• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8 
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <linux/debugfs.h>
26 
27 #include <asm/processor.h>
28 #include <asm/mmu.h>
29 #include <asm/page.h>
30 #include <asm/machdep.h>
31 #include <asm/mmu_context.h>
32 #include <asm/iommu.h>
33 #include <asm/tlb.h>
34 #include <asm/prom.h>
35 #include <asm/cputable.h>
36 #include <asm/udbg.h>
37 #include <asm/smp.h>
38 #include <asm/trace.h>
39 #include <asm/firmware.h>
40 #include <asm/plpar_wrappers.h>
41 #include <asm/kexec.h>
42 #include <asm/fadump.h>
43 #include <asm/asm-prototypes.h>
44 #include <asm/dtl.h>
45 
46 #include "pseries.h"
47 
48 /* Flag bits for H_BULK_REMOVE */
49 #define HBR_REQUEST	0x4000000000000000UL
50 #define HBR_RESPONSE	0x8000000000000000UL
51 #define HBR_END		0xc000000000000000UL
52 #define HBR_AVPN	0x0200000000000000UL
53 #define HBR_ANDCOND	0x0100000000000000UL
54 
55 
56 /* in hvCall.S */
57 EXPORT_SYMBOL(plpar_hcall);
58 EXPORT_SYMBOL(plpar_hcall9);
59 EXPORT_SYMBOL(plpar_hcall_norets);
60 
61 /*
62  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
63  * page size is that page size.
64  *
65  * The first index is the segment base page size, the second one is the actual
66  * page size.
67  */
68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
69 
70 /*
71  * Due to the involved complexity, and that the current hypervisor is only
72  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
73  * buffer size to 8 size block.
74  */
75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
76 
77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
78 static u8 dtl_mask = DTL_LOG_PREEMPT;
79 #else
80 static u8 dtl_mask;
81 #endif
82 
alloc_dtl_buffers(unsigned long * time_limit)83 void alloc_dtl_buffers(unsigned long *time_limit)
84 {
85 	int cpu;
86 	struct paca_struct *pp;
87 	struct dtl_entry *dtl;
88 
89 	for_each_possible_cpu(cpu) {
90 		pp = paca_ptrs[cpu];
91 		if (pp->dispatch_log)
92 			continue;
93 		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
94 		if (!dtl) {
95 			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
96 				cpu);
97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
98 			pr_warn("Stolen time statistics will be unreliable\n");
99 #endif
100 			break;
101 		}
102 
103 		pp->dtl_ridx = 0;
104 		pp->dispatch_log = dtl;
105 		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
106 		pp->dtl_curr = dtl;
107 
108 		if (time_limit && time_after(jiffies, *time_limit)) {
109 			cond_resched();
110 			*time_limit = jiffies + HZ;
111 		}
112 	}
113 }
114 
register_dtl_buffer(int cpu)115 void register_dtl_buffer(int cpu)
116 {
117 	long ret;
118 	struct paca_struct *pp;
119 	struct dtl_entry *dtl;
120 	int hwcpu = get_hard_smp_processor_id(cpu);
121 
122 	pp = paca_ptrs[cpu];
123 	dtl = pp->dispatch_log;
124 	if (dtl && dtl_mask) {
125 		pp->dtl_ridx = 0;
126 		pp->dtl_curr = dtl;
127 		lppaca_of(cpu).dtl_idx = 0;
128 
129 		/* hypervisor reads buffer length from this field */
130 		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
131 		ret = register_dtl(hwcpu, __pa(dtl));
132 		if (ret)
133 			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
134 			       cpu, hwcpu, ret);
135 
136 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
137 	}
138 }
139 
140 #ifdef CONFIG_PPC_SPLPAR
141 struct dtl_worker {
142 	struct delayed_work work;
143 	int cpu;
144 };
145 
146 struct vcpu_dispatch_data {
147 	int last_disp_cpu;
148 
149 	int total_disp;
150 
151 	int same_cpu_disp;
152 	int same_chip_disp;
153 	int diff_chip_disp;
154 	int far_chip_disp;
155 
156 	int numa_home_disp;
157 	int numa_remote_disp;
158 	int numa_far_disp;
159 };
160 
161 /*
162  * This represents the number of cpus in the hypervisor. Since there is no
163  * architected way to discover the number of processors in the host, we
164  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
165  * is sufficient for our purposes. This will need to be tweaked if
166  * CONFIG_NR_CPUS is changed.
167  */
168 #define NR_CPUS_H	NR_CPUS
169 
170 DEFINE_RWLOCK(dtl_access_lock);
171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
172 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
174 static enum cpuhp_state dtl_worker_state;
175 static DEFINE_MUTEX(dtl_enable_mutex);
176 static int vcpudispatch_stats_on __read_mostly;
177 static int vcpudispatch_stats_freq = 50;
178 static __be32 *vcpu_associativity, *pcpu_associativity;
179 
180 
free_dtl_buffers(unsigned long * time_limit)181 static void free_dtl_buffers(unsigned long *time_limit)
182 {
183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
184 	int cpu;
185 	struct paca_struct *pp;
186 
187 	for_each_possible_cpu(cpu) {
188 		pp = paca_ptrs[cpu];
189 		if (!pp->dispatch_log)
190 			continue;
191 		kmem_cache_free(dtl_cache, pp->dispatch_log);
192 		pp->dtl_ridx = 0;
193 		pp->dispatch_log = 0;
194 		pp->dispatch_log_end = 0;
195 		pp->dtl_curr = 0;
196 
197 		if (time_limit && time_after(jiffies, *time_limit)) {
198 			cond_resched();
199 			*time_limit = jiffies + HZ;
200 		}
201 	}
202 #endif
203 }
204 
init_cpu_associativity(void)205 static int init_cpu_associativity(void)
206 {
207 	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
208 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209 	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
210 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211 
212 	if (!vcpu_associativity || !pcpu_associativity) {
213 		pr_err("error allocating memory for associativity information\n");
214 		return -ENOMEM;
215 	}
216 
217 	return 0;
218 }
219 
destroy_cpu_associativity(void)220 static void destroy_cpu_associativity(void)
221 {
222 	kfree(vcpu_associativity);
223 	kfree(pcpu_associativity);
224 	vcpu_associativity = pcpu_associativity = 0;
225 }
226 
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
228 {
229 	__be32 *assoc;
230 	int rc = 0;
231 
232 	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
233 	if (!assoc[0]) {
234 		rc = hcall_vphn(cpu, flag, &assoc[0]);
235 		if (rc)
236 			return NULL;
237 	}
238 
239 	return assoc;
240 }
241 
get_pcpu_associativity(int cpu)242 static __be32 *get_pcpu_associativity(int cpu)
243 {
244 	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
245 }
246 
get_vcpu_associativity(int cpu)247 static __be32 *get_vcpu_associativity(int cpu)
248 {
249 	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
250 }
251 
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
253 {
254 	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
255 
256 	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
257 		return -EINVAL;
258 
259 	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
260 	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
261 
262 	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
263 		return -EIO;
264 
265 	return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
266 }
267 
cpu_home_node_dispatch_distance(int disp_cpu)268 static int cpu_home_node_dispatch_distance(int disp_cpu)
269 {
270 	__be32 *disp_cpu_assoc, *vcpu_assoc;
271 	int vcpu_id = smp_processor_id();
272 
273 	if (disp_cpu >= NR_CPUS_H) {
274 		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
275 						disp_cpu, NR_CPUS_H);
276 		return -EINVAL;
277 	}
278 
279 	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
280 	vcpu_assoc = get_vcpu_associativity(vcpu_id);
281 
282 	if (!disp_cpu_assoc || !vcpu_assoc)
