1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <linux/debugfs.h>
26
27 #include <asm/processor.h>
28 #include <asm/mmu.h>
29 #include <asm/page.h>
30 #include <asm/machdep.h>
31 #include <asm/mmu_context.h>
32 #include <asm/iommu.h>
33 #include <asm/tlb.h>
34 #include <asm/prom.h>
35 #include <asm/cputable.h>
36 #include <asm/udbg.h>
37 #include <asm/smp.h>
38 #include <asm/trace.h>
39 #include <asm/firmware.h>
40 #include <asm/plpar_wrappers.h>
41 #include <asm/kexec.h>
42 #include <asm/fadump.h>
43 #include <asm/asm-prototypes.h>
44 #include <asm/dtl.h>
45
46 #include "pseries.h"
47
48 /* Flag bits for H_BULK_REMOVE */
49 #define HBR_REQUEST 0x4000000000000000UL
50 #define HBR_RESPONSE 0x8000000000000000UL
51 #define HBR_END 0xc000000000000000UL
52 #define HBR_AVPN 0x0200000000000000UL
53 #define HBR_ANDCOND 0x0100000000000000UL
54
55
56 /* in hvCall.S */
57 EXPORT_SYMBOL(plpar_hcall);
58 EXPORT_SYMBOL(plpar_hcall9);
59 EXPORT_SYMBOL(plpar_hcall_norets);
60
61 /*
62 * H_BLOCK_REMOVE supported block size for this page size in segment who's base
63 * page size is that page size.
64 *
65 * The first index is the segment base page size, the second one is the actual
66 * page size.
67 */
68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
69
70 /*
71 * Due to the involved complexity, and that the current hypervisor is only
72 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
73 * buffer size to 8 size block.
74 */
75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
76
77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
78 static u8 dtl_mask = DTL_LOG_PREEMPT;
79 #else
80 static u8 dtl_mask;
81 #endif
82
alloc_dtl_buffers(unsigned long * time_limit)83 void alloc_dtl_buffers(unsigned long *time_limit)
84 {
85 int cpu;
86 struct paca_struct *pp;
87 struct dtl_entry *dtl;
88
89 for_each_possible_cpu(cpu) {
90 pp = paca_ptrs[cpu];
91 if (pp->dispatch_log)
92 continue;
93 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
94 if (!dtl) {
95 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
96 cpu);
97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
98 pr_warn("Stolen time statistics will be unreliable\n");
99 #endif
100 break;
101 }
102
103 pp->dtl_ridx = 0;
104 pp->dispatch_log = dtl;
105 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
106 pp->dtl_curr = dtl;
107
108 if (time_limit && time_after(jiffies, *time_limit)) {
109 cond_resched();
110 *time_limit = jiffies + HZ;
111 }
112 }
113 }
114
register_dtl_buffer(int cpu)115 void register_dtl_buffer(int cpu)
116 {
117 long ret;
118 struct paca_struct *pp;
119 struct dtl_entry *dtl;
120 int hwcpu = get_hard_smp_processor_id(cpu);
121
122 pp = paca_ptrs[cpu];
123 dtl = pp->dispatch_log;
124 if (dtl && dtl_mask) {
125 pp->dtl_ridx = 0;
126 pp->dtl_curr = dtl;
127 lppaca_of(cpu).dtl_idx = 0;
128
129 /* hypervisor reads buffer length from this field */
130 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
131 ret = register_dtl(hwcpu, __pa(dtl));
132 if (ret)
133 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
134 cpu, hwcpu, ret);
135
136 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
137 }
138 }
139
140 #ifdef CONFIG_PPC_SPLPAR
141 struct dtl_worker {
142 struct delayed_work work;
143 int cpu;
144 };
145
146 struct vcpu_dispatch_data {
147 int last_disp_cpu;
148
149 int total_disp;
150
151 int same_cpu_disp;
152 int same_chip_disp;
153 int diff_chip_disp;
154 int far_chip_disp;
155
156 int numa_home_disp;
157 int numa_remote_disp;
158 int numa_far_disp;
159 };
160
161 /*
162 * This represents the number of cpus in the hypervisor. Since there is no
163 * architected way to discover the number of processors in the host, we
164 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
165 * is sufficient for our purposes. This will need to be tweaked if
166 * CONFIG_NR_CPUS is changed.
167 */
168 #define NR_CPUS_H NR_CPUS
169
170 DEFINE_RWLOCK(dtl_access_lock);
171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
172 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
174 static enum cpuhp_state dtl_worker_state;
175 static DEFINE_MUTEX(dtl_enable_mutex);
176 static int vcpudispatch_stats_on __read_mostly;
177 static int vcpudispatch_stats_freq = 50;
178 static __be32 *vcpu_associativity, *pcpu_associativity;
179
180
free_dtl_buffers(unsigned long * time_limit)181 static void free_dtl_buffers(unsigned long *time_limit)
182 {
183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
184 int cpu;
185 struct paca_struct *pp;
186
187 for_each_possible_cpu(cpu) {
188 pp = paca_ptrs[cpu];
189 if (!pp->dispatch_log)
190 continue;
191 kmem_cache_free(dtl_cache, pp->dispatch_log);
192 pp->dtl_ridx = 0;
193 pp->dispatch_log = 0;
194 pp->dispatch_log_end = 0;
195 pp->dtl_curr = 0;
196
197 if (time_limit && time_after(jiffies, *time_limit)) {
198 cond_resched();
199 *time_limit = jiffies + HZ;
200 }
201 }
202 #endif
203 }
204
init_cpu_associativity(void)205 static int init_cpu_associativity(void)
206 {
207 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211
212 if (!vcpu_associativity || !pcpu_associativity) {
213 pr_err("error allocating memory for associativity information\n");
214 return -ENOMEM;
215 }
216
217 return 0;
218 }
219
destroy_cpu_associativity(void)220 static void destroy_cpu_associativity(void)
221 {
222 kfree(vcpu_associativity);
223 kfree(pcpu_associativity);
224 vcpu_associativity = pcpu_associativity = 0;
225 }
226
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
228 {
229 __be32 *assoc;
230 int rc = 0;
231
232 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
233 if (!assoc[0]) {
234 rc = hcall_vphn(cpu, flag, &assoc[0]);
235 if (rc)
236 return NULL;
237 }
238
239 return assoc;
240 }
241
get_pcpu_associativity(int cpu)242 static __be32 *get_pcpu_associativity(int cpu)
243 {
244 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
245 }
246
get_vcpu_associativity(int cpu)247 static __be32 *get_vcpu_associativity(int cpu)
248 {
249 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
250 }
251
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
253 {
254 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
255
256 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
257 return -EINVAL;
258
259 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
260 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
261
262 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
263 return -EIO;
264
265 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
266 }
267
cpu_home_node_dispatch_distance(int disp_cpu)268 static int cpu_home_node_dispatch_distance(int disp_cpu)
269 {
270 __be32 *disp_cpu_assoc, *vcpu_assoc;
271 int vcpu_id = smp_processor_id();
272
273 if (disp_cpu >= NR_CPUS_H) {
274 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
275 disp_cpu, NR_CPUS_H);
276 return -EINVAL;
277 }
278
279 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
280 vcpu_assoc = get_vcpu_associativity(vcpu_id);
281
282 if (!disp_cpu_assoc || !vcpu_assoc)
