 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
435 		return true;
436 
437 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
438 		dma_fence_signal(fence);
439 		return true;
440 	}
441 
442 	return false;
443 }
444 
445 /**
446  * __dma_fence_is_later - return if f1 is chronologically later than f2
447  * @f1: the first fence's seqno
448  * @f2: the second fence's seqno from the same context
449  * @ops: dma_fence_ops associated with the seqno
450  *
451  * Returns true if f1 is chronologically later than f2. Both fences must be
452  * from the same context, since a seqno is not common across contexts.
453  */
__dma_fence_is_later(u64 f1,u64 f2,const struct dma_fence_ops * ops)454 static inline bool __dma_fence_is_later(u64 f1, u64 f2,
455 					const struct dma_fence_ops *ops)
456 {
457 	/* This is for backward compatibility with drivers which can only handle
458 	 * 32bit sequence numbers. Use a 64bit compare when the driver says to
459 	 * do so.
460 	 */
461 	if (ops->use_64bit_seqno)
462 		return f1 > f2;
463 
464 	return (int)(lower_32_bits(f1) - lower_32_bits(f2)) > 0;
465 }
466 
467 /**
468  * dma_fence_is_later - return if f1 is chronologically later than f2
469  * @f1: the first fence from the same context
470  * @f2: the second fence from the same context
471  *
472  * Returns true if f1 is chronologically later than f2. Both fences must be
473  * from the same context, since a seqno is not re-used across contexts.
474  */
dma_fence_is_later(struct dma_fence * f1,struct dma_fence * f2)475 static inline bool dma_fence_is_later(struct dma_fence *f1,
476 				      struct dma_fence *f2)
477 {
478 	if (WARN_ON(f1->context != f2->context))
479 		return false;
480 
481 	return __dma_fence_is_later(f1->seqno, f2->seqno, f1->ops);
482 }
483 
484 /**
485  * dma_fence_later - return the chronologically later fence
486  * @f1:	the first fence from the same context
487  * @f2:	the second fence from the same context
488  *
489  * Returns NULL if both fences are signaled, otherwise the fence that would be
490  * signaled last. Both fences must be from the same context, since a seqno is
491  * not re-used across contexts.
492  */
dma_fence_later(struct dma_fence * f1,struct dma_fence * f2)493 static inline struct dma_fence *dma_fence_later(struct dma_fence *f1,
494 						struct dma_fence *f2)
495 {
496 	if (WARN_ON(f1->context != f2->context))
497 		return NULL;
498 
499 	/*
500 	 * Can't check just DMA_FENCE_FLAG_SIGNALED_BIT here, it may never
501 	 * have been set if enable_signaling wasn't called, and enabling that
502 	 * here is overkill.
503 	 */
504 	if (dma_fence_is_later(f1, f2))
505 		return dma_fence_is_signaled(f1) ? NULL : f1;
506 	else
507 		return dma_fence_is_signaled(f2) ? NULL : f2;
508 }
509 
510 /**
511  * dma_fence_get_status_locked - returns the status upon completion
512  * @fence: the dma_fence to query
513  *
514  * Drivers can supply an optional error status condition before they signal
515  * the fence (to indicate whether the fence was completed due to an error
516  * rather than success). The value of the status condition is only valid
517  * if the fence has been signaled, dma_fence_get_status_locked() first checks
518  * the signal state before reporting the error status.
519  *
520  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
521  * been signaled without an error condition, or a negative error code
522  * if the fence has been completed in err.
523  */
dma_fence_get_status_locked(struct dma_fence * fence)524 static inline int dma_fence_get_status_locked(struct dma_fence *fence)
525 {
526 	if (dma_fence_is_signaled_locked(fence))
527 		return fence->error ?: 1;
528 	else
529 		return 0;
530 }
531 
532 int dma_fence_get_status(struct dma_fence *fence);
533 
534 /**
535  * dma_fence_set_error - flag an error condition on the fence
536  * @fence: the dma_fence
537  * @error: the error to store
538  *
539  * Drivers can supply an optional error status condition before they signal
540  * the fence, to indicate that the fence was completed due to an error
541  * rather than success. This must be set before signaling (so that the value
542  * is visible before any waiters on the signal callback are woken). This
543  * helper exists to help catching erroneous setting of #dma_fence.error.
