1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2020, Oracle and/or its affiliates.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62 *
63 * The largest Call header contains a full-size Read list and a
64 * minimal Reply chunk.
65 */
rpcrdma_max_call_header_size(unsigned int maxsegs)66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 unsigned int size;
69
70 /* Fixed header fields and list discriminators */
71 size = RPCRDMA_HDRLEN_MIN;
72
73 /* Maximum Read list size */
74 size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75
76 /* Minimal Read chunk size */
77 size += sizeof(__be32); /* segment count */
78 size += rpcrdma_segment_maxsz * sizeof(__be32);
79 size += sizeof(__be32); /* list discriminator */
80
81 return size;
82 }
83
84 /* Returns size of largest RPC-over-RDMA header in a Reply message
85 *
86 * There is only one Write list or one Reply chunk per Reply
87 * message. The larger list is the Write list.
88 */
rpcrdma_max_reply_header_size(unsigned int maxsegs)89 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
90 {
91 unsigned int size;
92
93 /* Fixed header fields and list discriminators */
94 size = RPCRDMA_HDRLEN_MIN;
95
96 /* Maximum Write list size */
97 size += sizeof(__be32); /* segment count */
98 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
99 size += sizeof(__be32); /* list discriminator */
100
101 return size;
102 }
103
104 /**
105 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
106 * @ep: endpoint to initialize
107 *
108 * The max_inline fields contain the maximum size of an RPC message
109 * so the marshaling code doesn't have to repeat this calculation
110 * for every RPC.
111 */
rpcrdma_set_max_header_sizes(struct rpcrdma_ep * ep)112 void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
113 {
114 unsigned int maxsegs = ep->re_max_rdma_segs;
115
116 ep->re_max_inline_send =
117 ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
118 ep->re_max_inline_recv =
119 ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
120 }
121
122 /* The client can send a request inline as long as the RPCRDMA header
123 * plus the RPC call fit under the transport's inline limit. If the
124 * combined call message size exceeds that limit, the client must use
125 * a Read chunk for this operation.
126 *
127 * A Read chunk is also required if sending the RPC call inline would
128 * exceed this device's max_sge limit.
129 */
rpcrdma_args_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)130 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
131 struct rpc_rqst *rqst)
132 {
133 struct xdr_buf *xdr = &rqst->rq_snd_buf;
134 struct rpcrdma_ep *ep = r_xprt->rx_ep;
135 unsigned int count, remaining, offset;
136
137 if (xdr->len > ep->re_max_inline_send)
138 return false;
139
140 if (xdr->page_len) {
141 remaining = xdr->page_len;
142 offset = offset_in_page(xdr->page_base);
143 count = RPCRDMA_MIN_SEND_SGES;
144 while (remaining) {
145 remaining -= min_t(unsigned int,
146 PAGE_SIZE - offset, remaining);
147 offset = 0;
148 if (++count > ep->re_attr.cap.max_send_sge)
149 return false;
150 }
151 }
152
153 return true;
154 }
155
156 /* The client can't know how large the actual reply will be. Thus it
157 * plans for the largest possible reply for that particular ULP
158 * operation. If the maximum combined reply message size exceeds that
159 * limit, the client must provide a write list or a reply chunk for
160 * this request.
161 */
rpcrdma_results_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)162 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
163 struct rpc_rqst *rqst)
164 {
165 return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
166 }
167
168 /* The client is required to provide a Reply chunk if the maximum
169 * size of the non-payload part of the RPC Reply is larger than
170 * the inline threshold.
171 */
172 static bool
rpcrdma_nonpayload_inline(const struct rpcrdma_xprt * r_xprt,const struct rpc_rqst * rqst)173 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
174 const struct rpc_rqst *rqst)
175 {
176 const struct xdr_buf *buf = &rqst->rq_rcv_buf;
177
178 return (buf->head[0].iov_len + buf->tail[0].iov_len) <
179 r_xprt->rx_ep->re_max_inline_recv;
180 }
181
182 /* ACL likes to be lazy in allocating pages. For TCP, these
183 * pages can be allocated during receive processing. Not true
184 * for RDMA, which must always provision receive buffers
185 * up front.