283 		return -EIO;
284 
285 	return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
286 }
287 
update_vcpu_disp_stat(int disp_cpu)288 static void update_vcpu_disp_stat(int disp_cpu)
289 {
290 	struct vcpu_dispatch_data *disp;
291 	int distance;
292 
293 	disp = this_cpu_ptr(&vcpu_disp_data);
294 	if (disp->last_disp_cpu == -1) {
295 		disp->last_disp_cpu = disp_cpu;
296 		return;
297 	}
298 
299 	disp->total_disp++;
300 
301 	if (disp->last_disp_cpu == disp_cpu ||
302 		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
303 					cpu_first_thread_sibling(disp_cpu)))
304 		disp->same_cpu_disp++;
305 	else {
306 		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
307 								disp_cpu);
308 		if (distance < 0)
309 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
310 					smp_processor_id());
311 		else {
312 			switch (distance) {
313 			case 0:
314 				disp->same_chip_disp++;
315 				break;
316 			case 1:
317 				disp->diff_chip_disp++;
318 				break;
319 			case 2:
320 				disp->far_chip_disp++;
321 				break;
322 			default:
323 				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
324 						 smp_processor_id(),
325 						 disp->last_disp_cpu,
326 						 disp_cpu,
327 						 distance);
328 			}
329 		}
330 	}
331 
332 	distance = cpu_home_node_dispatch_distance(disp_cpu);
333 	if (distance < 0)
334 		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
335 				smp_processor_id());
336 	else {
337 		switch (distance) {
338 		case 0:
339 			disp->numa_home_disp++;
340 			break;
341 		case 1:
342 			disp->numa_remote_disp++;
343 			break;
344 		case 2:
345 			disp->numa_far_disp++;
346 			break;
347 		default:
348 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
349 						 smp_processor_id(),
350 						 disp_cpu,
351 						 distance);
352 		}
353 	}
354 
355 	disp->last_disp_cpu = disp_cpu;
356 }
357 
process_dtl_buffer(struct work_struct * work)358 static void process_dtl_buffer(struct work_struct *work)
359 {
360 	struct dtl_entry dtle;
361 	u64 i = __this_cpu_read(dtl_entry_ridx);
362 	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
363 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
364 	struct lppaca *vpa = local_paca->lppaca_ptr;
365 	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
366 
367 	if (!local_paca->dispatch_log)
368 		return;
369 
370 	/* if we have been migrated away, we cancel ourself */
371 	if (d->cpu != smp_processor_id()) {
372 		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
373 						smp_processor_id());
374 		return;
375 	}
376 
377 	if (i == be64_to_cpu(vpa->dtl_idx))
378 		goto out;
379 
380 	while (i < be64_to_cpu(vpa->dtl_idx)) {
381 		dtle = *dtl;
382 		barrier();
383 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
384 			/* buffer has overflowed */
385 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
386 				d->cpu,
387 				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
388 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
389 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
390 			continue;
391 		}
392 		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
393 		++i;
394 		++dtl;
395 		if (dtl == dtl_end)
396 			dtl = local_paca->dispatch_log;
397 	}
398 
399 	__this_cpu_write(dtl_entry_ridx, i);
400 
401 out:
402 	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
403 					HZ / vcpudispatch_stats_freq);
404 }
405 
dtl_worker_online(unsigned int cpu)406 static int dtl_worker_online(unsigned int cpu)
407 {
408 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
409 
410 	memset(d, 0, sizeof(*d));
411 	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
412 	d->cpu = cpu;
413 
414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
415 	per_cpu(dtl_entry_ridx, cpu) = 0;
416 	register_dtl_buffer(cpu);
417 #else
418 	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
419 #endif
420 
421 	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
422 	return 0;
423 }
424 
dtl_worker_offline(unsigned int cpu)425 static int dtl_worker_offline(unsigned int cpu)
426 {
427 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
428 
429 	cancel_delayed_work_sync(&d->work);
430 
431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
432 	unregister_dtl(get_hard_smp_processor_id(cpu));
433 #endif
434 
435 	return 0;
436 }
437 
set_global_dtl_mask(u8 mask)438 static void set_global_dtl_mask(u8 mask)
439 {
440 	int cpu;
441 
442 	dtl_mask = mask;
443 	for_each_present_cpu(cpu)
444 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
445 }
446 
reset_global_dtl_mask(void)447 static void reset_global_dtl_mask(void)
448 {
449 	int cpu;
450 
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 	dtl_mask = DTL_LOG_PREEMPT;
453 #else
454 	dtl_mask = 0;
455 #endif
456 	for_each_present_cpu(cpu)
457 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
458 }
459 
dtl_worker_enable(unsigned long * time_limit)460 static int dtl_worker_enable(unsigned long *time_limit)
461 {
462 	int rc = 0, state;
463 
464 	if (!write_trylock(&dtl_access_lock)) {
465 		rc = -EBUSY;
466 		goto out;
467 	}
468 
469 	set_global_dtl_mask(DTL_LOG_ALL);
470 
471 	/* Setup dtl buffers and register those */
472 	alloc_dtl_buffers(time_limit);
473 
474 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
475 					dtl_worker_online, dtl_worker_offline);
476 	if (state < 0) {
477 		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
478 		free_dtl_buffers(time_limit);
479 		reset_global_dtl_mask();
480 		write_unlock(&dtl_access_lock);
481 		rc = -EINVAL;
482 		goto out;
483 	}
484 	dtl_worker_state = state;
485 
486 out:
487 	return rc;
488 }
489 
dtl_worker_disable(unsigned long * time_limit)490 static void dtl_worker_disable(unsigned long *time_limit)
491 {
492 	cpuhp_remove_state(dtl_worker_state);
493 	free_dtl_buffers(time_limit);
494 	reset_global_dtl_mask();
495 	write_unlock(&dtl_access_lock);
496 }
497 
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
499 		size_t count, loff_t *ppos)
500 {
501 	unsigned long time_limit = jiffies + HZ;
502 	struct vcpu_dispatch_data *disp;
503 	int rc, cmd, cpu;
504 	char buf[16];
505 
506 	if (count > 15)
507 		return -EINVAL;
508 
509 	if (copy_from_user(buf, p, count))
510 		return -EFAULT;
511 
512 	buf[count] = 0;
513 	rc = kstrtoint(buf, 0, &cmd);
514 	if (rc || cmd < 0 || cmd > 1) {
515 		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
516 		return rc ? rc : -EINVAL;
517 	}
518 
519 	mutex_lock(&dtl_enable_mutex);
520 
521 	if ((cmd == 0 && !vcpudispatch_stats_on) ||
522 			(cmd == 1 && vcpudispatch_stats_on))
523 		goto out;
524 
525 	if (cmd) {
526 		rc = init_cpu_associativity();
527 		if (rc) {
528 			destroy_cpu_associativity();
529 			goto out;
530 		}
531 
532 		for_each_possible_cpu(cpu) {
533 			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
534 			memset(disp, 0, sizeof(*disp));
535 			disp->last_disp_cpu = -1;
536 		}
537 
538 		rc = dtl_worker_enable(&time_limit);
539 		if (rc) {
540 			destroy_cpu_associativity();
541 			goto out;
542 		}
543 	} else {
544 		dtl_worker_disable(&time_limit);
545 		destroy_cpu_associativity();
546 	}
547 
548 	vcpudispatch_stats_on = cmd;
549 
550 out:
551 	mutex_unlock(&dtl_enable_mutex);
552 	if (rc)
553 		return rc;
554 	return count;
555 }
556 
vcpudispatch_stats_display(struct seq_file * p,void * v)557 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
558 {
559 	int cpu;