283 return -EIO;
284
285 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
286 }
287
update_vcpu_disp_stat(int disp_cpu)288 static void update_vcpu_disp_stat(int disp_cpu)
289 {
290 struct vcpu_dispatch_data *disp;
291 int distance;
292
293 disp = this_cpu_ptr(&vcpu_disp_data);
294 if (disp->last_disp_cpu == -1) {
295 disp->last_disp_cpu = disp_cpu;
296 return;
297 }
298
299 disp->total_disp++;
300
301 if (disp->last_disp_cpu == disp_cpu ||
302 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
303 cpu_first_thread_sibling(disp_cpu)))
304 disp->same_cpu_disp++;
305 else {
306 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
307 disp_cpu);
308 if (distance < 0)
309 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
310 smp_processor_id());
311 else {
312 switch (distance) {
313 case 0:
314 disp->same_chip_disp++;
315 break;
316 case 1:
317 disp->diff_chip_disp++;
318 break;
319 case 2:
320 disp->far_chip_disp++;
321 break;
322 default:
323 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
324 smp_processor_id(),
325 disp->last_disp_cpu,
326 disp_cpu,
327 distance);
328 }
329 }
330 }
331
332 distance = cpu_home_node_dispatch_distance(disp_cpu);
333 if (distance < 0)
334 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
335 smp_processor_id());
336 else {
337 switch (distance) {
338 case 0:
339 disp->numa_home_disp++;
340 break;
341 case 1:
342 disp->numa_remote_disp++;
343 break;
344 case 2:
345 disp->numa_far_disp++;
346 break;
347 default:
348 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
349 smp_processor_id(),
350 disp_cpu,
351 distance);
352 }
353 }
354
355 disp->last_disp_cpu = disp_cpu;
356 }
357
process_dtl_buffer(struct work_struct * work)358 static void process_dtl_buffer(struct work_struct *work)
359 {
360 struct dtl_entry dtle;
361 u64 i = __this_cpu_read(dtl_entry_ridx);
362 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
363 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
364 struct lppaca *vpa = local_paca->lppaca_ptr;
365 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
366
367 if (!local_paca->dispatch_log)
368 return;
369
370 /* if we have been migrated away, we cancel ourself */
371 if (d->cpu != smp_processor_id()) {
372 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
373 smp_processor_id());
374 return;
375 }
376
377 if (i == be64_to_cpu(vpa->dtl_idx))
378 goto out;
379
380 while (i < be64_to_cpu(vpa->dtl_idx)) {
381 dtle = *dtl;
382 barrier();
383 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
384 /* buffer has overflowed */
385 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
386 d->cpu,
387 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
388 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
389 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
390 continue;
391 }
392 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
393 ++i;
394 ++dtl;
395 if (dtl == dtl_end)
396 dtl = local_paca->dispatch_log;
397 }
398
399 __this_cpu_write(dtl_entry_ridx, i);
400
401 out:
402 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
403 HZ / vcpudispatch_stats_freq);
404 }
405
dtl_worker_online(unsigned int cpu)406 static int dtl_worker_online(unsigned int cpu)
407 {
408 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
409
410 memset(d, 0, sizeof(*d));
411 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
412 d->cpu = cpu;
413
414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
415 per_cpu(dtl_entry_ridx, cpu) = 0;
416 register_dtl_buffer(cpu);
417 #else
418 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
419 #endif
420
421 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
422 return 0;
423 }
424
dtl_worker_offline(unsigned int cpu)425 static int dtl_worker_offline(unsigned int cpu)
426 {
427 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
428
429 cancel_delayed_work_sync(&d->work);
430
431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
432 unregister_dtl(get_hard_smp_processor_id(cpu));
433 #endif
434
435 return 0;
436 }
437
set_global_dtl_mask(u8 mask)438 static void set_global_dtl_mask(u8 mask)
439 {
440 int cpu;
441
442 dtl_mask = mask;
443 for_each_present_cpu(cpu)
444 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
445 }
446
reset_global_dtl_mask(void)447 static void reset_global_dtl_mask(void)
448 {
449 int cpu;
450
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 dtl_mask = DTL_LOG_PREEMPT;
453 #else
454 dtl_mask = 0;
455 #endif
456 for_each_present_cpu(cpu)
457 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
458 }
459
dtl_worker_enable(unsigned long * time_limit)460 static int dtl_worker_enable(unsigned long *time_limit)
461 {
462 int rc = 0, state;
463
464 if (!write_trylock(&dtl_access_lock)) {
465 rc = -EBUSY;
466 goto out;
467 }
468
469 set_global_dtl_mask(DTL_LOG_ALL);
470
471 /* Setup dtl buffers and register those */
472 alloc_dtl_buffers(time_limit);
473
474 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
475 dtl_worker_online, dtl_worker_offline);
476 if (state < 0) {
477 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
478 free_dtl_buffers(time_limit);
479 reset_global_dtl_mask();
480 write_unlock(&dtl_access_lock);
481 rc = -EINVAL;
482 goto out;
483 }
484 dtl_worker_state = state;
485
486 out:
487 return rc;
488 }
489
dtl_worker_disable(unsigned long * time_limit)490 static void dtl_worker_disable(unsigned long *time_limit)
491 {
492 cpuhp_remove_state(dtl_worker_state);
493 free_dtl_buffers(time_limit);
494 reset_global_dtl_mask();
495 write_unlock(&dtl_access_lock);
496 }
497
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
499 size_t count, loff_t *ppos)
500 {
501 unsigned long time_limit = jiffies + HZ;
502 struct vcpu_dispatch_data *disp;
503 int rc, cmd, cpu;
504 char buf[16];
505
506 if (count > 15)
507 return -EINVAL;
508
509 if (copy_from_user(buf, p, count))
510 return -EFAULT;
511
512 buf[count] = 0;
513 rc = kstrtoint(buf, 0, &cmd);
514 if (rc || cmd < 0 || cmd > 1) {
515 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
516 return rc ? rc : -EINVAL;
517 }
518
519 mutex_lock(&dtl_enable_mutex);
520
521 if ((cmd == 0 && !vcpudispatch_stats_on) ||
522 (cmd == 1 && vcpudispatch_stats_on))
523 goto out;
524
525 if (cmd) {
526 rc = init_cpu_associativity();
527 if (rc) {
528 destroy_cpu_associativity();
529 goto out;
530 }
531
532 for_each_possible_cpu(cpu) {
533 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
534 memset(disp, 0, sizeof(*disp));
535 disp->last_disp_cpu = -1;
536 }
537
538 rc = dtl_worker_enable(&time_limit);
539 if (rc) {
540 destroy_cpu_associativity();
541 goto out;
542 }
543 } else {
544 dtl_worker_disable(&time_limit);
545 destroy_cpu_associativity();
546 }
547
548 vcpudispatch_stats_on = cmd;
549
550 out:
551 mutex_unlock(&dtl_enable_mutex);
552 if (rc)
553 return rc;
554 return count;
555 }
556
vcpudispatch_stats_display(struct seq_file * p,void * v)557 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
558 {
559 int cpu;
560 struct vcpu_dispatch_data *disp;