186 */
187 static noinline int
rpcrdma_alloc_sparse_pages(struct xdr_buf * buf)188 rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
189 {
190 struct page **ppages;
191 int len;
192
193 len = buf->page_len;
194 ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
195 while (len > 0) {
196 if (!*ppages)
197 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
198 if (!*ppages)
199 return -ENOBUFS;
200 ppages++;
201 len -= PAGE_SIZE;
202 }
203
204 return 0;
205 }
206
207 /* Convert @vec to a single SGL element.
208 *
209 * Returns pointer to next available SGE, and bumps the total number
210 * of SGEs consumed.
211 */
212 static struct rpcrdma_mr_seg *
rpcrdma_convert_kvec(struct kvec * vec,struct rpcrdma_mr_seg * seg,unsigned int * n)213 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
214 unsigned int *n)
215 {
216 seg->mr_page = virt_to_page(vec->iov_base);
217 seg->mr_offset = offset_in_page(vec->iov_base);
218 seg->mr_len = vec->iov_len;
219 ++seg;
220 ++(*n);
221 return seg;
222 }
223
224 /* Convert @xdrbuf into SGEs no larger than a page each. As they
225 * are registered, these SGEs are then coalesced into RDMA segments
226 * when the selected memreg mode supports it.
227 *
228 * Returns positive number of SGEs consumed, or a negative errno.
229 */
230
231 static int
rpcrdma_convert_iovs(struct rpcrdma_xprt * r_xprt,struct xdr_buf * xdrbuf,unsigned int pos,enum rpcrdma_chunktype type,struct rpcrdma_mr_seg * seg)232 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
233 unsigned int pos, enum rpcrdma_chunktype type,
234 struct rpcrdma_mr_seg *seg)
235 {
236 unsigned long page_base;
237 unsigned int len, n;
238 struct page **ppages;
239
240 n = 0;
241 if (pos == 0)
242 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
243
244 len = xdrbuf->page_len;
245 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
246 page_base = offset_in_page(xdrbuf->page_base);
247 while (len) {
248 seg->mr_page = *ppages;
249 seg->mr_offset = page_base;
250 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
251 len -= seg->mr_len;
252 ++ppages;
253 ++seg;
254 ++n;
255 page_base = 0;
256 }
257
258 if (type == rpcrdma_readch)
259 goto out;
260
261 /* When encoding a Write chunk, some servers need to see an
262 * extra segment for non-XDR-aligned Write chunks. The upper
263 * layer provides space in the tail iovec that may be used
264 * for this purpose.
265 */
266 if (type == rpcrdma_writech && r_xprt->rx_ep->re_implicit_roundup)
267 goto out;
268
269 if (xdrbuf->tail[0].iov_len)
270 rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
271
272 out:
273 if (unlikely(n > RPCRDMA_MAX_SEGS))
274 return -EIO;
275 return n;
276 }
277
278 static int
encode_rdma_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr)279 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
280 {
281 __be32 *p;
282
283 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
284 if (unlikely(!p))
285 return -EMSGSIZE;
286
287 xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
288 return 0;
289 }
290
291 static int
encode_read_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr,u32 position)292 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
293 u32 position)
294 {
295 __be32 *p;
296
297 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
298 if (unlikely(!p))
299 return -EMSGSIZE;
300
301 *p++ = xdr_one; /* Item present */
302 xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
303 mr->mr_offset);
304 return 0;
305 }
306
rpcrdma_mr_prepare(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpcrdma_mr_seg * seg,int nsegs,bool writing,struct rpcrdma_mr ** mr)307 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
308 struct rpcrdma_req *req,
309 struct rpcrdma_mr_seg *seg,
310 int nsegs, bool writing,
311 struct rpcrdma_mr **mr)
312 {
313 *mr = rpcrdma_mr_pop(&req->rl_free_mrs);
314 if (!*mr) {
315 *mr = rpcrdma_mr_get(r_xprt);
316 if (!*mr)
317 goto out_getmr_err;
318 (*mr)->mr_req = req;
319 }
320
321 rpcrdma_mr_push(*mr, &req->rl_registered);
322 return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
323
324 out_getmr_err:
325 trace_xprtrdma_nomrs_err(r_xprt, req);
326 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
327 rpcrdma_mrs_refresh(r_xprt);
328 return ERR_PTR(-EAGAIN);
329 }
330
331 /* Register and XDR encode the Read list. Supports encoding a list of read
332 * segments that belong to a single read chunk.