560 	struct vcpu_dispatch_data *disp;
561 
562 	if (!vcpudispatch_stats_on) {
563 		seq_puts(p, "off\n");
564 		return 0;
565 	}
566 
567 	for_each_online_cpu(cpu) {
568 		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
569 		seq_printf(p, "cpu%d", cpu);
570 		seq_put_decimal_ull(p, " ", disp->total_disp);
571 		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
572 		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
573 		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
574 		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
575 		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
576 		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
577 		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
578 		seq_puts(p, "\n");
579 	}
580 
581 	return 0;
582 }
583 
vcpudispatch_stats_open(struct inode * inode,struct file * file)584 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
585 {
586 	return single_open(file, vcpudispatch_stats_display, NULL);
587 }
588 
589 static const struct proc_ops vcpudispatch_stats_proc_ops = {
590 	.proc_open	= vcpudispatch_stats_open,
591 	.proc_read	= seq_read,
592 	.proc_write	= vcpudispatch_stats_write,
593 	.proc_lseek	= seq_lseek,
594 	.proc_release	= single_release,
595 };
596 
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)597 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
598 		const char __user *p, size_t count, loff_t *ppos)
599 {
600 	int rc, freq;
601 	char buf[16];
602 
603 	if (count > 15)
604 		return -EINVAL;
605 
606 	if (copy_from_user(buf, p, count))
607 		return -EFAULT;
608 
609 	buf[count] = 0;
610 	rc = kstrtoint(buf, 0, &freq);
611 	if (rc || freq < 1 || freq > HZ) {
612 		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
613 				HZ);
614 		return rc ? rc : -EINVAL;
615 	}
616 
617 	vcpudispatch_stats_freq = freq;
618 
619 	return count;
620 }
621 
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)622 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
623 {
624 	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
625 	return 0;
626 }
627 
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)628 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
629 {
630 	return single_open(file, vcpudispatch_stats_freq_display, NULL);
631 }
632 
633 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
634 	.proc_open	= vcpudispatch_stats_freq_open,
635 	.proc_read	= seq_read,
636 	.proc_write	= vcpudispatch_stats_freq_write,
637 	.proc_lseek	= seq_lseek,
638 	.proc_release	= single_release,
639 };
640 
vcpudispatch_stats_procfs_init(void)641 static int __init vcpudispatch_stats_procfs_init(void)
642 {
643 	if (!lppaca_shared_proc())
644 		return 0;
645 
646 	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
647 					&vcpudispatch_stats_proc_ops))
648 		pr_err("vcpudispatch_stats: error creating procfs file\n");
649 	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
650 					&vcpudispatch_stats_freq_proc_ops))
651 		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
652 
653 	return 0;
654 }
655 
656 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
657 #endif /* CONFIG_PPC_SPLPAR */
658 
vpa_init(int cpu)659 void vpa_init(int cpu)
660 {
661 	int hwcpu = get_hard_smp_processor_id(cpu);
662 	unsigned long addr;
663 	long ret;
664 
665 	/*
666 	 * The spec says it "may be problematic" if CPU x registers the VPA of
667 	 * CPU y. We should never do that, but wail if we ever do.
668 	 */
669 	WARN_ON(cpu != smp_processor_id());
670 
671 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
672 		lppaca_of(cpu).vmxregs_in_use = 1;
673 
674 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
675 		lppaca_of(cpu).ebb_regs_in_use = 1;
676 
677 	addr = __pa(&lppaca_of(cpu));
678 	ret = register_vpa(hwcpu, addr);
679 
680 	if (ret) {
681 		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
682 		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
683 		return;
684 	}
685 
686 #ifdef CONFIG_PPC_BOOK3S_64
687 	/*
688 	 * PAPR says this feature is SLB-Buffer but firmware never
689 	 * reports that.  All SPLPAR support SLB shadow buffer.
690 	 */
691 	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
692 		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
693 		ret = register_slb_shadow(hwcpu, addr);
694 		if (ret)
695 			pr_err("WARNING: SLB shadow buffer registration for "
696 			       "cpu %d (hw %d) of area %lx failed with %ld\n",
697 			       cpu, hwcpu, addr, ret);
698 	}
699 #endif /* CONFIG_PPC_BOOK3S_64 */
700 
701 	/*
702 	 * Register dispatch trace log, if one has been allocated.
703 	 */
704 	register_dtl_buffer(cpu);
705 }
706 
707 #ifdef CONFIG_PPC_BOOK3S_64
708 
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)709 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
710 				     unsigned long vpn, unsigned long pa,
711 				     unsigned long rflags, unsigned long vflags,
712 				     int psize, int apsize, int ssize)
713 {
714 	unsigned long lpar_rc;
715 	unsigned long flags;
716 	unsigned long slot;
717 	unsigned long hpte_v, hpte_r;
718 
719 	if (!(vflags & HPTE_V_BOLTED))
720 		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
721 			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
722 			 hpte_group, vpn,  pa, rflags, vflags, psize);
723 
724 	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
725 	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
726 
727 	if (!(vflags & HPTE_V_BOLTED))
728 		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
729 
730 	/* Now fill in the actual HPTE */
731 	/* Set CEC cookie to 0         */
732 	/* Zero page = 0               */
733 	/* I-cache Invalidate = 0      */
734 	/* I-cache synchronize = 0     */
735 	/* Exact = 0                   */
736 	flags = 0;
737 
738 	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
739 		flags |= H_COALESCE_CAND;
740 
741 	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
742 	if (unlikely(lpar_rc == H_PTEG_FULL)) {
743 		pr_devel("Hash table group is full\n");
744 		return -1;
745 	}
746 
747 	/*
748 	 * Since we try and ioremap PHBs we don't own, the pte insert
749 	 * will fail. However we must catch the failure in hash_page
750 	 * or we will loop forever, so return -2 in this case.
751 	 */
752 	if (unlikely(lpar_rc != H_SUCCESS)) {
753 		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
754 		return -2;
755 	}
756 	if (!(vflags & HPTE_V_BOLTED))
757 		pr_devel(" -> slot: %lu\n", slot & 7);
758 
759 	/* Because of iSeries, we have to pass down the secondary
760 	 * bucket bit here as well
761 	 */
762 	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
763 }
764 
765 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
766 
pSeries_lpar_hpte_remove(unsigned long hpte_group)767 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
768 {
769 	unsigned long slot_offset;
770 	unsigned long lpar_rc;
771 	int i;
772 	unsigned long dummy1, dummy2;
773 
774 	/* pick a random slot to start at */
775 	slot_offset = mftb() & 0x7;
776 
777 	for (i = 0; i < HPTES_PER_GROUP; i++) {
778 
779 		/* don't remove a bolted entry */
780 		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
781 					   HPTE_V_BOLTED, &dummy1, &dummy2);
782 		if (lpar_rc == H_SUCCESS)
783 			return i;
784 
785 		/*
786 		 * The test for adjunct partition is performed before the
787 		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
788 		 * check for that as well.
