1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32
33 #ifndef CONFIG_PREEMPT_RT
34 #include "mutex.h"
35
36 #ifdef CONFIG_DEBUG_MUTEXES
37 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
38 #else
39 # define MUTEX_WARN_ON(cond)
40 #endif
41
42 #include <trace/hooks/dtask.h>
43
44 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)45 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
46 {
47 atomic_long_set(&lock->owner, 0);
48 raw_spin_lock_init(&lock->wait_lock);
49 INIT_LIST_HEAD(&lock->wait_list);
50 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
51 osq_lock_init(&lock->osq);
52 #endif
53
54 trace_android_vh_mutex_init(lock);
55 debug_mutex_init(lock, name, key);
56 }
57 EXPORT_SYMBOL(__mutex_init);
58
59 /*
60 * @owner: contains: 'struct task_struct *' to the current lock owner,
61 * NULL means not owned. Since task_struct pointers are aligned at
62 * at least L1_CACHE_BYTES, we have low bits to store extra state.
63 *
64 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
65 * Bit1 indicates unlock needs to hand the lock to the top-waiter
66 * Bit2 indicates handoff has been done and we're waiting for pickup.
67 */
68 #define MUTEX_FLAG_WAITERS 0x01
69 #define MUTEX_FLAG_HANDOFF 0x02
70 #define MUTEX_FLAG_PICKUP 0x04
71
72 #define MUTEX_FLAGS 0x07
73
74 /*
75 * Internal helper function; C doesn't allow us to hide it :/
76 *
77 * DO NOT USE (outside of mutex code).
78 */
__mutex_owner(struct mutex * lock)79 static inline struct task_struct *__mutex_owner(struct mutex *lock)
80 {
81 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
82 }
83
__owner_task(unsigned long owner)84 static inline struct task_struct *__owner_task(unsigned long owner)
85 {
86 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
87 }
88
mutex_is_locked(struct mutex * lock)89 bool mutex_is_locked(struct mutex *lock)
90 {
91 return __mutex_owner(lock) != NULL;
92 }
93 EXPORT_SYMBOL(mutex_is_locked);
94
__owner_flags(unsigned long owner)95 static inline unsigned long __owner_flags(unsigned long owner)
96 {
97 return owner & MUTEX_FLAGS;
98 }
99
__mutex_trylock_common(struct mutex * lock,bool handoff)100 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
101 {
102 unsigned long owner, curr = (unsigned long)current;
103
104 owner = atomic_long_read(&lock->owner);
105 for (;;) { /* must loop, can race against a flag */
106 unsigned long flags = __owner_flags(owner);
107 unsigned long task = owner & ~MUTEX_FLAGS;
108
109 if (task) {
110 if (flags & MUTEX_FLAG_PICKUP) {
111 if (task != curr)
112 break;
113 flags &= ~MUTEX_FLAG_PICKUP;
114 } else if (handoff) {
115 if (flags & MUTEX_FLAG_HANDOFF)
116 break;
117 flags |= MUTEX_FLAG_HANDOFF;
118 } else {
119 break;
120 }
121 } else {
122 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
123 task = curr;
124 }
125
126 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
127 if (task == curr)
128 return NULL;
129 break;
130 }
131 }
132
133 return __owner_task(owner);
134 }
135
136 /*
137 * Trylock or set HANDOFF
138 */
__mutex_trylock_or_handoff(struct mutex * lock,bool handoff)139 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
140 {
141 return !__mutex_trylock_common(lock, handoff);
142 }
143
144 /*
145 * Actual trylock that will work on any unlocked state.
146 */
__mutex_trylock(struct mutex * lock)147 static inline bool __mutex_trylock(struct mutex *lock)
148 {
149 return !__mutex_trylock_common(lock, false);
150 }
151
152 #ifndef CONFIG_DEBUG_LOCK_ALLOC
153 /*
154 * Lockdep annotations are contained to the slow paths for simplicity.