333 *
334 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
335 *
336 * Read chunklist (a linked list):
337 * N elements, position P (same P for all chunks of same arg!):
338 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
339 *
340 * Returns zero on success, or a negative errno if a failure occurred.
341 * @xdr is advanced to the next position in the stream.
342 *
343 * Only a single @pos value is currently supported.
344 */
rpcrdma_encode_read_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype rtype)345 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
346 struct rpcrdma_req *req,
347 struct rpc_rqst *rqst,
348 enum rpcrdma_chunktype rtype)
349 {
350 struct xdr_stream *xdr = &req->rl_stream;
351 struct rpcrdma_mr_seg *seg;
352 struct rpcrdma_mr *mr;
353 unsigned int pos;
354 int nsegs;
355
356 if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
357 goto done;
358
359 pos = rqst->rq_snd_buf.head[0].iov_len;
360 if (rtype == rpcrdma_areadch)
361 pos = 0;
362 seg = req->rl_segments;
363 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
364 rtype, seg);
365 if (nsegs < 0)
366 return nsegs;
367
368 do {
369 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
370 if (IS_ERR(seg))
371 return PTR_ERR(seg);
372
373 if (encode_read_segment(xdr, mr, pos) < 0)
374 return -EMSGSIZE;
375
376 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
377 r_xprt->rx_stats.read_chunk_count++;
378 nsegs -= mr->mr_nents;
379 } while (nsegs);
380
381 done:
382 if (xdr_stream_encode_item_absent(xdr) < 0)
383 return -EMSGSIZE;
384 return 0;
385 }
386
387 /* Register and XDR encode the Write list. Supports encoding a list
388 * containing one array of plain segments that belong to a single
389 * write chunk.
390 *
391 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
392 *
393 * Write chunklist (a list of (one) counted array):
394 * N elements:
395 * 1 - N - HLOO - HLOO - ... - HLOO - 0
396 *
397 * Returns zero on success, or a negative errno if a failure occurred.
398 * @xdr is advanced to the next position in the stream.
399 *
400 * Only a single Write chunk is currently supported.
401 */
rpcrdma_encode_write_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)402 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
403 struct rpcrdma_req *req,
404 struct rpc_rqst *rqst,
405 enum rpcrdma_chunktype wtype)
406 {
407 struct xdr_stream *xdr = &req->rl_stream;
408 struct rpcrdma_mr_seg *seg;
409 struct rpcrdma_mr *mr;
410 int nsegs, nchunks;
411 __be32 *segcount;
412
413 if (wtype != rpcrdma_writech)
414 goto done;
415
416 seg = req->rl_segments;
417 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
418 rqst->rq_rcv_buf.head[0].iov_len,
419 wtype, seg);
420 if (nsegs < 0)
421 return nsegs;
422
423 if (xdr_stream_encode_item_present(xdr) < 0)
424 return -EMSGSIZE;
425 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
426 if (unlikely(!segcount))
427 return -EMSGSIZE;
428 /* Actual value encoded below */
429
430 nchunks = 0;
431 do {
432 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
433 if (IS_ERR(seg))
434 return PTR_ERR(seg);
435
436 if (encode_rdma_segment(xdr, mr) < 0)
437 return -EMSGSIZE;
438
439 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
440 r_xprt->rx_stats.write_chunk_count++;
441 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
442 nchunks++;
443 nsegs -= mr->mr_nents;
444 } while (nsegs);
445
446 /* Update count of segments in this Write chunk */
447 *segcount = cpu_to_be32(nchunks);
448
449 done:
450 if (xdr_stream_encode_item_absent(xdr) < 0)
451 return -EMSGSIZE;
452 return 0;
453 }
454
455 /* Register and XDR encode the Reply chunk. Supports encoding an array
456 * of plain segments that belong to a single write (reply) chunk.
457 *
458 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
459 *
460 * Reply chunk (a counted array):
461 * N elements:
462 * 1 - N - HLOO - HLOO - ... - HLOO
463 *
464 * Returns zero on success, or a negative errno if a failure occurred.
465 * @xdr is advanced to the next position in the stream.