789 		 */
790 		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
791 
792 		slot_offset++;
793 		slot_offset &= 0x7;
794 	}
795 
796 	return -1;
797 }
798 
799 /* Called during kexec sequence with MMU off */
manual_hpte_clear_all(void)800 static notrace void manual_hpte_clear_all(void)
801 {
802 	unsigned long size_bytes = 1UL << ppc64_pft_size;
803 	unsigned long hpte_count = size_bytes >> 4;
804 	struct {
805 		unsigned long pteh;
806 		unsigned long ptel;
807 	} ptes[4];
808 	long lpar_rc;
809 	unsigned long i, j;
810 
811 	/* Read in batches of 4,
812 	 * invalidate only valid entries not in the VRMA
813 	 * hpte_count will be a multiple of 4
814          */
815 	for (i = 0; i < hpte_count; i += 4) {
816 		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
817 		if (lpar_rc != H_SUCCESS) {
818 			pr_info("Failed to read hash page table at %ld err %ld\n",
819 				i, lpar_rc);
820 			continue;
821 		}
822 		for (j = 0; j < 4; j++){
823 			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
824 				HPTE_V_VRMA_MASK)
825 				continue;
826 			if (ptes[j].pteh & HPTE_V_VALID)
827 				plpar_pte_remove_raw(0, i + j, 0,
828 					&(ptes[j].pteh), &(ptes[j].ptel));
829 		}
830 	}
831 }
832 
833 /* Called during kexec sequence with MMU off */
hcall_hpte_clear_all(void)834 static notrace int hcall_hpte_clear_all(void)
835 {
836 	int rc;
837 
838 	do {
839 		rc = plpar_hcall_norets(H_CLEAR_HPT);
840 	} while (rc == H_CONTINUE);
841 
842 	return rc;
843 }
844 
845 /* Called during kexec sequence with MMU off */
pseries_hpte_clear_all(void)846 static notrace void pseries_hpte_clear_all(void)
847 {
848 	int rc;
849 
850 	rc = hcall_hpte_clear_all();
851 	if (rc != H_SUCCESS)
852 		manual_hpte_clear_all();
853 
854 #ifdef __LITTLE_ENDIAN__
855 	/*
856 	 * Reset exceptions to big endian.
857 	 *
858 	 * FIXME this is a hack for kexec, we need to reset the exception
859 	 * endian before starting the new kernel and this is a convenient place
860 	 * to do it.
861 	 *
862 	 * This is also called on boot when a fadump happens. In that case we
863 	 * must not change the exception endian mode.
864 	 */
865 	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
866 		pseries_big_endian_exceptions();
867 #endif
868 }
869 
870 /*
871  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
872  * the low 3 bits of flags happen to line up.  So no transform is needed.
873  * We can probably optimize here and assume the high bits of newpp are
874  * already zero.  For now I am paranoid.
875  */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)876 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
877 				       unsigned long newpp,
878 				       unsigned long vpn,
879 				       int psize, int apsize,
880 				       int ssize, unsigned long inv_flags)
881 {
882 	unsigned long lpar_rc;
883 	unsigned long flags;
884 	unsigned long want_v;
885 
886 	want_v = hpte_encode_avpn(vpn, psize, ssize);
887 
888 	flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
889 	flags |= (newpp & HPTE_R_KEY_HI) >> 48;
890 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
891 		/* Move pp0 into bit 8 (IBM 55) */
892 		flags |= (newpp & HPTE_R_PP0) >> 55;
893 
894 	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
895 		 want_v, slot, flags, psize);
896 
897 	lpar_rc = plpar_pte_protect(flags, slot, want_v);
898 
899 	if (lpar_rc == H_NOT_FOUND) {
900 		pr_devel("not found !\n");
901 		return -1;
902 	}
903 
904 	pr_devel("ok\n");
905 
906 	BUG_ON(lpar_rc != H_SUCCESS);
907 
908 	return 0;
909 }
910 
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)911 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
912 {
913 	long lpar_rc;
914 	unsigned long i, j;
915 	struct {
916 		unsigned long pteh;
917 		unsigned long ptel;
918 	} ptes[4];
919 
920 	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
921 
922 		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
923 		if (lpar_rc != H_SUCCESS) {
924 			pr_info("Failed to read hash page table at %ld err %ld\n",
925 				hpte_group, lpar_rc);
926 			continue;
927 		}
928 
929 		for (j = 0; j < 4; j++) {
930 			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
931 			    (ptes[j].pteh & HPTE_V_VALID))
932 				return i + j;
933 		}
934 	}
935 
936 	return -1;
937 }
938 
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)939 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
940 {
941 	long slot;
942 	unsigned long hash;
943 	unsigned long want_v;
944 	unsigned long hpte_group;
945 
946 	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
947 	want_v = hpte_encode_avpn(vpn, psize, ssize);
948 
949 	/*
950 	 * We try to keep bolted entries always in primary hash
951 	 * But in some case we can find them in secondary too.
952 	 */
953 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
954 	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
955 	if (slot < 0) {
956 		/* Try in secondary */
957 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
958 		slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
959 		if (slot < 0)
960 			return -1;
961 	}
962 	return hpte_group + slot;
963 }
964 
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)965 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
966 					     unsigned long ea,
967 					     int psize, int ssize)
968 {
969 	unsigned long vpn;
970 	unsigned long lpar_rc, slot, vsid, flags;
971 
972 	vsid = get_kernel_vsid(ea, ssize);
973 	vpn = hpt_vpn(ea, vsid, ssize);
974 
975 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
976 	BUG_ON(slot == -1);
977 
978 	flags = newpp & (HPTE_R_PP | HPTE_R_N);
979 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
980 		/* Move pp0 into bit 8 (IBM 55) */
981 		flags |= (newpp & HPTE_R_PP0) >> 55;
982 
983 	flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
984 
985 	lpar_rc = plpar_pte_protect(flags, slot, 0);
986 
987 	BUG_ON(lpar_rc != H_SUCCESS);
988 }
989 
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)990 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
991 					 int psize, int apsize,
992 					 int ssize, int local)
993 {
994 	unsigned long want_v;
995 	unsigned long lpar_rc;
996 	unsigned long dummy1, dummy2;
997 
998 	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
999 		 slot, vpn, psize, local);
1000 
1001 	want_v = hpte_encode_avpn(vpn, psize, ssize);
1002 	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1003 	if (lpar_rc == H_NOT_FOUND)
1004 		return;
1005 
1006 	BUG_ON(lpar_rc != H_SUCCESS);
1007 }
1008 
1009 
1010 /*
1011  * As defined in the PAPR's section 14.5.4.1.8
1012  * The control mask doesn't include the returned reference and change bit from
1013  * the processed PTE.
1014  */
1015 #define HBLKR_AVPN		0x0100000000000000UL
1016 #define HBLKR_CTRL_MASK		0xf800000000000000UL
1017 #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1018 #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1019 #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1020 
1021 /*
1022  * Returned true if we are supporting this block size for the specified segment
1023  * base page size and actual page size.
1024  *
1025  * Currently, we only support 8 size block.
1026  */
is_supported_hlbkrm(int bpsize,int psize)1027 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1028 {
1029 	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1030 }
1031 
1032 /**
1033  * H_BLOCK_REMOVE caller.
1034  * @idx should point to the latest @param entry set with a PTEX.
1035  * If PTE cannot be processed because another CPUs has already locked that
1036  * group, those entries are put back in @param starting at index 1.