561
562 if (!vcpudispatch_stats_on) {
563 seq_puts(p, "off\n");
564 return 0;
565 }
566
567 for_each_online_cpu(cpu) {
568 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
569 seq_printf(p, "cpu%d", cpu);
570 seq_put_decimal_ull(p, " ", disp->total_disp);
571 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
572 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
573 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
574 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
575 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
576 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
577 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
578 seq_puts(p, "\n");
579 }
580
581 return 0;
582 }
583
vcpudispatch_stats_open(struct inode * inode,struct file * file)584 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
585 {
586 return single_open(file, vcpudispatch_stats_display, NULL);
587 }
588
589 static const struct proc_ops vcpudispatch_stats_proc_ops = {
590 .proc_open = vcpudispatch_stats_open,
591 .proc_read = seq_read,
592 .proc_write = vcpudispatch_stats_write,
593 .proc_lseek = seq_lseek,
594 .proc_release = single_release,
595 };
596
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)597 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
598 const char __user *p, size_t count, loff_t *ppos)
599 {
600 int rc, freq;
601 char buf[16];
602
603 if (count > 15)
604 return -EINVAL;
605
606 if (copy_from_user(buf, p, count))
607 return -EFAULT;
608
609 buf[count] = 0;
610 rc = kstrtoint(buf, 0, &freq);
611 if (rc || freq < 1 || freq > HZ) {
612 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
613 HZ);
614 return rc ? rc : -EINVAL;
615 }
616
617 vcpudispatch_stats_freq = freq;
618
619 return count;
620 }
621
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)622 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
623 {
624 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
625 return 0;
626 }
627
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)628 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
629 {
630 return single_open(file, vcpudispatch_stats_freq_display, NULL);
631 }
632
633 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
634 .proc_open = vcpudispatch_stats_freq_open,
635 .proc_read = seq_read,
636 .proc_write = vcpudispatch_stats_freq_write,
637 .proc_lseek = seq_lseek,
638 .proc_release = single_release,
639 };
640
vcpudispatch_stats_procfs_init(void)641 static int __init vcpudispatch_stats_procfs_init(void)
642 {
643 if (!lppaca_shared_proc())
644 return 0;
645
646 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
647 &vcpudispatch_stats_proc_ops))
648 pr_err("vcpudispatch_stats: error creating procfs file\n");
649 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
650 &vcpudispatch_stats_freq_proc_ops))
651 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
652
653 return 0;
654 }
655
656 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
657 #endif /* CONFIG_PPC_SPLPAR */
658
vpa_init(int cpu)659 void vpa_init(int cpu)
660 {
661 int hwcpu = get_hard_smp_processor_id(cpu);
662 unsigned long addr;
663 long ret;
664
665 /*
666 * The spec says it "may be problematic" if CPU x registers the VPA of
667 * CPU y. We should never do that, but wail if we ever do.
668 */
669 WARN_ON(cpu != smp_processor_id());
670
671 if (cpu_has_feature(CPU_FTR_ALTIVEC))
672 lppaca_of(cpu).vmxregs_in_use = 1;
673
674 if (cpu_has_feature(CPU_FTR_ARCH_207S))
675 lppaca_of(cpu).ebb_regs_in_use = 1;
676
677 addr = __pa(&lppaca_of(cpu));
678 ret = register_vpa(hwcpu, addr);
679
680 if (ret) {
681 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
682 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
683 return;
684 }
685
686 #ifdef CONFIG_PPC_BOOK3S_64
687 /*
688 * PAPR says this feature is SLB-Buffer but firmware never
689 * reports that. All SPLPAR support SLB shadow buffer.
690 */
691 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
692 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
693 ret = register_slb_shadow(hwcpu, addr);
694 if (ret)
695 pr_err("WARNING: SLB shadow buffer registration for "
696 "cpu %d (hw %d) of area %lx failed with %ld\n",
697 cpu, hwcpu, addr, ret);
698 }
699 #endif /* CONFIG_PPC_BOOK3S_64 */
700
701 /*
702 * Register dispatch trace log, if one has been allocated.
703 */
704 register_dtl_buffer(cpu);
705 }
706
707 #ifdef CONFIG_PPC_BOOK3S_64
708
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)709 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
710 unsigned long vpn, unsigned long pa,
711 unsigned long rflags, unsigned long vflags,
712 int psize, int apsize, int ssize)
713 {
714 unsigned long lpar_rc;
715 unsigned long flags;
716 unsigned long slot;
717 unsigned long hpte_v, hpte_r;
718
719 if (!(vflags & HPTE_V_BOLTED))
720 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
721 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
722 hpte_group, vpn, pa, rflags, vflags, psize);
723
724 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
725 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
726
727 if (!(vflags & HPTE_V_BOLTED))
728 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
729
730 /* Now fill in the actual HPTE */
731 /* Set CEC cookie to 0 */
732 /* Zero page = 0 */
733 /* I-cache Invalidate = 0 */
734 /* I-cache synchronize = 0 */
735 /* Exact = 0 */
736 flags = 0;
737
738 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
739 flags |= H_COALESCE_CAND;
740
741 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
742 if (unlikely(lpar_rc == H_PTEG_FULL)) {
743 pr_devel("Hash table group is full\n");
744 return -1;
745 }
746
747 /*
748 * Since we try and ioremap PHBs we don't own, the pte insert
749 * will fail. However we must catch the failure in hash_page
750 * or we will loop forever, so return -2 in this case.
751 */
752 if (unlikely(lpar_rc != H_SUCCESS)) {
753 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
754 return -2;
755 }
756 if (!(vflags & HPTE_V_BOLTED))
757 pr_devel(" -> slot: %lu\n", slot & 7);
758
759 /* Because of iSeries, we have to pass down the secondary
760 * bucket bit here as well
761 */
762 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
763 }
764
765 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
766
pSeries_lpar_hpte_remove(unsigned long hpte_group)767 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
768 {
769 unsigned long slot_offset;
770 unsigned long lpar_rc;
771 int i;
772 unsigned long dummy1, dummy2;
773
774 /* pick a random slot to start at */
775 slot_offset = mftb() & 0x7;
776
777 for (i = 0; i < HPTES_PER_GROUP; i++) {
778
779 /* don't remove a bolted entry */
780 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
781 HPTE_V_BOLTED, &dummy1, &dummy2);
782 if (lpar_rc == H_SUCCESS)
783 return i;
784
785 /*
786 * The test for adjunct partition is performed before the
787 * ANDCOND test. H_RESOURCE may be returned, so we need to
788 * check for that as well.