466 */
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)467 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
468 struct rpcrdma_req *req,
469 struct rpc_rqst *rqst,
470 enum rpcrdma_chunktype wtype)
471 {
472 struct xdr_stream *xdr = &req->rl_stream;
473 struct rpcrdma_mr_seg *seg;
474 struct rpcrdma_mr *mr;
475 int nsegs, nchunks;
476 __be32 *segcount;
477
478 if (wtype != rpcrdma_replych) {
479 if (xdr_stream_encode_item_absent(xdr) < 0)
480 return -EMSGSIZE;
481 return 0;
482 }
483
484 seg = req->rl_segments;
485 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
486 if (nsegs < 0)
487 return nsegs;
488
489 if (xdr_stream_encode_item_present(xdr) < 0)
490 return -EMSGSIZE;
491 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
492 if (unlikely(!segcount))
493 return -EMSGSIZE;
494 /* Actual value encoded below */
495
496 nchunks = 0;
497 do {
498 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
499 if (IS_ERR(seg))
500 return PTR_ERR(seg);
501
502 if (encode_rdma_segment(xdr, mr) < 0)
503 return -EMSGSIZE;
504
505 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
506 r_xprt->rx_stats.reply_chunk_count++;
507 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
508 nchunks++;
509 nsegs -= mr->mr_nents;
510 } while (nsegs);
511
512 /* Update count of segments in the Reply chunk */
513 *segcount = cpu_to_be32(nchunks);
514
515 return 0;
516 }
517
rpcrdma_sendctx_done(struct kref * kref)518 static void rpcrdma_sendctx_done(struct kref *kref)
519 {
520 struct rpcrdma_req *req =
521 container_of(kref, struct rpcrdma_req, rl_kref);
522 struct rpcrdma_rep *rep = req->rl_reply;
523
524 rpcrdma_complete_rqst(rep);
525 rep->rr_rxprt->rx_stats.reply_waits_for_send++;
526 }
527
528 /**
529 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
530 * @sc: sendctx containing SGEs to unmap
531 *
532 */
rpcrdma_sendctx_unmap(struct rpcrdma_sendctx * sc)533 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
534 {
535 struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
536 struct ib_sge *sge;
537
538 if (!sc->sc_unmap_count)
539 return;
540
541 /* The first two SGEs contain the transport header and
542 * the inline buffer. These are always left mapped so
543 * they can be cheaply re-used.
544 */
545 for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
546 ++sge, --sc->sc_unmap_count)
547 ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
548 DMA_TO_DEVICE);
549
550 kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
551 }
552
553 /* Prepare an SGE for the RPC-over-RDMA transport header.
554 */
rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 len)555 static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
556 struct rpcrdma_req *req, u32 len)
557 {
558 struct rpcrdma_sendctx *sc = req->rl_sendctx;
559 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
560 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
561
562 sge->addr = rdmab_addr(rb);
563 sge->length = len;
564 sge->lkey = rdmab_lkey(rb);
565
566 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
567 DMA_TO_DEVICE);
568 }
569
570 /* The head iovec is straightforward, as it is usually already
571 * DMA-mapped. Sync the content that has changed.
572 */
rpcrdma_prepare_head_iov(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,unsigned int len)573 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
574 struct rpcrdma_req *req, unsigned int len)
575 {
576 struct rpcrdma_sendctx *sc = req->rl_sendctx;
577 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
578 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
579
580 if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
581 return false;
582
583 sge->addr = rdmab_addr(rb);
584 sge->length = len;
585 sge->lkey = rdmab_lkey(rb);
586
587 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
588 DMA_TO_DEVICE);
589 return true;
590 }
591
592 /* If there is a page list present, DMA map and prepare an
593 * SGE for each page to be sent.
594 */
rpcrdma_prepare_pagelist(struct rpcrdma_req * req,struct xdr_buf * xdr)595 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
596 struct xdr_buf *xdr)
597 {
598 struct rpcrdma_sendctx *sc = req->rl_sendctx;
599 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
600 unsigned int page_base, len, remaining;
601 struct page **ppages;
602 struct ib_sge *sge;
603
604 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
605 page_base = offset_in_page(xdr->page_base);
606 remaining = xdr->page_len;
607 while (remaining) {
608 sge = &sc->sc_sges[req->rl_wr.num_sge++];
609 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
610 sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
611 page_base, len, DMA_TO_DEVICE);
612 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
613 goto out_mapping_err;
614
615 sge->length = len;
616 sge->lkey = rdmab_lkey(rb);
617
618 sc->sc_unmap_count++;
619 ppages++;
620 remaining -= len;
621 page_base = 0;
622 }
623
624 return true;
625
626 out_mapping_err:
627 trace_xprtrdma_dma_maperr(sge->addr);
628 return false;
629 }
630
631 /* The tail iovec may include an XDR pad for the page list,
632 * as well as additional content, and may not reside in the
633 * same page as the head iovec.