155 * There is nothing that would stop spreading the lockdep annotations outwards
156 * except more code.
157 */
158
159 /*
160 * Optimistic trylock that only works in the uncontended case. Make sure to
161 * follow with a __mutex_trylock() before failing.
162 */
__mutex_trylock_fast(struct mutex * lock)163 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
164 {
165 unsigned long curr = (unsigned long)current;
166 unsigned long zero = 0UL;
167
168 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) {
169 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
170 return true;
171 }
172
173 return false;
174 }
175
__mutex_unlock_fast(struct mutex * lock)176 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
177 {
178 unsigned long curr = (unsigned long)current;
179
180 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
181 }
182 #endif
183
__mutex_set_flag(struct mutex * lock,unsigned long flag)184 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
185 {
186 atomic_long_or(flag, &lock->owner);
187 }
188
__mutex_clear_flag(struct mutex * lock,unsigned long flag)189 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
190 {
191 atomic_long_andnot(flag, &lock->owner);
192 }
193
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)194 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
195 {
196 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
197 }
198
199 /*
200 * Add @waiter to a given location in the lock wait_list and set the
201 * FLAG_WAITERS flag if it's the first waiter.
202 */
203 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)204 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
205 struct list_head *list)
206 {
207 bool already_on_list = false;
208 debug_mutex_add_waiter(lock, waiter, current);
209
210 trace_android_vh_alter_mutex_list_add(lock, waiter, list, &already_on_list);
211 if (!already_on_list)
212 list_add_tail(&waiter->list, list);
213 if (__mutex_waiter_is_first(lock, waiter))
214 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
215 }
216
217 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)218 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
219 {
220 list_del(&waiter->list);
221 if (likely(list_empty(&lock->wait_list)))
222 __mutex_clear_flag(lock, MUTEX_FLAGS);
223
224 debug_mutex_remove_waiter(lock, waiter, current);
225 }
226
227 /*
228 * Give up ownership to a specific task, when @task = NULL, this is equivalent
229 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
230 * WAITERS. Provides RELEASE semantics like a regular unlock, the
231 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
232 */
__mutex_handoff(struct mutex * lock,struct task_struct * task)233 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
234 {
235 unsigned long owner = atomic_long_read(&lock->owner);
236
237 for (;;) {
238 unsigned long new;
239
240 MUTEX_WARN_ON(__owner_task(owner) != current);
241 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
242
243 new = (owner & MUTEX_FLAG_WAITERS);
244 new |= (unsigned long)task;
245 if (task)
246 new |= MUTEX_FLAG_PICKUP;
247
248 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
249 break;
250 }
251 }
252
253 #ifndef CONFIG_DEBUG_LOCK_ALLOC
254 /*
255 * We split the mutex lock/unlock logic into separate fastpath and
256 * slowpath functions, to reduce the register pressure on the fastpath.
257 * We also put the fastpath first in the kernel image, to make sure the
258 * branch is predicted by the CPU as default-untaken.
259 */
260 static void __sched __mutex_lock_slowpath(struct mutex *lock);
261
262 /**
263 * mutex_lock - acquire the mutex
264 * @lock: the mutex to be acquired
265 *
266 * Lock the mutex exclusively for this task. If the mutex is not
267 * available right now, it will sleep until it can get it.
268 *
269 * The mutex must later on be released by the same task that
270 * acquired it. Recursive locking is not allowed. The task
271 * may not exit without first unlocking the mutex. Also, kernel
272 * memory where the mutex resides must not be freed with
273 * the mutex still locked. The mutex must first be initialized
274 * (or statically defined) before it can be locked. memset()-ing
275 * the mutex to 0 is not allowed.
276 *
277 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
278 * checks that will enforce the restrictions and will also do
279 * deadlock debugging)
280 *
281 * This function is similar to (but not equivalent to) down().