789 */
790 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
791
792 slot_offset++;
793 slot_offset &= 0x7;
794 }
795
796 return -1;
797 }
798
799 /* Called during kexec sequence with MMU off */
manual_hpte_clear_all(void)800 static notrace void manual_hpte_clear_all(void)
801 {
802 unsigned long size_bytes = 1UL << ppc64_pft_size;
803 unsigned long hpte_count = size_bytes >> 4;
804 struct {
805 unsigned long pteh;
806 unsigned long ptel;
807 } ptes[4];
808 long lpar_rc;
809 unsigned long i, j;
810
811 /* Read in batches of 4,
812 * invalidate only valid entries not in the VRMA
813 * hpte_count will be a multiple of 4
814 */
815 for (i = 0; i < hpte_count; i += 4) {
816 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
817 if (lpar_rc != H_SUCCESS) {
818 pr_info("Failed to read hash page table at %ld err %ld\n",
819 i, lpar_rc);
820 continue;
821 }
822 for (j = 0; j < 4; j++){
823 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
824 HPTE_V_VRMA_MASK)
825 continue;
826 if (ptes[j].pteh & HPTE_V_VALID)
827 plpar_pte_remove_raw(0, i + j, 0,
828 &(ptes[j].pteh), &(ptes[j].ptel));
829 }
830 }
831 }
832
833 /* Called during kexec sequence with MMU off */
hcall_hpte_clear_all(void)834 static notrace int hcall_hpte_clear_all(void)
835 {
836 int rc;
837
838 do {
839 rc = plpar_hcall_norets(H_CLEAR_HPT);
840 } while (rc == H_CONTINUE);
841
842 return rc;
843 }
844
845 /* Called during kexec sequence with MMU off */
pseries_hpte_clear_all(void)846 static notrace void pseries_hpte_clear_all(void)
847 {
848 int rc;
849
850 rc = hcall_hpte_clear_all();
851 if (rc != H_SUCCESS)
852 manual_hpte_clear_all();
853
854 #ifdef __LITTLE_ENDIAN__
855 /*
856 * Reset exceptions to big endian.
857 *
858 * FIXME this is a hack for kexec, we need to reset the exception
859 * endian before starting the new kernel and this is a convenient place
860 * to do it.
861 *
862 * This is also called on boot when a fadump happens. In that case we
863 * must not change the exception endian mode.
864 */
865 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
866 pseries_big_endian_exceptions();
867 #endif
868 }
869
870 /*
871 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
872 * the low 3 bits of flags happen to line up. So no transform is needed.
873 * We can probably optimize here and assume the high bits of newpp are
874 * already zero. For now I am paranoid.
875 */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)876 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
877 unsigned long newpp,
878 unsigned long vpn,
879 int psize, int apsize,
880 int ssize, unsigned long inv_flags)
881 {
882 unsigned long lpar_rc;
883 unsigned long flags;
884 unsigned long want_v;
885
886 want_v = hpte_encode_avpn(vpn, psize, ssize);
887
888 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
889 flags |= (newpp & HPTE_R_KEY_HI) >> 48;
890 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
891 /* Move pp0 into bit 8 (IBM 55) */
892 flags |= (newpp & HPTE_R_PP0) >> 55;
893
894 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
895 want_v, slot, flags, psize);
896
897 lpar_rc = plpar_pte_protect(flags, slot, want_v);
898
899 if (lpar_rc == H_NOT_FOUND) {
900 pr_devel("not found !\n");
901 return -1;
902 }
903
904 pr_devel("ok\n");
905
906 BUG_ON(lpar_rc != H_SUCCESS);
907
908 return 0;
909 }
910
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)911 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
912 {
913 long lpar_rc;
914 unsigned long i, j;
915 struct {
916 unsigned long pteh;
917 unsigned long ptel;
918 } ptes[4];
919
920 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
921
922 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
923 if (lpar_rc != H_SUCCESS) {
924 pr_info("Failed to read hash page table at %ld err %ld\n",
925 hpte_group, lpar_rc);
926 continue;
927 }
928
929 for (j = 0; j < 4; j++) {
930 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
931 (ptes[j].pteh & HPTE_V_VALID))
932 return i + j;
933 }
934 }
935
936 return -1;
937 }
938
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)939 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
940 {
941 long slot;
942 unsigned long hash;
943 unsigned long want_v;
944 unsigned long hpte_group;
945
946 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
947 want_v = hpte_encode_avpn(vpn, psize, ssize);
948
949 /*
950 * We try to keep bolted entries always in primary hash
951 * But in some case we can find them in secondary too.
952 */
953 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
954 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
955 if (slot < 0) {
956 /* Try in secondary */
957 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
958 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
959 if (slot < 0)
960 return -1;
961 }
962 return hpte_group + slot;
963 }
964
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)965 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
966 unsigned long ea,
967 int psize, int ssize)
968 {
969 unsigned long vpn;
970 unsigned long lpar_rc, slot, vsid, flags;
971
972 vsid = get_kernel_vsid(ea, ssize);
973 vpn = hpt_vpn(ea, vsid, ssize);
974
975 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
976 BUG_ON(slot == -1);
977
978 flags = newpp & (HPTE_R_PP | HPTE_R_N);
979 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
980 /* Move pp0 into bit 8 (IBM 55) */
981 flags |= (newpp & HPTE_R_PP0) >> 55;
982
983 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
984
985 lpar_rc = plpar_pte_protect(flags, slot, 0);
986
987 BUG_ON(lpar_rc != H_SUCCESS);
988 }
989
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)990 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
991 int psize, int apsize,
992 int ssize, int local)
993 {
994 unsigned long want_v;
995 unsigned long lpar_rc;
996 unsigned long dummy1, dummy2;
997
998 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
999 slot, vpn, psize, local);
1000
1001 want_v = hpte_encode_avpn(vpn, psize, ssize);
1002 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1003 if (lpar_rc == H_NOT_FOUND)
1004 return;
1005
1006 BUG_ON(lpar_rc != H_SUCCESS);
1007 }
1008
1009
1010 /*
1011 * As defined in the PAPR's section 14.5.4.1.8
1012 * The control mask doesn't include the returned reference and change bit from
1013 * the processed PTE.
1014 */
1015 #define HBLKR_AVPN 0x0100000000000000UL
1016 #define HBLKR_CTRL_MASK 0xf800000000000000UL
1017 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1018 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1019 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1020
1021 /*
1022 * Returned true if we are supporting this block size for the specified segment
1023 * base page size and actual page size.
1024 *
1025 * Currently, we only support 8 size block.
1026 */
is_supported_hlbkrm(int bpsize,int psize)1027 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1028 {
1029 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1030 }
1031
1032 /**
1033 * H_BLOCK_REMOVE caller.
1034 * @idx should point to the latest @param entry set with a PTEX.
1035 * If PTE cannot be processed because another CPUs has already locked that
1036 * group, those entries are put back in @param starting at index 1.