634 */
rpcrdma_prepare_tail_iov(struct rpcrdma_req * req,struct xdr_buf * xdr,unsigned int page_base,unsigned int len)635 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
636 struct xdr_buf *xdr,
637 unsigned int page_base, unsigned int len)
638 {
639 struct rpcrdma_sendctx *sc = req->rl_sendctx;
640 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
641 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
642 struct page *page = virt_to_page(xdr->tail[0].iov_base);
643
644 sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
645 DMA_TO_DEVICE);
646 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
647 goto out_mapping_err;
648
649 sge->length = len;
650 sge->lkey = rdmab_lkey(rb);
651 ++sc->sc_unmap_count;
652 return true;
653
654 out_mapping_err:
655 trace_xprtrdma_dma_maperr(sge->addr);
656 return false;
657 }
658
659 /* Copy the tail to the end of the head buffer.
660 */
rpcrdma_pullup_tail_iov(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)661 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
662 struct rpcrdma_req *req,
663 struct xdr_buf *xdr)
664 {
665 unsigned char *dst;
666
667 dst = (unsigned char *)xdr->head[0].iov_base;
668 dst += xdr->head[0].iov_len + xdr->page_len;
669 memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
670 r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
671 }
672
673 /* Copy pagelist content into the head buffer.
674 */
rpcrdma_pullup_pagelist(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)675 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
676 struct rpcrdma_req *req,
677 struct xdr_buf *xdr)
678 {
679 unsigned int len, page_base, remaining;
680 struct page **ppages;
681 unsigned char *src, *dst;
682
683 dst = (unsigned char *)xdr->head[0].iov_base;
684 dst += xdr->head[0].iov_len;
685 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
686 page_base = offset_in_page(xdr->page_base);
687 remaining = xdr->page_len;
688 while (remaining) {
689 src = page_address(*ppages);
690 src += page_base;
691 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
692 memcpy(dst, src, len);
693 r_xprt->rx_stats.pullup_copy_count += len;
694
695 ppages++;
696 dst += len;
697 remaining -= len;
698 page_base = 0;
699 }
700 }
701
702 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
703 * When the head, pagelist, and tail are small, a pull-up copy
704 * is considerably less costly than DMA mapping the components
705 * of @xdr.
706 *
707 * Assumptions:
708 * - the caller has already verified that the total length
709 * of the RPC Call body will fit into @rl_sendbuf.
710 */
rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)711 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
712 struct rpcrdma_req *req,
713 struct xdr_buf *xdr)
714 {
715 if (unlikely(xdr->tail[0].iov_len))
716 rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
717
718 if (unlikely(xdr->page_len))
719 rpcrdma_pullup_pagelist(r_xprt, req, xdr);
720
721 /* The whole RPC message resides in the head iovec now */
722 return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
723 }
724
rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)725 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
726 struct rpcrdma_req *req,
727 struct xdr_buf *xdr)
728 {
729 struct kvec *tail = &xdr->tail[0];
730
731 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
732 return false;
733 if (xdr->page_len)
734 if (!rpcrdma_prepare_pagelist(req, xdr))
735 return false;
736 if (tail->iov_len)
737 if (!rpcrdma_prepare_tail_iov(req, xdr,
738 offset_in_page(tail->iov_base),
739 tail->iov_len))
740 return false;
741
742 if (req->rl_sendctx->sc_unmap_count)
743 kref_get(&req->rl_kref);
744 return true;
745 }
746
rpcrdma_prepare_readch(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)747 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
748 struct rpcrdma_req *req,
749 struct xdr_buf *xdr)
750 {
751 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
752 return false;
753
754 /* If there is a Read chunk, the page list is being handled
755 * via explicit RDMA, and thus is skipped here.