282 */
mutex_lock(struct mutex * lock)283 void __sched mutex_lock(struct mutex *lock)
284 {
285 might_sleep();
286
287 if (!__mutex_trylock_fast(lock))
288 __mutex_lock_slowpath(lock);
289 }
290 EXPORT_SYMBOL(mutex_lock);
291 #endif
292
293 #include "ww_mutex.h"
294
295 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
296
297 /*
298 * Trylock variant that returns the owning task on failure.
299 */
__mutex_trylock_or_owner(struct mutex * lock)300 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
301 {
302 return __mutex_trylock_common(lock, false);
303 }
304
305 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)306 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
307 struct mutex_waiter *waiter)
308 {
309 struct ww_mutex *ww;
310
311 ww = container_of(lock, struct ww_mutex, base);
312
313 /*
314 * If ww->ctx is set the contents are undefined, only
315 * by acquiring wait_lock there is a guarantee that
316 * they are not invalid when reading.
317 *
318 * As such, when deadlock detection needs to be
319 * performed the optimistic spinning cannot be done.
320 *
321 * Check this in every inner iteration because we may
322 * be racing against another thread's ww_mutex_lock.
323 */
324 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
325 return false;
326
327 /*
328 * If we aren't on the wait list yet, cancel the spin
329 * if there are waiters. We want to avoid stealing the
330 * lock from a waiter with an earlier stamp, since the
331 * other thread may already own a lock that we also
332 * need.
333 */
334 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
335 return false;
336
337 /*
338 * Similarly, stop spinning if we are no longer the
339 * first waiter.
340 */
341 if (waiter && !__mutex_waiter_is_first(lock, waiter))
342 return false;
343
344 return true;
345 }
346
347 /*
348 * Look out! "owner" is an entirely speculative pointer access and not
349 * reliable.
350 *
351 * "noinline" so that this function shows up on perf profiles.
352 */
353 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)354 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
355 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
356 {
357 bool ret = true;
358 int cnt = 0;
359 bool time_out = false;
360
361 rcu_read_lock();
362 while (__mutex_owner(lock) == owner) {
363 trace_android_vh_mutex_opt_spin_start(lock, &time_out, &cnt);
364 if (time_out) {
365 ret = false;
366 break;
367 }
368 /*
369 * Ensure we emit the owner->on_cpu, dereference _after_
370 * checking lock->owner still matches owner. If that fails,
371 * owner might point to freed memory. If it still matches,
372 * the rcu_read_lock() ensures the memory stays valid.
373 */
374 barrier();
375
376 /*
377 * Use vcpu_is_preempted to detect lock holder preemption issue.
378 */
379 if (!owner->on_cpu || need_resched() ||
380 vcpu_is_preempted(task_cpu(owner))) {
381 ret = false;
382 break;
383 }
384
385 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
386 ret = false;
387 break;
388 }
389
390 cpu_relax();
391 }
392 rcu_read_unlock();
393
394 return ret;
395 }
396
397 /*
398 * Initial check for entering the mutex spinning loop
399 */
mutex_can_spin_on_owner(struct mutex * lock)400 static inline int mutex_can_spin_on_owner(struct mutex *lock)
401 {
402 struct task_struct *owner;
403 int retval = 1;
404
405 if (need_resched())
406 return 0;
407
408 rcu_read_lock();
409 owner = __mutex_owner(lock);
410
411 /*
412 * As lock holder preemption issue, we both skip spinning if task is not
413 * on cpu or its cpu is preempted
414 */
415 if (owner)
416 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
417 rcu_read_unlock();
418 trace_android_vh_mutex_can_spin_on_owner(lock, &retval);
419
420 /*
421 * If lock->owner is not set, the mutex has been released. Return true
422 * such that we'll trylock in the spin path, which is a faster option
423 * than the blocking slow path.
424 */
425 return retval;
426 }
427
428 /*
429 * Optimistic spinning.
430 *
431 * We try to spin for acquisition when we find that the lock owner
432 * is currently running on a (different) CPU and while we don't
433 * need to reschedule. The rationale is that if the lock owner is
434 * running, it is likely to release the lock soon.