1037  * If entries has to be retried and @retry_busy is set to true, these entries
1038  * are retried until success. If @retry_busy is set to false, the returned
1039  * is the number of entries yet to process.
1040  */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1041 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1042 				       bool retry_busy)
1043 {
1044 	unsigned long i, rc, new_idx;
1045 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1046 
1047 	if (idx < 2) {
1048 		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1049 		return 0;
1050 	}
1051 again:
1052 	new_idx = 0;
1053 	if (idx > PLPAR_HCALL9_BUFSIZE) {
1054 		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1055 		idx = PLPAR_HCALL9_BUFSIZE;
1056 	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1057 		param[idx] = HBR_END;
1058 
1059 	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1060 			  param[0], /* AVA */
1061 			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1062 			  param[5],  param[6],  param[7],  param[8]);
1063 	if (rc == H_SUCCESS)
1064 		return 0;
1065 
1066 	BUG_ON(rc != H_PARTIAL);
1067 
1068 	/* Check that the unprocessed entries were 'not found' or 'busy' */
1069 	for (i = 0; i < idx-1; i++) {
1070 		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1071 
1072 		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1073 			param[++new_idx] = param[i+1];
1074 			continue;
1075 		}
1076 
1077 		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1078 		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1079 	}
1080 
1081 	/*
1082 	 * If there were entries found busy, retry these entries if requested,
1083 	 * of if all the entries have to be retried.
1084 	 */
1085 	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1086 		idx = new_idx + 1;
1087 		goto again;
1088 	}
1089 
1090 	return new_idx;
1091 }
1092 
1093 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1094 /*
1095  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1096  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1097  */
1098 #define PPC64_HUGE_HPTE_BATCH 12
1099 
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1100 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1101 				      int count, int psize, int ssize)
1102 {
1103 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1104 	unsigned long shift, current_vpgb, vpgb;
1105 	int i, pix = 0;
1106 
1107 	shift = mmu_psize_defs[psize].shift;
1108 
1109 	for (i = 0; i < count; i++) {
1110 		/*
1111 		 * Shifting 3 bits more on the right to get a
1112 		 * 8 pages aligned virtual addresse.
1113 		 */
1114 		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1115 		if (!pix || vpgb != current_vpgb) {
1116 			/*
1117 			 * Need to start a new 8 pages block, flush
1118 			 * the current one if needed.
1119 			 */
1120 			if (pix)
1121 				(void)call_block_remove(pix, param, true);
1122 			current_vpgb = vpgb;
1123 			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1124 			pix = 1;
1125 		}
1126 
1127 		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1128 		if (pix == PLPAR_HCALL9_BUFSIZE) {
1129 			pix = call_block_remove(pix, param, false);
1130 			/*
1131 			 * pix = 0 means that all the entries were
1132 			 * removed, we can start a new block.
1133 			 * Otherwise, this means that there are entries
1134 			 * to retry, and pix points to latest one, so
1135 			 * we should increment it and try to continue
1136 			 * the same block.
1137 			 */
1138 			if (pix)
1139 				pix++;
1140 		}
1141 	}
1142 	if (pix)
1143 		(void)call_block_remove(pix, param, true);
1144 }
1145 
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1146 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1147 				     int count, int psize, int ssize)
1148 {
1149 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1150 	int i = 0, pix = 0, rc;
1151 
1152 	for (i = 0; i < count; i++) {
1153 
1154 		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1155 			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1156 						     ssize, 0);
1157 		} else {
1158 			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1159 			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1160 			pix += 2;
1161 			if (pix == 8) {
1162 				rc = plpar_hcall9(H_BULK_REMOVE, param,
1163 						  param[0], param[1], param[2],
1164 						  param[3], param[4], param[5],
1165 						  param[6], param[7]);
1166 				BUG_ON(rc != H_SUCCESS);
1167 				pix = 0;
1168 			}
1169 		}
1170 	}
1171 	if (pix) {
1172 		param[pix] = HBR_END;
1173 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1174 				  param[2], param[3], param[4], param[5],
1175 				  param[6], param[7]);
1176 		BUG_ON(rc != H_SUCCESS);
1177 	}
1178 }
1179 
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1180 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1181 						      unsigned long *vpn,
1182 						      int count, int psize,
1183 						      int ssize)
1184 {
1185 	unsigned long flags = 0;
1186 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1187 
1188 	if (lock_tlbie)
1189 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1190 
1191 	/* Assuming THP size is 16M */
1192 	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1193 		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1194 	else
1195 		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1196 
1197 	if (lock_tlbie)
1198 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1199 }
1200 
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1201 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1202 					     unsigned long addr,
1203 					     unsigned char *hpte_slot_array,
1204 					     int psize, int ssize, int local)
1205 {
1206 	int i, index = 0;
1207 	unsigned long s_addr = addr;
1208 	unsigned int max_hpte_count, valid;
1209 	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1210 	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1211 	unsigned long shift, hidx, vpn = 0, hash, slot;
1212 
1213 	shift = mmu_psize_defs[psize].shift;
1214 	max_hpte_count = 1U << (PMD_SHIFT - shift);
1215 
1216 	for (i = 0; i < max_hpte_count; i++) {
1217 		valid = hpte_valid(hpte_slot_array, i);
1218 		if (!valid)
1219 			continue;
1220 		hidx =  hpte_hash_index(hpte_slot_array, i);
1221 
1222 		/* get the vpn */
1223 		addr = s_addr + (i * (1ul << shift));
1224 		vpn = hpt_vpn(addr, vsid, ssize);
1225 		hash = hpt_hash(vpn, shift, ssize);
1226 		if (hidx & _PTEIDX_SECONDARY)
1227 			hash = ~hash;
1228 
1229 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1230 		slot += hidx & _PTEIDX_GROUP_IX;
1231 
1232 		slot_array[index] = slot;
1233 		vpn_array[index] = vpn;
1234 		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1235 			/*
1236 			 * Now do a bluk invalidate
1237 			 */
1238 			__pSeries_lpar_hugepage_invalidate(slot_array,
1239 							   vpn_array,
1240 							   PPC64_HUGE_HPTE_BATCH,
1241 							   psize, ssize);
1242 			index = 0;
1243 		} else
1244 			index++;
1245 	}
1246 	if (index)
1247 		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1248 						   index, psize, ssize);
1249 }
1250 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1251 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1252 					     unsigned long addr,
1253 					     unsigned char *hpte_slot_array,
1254 					     int psize, int ssize, int local)
1255 {
1256 	WARN(1, "%s called without THP support\n", __func__);
1257 }
1258 #endif
1259 
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1260 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1261 					  int psize, int ssize)
1262 {
1263 	unsigned long vpn;
1264 	unsigned long slot, vsid;
1265 
1266 	vsid = get_kernel_vsid(ea, ssize);
1267 	vpn = hpt_vpn(ea, vsid, ssize);
1268 
1269 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1270 	if (slot == -1)
1271 		return -ENOENT;
1272 
1273 	/*
1274 	 * lpar doesn't use the passed actual page size
1275 	 */
1276 	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1277 	return 0;
1278 }
1279 
1280 
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1281 static inline unsigned long compute_slot(real_pte_t pte,
1282 					 unsigned long vpn,
1283 					 unsigned long index,
1284 					 unsigned long shift,
1285 					 int ssize)
1286 {
1287 	unsigned long slot, hash, hidx;
1288 
1289 	hash = hpt_hash(vpn, shift, ssize);
1290 	hidx = __rpte_to_hidx(pte, index);
1291 	if (hidx & _PTEIDX_SECONDARY)
1292 		hash = ~hash;
1293 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1294 	slot += hidx & _PTEIDX_GROUP_IX;
1295 	return slot;
1296 }
1297 
1298 /**
1299  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1300  * "all within the same naturally aligned 8 page virtual address block".