1037 * If entries has to be retried and @retry_busy is set to true, these entries
1038 * are retried until success. If @retry_busy is set to false, the returned
1039 * is the number of entries yet to process.
1040 */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1041 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1042 bool retry_busy)
1043 {
1044 unsigned long i, rc, new_idx;
1045 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1046
1047 if (idx < 2) {
1048 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1049 return 0;
1050 }
1051 again:
1052 new_idx = 0;
1053 if (idx > PLPAR_HCALL9_BUFSIZE) {
1054 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1055 idx = PLPAR_HCALL9_BUFSIZE;
1056 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1057 param[idx] = HBR_END;
1058
1059 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1060 param[0], /* AVA */
1061 param[1], param[2], param[3], param[4], /* TS0-7 */
1062 param[5], param[6], param[7], param[8]);
1063 if (rc == H_SUCCESS)
1064 return 0;
1065
1066 BUG_ON(rc != H_PARTIAL);
1067
1068 /* Check that the unprocessed entries were 'not found' or 'busy' */
1069 for (i = 0; i < idx-1; i++) {
1070 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1071
1072 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1073 param[++new_idx] = param[i+1];
1074 continue;
1075 }
1076
1077 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1078 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1079 }
1080
1081 /*
1082 * If there were entries found busy, retry these entries if requested,
1083 * of if all the entries have to be retried.
1084 */
1085 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1086 idx = new_idx + 1;
1087 goto again;
1088 }
1089
1090 return new_idx;
1091 }
1092
1093 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1094 /*
1095 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1096 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1097 */
1098 #define PPC64_HUGE_HPTE_BATCH 12
1099
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1100 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1101 int count, int psize, int ssize)
1102 {
1103 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1104 unsigned long shift, current_vpgb, vpgb;
1105 int i, pix = 0;
1106
1107 shift = mmu_psize_defs[psize].shift;
1108
1109 for (i = 0; i < count; i++) {
1110 /*
1111 * Shifting 3 bits more on the right to get a
1112 * 8 pages aligned virtual addresse.
1113 */
1114 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1115 if (!pix || vpgb != current_vpgb) {
1116 /*
1117 * Need to start a new 8 pages block, flush
1118 * the current one if needed.
1119 */
1120 if (pix)
1121 (void)call_block_remove(pix, param, true);
1122 current_vpgb = vpgb;
1123 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1124 pix = 1;
1125 }
1126
1127 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1128 if (pix == PLPAR_HCALL9_BUFSIZE) {
1129 pix = call_block_remove(pix, param, false);
1130 /*
1131 * pix = 0 means that all the entries were
1132 * removed, we can start a new block.
1133 * Otherwise, this means that there are entries
1134 * to retry, and pix points to latest one, so
1135 * we should increment it and try to continue
1136 * the same block.
1137 */
1138 if (pix)
1139 pix++;
1140 }
1141 }
1142 if (pix)
1143 (void)call_block_remove(pix, param, true);
1144 }
1145
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1146 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1147 int count, int psize, int ssize)
1148 {
1149 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1150 int i = 0, pix = 0, rc;
1151
1152 for (i = 0; i < count; i++) {
1153
1154 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1155 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1156 ssize, 0);
1157 } else {
1158 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1159 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1160 pix += 2;
1161 if (pix == 8) {
1162 rc = plpar_hcall9(H_BULK_REMOVE, param,
1163 param[0], param[1], param[2],
1164 param[3], param[4], param[5],
1165 param[6], param[7]);
1166 BUG_ON(rc != H_SUCCESS);
1167 pix = 0;
1168 }
1169 }
1170 }
1171 if (pix) {
1172 param[pix] = HBR_END;
1173 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1174 param[2], param[3], param[4], param[5],
1175 param[6], param[7]);
1176 BUG_ON(rc != H_SUCCESS);
1177 }
1178 }
1179
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1180 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1181 unsigned long *vpn,
1182 int count, int psize,
1183 int ssize)
1184 {
1185 unsigned long flags = 0;
1186 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1187
1188 if (lock_tlbie)
1189 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1190
1191 /* Assuming THP size is 16M */
1192 if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1193 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1194 else
1195 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1196
1197 if (lock_tlbie)
1198 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1199 }
1200
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1201 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1202 unsigned long addr,
1203 unsigned char *hpte_slot_array,
1204 int psize, int ssize, int local)
1205 {
1206 int i, index = 0;
1207 unsigned long s_addr = addr;
1208 unsigned int max_hpte_count, valid;
1209 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1210 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1211 unsigned long shift, hidx, vpn = 0, hash, slot;
1212
1213 shift = mmu_psize_defs[psize].shift;
1214 max_hpte_count = 1U << (PMD_SHIFT - shift);
1215
1216 for (i = 0; i < max_hpte_count; i++) {
1217 valid = hpte_valid(hpte_slot_array, i);
1218 if (!valid)
1219 continue;
1220 hidx = hpte_hash_index(hpte_slot_array, i);
1221
1222 /* get the vpn */
1223 addr = s_addr + (i * (1ul << shift));
1224 vpn = hpt_vpn(addr, vsid, ssize);
1225 hash = hpt_hash(vpn, shift, ssize);
1226 if (hidx & _PTEIDX_SECONDARY)
1227 hash = ~hash;
1228
1229 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1230 slot += hidx & _PTEIDX_GROUP_IX;
1231
1232 slot_array[index] = slot;
1233 vpn_array[index] = vpn;
1234 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1235 /*
1236 * Now do a bluk invalidate
1237 */
1238 __pSeries_lpar_hugepage_invalidate(slot_array,
1239 vpn_array,
1240 PPC64_HUGE_HPTE_BATCH,
1241 psize, ssize);
1242 index = 0;
1243 } else
1244 index++;
1245 }
1246 if (index)
1247 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1248 index, psize, ssize);
1249 }
1250 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1251 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1252 unsigned long addr,
1253 unsigned char *hpte_slot_array,
1254 int psize, int ssize, int local)
1255 {
1256 WARN(1, "%s called without THP support\n", __func__);
1257 }
1258 #endif
1259
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1260 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1261 int psize, int ssize)
1262 {
1263 unsigned long vpn;
1264 unsigned long slot, vsid;
1265
1266 vsid = get_kernel_vsid(ea, ssize);
1267 vpn = hpt_vpn(ea, vsid, ssize);
1268
1269 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1270 if (slot == -1)
1271 return -ENOENT;
1272
1273 /*
1274 * lpar doesn't use the passed actual page size
1275 */
1276 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1277 return 0;
1278 }
1279
1280
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1281 static inline unsigned long compute_slot(real_pte_t pte,
1282 unsigned long vpn,
1283 unsigned long index,
1284 unsigned long shift,
1285 int ssize)
1286 {
1287 unsigned long slot, hash, hidx;
1288
1289 hash = hpt_hash(vpn, shift, ssize);
1290 hidx = __rpte_to_hidx(pte, index);
1291 if (hidx & _PTEIDX_SECONDARY)
1292 hash = ~hash;
1293 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1294 slot += hidx & _PTEIDX_GROUP_IX;
1295 return slot;
1296 }
1297
1298 /**
1299 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1300 * "all within the same naturally aligned 8 page virtual address block".