435 *
436 * The mutex spinners are queued up using MCS lock so that only one
437 * spinner can compete for the mutex. However, if mutex spinning isn't
438 * going to happen, there is no point in going through the lock/unlock
439 * overhead.
440 *
441 * Returns true when the lock was taken, otherwise false, indicating
442 * that we need to jump to the slowpath and sleep.
443 *
444 * The waiter flag is set to true if the spinner is a waiter in the wait
445 * queue. The waiter-spinner will spin on the lock directly and concurrently
446 * with the spinner at the head of the OSQ, if present, until the owner is
447 * changed to itself.
448 */
449 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)450 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
451 struct mutex_waiter *waiter)
452 {
453 if (!waiter) {
454 /*
455 * The purpose of the mutex_can_spin_on_owner() function is
456 * to eliminate the overhead of osq_lock() and osq_unlock()
457 * in case spinning isn't possible. As a waiter-spinner
458 * is not going to take OSQ lock anyway, there is no need
459 * to call mutex_can_spin_on_owner().
460 */
461 if (!mutex_can_spin_on_owner(lock))
462 goto fail;
463
464 /*
465 * In order to avoid a stampede of mutex spinners trying to
466 * acquire the mutex all at once, the spinners need to take a
467 * MCS (queued) lock first before spinning on the owner field.
468 */
469 if (!osq_lock(&lock->osq))
470 goto fail;
471 }
472
473 for (;;) {
474 struct task_struct *owner;
475
476 /* Try to acquire the mutex... */
477 owner = __mutex_trylock_or_owner(lock);
478 if (!owner)
479 break;
480
481 /*
482 * There's an owner, wait for it to either
483 * release the lock or go to sleep.
484 */
485 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
486 goto fail_unlock;
487
488 /*
489 * The cpu_relax() call is a compiler barrier which forces
490 * everything in this loop to be re-loaded. We don't need
491 * memory barriers as we'll eventually observe the right
492 * values at the cost of a few extra spins.
493 */
494 cpu_relax();
495 }
496
497 if (!waiter)
498 osq_unlock(&lock->osq);
499
500 trace_android_vh_mutex_opt_spin_finish(lock, true);
501 return true;
502
503
504 fail_unlock:
505 if (!waiter)
506 osq_unlock(&lock->osq);
507
508 fail:
509 trace_android_vh_mutex_opt_spin_finish(lock, false);
510 /*
511 * If we fell out of the spin path because of need_resched(),
512 * reschedule now, before we try-lock the mutex. This avoids getting
513 * scheduled out right after we obtained the mutex.
514 */
515 if (need_resched()) {
516 /*
517 * We _should_ have TASK_RUNNING here, but just in case
518 * we do not, make it so, otherwise we might get stuck.
519 */
520 __set_current_state(TASK_RUNNING);
521 schedule_preempt_disabled();
522 }
523
524 return false;
525 }
526 #else
527 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)528 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
529 struct mutex_waiter *waiter)
530 {
531 return false;
532 }
533 #endif
534
535 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
536
537 /**
538 * mutex_unlock - release the mutex
539 * @lock: the mutex to be released
540 *
541 * Unlock a mutex that has been locked by this task previously.
542 *
543 * This function must not be used in interrupt context. Unlocking
544 * of a not locked mutex is not allowed.
545 *
546 * This function is similar to (but not equivalent to) up().
547 */
mutex_unlock(struct mutex * lock)548 void __sched mutex_unlock(struct mutex *lock)
549 {
550 #ifndef CONFIG_DEBUG_LOCK_ALLOC
551 if (__mutex_unlock_fast(lock)) {
552 trace_android_vh_record_mutex_lock_starttime(current, 0);
553 return;
554 }
555 #endif
556 __mutex_unlock_slowpath(lock, _RET_IP_);
557 trace_android_vh_record_mutex_lock_starttime(current, 0);
558 }
559 EXPORT_SYMBOL(mutex_unlock);
560
561 /**
562 * ww_mutex_unlock - release the w/w mutex
563 * @lock: the mutex to be released
564 *
565 * Unlock a mutex that has been locked by this task previously with any of the
566 * ww_mutex_lock* functions (with or without an acquire context). It is
567 * forbidden to release the locks after releasing the acquire context.