544  */
dma_fence_set_error(struct dma_fence * fence,int error)545 static inline void dma_fence_set_error(struct dma_fence *fence,
546 				       int error)
547 {
548 	WARN_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
549 	WARN_ON(error >= 0 || error < -MAX_ERRNO);
550 
551 	fence->error = error;
552 }
553 
554 /**
555  * dma_fence_timestamp - helper to get the completion timestamp of a fence
556  * @fence: fence to get the timestamp from.
557  *
558  * After a fence is signaled the timestamp is updated with the signaling time,
559  * but setting the timestamp can race with tasks waiting for the signaling. This
560  * helper busy waits for the correct timestamp to appear.
561  */
dma_fence_timestamp(struct dma_fence * fence)562 static inline ktime_t dma_fence_timestamp(struct dma_fence *fence)
563 {
564 	if (WARN_ON(!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)))
565 		return ktime_get();
566 
567 	while (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags))
568 		cpu_relax();
569 
570 	return fence->timestamp;
571 }
572 
573 signed long dma_fence_wait_timeout(struct dma_fence *,
574 				   bool intr, signed long timeout);
575 signed long dma_fence_wait_any_timeout(struct dma_fence **fences,
576 				       uint32_t count,
577 				       bool intr, signed long timeout,
578 				       uint32_t *idx);
579 
580 /**
581  * dma_fence_wait - sleep until the fence gets signaled
582  * @fence: the fence to wait on
583  * @intr: if true, do an interruptible wait
584  *
585  * This function will return -ERESTARTSYS if interrupted by a signal,
586  * or 0 if the fence was signaled. Other error values may be
587  * returned on custom implementations.
588  *
589  * Performs a synchronous wait on this fence. It is assumed the caller
590  * directly or indirectly holds a reference to the fence, otherwise the
591  * fence might be freed before return, resulting in undefined behavior.
592  *
593  * See also dma_fence_wait_timeout() and dma_fence_wait_any_timeout().
594  */
dma_fence_wait(struct dma_fence * fence,bool intr)595 static inline signed long dma_fence_wait(struct dma_fence *fence, bool intr)
596 {
597 	signed long ret;
598 
599 	/* Since dma_fence_wait_timeout cannot timeout with
600 	 * MAX_SCHEDULE_TIMEOUT, only valid return values are
601 	 * -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
602 	 */
603 	ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
604 
605 	return ret < 0 ? ret : 0;
606 }
607 
608 struct dma_fence *dma_fence_get_stub(void);
609 struct dma_fence *dma_fence_allocate_private_stub(void);
610 u64 dma_fence_context_alloc(unsigned num);
611 
612 #define DMA_FENCE_TRACE(f, fmt, args...) \
613 	do {								\
614 		struct dma_fence *__ff = (f);				\
615 		if (IS_ENABLED(CONFIG_DMA_FENCE_TRACE))			\
616 			pr_info("f %llu#%llu: " fmt,			\
617 				__ff->context, __ff->seqno, ##args);	\
618 	} while (0)
619 
620 #define DMA_FENCE_WARN(f, fmt, args...) \
621 	do {								\
622 		struct dma_fence *__ff = (f);				\
623 		pr_warn("f %llu#%llu: " fmt, __ff->context, __ff->seqno,\
624 			 ##args);					\
625 	} while (0)
626 
627 #define DMA_FENCE_ERR(f, fmt, args...) \
628 	do {								\
629 		struct dma_fence *__ff = (f);				\
630 		pr_err("f %llu#%llu: " fmt, __ff->context, __ff->seqno,	\
631 			##args);					\
632 	} while (0)
633 
634 #endif /* __LINUX_DMA_FENCE_H */
635