1301 */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1302 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1303 unsigned long *param)
1304 {
1305 unsigned long vpn;
1306 unsigned long i, pix = 0;
1307 unsigned long index, shift, slot, current_vpgb, vpgb;
1308 real_pte_t pte;
1309 int psize, ssize;
1310
1311 psize = batch->psize;
1312 ssize = batch->ssize;
1313
1314 for (i = 0; i < number; i++) {
1315 vpn = batch->vpn[i];
1316 pte = batch->pte[i];
1317 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1318 /*
1319 * Shifting 3 bits more on the right to get a
1320 * 8 pages aligned virtual addresse.
1321 */
1322 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1323 if (!pix || vpgb != current_vpgb) {
1324 /*
1325 * Need to start a new 8 pages block, flush
1326 * the current one if needed.
1327 */
1328 if (pix)
1329 (void)call_block_remove(pix, param,
1330 true);
1331 current_vpgb = vpgb;
1332 param[0] = hpte_encode_avpn(vpn, psize,
1333 ssize);
1334 pix = 1;
1335 }
1336
1337 slot = compute_slot(pte, vpn, index, shift, ssize);
1338 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1339
1340 if (pix == PLPAR_HCALL9_BUFSIZE) {
1341 pix = call_block_remove(pix, param, false);
1342 /*
1343 * pix = 0 means that all the entries were
1344 * removed, we can start a new block.
1345 * Otherwise, this means that there are entries
1346 * to retry, and pix points to latest one, so
1347 * we should increment it and try to continue
1348 * the same block.
1349 */
1350 if (pix)
1351 pix++;
1352 }
1353 } pte_iterate_hashed_end();
1354 }
1355
1356 if (pix)
1357 (void)call_block_remove(pix, param, true);
1358 }
1359
1360 /*
1361 * TLB Block Invalidate Characteristics
1362 *
1363 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1364 * is able to process for each couple segment base page size, actual page size.
1365 *
1366 * The ibm,get-system-parameter properties is returning a buffer with the
1367 * following layout:
1368 *
1369 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1370 * -----------------
1371 * TLB Block Invalidate Specifiers:
1372 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1373 * [ 1 byte Number of page sizes (N) that are supported for the specified
1374 * TLB invalidate block size ]
1375 * [ 1 byte Encoded segment base page size and actual page size
1376 * MSB=0 means 4k segment base page size and actual page size
1377 * MSB=1 the penc value in mmu_psize_def ]
1378 * ...
1379 * -----------------
1380 * Next TLB Block Invalidate Specifiers...
1381 * -----------------
1382 * [ 0 ]
1383 */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1384 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1385 unsigned int block_size)
1386 {
1387 if (block_size > hblkrm_size[bpsize][psize])
1388 hblkrm_size[bpsize][psize] = block_size;
1389 }
1390
1391 /*
1392 * Decode the Encoded segment base page size and actual page size.
1393 * PAPR specifies:
1394 * - bit 7 is the L bit
1395 * - bits 0-5 are the penc value
1396 * If the L bit is 0, this means 4K segment base page size and actual page size
1397 * otherwise the penc value should be read.
1398 */
1399 #define HBLKRM_L_MASK 0x80
1400 #define HBLKRM_PENC_MASK 0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1401 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1402 unsigned int block_size)
1403 {
1404 unsigned int bpsize, psize;
1405
1406 /* First, check the L bit, if not set, this means 4K */
1407 if ((lp & HBLKRM_L_MASK) == 0) {
1408 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1409 return;
1410 }
1411
1412 lp &= HBLKRM_PENC_MASK;
1413 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1414 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1415
1416 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1417 if (def->penc[psize] == lp) {
1418 set_hblkrm_bloc_size(bpsize, psize, block_size);
1419 return;
1420 }
1421 }
1422 }
1423 }
1424
1425 #define SPLPAR_TLB_BIC_TOKEN 50
1426
1427 /*
1428 * The size of the TLB Block Invalidate Characteristics is variable. But at the
1429 * maximum it will be the number of possible page sizes *2 + 10 bytes.
1430 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1431 * (128 bytes) for the buffer to get plenty of space.
1432 */
1433 #define SPLPAR_TLB_BIC_MAXLENGTH 128
1434
pseries_lpar_read_hblkrm_characteristics(void)1435 void __init pseries_lpar_read_hblkrm_characteristics(void)
1436 {
1437 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1438 int call_status, len, idx, bpsize;
1439
1440 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1441 return;
1442
1443 spin_lock(&rtas_data_buf_lock);
1444 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1445 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1446 NULL,
1447 SPLPAR_TLB_BIC_TOKEN,
1448 __pa(rtas_data_buf),
1449 RTAS_DATA_BUF_SIZE);
1450 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1451 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1452 spin_unlock(&rtas_data_buf_lock);
1453
1454 if (call_status != 0) {
1455 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1456 __FILE__, __func__, call_status);
1457 return;
1458 }
1459
1460 /*
1461 * The first two (2) bytes of the data in the buffer are the length of
1462 * the returned data, not counting these first two (2) bytes.
1463 */
1464 len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1465 if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1466 pr_warn("%s too large returned buffer %d", __func__, len);
1467 return;
1468 }
1469
1470 idx = 2;
1471 while (idx < len) {
1472 u8 block_shift = local_buffer[idx++];
1473 u32 block_size;
1474 unsigned int npsize;
1475
1476 if (!block_shift)
1477 break;
1478
1479 block_size = 1 << block_shift;
1480
1481 for (npsize = local_buffer[idx++];
1482 npsize > 0 && idx < len; npsize--)
1483 check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1484 block_size);
1485 }
1486
1487 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1488 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1489 if (hblkrm_size[bpsize][idx])
1490 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1491 bpsize, idx, hblkrm_size[bpsize][idx]);
1492 }
1493
1494 /*
1495 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1496 * lock.