568 *
569 * This function must not be used in interrupt context. Unlocking
570 * of a unlocked mutex is not allowed.
571 */
ww_mutex_unlock(struct ww_mutex * lock)572 void __sched ww_mutex_unlock(struct ww_mutex *lock)
573 {
574 __ww_mutex_unlock(lock);
575 mutex_unlock(&lock->base);
576 }
577 EXPORT_SYMBOL(ww_mutex_unlock);
578
579 /*
580 * Lock a mutex (possibly interruptible), slowpath:
581 */
582 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)583 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
584 struct lockdep_map *nest_lock, unsigned long ip,
585 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
586 {
587 struct mutex_waiter waiter;
588 struct ww_mutex *ww;
589 int ret;
590
591 if (!use_ww_ctx)
592 ww_ctx = NULL;
593
594 might_sleep();
595
596 MUTEX_WARN_ON(lock->magic != lock);
597
598 ww = container_of(lock, struct ww_mutex, base);
599 if (ww_ctx) {
600 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
601 return -EALREADY;
602
603 /*
604 * Reset the wounded flag after a kill. No other process can
605 * race and wound us here since they can't have a valid owner
606 * pointer if we don't have any locks held.
607 */
608 if (ww_ctx->acquired == 0)
609 ww_ctx->wounded = 0;
610
611 #ifdef CONFIG_DEBUG_LOCK_ALLOC
612 nest_lock = &ww_ctx->dep_map;
613 #endif
614 }
615
616 preempt_disable();
617 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
618
619 if (__mutex_trylock(lock) ||
620 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
621 /* got the lock, yay! */
622 lock_acquired(&lock->dep_map, ip);
623 if (ww_ctx)
624 ww_mutex_set_context_fastpath(ww, ww_ctx);
625 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
626 preempt_enable();
627 return 0;
628 }
629
630 raw_spin_lock(&lock->wait_lock);
631 /*
632 * After waiting to acquire the wait_lock, try again.
633 */
634 if (__mutex_trylock(lock)) {
635 if (ww_ctx)
636 __ww_mutex_check_waiters(lock, ww_ctx);
637
638 goto skip_wait;
639 }
640
641 debug_mutex_lock_common(lock, &waiter);
642 waiter.task = current;
643 if (use_ww_ctx)
644 waiter.ww_ctx = ww_ctx;
645
646 lock_contended(&lock->dep_map, ip);
647
648 if (!use_ww_ctx) {
649 /* add waiting tasks to the end of the waitqueue (FIFO): */
650 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
651 } else {
652 /*
653 * Add in stamp order, waking up waiters that must kill
654 * themselves.
655 */
656 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
657 if (ret)
658 goto err_early_kill;
659 }
660
661 trace_android_vh_mutex_wait_start(lock);
662 set_current_state(state);
663 for (;;) {
664 bool first;
665
666 /*
667 * Once we hold wait_lock, we're serialized against
668 * mutex_unlock() handing the lock off to us, do a trylock
669 * before testing the error conditions to make sure we pick up
670 * the handoff.
671 */
672 if (__mutex_trylock(lock))
673 goto acquired;
674
675 /*
676 * Check for signals and kill conditions while holding
677 * wait_lock. This ensures the lock cancellation is ordered
678 * against mutex_unlock() and wake-ups do not go missing.