756 */
757
758 /* Do not include the tail if it is only an XDR pad */
759 if (xdr->tail[0].iov_len > 3) {
760 unsigned int page_base, len;
761
762 /* If the content in the page list is an odd length,
763 * xdr_write_pages() adds a pad at the beginning of
764 * the tail iovec. Force the tail's non-pad content to
765 * land at the next XDR position in the Send message.
766 */
767 page_base = offset_in_page(xdr->tail[0].iov_base);
768 len = xdr->tail[0].iov_len;
769 page_base += len & 3;
770 len -= len & 3;
771 if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
772 return false;
773 kref_get(&req->rl_kref);
774 }
775
776 return true;
777 }
778
779 /**
780 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
781 * @r_xprt: controlling transport
782 * @req: context of RPC Call being marshalled
783 * @hdrlen: size of transport header, in bytes
784 * @xdr: xdr_buf containing RPC Call
785 * @rtype: chunk type being encoded
786 *
787 * Returns 0 on success; otherwise a negative errno is returned.
788 */
rpcrdma_prepare_send_sges(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 hdrlen,struct xdr_buf * xdr,enum rpcrdma_chunktype rtype)789 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
790 struct rpcrdma_req *req, u32 hdrlen,
791 struct xdr_buf *xdr,
792 enum rpcrdma_chunktype rtype)
793 {
794 int ret;
795
796 ret = -EAGAIN;
797 req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
798 if (!req->rl_sendctx)
799 goto out_nosc;
800 req->rl_sendctx->sc_unmap_count = 0;
801 req->rl_sendctx->sc_req = req;
802 kref_init(&req->rl_kref);
803 req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
804 req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
805 req->rl_wr.num_sge = 0;
806 req->rl_wr.opcode = IB_WR_SEND;
807
808 rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
809
810 ret = -EIO;
811 switch (rtype) {
812 case rpcrdma_noch_pullup:
813 if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
814 goto out_unmap;
815 break;
816 case rpcrdma_noch_mapped:
817 if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
818 goto out_unmap;
819 break;
820 case rpcrdma_readch:
821 if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
822 goto out_unmap;
823 break;
824 case rpcrdma_areadch:
825 break;
826 default:
827 goto out_unmap;
828 }
829
830 return 0;
831
832 out_unmap:
833 rpcrdma_sendctx_unmap(req->rl_sendctx);
834 out_nosc:
835 trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
836 return ret;
837 }
838
839 /**
840 * rpcrdma_marshal_req - Marshal and send one RPC request
841 * @r_xprt: controlling transport
842 * @rqst: RPC request to be marshaled
843 *
844 * For the RPC in "rqst", this function:
845 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
846 * - Registers Read, Write, and Reply chunks
847 * - Constructs the transport header
848 * - Posts a Send WR to send the transport header and request
849 *
850 * Returns:
851 * %0 if the RPC was sent successfully,
852 * %-ENOTCONN if the connection was lost,
853 * %-EAGAIN if the caller should call again with the same arguments,
854 * %-ENOBUFS if the caller should call again after a delay,
855 * %-EMSGSIZE if the transport header is too small,
856 * %-EIO if a permanent problem occurred while marshaling.
857 */
858 int
rpcrdma_marshal_req(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)859 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
860 {
861 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
862 struct xdr_stream *xdr = &req->rl_stream;
863 enum rpcrdma_chunktype rtype, wtype;
864 struct xdr_buf *buf = &rqst->rq_snd_buf;
865 bool ddp_allowed;
866 __be32 *p;
867 int ret;
868
869 if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
870 ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
871 if (ret)
872 return ret;
873 }
874
875 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
876 xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
877 rqst);
878
879 /* Fixed header fields */
880 ret = -EMSGSIZE;
881 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
882 if (!p)
883 goto out_err;
884 *p++ = rqst->rq_xid;
885 *p++ = rpcrdma_version;
886 *p++ = r_xprt->rx_buf.rb_max_requests;
887
888 /* When the ULP employs a GSS flavor that guarantees integrity
889 * or privacy, direct data placement of individual data items
890 * is not allowed.
891 */
892 ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
893 &rqst->rq_cred->cr_auth->au_flags);
894
895 /*
896 * Chunks needed for results?
897 *
898 * o If the expected result is under the inline threshold, all ops
899 * return as inline.