1497 */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1498 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1499 {
1500 unsigned long vpn;
1501 unsigned long i, pix, rc;
1502 unsigned long flags = 0;
1503 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1504 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1505 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1506 unsigned long index, shift, slot;
1507 real_pte_t pte;
1508 int psize, ssize;
1509
1510 if (lock_tlbie)
1511 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1512
1513 if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1514 do_block_remove(number, batch, param);
1515 goto out;
1516 }
1517
1518 psize = batch->psize;
1519 ssize = batch->ssize;
1520 pix = 0;
1521 for (i = 0; i < number; i++) {
1522 vpn = batch->vpn[i];
1523 pte = batch->pte[i];
1524 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1525 slot = compute_slot(pte, vpn, index, shift, ssize);
1526 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1527 /*
1528 * lpar doesn't use the passed actual page size
1529 */
1530 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1531 0, ssize, local);
1532 } else {
1533 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1534 param[pix+1] = hpte_encode_avpn(vpn, psize,
1535 ssize);
1536 pix += 2;
1537 if (pix == 8) {
1538 rc = plpar_hcall9(H_BULK_REMOVE, param,
1539 param[0], param[1], param[2],
1540 param[3], param[4], param[5],
1541 param[6], param[7]);
1542 BUG_ON(rc != H_SUCCESS);
1543 pix = 0;
1544 }
1545 }
1546 } pte_iterate_hashed_end();
1547 }
1548 if (pix) {
1549 param[pix] = HBR_END;
1550 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1551 param[2], param[3], param[4], param[5],
1552 param[6], param[7]);
1553 BUG_ON(rc != H_SUCCESS);
1554 }
1555
1556 out:
1557 if (lock_tlbie)
1558 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1559 }
1560
disable_bulk_remove(char * str)1561 static int __init disable_bulk_remove(char *str)
1562 {
1563 if (strcmp(str, "off") == 0 &&
1564 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1565 pr_info("Disabling BULK_REMOVE firmware feature");
1566 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1567 }
1568 return 1;
1569 }
1570
1571 __setup("bulk_remove=", disable_bulk_remove);
1572
1573 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1574
1575 struct hpt_resize_state {
1576 unsigned long shift;
1577 int commit_rc;
1578 };
1579
pseries_lpar_resize_hpt_commit(void * data)1580 static int pseries_lpar_resize_hpt_commit(void *data)
1581 {
1582 struct hpt_resize_state *state = data;
1583
1584 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1585 if (state->commit_rc != H_SUCCESS)
1586 return -EIO;
1587
1588 /* Hypervisor has transitioned the HTAB, update our globals */
1589 ppc64_pft_size = state->shift;
1590 htab_size_bytes = 1UL << ppc64_pft_size;
1591 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * Must be called in process context. The caller must hold the
1598 * cpus_lock.
1599 */
pseries_lpar_resize_hpt(unsigned long shift)1600 static int pseries_lpar_resize_hpt(unsigned long shift)
1601 {
1602 struct hpt_resize_state state = {
1603 .shift = shift,
1604 .commit_rc = H_FUNCTION,
1605 };
1606 unsigned int delay, total_delay = 0;
1607 int rc;
1608 ktime_t t0, t1, t2;
1609
1610 might_sleep();
1611
1612 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1613 return -ENODEV;
1614
1615 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1616
1617 t0 = ktime_get();
1618
1619 rc = plpar_resize_hpt_prepare(0, shift);
1620 while (H_IS_LONG_BUSY(rc)) {
1621 delay = get_longbusy_msecs(rc);
1622 total_delay += delay;
1623 if (total_delay > HPT_RESIZE_TIMEOUT) {
1624 /* prepare with shift==0 cancels an in-progress resize */
1625 rc = plpar_resize_hpt_prepare(0, 0);
1626 if (rc != H_SUCCESS)
1627 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1628 rc);
1629 return -ETIMEDOUT;
1630 }
1631 msleep(delay);
1632 rc = plpar_resize_hpt_prepare(0, shift);
1633 }
1634
1635 switch (rc) {
1636 case H_SUCCESS:
1637 /* Continue on */
1638 break;
1639
1640 case H_PARAMETER:
1641 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1642 return -EINVAL;
1643 case H_RESOURCE:
1644 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1645 return -EPERM;
1646 default:
1647 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1648 return -EIO;
1649 }
1650
1651 t1 = ktime_get();
1652
1653 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1654 &state, NULL);
1655
1656 t2 = ktime_get();
1657
1658 if (rc != 0) {
1659 switch (state.commit_rc) {
1660 case H_PTEG_FULL:
1661 return -ENOSPC;
1662
1663 default:
1664 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1665 state.commit_rc);
1666 return -EIO;
1667 };
1668 }
1669
1670 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1671 shift, (long long) ktime_ms_delta(t1, t0),
1672 (long long) ktime_ms_delta(t2, t1));
1673
1674 return 0;
1675 }
1676
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)1677 static int pseries_lpar_register_process_table(unsigned long base,
1678 unsigned long page_size, unsigned long table_size)
1679 {
1680 long rc;
1681 unsigned long flags = 0;
1682
1683 if (table_size)
1684 flags |= PROC_TABLE_NEW;
1685 if (radix_enabled()) {
1686 flags |= PROC_TABLE_RADIX;
1687 if (mmu_has_feature(MMU_FTR_GTSE))
1688 flags |= PROC_TABLE_GTSE;
1689 } else
1690 flags |= PROC_TABLE_HPT_SLB;
1691 for (;;) {
1692 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1693 page_size, table_size);
1694 if (!H_IS_LONG_BUSY(rc))
1695 break;
1696 mdelay(get_longbusy_msecs(rc));
1697 }
1698 if (rc != H_SUCCESS) {
1699 pr_err("Failed to register process table (rc=%ld)\n", rc);
1700 BUG();
1701 }
1702 return rc;
1703 }
1704
hpte_init_pseries(void)1705 void __init hpte_init_pseries(void)
1706 {
1707 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1708 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1709 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1710 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1711 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1712 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1713 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1714 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1715 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1716
1717 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1718 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1719
1720 /*
1721 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1722 * to inform the hypervisor that we wish to use the HPT.
1723 */
1724 if (cpu_has_feature(CPU_FTR_ARCH_300))
1725 pseries_lpar_register_process_table(0, 0, 0);
1726 }
1727
1728 #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1729 void radix_init_pseries(void)
1730 {
1731 pr_info("Using radix MMU under hypervisor\n");
1732
1733 pseries_lpar_register_process_table(__pa(process_tb),
1734 0, PRTB_SIZE_SHIFT - 12);
1735 }
1736 #endif
1737
1738 #ifdef CONFIG_PPC_SMLPAR
1739 #define CMO_FREE_HINT_DEFAULT 1
1740 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1741
cmo_free_hint(char * str)1742 static int __init cmo_free_hint(char *str)
1743 {
1744 char *parm;
1745 parm = strstrip(str);
1746
1747 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1748 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1749 cmo_free_hint_flag = 0;
1750 return 1;
1751 }
1752
1753 cmo_free_hint_flag = 1;
1754 pr_info("%s: CMO free page hinting is active.\n", __func__);
1755
1756 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1757 return 1;
1758
1759 return 0;
1760 }
1761
1762 __setup("cmo_free_hint=", cmo_free_hint);
1763
pSeries_set_page_state(struct page * page,int order,unsigned long state)1764 static void pSeries_set_page_state(struct page *page, int order,
1765 unsigned long state)
1766 {
1767 int i, j;
1768 unsigned long cmo_page_sz, addr;
1769
1770 cmo_page_sz = cmo_get_page_size();
1771 addr = __pa((unsigned long)page_address(page));
1772
1773 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1774 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1775 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1776 }
1777 }
1778
arch_free_page(struct page * page,int order)1779 void arch_free_page(struct page *page, int order)
1780 {
1781 if (radix_enabled())
1782 return;
1783 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1784 return;
1785
1786 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1787 }
1788 EXPORT_SYMBOL(arch_free_page);
1789
1790 #endif /* CONFIG_PPC_SMLPAR */
1791 #endif /* CONFIG_PPC_BOOK3S_64 */
1792
1793 #ifdef CONFIG_TRACEPOINTS
1794 #ifdef CONFIG_JUMP_LABEL
1795 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1796
hcall_tracepoint_regfunc(void)1797 int hcall_tracepoint_regfunc(void)
1798 {
1799 static_key_slow_inc(&hcall_tracepoint_key);
1800 return 0;
1801 }
1802
hcall_tracepoint_unregfunc(void)1803 void hcall_tracepoint_unregfunc(void)
1804 {
1805 static_key_slow_dec(&hcall_tracepoint_key);
1806 }
1807 #else
1808 /*
1809 * We optimise our hcall path by placing hcall_tracepoint_refcount
1810 * directly in the TOC so we can check if the hcall tracepoints are
1811 * enabled via a single load.