679 */
680 if (signal_pending_state(state, current)) {
681 ret = -EINTR;
682 goto err;
683 }
684
685 if (ww_ctx) {
686 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
687 if (ret)
688 goto err;
689 }
690
691 raw_spin_unlock(&lock->wait_lock);
692 schedule_preempt_disabled();
693
694 first = __mutex_waiter_is_first(lock, &waiter);
695
696 set_current_state(state);
697 /*
698 * Here we order against unlock; we must either see it change
699 * state back to RUNNING and fall through the next schedule(),
700 * or we must see its unlock and acquire.
701 */
702 if (__mutex_trylock_or_handoff(lock, first) ||
703 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
704 break;
705
706 raw_spin_lock(&lock->wait_lock);
707 }
708 raw_spin_lock(&lock->wait_lock);
709 acquired:
710 __set_current_state(TASK_RUNNING);
711 trace_android_vh_mutex_wait_finish(lock);
712
713 if (ww_ctx) {
714 /*
715 * Wound-Wait; we stole the lock (!first_waiter), check the
716 * waiters as anyone might want to wound us.
717 */
718 if (!ww_ctx->is_wait_die &&
719 !__mutex_waiter_is_first(lock, &waiter))
720 __ww_mutex_check_waiters(lock, ww_ctx);
721 }
722
723 __mutex_remove_waiter(lock, &waiter);
724
725 debug_mutex_free_waiter(&waiter);
726
727 skip_wait:
728 /* got the lock - cleanup and rejoice! */
729 lock_acquired(&lock->dep_map, ip);
730
731 if (ww_ctx)
732 ww_mutex_lock_acquired(ww, ww_ctx);
733
734 raw_spin_unlock(&lock->wait_lock);
735 preempt_enable();
736 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
737 return 0;
738
739 err:
740 __set_current_state(TASK_RUNNING);
741 trace_android_vh_mutex_wait_finish(lock);
742 __mutex_remove_waiter(lock, &waiter);
743 err_early_kill:
744 raw_spin_unlock(&lock->wait_lock);
745 debug_mutex_free_waiter(&waiter);
746 mutex_release(&lock->dep_map, ip);
747 preempt_enable();
748 return ret;
749 }
750
751 static int __sched
__mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)752 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
753 struct lockdep_map *nest_lock, unsigned long ip)
754 {
755 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
756 }
757
758 static int __sched
__ww_mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,unsigned long ip,struct ww_acquire_ctx * ww_ctx)759 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
760 unsigned long ip, struct ww_acquire_ctx *ww_ctx)
761 {
762 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
763 }
764
765 #ifdef CONFIG_DEBUG_LOCK_ALLOC
766 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)767 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
768 {
769 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
770 }
771
772 EXPORT_SYMBOL_GPL(mutex_lock_nested);
773
774 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)775 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
776 {
777 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
778 }
779 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
780
781 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)782 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
783 {
784 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
785 }
786 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
787
788 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)789 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
790 {
791 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
792 }
793 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
794
795 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)796 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
797 {
798 int token;
799
800 might_sleep();
801
802 token = io_schedule_prepare();
803 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
804 subclass, NULL, _RET_IP_, NULL, 0);
805 io_schedule_finish(token);
806 }
807 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
808
809 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)810 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
811 {
812 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
813 unsigned tmp;
814
815 if (ctx->deadlock_inject_countdown-- == 0) {
816 tmp = ctx->deadlock_inject_interval;
817 if (tmp > UINT_MAX/4)
818 tmp = UINT_MAX;
819 else
820 tmp = tmp*2 + tmp + tmp/2;
821
822 ctx->deadlock_inject_interval = tmp;
823 ctx->deadlock_inject_countdown = tmp;
824 ctx->contending_lock = lock;
825
826 ww_mutex_unlock(lock);
827
828 return -EDEADLK;
829 }
830 #endif
831
832 return 0;
833 }
834
835 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)836 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
837 {
838 int ret;
839
840 might_sleep();
841 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
842 0, _RET_IP_, ctx);
843 if (!ret && ctx && ctx->acquired > 1)
844 return ww_mutex_deadlock_injection(lock, ctx);
845
846 return ret;
847 }
848 EXPORT_SYMBOL_GPL(ww_mutex_lock);
849
850 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)851 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
852 {
853 int ret;
854
855 might_sleep();
856 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
857 0, _RET_IP_, ctx);
858
859 if (!ret && ctx && ctx->acquired > 1)
860 return ww_mutex_deadlock_injection(lock, ctx);
861
862 return ret;
863 }
864 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
865
866 #endif
867
868 /*
869 * Release the lock, slowpath:
870 */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)871 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
872 {
873 struct task_struct *next = NULL;
874 DEFINE_WAKE_Q(wake_q);
875 unsigned long owner;
876
877 mutex_release(&lock->dep_map, ip);
878
879 /*
880 * Release the lock before (potentially) taking the spinlock such that
881 * other contenders can get on with things ASAP.