900 * o Large read ops return data as write chunk(s), header as
901 * inline.
902 * o Large non-read ops return as a single reply chunk.
903 */
904 if (rpcrdma_results_inline(r_xprt, rqst))
905 wtype = rpcrdma_noch;
906 else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
907 rpcrdma_nonpayload_inline(r_xprt, rqst))
908 wtype = rpcrdma_writech;
909 else
910 wtype = rpcrdma_replych;
911
912 /*
913 * Chunks needed for arguments?
914 *
915 * o If the total request is under the inline threshold, all ops
916 * are sent as inline.
917 * o Large write ops transmit data as read chunk(s), header as
918 * inline.
919 * o Large non-write ops are sent with the entire message as a
920 * single read chunk (protocol 0-position special case).
921 *
922 * This assumes that the upper layer does not present a request
923 * that both has a data payload, and whose non-data arguments
924 * by themselves are larger than the inline threshold.
925 */
926 if (rpcrdma_args_inline(r_xprt, rqst)) {
927 *p++ = rdma_msg;
928 rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
929 rpcrdma_noch_pullup : rpcrdma_noch_mapped;
930 } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
931 *p++ = rdma_msg;
932 rtype = rpcrdma_readch;
933 } else {
934 r_xprt->rx_stats.nomsg_call_count++;
935 *p++ = rdma_nomsg;
936 rtype = rpcrdma_areadch;
937 }
938
939 /* This implementation supports the following combinations
940 * of chunk lists in one RPC-over-RDMA Call message:
941 *
942 * - Read list
943 * - Write list
944 * - Reply chunk
945 * - Read list + Reply chunk
946 *
947 * It might not yet support the following combinations:
948 *
949 * - Read list + Write list
950 *
951 * It does not support the following combinations:
952 *
953 * - Write list + Reply chunk
954 * - Read list + Write list + Reply chunk
955 *
956 * This implementation supports only a single chunk in each
957 * Read or Write list. Thus for example the client cannot
958 * send a Call message with a Position Zero Read chunk and a
959 * regular Read chunk at the same time.
960 */
961 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
962 if (ret)
963 goto out_err;
964 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
965 if (ret)
966 goto out_err;
967 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
968 if (ret)
969 goto out_err;
970
971 ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
972 buf, rtype);
973 if (ret)
974 goto out_err;
975
976 trace_xprtrdma_marshal(req, rtype, wtype);
977 return 0;
978
979 out_err:
980 trace_xprtrdma_marshal_failed(rqst, ret);
981 r_xprt->rx_stats.failed_marshal_count++;
982 frwr_reset(req);
983 return ret;
984 }
985
__rpcrdma_update_cwnd_locked(struct rpc_xprt * xprt,struct rpcrdma_buffer * buf,u32 grant)986 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
987 struct rpcrdma_buffer *buf,
988 u32 grant)
989 {
990 buf->rb_credits = grant;
991 xprt->cwnd = grant << RPC_CWNDSHIFT;
992 }
993
rpcrdma_update_cwnd(struct rpcrdma_xprt * r_xprt,u32 grant)994 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
995 {
996 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
997
998 spin_lock(&xprt->transport_lock);
999 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1000 spin_unlock(&xprt->transport_lock);
1001 }
1002
1003 /**
1004 * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1005 * @r_xprt: controlling transport instance
1006 *
1007 * Prepare @r_xprt for the next connection by reinitializing
1008 * its credit grant to one (see RFC 8166, Section 3.3.3).
1009 */
rpcrdma_reset_cwnd(struct rpcrdma_xprt * r_xprt)1010 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1011 {
1012 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1013
1014 spin_lock(&xprt->transport_lock);
1015 xprt->cong = 0;
1016 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1017 spin_unlock(&xprt->transport_lock);
1018 }
1019
1020 /**
1021 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1022 * @rqst: controlling RPC request
1023 * @srcp: points to RPC message payload in receive buffer
1024 * @copy_len: remaining length of receive buffer content
1025 * @pad: Write chunk pad bytes needed (zero for pure inline)
1026 *
1027 * The upper layer has set the maximum number of bytes it can
1028 * receive in each component of rq_rcv_buf. These values are set in
1029 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1030 *
1031 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1032 * many cases this function simply updates iov_base pointers in
1033 * rq_rcv_buf to point directly to the received reply data, to
1034 * avoid copying reply data.