1301  */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1302 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1303 			    unsigned long *param)
1304 {
1305 	unsigned long vpn;
1306 	unsigned long i, pix = 0;
1307 	unsigned long index, shift, slot, current_vpgb, vpgb;
1308 	real_pte_t pte;
1309 	int psize, ssize;
1310 
1311 	psize = batch->psize;
1312 	ssize = batch->ssize;
1313 
1314 	for (i = 0; i < number; i++) {
1315 		vpn = batch->vpn[i];
1316 		pte = batch->pte[i];
1317 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1318 			/*
1319 			 * Shifting 3 bits more on the right to get a
1320 			 * 8 pages aligned virtual addresse.
1321 			 */
1322 			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1323 			if (!pix || vpgb != current_vpgb) {
1324 				/*
1325 				 * Need to start a new 8 pages block, flush
1326 				 * the current one if needed.
1327 				 */
1328 				if (pix)
1329 					(void)call_block_remove(pix, param,
1330 								true);
1331 				current_vpgb = vpgb;
1332 				param[0] = hpte_encode_avpn(vpn, psize,
1333 							    ssize);
1334 				pix = 1;
1335 			}
1336 
1337 			slot = compute_slot(pte, vpn, index, shift, ssize);
1338 			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1339 
1340 			if (pix == PLPAR_HCALL9_BUFSIZE) {
1341 				pix = call_block_remove(pix, param, false);
1342 				/*
1343 				 * pix = 0 means that all the entries were
1344 				 * removed, we can start a new block.
1345 				 * Otherwise, this means that there are entries
1346 				 * to retry, and pix points to latest one, so
1347 				 * we should increment it and try to continue
1348 				 * the same block.
1349 				 */
1350 				if (pix)
1351 					pix++;
1352 			}
1353 		} pte_iterate_hashed_end();
1354 	}
1355 
1356 	if (pix)
1357 		(void)call_block_remove(pix, param, true);
1358 }
1359 
1360 /*
1361  * TLB Block Invalidate Characteristics
1362  *
1363  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1364  * is able to process for each couple segment base page size, actual page size.
1365  *
1366  * The ibm,get-system-parameter properties is returning a buffer with the
1367  * following layout:
1368  *
1369  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1370  * -----------------
1371  * TLB Block Invalidate Specifiers:
1372  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1373  * [ 1 byte Number of page sizes (N) that are supported for the specified
1374  *          TLB invalidate block size ]
1375  * [ 1 byte Encoded segment base page size and actual page size
1376  *          MSB=0 means 4k segment base page size and actual page size
1377  *          MSB=1 the penc value in mmu_psize_def ]
1378  * ...
1379  * -----------------
1380  * Next TLB Block Invalidate Specifiers...
1381  * -----------------
1382  * [ 0 ]
1383  */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1384 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1385 					unsigned int block_size)
1386 {
1387 	if (block_size > hblkrm_size[bpsize][psize])
1388 		hblkrm_size[bpsize][psize] = block_size;
1389 }
1390 
1391 /*
1392  * Decode the Encoded segment base page size and actual page size.
1393  * PAPR specifies:
1394  *   - bit 7 is the L bit
1395  *   - bits 0-5 are the penc value
1396  * If the L bit is 0, this means 4K segment base page size and actual page size
1397  * otherwise the penc value should be read.
1398  */
1399 #define HBLKRM_L_MASK		0x80
1400 #define HBLKRM_PENC_MASK	0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1401 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1402 					      unsigned int block_size)
1403 {
1404 	unsigned int bpsize, psize;
1405 
1406 	/* First, check the L bit, if not set, this means 4K */
1407 	if ((lp & HBLKRM_L_MASK) == 0) {
1408 		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1409 		return;
1410 	}
1411 
1412 	lp &= HBLKRM_PENC_MASK;
1413 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1414 		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1415 
1416 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1417 			if (def->penc[psize] == lp) {
1418 				set_hblkrm_bloc_size(bpsize, psize, block_size);
1419 				return;
1420 			}
1421 		}
1422 	}
1423 }
1424 
1425 #define SPLPAR_TLB_BIC_TOKEN		50
1426 
1427 /*
1428  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1429  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1430  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1431  * (128 bytes) for the buffer to get plenty of space.
1432  */
1433 #define SPLPAR_TLB_BIC_MAXLENGTH	128
1434 
pseries_lpar_read_hblkrm_characteristics(void)1435 void __init pseries_lpar_read_hblkrm_characteristics(void)
1436 {
1437 	unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1438 	int call_status, len, idx, bpsize;
1439 
1440 	if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1441 		return;
1442 
1443 	spin_lock(&rtas_data_buf_lock);
1444 	memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1445 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1446 				NULL,
1447 				SPLPAR_TLB_BIC_TOKEN,
1448 				__pa(rtas_data_buf),
1449 				RTAS_DATA_BUF_SIZE);
1450 	memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1451 	local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1452 	spin_unlock(&rtas_data_buf_lock);
1453 
1454 	if (call_status != 0) {
1455 		pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1456 			__FILE__, __func__, call_status);
1457 		return;
1458 	}
1459 
1460 	/*
1461 	 * The first two (2) bytes of the data in the buffer are the length of
1462 	 * the returned data, not counting these first two (2) bytes.
1463 	 */
1464 	len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1465 	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1466 		pr_warn("%s too large returned buffer %d", __func__, len);
1467 		return;
1468 	}
1469 
1470 	idx = 2;
1471 	while (idx < len) {
1472 		u8 block_shift = local_buffer[idx++];
1473 		u32 block_size;
1474 		unsigned int npsize;
1475 
1476 		if (!block_shift)
1477 			break;
1478 
1479 		block_size = 1 << block_shift;
1480 
1481 		for (npsize = local_buffer[idx++];
1482 		     npsize > 0 && idx < len; npsize--)
1483 			check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1484 					    block_size);
1485 	}
1486 
1487 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1488 		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1489 			if (hblkrm_size[bpsize][idx])
1490 				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1491 					bpsize, idx, hblkrm_size[bpsize][idx]);
1492 }
1493 
1494 /*
1495  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1496  * lock.