882 *
883 * Except when HANDOFF, in that case we must not clear the owner field,
884 * but instead set it to the top waiter.
885 */
886 owner = atomic_long_read(&lock->owner);
887 for (;;) {
888 MUTEX_WARN_ON(__owner_task(owner) != current);
889 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
890
891 if (owner & MUTEX_FLAG_HANDOFF)
892 break;
893
894 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
895 if (owner & MUTEX_FLAG_WAITERS)
896 break;
897
898 return;
899 }
900 }
901
902 raw_spin_lock(&lock->wait_lock);
903 debug_mutex_unlock(lock);
904 if (!list_empty(&lock->wait_list)) {
905 /* get the first entry from the wait-list: */
906 struct mutex_waiter *waiter =
907 list_first_entry(&lock->wait_list,
908 struct mutex_waiter, list);
909
910 next = waiter->task;
911
912 debug_mutex_wake_waiter(lock, waiter);
913 wake_q_add(&wake_q, next);
914 }
915
916 if (owner & MUTEX_FLAG_HANDOFF)
917 __mutex_handoff(lock, next);
918
919 trace_android_vh_mutex_unlock_slowpath(lock);
920 raw_spin_unlock(&lock->wait_lock);
921
922 wake_up_q(&wake_q);
923 }
924
925 #ifndef CONFIG_DEBUG_LOCK_ALLOC
926 /*
927 * Here come the less common (and hence less performance-critical) APIs:
928 * mutex_lock_interruptible() and mutex_trylock().
929 */
930 static noinline int __sched
931 __mutex_lock_killable_slowpath(struct mutex *lock);
932
933 static noinline int __sched
934 __mutex_lock_interruptible_slowpath(struct mutex *lock);
935
936 /**
937 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
938 * @lock: The mutex to be acquired.
939 *
940 * Lock the mutex like mutex_lock(). If a signal is delivered while the
941 * process is sleeping, this function will return without acquiring the
942 * mutex.
943 *
944 * Context: Process context.
945 * Return: 0 if the lock was successfully acquired or %-EINTR if a
946 * signal arrived.
947 */
mutex_lock_interruptible(struct mutex * lock)948 int __sched mutex_lock_interruptible(struct mutex *lock)
949 {
950 might_sleep();
951
952 if (__mutex_trylock_fast(lock))
953 return 0;
954
955 return __mutex_lock_interruptible_slowpath(lock);
956 }
957
958 EXPORT_SYMBOL(mutex_lock_interruptible);
959
960 /**
961 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
962 * @lock: The mutex to be acquired.
963 *
964 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
965 * the current process is delivered while the process is sleeping, this
966 * function will return without acquiring the mutex.
967 *
968 * Context: Process context.
969 * Return: 0 if the lock was successfully acquired or %-EINTR if a
970 * fatal signal arrived.
971 */
mutex_lock_killable(struct mutex * lock)972 int __sched mutex_lock_killable(struct mutex *lock)
973 {
974 might_sleep();
975
976 if (__mutex_trylock_fast(lock))
977 return 0;
978
979 return __mutex_lock_killable_slowpath(lock);
980 }
981 EXPORT_SYMBOL(mutex_lock_killable);
982
983 /**
984 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
985 * @lock: The mutex to be acquired.