1812 */
1813
1814 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1815 extern long hcall_tracepoint_refcount;
1816
hcall_tracepoint_regfunc(void)1817 int hcall_tracepoint_regfunc(void)
1818 {
1819 hcall_tracepoint_refcount++;
1820 return 0;
1821 }
1822
hcall_tracepoint_unregfunc(void)1823 void hcall_tracepoint_unregfunc(void)
1824 {
1825 hcall_tracepoint_refcount--;
1826 }
1827 #endif
1828
1829 /*
1830 * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1831 * detected because it may indicate a problem. This will not catch all
1832 * problems with tracing code making hcalls, because the tracing might have
1833 * been invoked from a non-hcall, so the first hcall could recurse into it
1834 * without warning here, but this better than nothing.
1835 *
1836 * Hcalls with specific problems being traced should use the _notrace
1837 * plpar_hcall variants.
1838 */
1839 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1840
1841
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1842 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1843 {
1844 unsigned long flags;
1845 unsigned int *depth;
1846
1847 local_irq_save(flags);
1848
1849 depth = this_cpu_ptr(&hcall_trace_depth);
1850
1851 if (WARN_ON_ONCE(*depth))
1852 goto out;
1853
1854 (*depth)++;
1855 preempt_disable();
1856 trace_hcall_entry(opcode, args);
1857 (*depth)--;
1858
1859 out:
1860 local_irq_restore(flags);
1861 }
1862
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1863 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1864 {
1865 unsigned long flags;
1866 unsigned int *depth;
1867
1868 local_irq_save(flags);
1869
1870 depth = this_cpu_ptr(&hcall_trace_depth);
1871
1872 if (*depth) /* Don't warn again on the way out */
1873 goto out;
1874
1875 (*depth)++;
1876 trace_hcall_exit(opcode, retval, retbuf);
1877 preempt_enable();
1878 (*depth)--;
1879
1880 out:
1881 local_irq_restore(flags);
1882 }
1883 #endif
1884
1885 /**
1886 * h_get_mpp
1887 * H_GET_MPP hcall returns info in 7 parms
1888 */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1889 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1890 {
1891 int rc;
1892 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1893
1894 rc = plpar_hcall9(H_GET_MPP, retbuf);
1895
1896 mpp_data->entitled_mem = retbuf[0];
1897 mpp_data->mapped_mem = retbuf[1];
1898
1899 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1900 mpp_data->pool_num = retbuf[2] & 0xffff;
1901
1902 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1903 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1904 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1905
1906 mpp_data->pool_size = retbuf[4];
1907 mpp_data->loan_request = retbuf[5];
1908 mpp_data->backing_mem = retbuf[6];
1909
1910 return rc;
1911 }
1912 EXPORT_SYMBOL(h_get_mpp);
1913
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1914 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1915 {
1916 int rc;
1917 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1918
1919 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1920
1921 mpp_x_data->coalesced_bytes = retbuf[0];
1922 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1923 mpp_x_data->pool_purr_cycles = retbuf[2];
1924 mpp_x_data->pool_spurr_cycles = retbuf[3];
1925
1926 return rc;
1927 }
1928
vsid_unscramble(unsigned long vsid,int ssize)1929 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1930 {
1931 unsigned long protovsid;
1932 unsigned long va_bits = VA_BITS;
1933 unsigned long modinv, vsid_modulus;
1934 unsigned long max_mod_inv, tmp_modinv;
1935
1936 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1937 va_bits = 65;
1938
1939 if (ssize == MMU_SEGSIZE_256M) {
1940 modinv = VSID_MULINV_256M;
1941 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1942 } else {
1943 modinv = VSID_MULINV_1T;
1944 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1945 }
1946
1947 /*
1948 * vsid outside our range.
1949 */
1950 if (vsid >= vsid_modulus)
1951 return 0;
1952
1953 /*
1954 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1955 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1956 * protovsid = (vsid * modinv) % vsid_modulus
1957 */
1958
1959 /* Check if (vsid * modinv) overflow (63 bits) */
1960 max_mod_inv = 0x7fffffffffffffffull / vsid;
1961 if (modinv < max_mod_inv)
1962 return (vsid * modinv) % vsid_modulus;
1963
1964 tmp_modinv = modinv/max_mod_inv;
1965 modinv %= max_mod_inv;
1966
1967 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1968 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1969
1970 return protovsid;
1971 }
1972
reserve_vrma_context_id(void)1973 static int __init reserve_vrma_context_id(void)
1974 {
1975 unsigned long protovsid;
1976
1977 /*
1978 * Reserve context ids which map to reserved virtual addresses. For now
1979 * we only reserve the context id which maps to the VRMA VSID. We ignore
1980 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1981 * enable adjunct support via the "ibm,client-architecture-support"
1982 * interface.
1983 */
1984 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1985 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1986 return 0;
1987 }
1988 machine_device_initcall(pseries, reserve_vrma_context_id);
1989
1990 #ifdef CONFIG_DEBUG_FS
1991 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1992 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1993 loff_t *pos)
1994 {
1995 int cpu = (long)filp->private_data;
1996 struct lppaca *lppaca = &lppaca_of(cpu);
1997
1998 return simple_read_from_buffer(buf, len, pos, lppaca,
1999 sizeof(struct lppaca));
2000 }
2001
2002 static const struct file_operations vpa_fops = {
2003 .open = simple_open,
2004 .read = vpa_file_read,
2005 .llseek = default_llseek,
2006 };
2007
vpa_debugfs_init(void)2008 static int __init vpa_debugfs_init(void)
2009 {
2010 char name[16];
2011 long i;
2012 struct dentry *vpa_dir;
2013
2014 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2015 return 0;
2016
2017 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2018
2019 /* set up the per-cpu vpa file*/
2020 for_each_possible_cpu(i) {
2021 sprintf(name, "cpu-%ld", i);
2022 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2023 }
2024
2025 return 0;
2026 }
2027 machine_arch_initcall(pseries, vpa_debugfs_init);
2028 #endif /* CONFIG_DEBUG_FS */
2029