1497  */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1498 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1499 {
1500 	unsigned long vpn;
1501 	unsigned long i, pix, rc;
1502 	unsigned long flags = 0;
1503 	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1504 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1505 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1506 	unsigned long index, shift, slot;
1507 	real_pte_t pte;
1508 	int psize, ssize;
1509 
1510 	if (lock_tlbie)
1511 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1512 
1513 	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1514 		do_block_remove(number, batch, param);
1515 		goto out;
1516 	}
1517 
1518 	psize = batch->psize;
1519 	ssize = batch->ssize;
1520 	pix = 0;
1521 	for (i = 0; i < number; i++) {
1522 		vpn = batch->vpn[i];
1523 		pte = batch->pte[i];
1524 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1525 			slot = compute_slot(pte, vpn, index, shift, ssize);
1526 			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1527 				/*
1528 				 * lpar doesn't use the passed actual page size
1529 				 */
1530 				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1531 							     0, ssize, local);
1532 			} else {
1533 				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1534 				param[pix+1] = hpte_encode_avpn(vpn, psize,
1535 								ssize);
1536 				pix += 2;
1537 				if (pix == 8) {
1538 					rc = plpar_hcall9(H_BULK_REMOVE, param,
1539 						param[0], param[1], param[2],
1540 						param[3], param[4], param[5],
1541 						param[6], param[7]);
1542 					BUG_ON(rc != H_SUCCESS);
1543 					pix = 0;
1544 				}
1545 			}
1546 		} pte_iterate_hashed_end();
1547 	}
1548 	if (pix) {
1549 		param[pix] = HBR_END;
1550 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1551 				  param[2], param[3], param[4], param[5],
1552 				  param[6], param[7]);
1553 		BUG_ON(rc != H_SUCCESS);
1554 	}
1555 
1556 out:
1557 	if (lock_tlbie)
1558 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1559 }
1560 
disable_bulk_remove(char * str)1561 static int __init disable_bulk_remove(char *str)
1562 {
1563 	if (strcmp(str, "off") == 0 &&
1564 	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1565 		pr_info("Disabling BULK_REMOVE firmware feature");
1566 		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1567 	}
1568 	return 1;
1569 }
1570 
1571 __setup("bulk_remove=", disable_bulk_remove);
1572 
1573 #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1574 
1575 struct hpt_resize_state {
1576 	unsigned long shift;
1577 	int commit_rc;
1578 };
1579 
pseries_lpar_resize_hpt_commit(void * data)1580 static int pseries_lpar_resize_hpt_commit(void *data)
1581 {
1582 	struct hpt_resize_state *state = data;
1583 
1584 	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1585 	if (state->commit_rc != H_SUCCESS)
1586 		return -EIO;
1587 
1588 	/* Hypervisor has transitioned the HTAB, update our globals */
1589 	ppc64_pft_size = state->shift;
1590 	htab_size_bytes = 1UL << ppc64_pft_size;
1591 	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1592 
1593 	return 0;
1594 }
1595 
1596 /*
1597  * Must be called in process context. The caller must hold the
1598  * cpus_lock.
1599  */
pseries_lpar_resize_hpt(unsigned long shift)1600 static int pseries_lpar_resize_hpt(unsigned long shift)
1601 {
1602 	struct hpt_resize_state state = {
1603 		.shift = shift,
1604 		.commit_rc = H_FUNCTION,
1605 	};
1606 	unsigned int delay, total_delay = 0;
1607 	int rc;
1608 	ktime_t t0, t1, t2;
1609 
1610 	might_sleep();
1611 
1612 	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1613 		return -ENODEV;
1614 
1615 	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1616 
1617 	t0 = ktime_get();
1618 
1619 	rc = plpar_resize_hpt_prepare(0, shift);
1620 	while (H_IS_LONG_BUSY(rc)) {
1621 		delay = get_longbusy_msecs(rc);
1622 		total_delay += delay;
1623 		if (total_delay > HPT_RESIZE_TIMEOUT) {
1624 			/* prepare with shift==0 cancels an in-progress resize */
1625 			rc = plpar_resize_hpt_prepare(0, 0);
1626 			if (rc != H_SUCCESS)
1627 				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1628 				       rc);
1629 			return -ETIMEDOUT;
1630 		}
1631 		msleep(delay);
1632 		rc = plpar_resize_hpt_prepare(0, shift);
1633 	}
1634 
1635 	switch (rc) {
1636 	case H_SUCCESS:
1637 		/* Continue on */
1638 		break;
1639 
1640 	case H_PARAMETER:
1641 		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1642 		return -EINVAL;
1643 	case H_RESOURCE:
1644 		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1645 		return -EPERM;
1646 	default:
1647 		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1648 		return -EIO;
1649 	}
1650 
1651 	t1 = ktime_get();
1652 
1653 	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1654 				     &state, NULL);
1655 
1656 	t2 = ktime_get();
1657 
1658 	if (rc != 0) {
1659 		switch (state.commit_rc) {
1660 		case H_PTEG_FULL:
1661 			return -ENOSPC;
1662 
1663 		default:
1664 			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1665 				state.commit_rc);
1666 			return -EIO;
1667 		};
1668 	}
1669 
1670 	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1671 		shift, (long long) ktime_ms_delta(t1, t0),
1672 		(long long) ktime_ms_delta(t2, t1));
1673 
1674 	return 0;
1675 }
1676 
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)1677 static int pseries_lpar_register_process_table(unsigned long base,
1678 			unsigned long page_size, unsigned long table_size)
1679 {
1680 	long rc;
1681 	unsigned long flags = 0;
1682 
1683 	if (table_size)
1684 		flags |= PROC_TABLE_NEW;
1685 	if (radix_enabled()) {
1686 		flags |= PROC_TABLE_RADIX;
1687 		if (mmu_has_feature(MMU_FTR_GTSE))
1688 			flags |= PROC_TABLE_GTSE;
1689 	} else
1690 		flags |= PROC_TABLE_HPT_SLB;
1691 	for (;;) {
1692 		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1693 					page_size, table_size);
1694 		if (!H_IS_LONG_BUSY(rc))
1695 			break;
1696 		mdelay(get_longbusy_msecs(rc));
1697 	}
1698 	if (rc != H_SUCCESS) {
1699 		pr_err("Failed to register process table (rc=%ld)\n", rc);
1700 		BUG();
1701 	}
1702 	return rc;
1703 }
1704 
hpte_init_pseries(void)1705 void __init hpte_init_pseries(void)
1706 {
1707 	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1708 	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1709 	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1710 	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1711 	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1712 	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1713 	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1714 	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1715 	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1716 
1717 	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1718 		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1719 
1720 	/*
1721 	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1722 	 * to inform the hypervisor that we wish to use the HPT.
1723 	 */
1724 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1725 		pseries_lpar_register_process_table(0, 0, 0);
1726 }
1727 
1728 #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1729 void radix_init_pseries(void)
1730 {
1731 	pr_info("Using radix MMU under hypervisor\n");
1732 
1733 	pseries_lpar_register_process_table(__pa(process_tb),
1734 						0, PRTB_SIZE_SHIFT - 12);
1735 }
1736 #endif
1737 
1738 #ifdef CONFIG_PPC_SMLPAR
1739 #define CMO_FREE_HINT_DEFAULT 1
1740 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1741 
cmo_free_hint(char * str)1742 static int __init cmo_free_hint(char *str)
1743 {
1744 	char *parm;
1745 	parm = strstrip(str);
1746 
1747 	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1748 		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1749 		cmo_free_hint_flag = 0;
1750 		return 1;
1751 	}
1752 
1753 	cmo_free_hint_flag = 1;
1754 	pr_info("%s: CMO free page hinting is active.\n", __func__);
1755 
1756 	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1757 		return 1;
1758 
1759 	return 0;
1760 }
1761 
1762 __setup("cmo_free_hint=", cmo_free_hint);
1763 
pSeries_set_page_state(struct page * page,int order,unsigned long state)1764 static void pSeries_set_page_state(struct page *page, int order,
1765 				   unsigned long state)
1766 {
1767 	int i, j;
1768 	unsigned long cmo_page_sz, addr;
1769 
1770 	cmo_page_sz = cmo_get_page_size();
1771 	addr = __pa((unsigned long)page_address(page));
1772 
1773 	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1774 		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1775 			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1776 	}
1777 }
1778 
arch_free_page(struct page * page,int order)1779 void arch_free_page(struct page *page, int order)
1780 {
1781 	if (radix_enabled())
1782 		return;
1783 	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1784 		return;
1785 
1786 	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1787 }
1788 EXPORT_SYMBOL(arch_free_page);
1789 
1790 #endif /* CONFIG_PPC_SMLPAR */
1791 #endif /* CONFIG_PPC_BOOK3S_64 */
1792 
1793 #ifdef CONFIG_TRACEPOINTS
1794 #ifdef CONFIG_JUMP_LABEL
1795 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1796 
hcall_tracepoint_regfunc(void)1797 int hcall_tracepoint_regfunc(void)
1798 {
1799 	static_key_slow_inc(&hcall_tracepoint_key);
1800 	return 0;
1801 }
1802 
hcall_tracepoint_unregfunc(void)1803 void hcall_tracepoint_unregfunc(void)
1804 {
1805 	static_key_slow_dec(&hcall_tracepoint_key);
1806 }
1807 #else
1808 /*
1809  * We optimise our hcall path by placing hcall_tracepoint_refcount
1810  * directly in the TOC so we can check if the hcall tracepoints are
1811  * enabled via a single load.