986 *
987 * Lock the mutex like mutex_lock(). While the task is waiting for this
988 * mutex, it will be accounted as being in the IO wait state by the
989 * scheduler.
990 *
991 * Context: Process context.
992 */
mutex_lock_io(struct mutex * lock)993 void __sched mutex_lock_io(struct mutex *lock)
994 {
995 int token;
996
997 token = io_schedule_prepare();
998 mutex_lock(lock);
999 io_schedule_finish(token);
1000 }
1001 EXPORT_SYMBOL_GPL(mutex_lock_io);
1002
1003 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1004 __mutex_lock_slowpath(struct mutex *lock)
1005 {
1006 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1007 }
1008
1009 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1010 __mutex_lock_killable_slowpath(struct mutex *lock)
1011 {
1012 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1013 }
1014
1015 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1016 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1017 {
1018 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1019 }
1020
1021 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1022 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1023 {
1024 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1025 _RET_IP_, ctx);
1026 }
1027
1028 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1029 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1030 struct ww_acquire_ctx *ctx)
1031 {
1032 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1033 _RET_IP_, ctx);
1034 }
1035
1036 #endif
1037
1038 /**
1039 * mutex_trylock - try to acquire the mutex, without waiting
1040 * @lock: the mutex to be acquired
1041 *
1042 * Try to acquire the mutex atomically. Returns 1 if the mutex
1043 * has been acquired successfully, and 0 on contention.
1044 *
1045 * NOTE: this function follows the spin_trylock() convention, so
1046 * it is negated from the down_trylock() return values! Be careful
1047 * about this when converting semaphore users to mutexes.
1048 *
1049 * This function must not be used in interrupt context. The
1050 * mutex must be released by the same task that acquired it.
1051 */
mutex_trylock(struct mutex * lock)1052 int __sched mutex_trylock(struct mutex *lock)
1053 {
1054 bool locked;
1055
1056 MUTEX_WARN_ON(lock->magic != lock);
1057
1058 locked = __mutex_trylock(lock);
1059 if (locked) {
1060 trace_android_vh_record_mutex_lock_starttime(current, jiffies);
1061 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1062 }
1063
1064 return locked;
1065 }
1066 EXPORT_SYMBOL(mutex_trylock);
1067
1068 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1069 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1070 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1071 {
1072 might_sleep();
1073
1074 if (__mutex_trylock_fast(&lock->base)) {
1075 if (ctx)
1076 ww_mutex_set_context_fastpath(lock, ctx);
1077 return 0;
1078 }
1079
1080 return __ww_mutex_lock_slowpath(lock, ctx);
1081 }
1082 EXPORT_SYMBOL(ww_mutex_lock);
1083
1084 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1085 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1086 {
1087 might_sleep();
1088
1089 if (__mutex_trylock_fast(&lock->base)) {
1090 if (ctx)
1091 ww_mutex_set_context_fastpath(lock, ctx);
1092 return 0;
1093 }
1094
1095 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1096 }
1097 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1098
1099 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1100 #endif /* !CONFIG_PREEMPT_RT */
1101
1102 /**
1103 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1104 * @cnt: the atomic which we are to dec
1105 * @lock: the mutex to return holding if we dec to 0
1106 *
1107 * return true and hold lock if we dec to 0, return false otherwise
1108 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1109 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1110 {
1111 /* dec if we can't possibly hit 0 */
1112 if (atomic_add_unless(cnt, -1, 1))
1113 return 0;
1114 /* we might hit 0, so take the lock */
1115 mutex_lock(lock);
1116 if (!atomic_dec_and_test(cnt)) {
1117 /* when we actually did the dec, we didn't hit 0 */
1118 mutex_unlock(lock);
1119 return 0;
1120 }
1121 /* we hit 0, and we hold the lock */
1122 return 1;
1123 }
1124 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1125