1812  */
1813 
1814 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1815 extern long hcall_tracepoint_refcount;
1816 
hcall_tracepoint_regfunc(void)1817 int hcall_tracepoint_regfunc(void)
1818 {
1819 	hcall_tracepoint_refcount++;
1820 	return 0;
1821 }
1822 
hcall_tracepoint_unregfunc(void)1823 void hcall_tracepoint_unregfunc(void)
1824 {
1825 	hcall_tracepoint_refcount--;
1826 }
1827 #endif
1828 
1829 /*
1830  * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1831  * detected because it may indicate a problem. This will not catch all
1832  * problems with tracing code making hcalls, because the tracing might have
1833  * been invoked from a non-hcall, so the first hcall could recurse into it
1834  * without warning here, but this better than nothing.
1835  *
1836  * Hcalls with specific problems being traced should use the _notrace
1837  * plpar_hcall variants.
1838  */
1839 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1840 
1841 
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1842 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1843 {
1844 	unsigned long flags;
1845 	unsigned int *depth;
1846 
1847 	local_irq_save(flags);
1848 
1849 	depth = this_cpu_ptr(&hcall_trace_depth);
1850 
1851 	if (WARN_ON_ONCE(*depth))
1852 		goto out;
1853 
1854 	(*depth)++;
1855 	preempt_disable();
1856 	trace_hcall_entry(opcode, args);
1857 	(*depth)--;
1858 
1859 out:
1860 	local_irq_restore(flags);
1861 }
1862 
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1863 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1864 {
1865 	unsigned long flags;
1866 	unsigned int *depth;
1867 
1868 	local_irq_save(flags);
1869 
1870 	depth = this_cpu_ptr(&hcall_trace_depth);
1871 
1872 	if (*depth) /* Don't warn again on the way out */
1873 		goto out;
1874 
1875 	(*depth)++;
1876 	trace_hcall_exit(opcode, retval, retbuf);
1877 	preempt_enable();
1878 	(*depth)--;
1879 
1880 out:
1881 	local_irq_restore(flags);
1882 }
1883 #endif
1884 
1885 /**
1886  * h_get_mpp
1887  * H_GET_MPP hcall returns info in 7 parms
1888  */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1889 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1890 {
1891 	int rc;
1892 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1893 
1894 	rc = plpar_hcall9(H_GET_MPP, retbuf);
1895 
1896 	mpp_data->entitled_mem = retbuf[0];
1897 	mpp_data->mapped_mem = retbuf[1];
1898 
1899 	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1900 	mpp_data->pool_num = retbuf[2] & 0xffff;
1901 
1902 	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1903 	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1904 	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1905 
1906 	mpp_data->pool_size = retbuf[4];
1907 	mpp_data->loan_request = retbuf[5];
1908 	mpp_data->backing_mem = retbuf[6];
1909 
1910 	return rc;
1911 }
1912 EXPORT_SYMBOL(h_get_mpp);
1913 
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1914 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1915 {
1916 	int rc;
1917 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1918 
1919 	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1920 
1921 	mpp_x_data->coalesced_bytes = retbuf[0];
1922 	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1923 	mpp_x_data->pool_purr_cycles = retbuf[2];
1924 	mpp_x_data->pool_spurr_cycles = retbuf[3];
1925 
1926 	return rc;
1927 }
1928 
vsid_unscramble(unsigned long vsid,int ssize)1929 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1930 {
1931 	unsigned long protovsid;
1932 	unsigned long va_bits = VA_BITS;
1933 	unsigned long modinv, vsid_modulus;
1934 	unsigned long max_mod_inv, tmp_modinv;
1935 
1936 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1937 		va_bits = 65;
1938 
1939 	if (ssize == MMU_SEGSIZE_256M) {
1940 		modinv = VSID_MULINV_256M;
1941 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1942 	} else {
1943 		modinv = VSID_MULINV_1T;
1944 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1945 	}
1946 
1947 	/*
1948 	 * vsid outside our range.
1949 	 */
1950 	if (vsid >= vsid_modulus)
1951 		return 0;
1952 
1953 	/*
1954 	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1955 	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1956 	 *   protovsid = (vsid * modinv) % vsid_modulus
1957 	 */
1958 
1959 	/* Check if (vsid * modinv) overflow (63 bits) */
1960 	max_mod_inv = 0x7fffffffffffffffull / vsid;
1961 	if (modinv < max_mod_inv)
1962 		return (vsid * modinv) % vsid_modulus;
1963 
1964 	tmp_modinv = modinv/max_mod_inv;
1965 	modinv %= max_mod_inv;
1966 
1967 	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1968 	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1969 
1970 	return protovsid;
1971 }
1972 
reserve_vrma_context_id(void)1973 static int __init reserve_vrma_context_id(void)
1974 {
1975 	unsigned long protovsid;
1976 
1977 	/*
1978 	 * Reserve context ids which map to reserved virtual addresses. For now
1979 	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1980 	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1981 	 * enable adjunct support via the "ibm,client-architecture-support"
1982 	 * interface.
1983 	 */
1984 	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1985 	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1986 	return 0;
1987 }
1988 machine_device_initcall(pseries, reserve_vrma_context_id);
1989 
1990 #ifdef CONFIG_DEBUG_FS
1991 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1992 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1993 			      loff_t *pos)
1994 {
1995 	int cpu = (long)filp->private_data;
1996 	struct lppaca *lppaca = &lppaca_of(cpu);
1997 
1998 	return simple_read_from_buffer(buf, len, pos, lppaca,
1999 				sizeof(struct lppaca));
2000 }
2001 
2002 static const struct file_operations vpa_fops = {
2003 	.open		= simple_open,
2004 	.read		= vpa_file_read,
2005 	.llseek		= default_llseek,
2006 };
2007 
vpa_debugfs_init(void)2008 static int __init vpa_debugfs_init(void)
2009 {
2010 	char name[16];
2011 	long i;
2012 	struct dentry *vpa_dir;
2013 
2014 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2015 		return 0;
2016 
2017 	vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2018 
2019 	/* set up the per-cpu vpa file*/
2020 	for_each_possible_cpu(i) {
2021 		sprintf(name, "cpu-%ld", i);
2022 		debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2023 	}
2024 
2025 	return 0;
2026 }
2027 machine_arch_initcall(pseries, vpa_debugfs_init);
2028 #endif /* CONFIG_DEBUG_FS */
2029