1035 *
1036 * Returns the count of bytes which had to be memcopied.
1037 */
1038 static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst * rqst,char * srcp,int copy_len,int pad)1039 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1040 {
1041 unsigned long fixup_copy_count;
1042 int i, npages, curlen;
1043 char *destp;
1044 struct page **ppages;
1045 int page_base;
1046
1047 /* The head iovec is redirected to the RPC reply message
1048 * in the receive buffer, to avoid a memcopy.
1049 */
1050 rqst->rq_rcv_buf.head[0].iov_base = srcp;
1051 rqst->rq_private_buf.head[0].iov_base = srcp;
1052
1053 /* The contents of the receive buffer that follow
1054 * head.iov_len bytes are copied into the page list.
1055 */
1056 curlen = rqst->rq_rcv_buf.head[0].iov_len;
1057 if (curlen > copy_len)
1058 curlen = copy_len;
1059 srcp += curlen;
1060 copy_len -= curlen;
1061
1062 ppages = rqst->rq_rcv_buf.pages +
1063 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1064 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1065 fixup_copy_count = 0;
1066 if (copy_len && rqst->rq_rcv_buf.page_len) {
1067 int pagelist_len;
1068
1069 pagelist_len = rqst->rq_rcv_buf.page_len;
1070 if (pagelist_len > copy_len)
1071 pagelist_len = copy_len;
1072 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1073 for (i = 0; i < npages; i++) {
1074 curlen = PAGE_SIZE - page_base;
1075 if (curlen > pagelist_len)
1076 curlen = pagelist_len;
1077
1078 destp = kmap_atomic(ppages[i]);
1079 memcpy(destp + page_base, srcp, curlen);
1080 flush_dcache_page(ppages[i]);
1081 kunmap_atomic(destp);
1082 srcp += curlen;
1083 copy_len -= curlen;
1084 fixup_copy_count += curlen;
1085 pagelist_len -= curlen;
1086 if (!pagelist_len)
1087 break;
1088 page_base = 0;
1089 }
1090
1091 /* Implicit padding for the last segment in a Write
1092 * chunk is inserted inline at the front of the tail
1093 * iovec. The upper layer ignores the content of
1094 * the pad. Simply ensure inline content in the tail
1095 * that follows the Write chunk is properly aligned.
1096 */
1097 if (pad)
1098 srcp -= pad;
1099 }
1100
1101 /* The tail iovec is redirected to the remaining data
1102 * in the receive buffer, to avoid a memcopy.
1103 */
1104 if (copy_len || pad) {
1105 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1106 rqst->rq_private_buf.tail[0].iov_base = srcp;
1107 }
1108
1109 if (fixup_copy_count)
1110 trace_xprtrdma_fixup(rqst, fixup_copy_count);
1111 return fixup_copy_count;
1112 }
1113
1114 /* By convention, backchannel calls arrive via rdma_msg type
1115 * messages, and never populate the chunk lists. This makes
1116 * the RPC/RDMA header small and fixed in size, so it is
1117 * straightforward to check the RPC header's direction field.
1118 */
1119 static bool
rpcrdma_is_bcall(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1120 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1121 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1122 {
1123 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1124 struct xdr_stream *xdr = &rep->rr_stream;
1125 __be32 *p;
1126
1127 if (rep->rr_proc != rdma_msg)
1128 return false;
1129
1130 /* Peek at stream contents without advancing. */
1131 p = xdr_inline_decode(xdr, 0);
1132
1133 /* Chunk lists */
1134 if (xdr_item_is_present(p++))
1135 return false;
1136 if (xdr_item_is_present(p++))
1137 return false;
1138 if (xdr_item_is_present(p++))
1139 return false;
1140
1141 /* RPC header */
1142 if (*p++ != rep->rr_xid)
1143 return false;
1144 if (*p != cpu_to_be32(RPC_CALL))
1145 return false;
1146
1147 /* No bc service. */
1148 if (xprt->bc_serv == NULL)
1149 return false;
1150
1151 /* Now that we are sure this is a backchannel call,
1152 * advance to the RPC header.
1153 */
1154 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1155 if (unlikely(!p))
1156 return true;
1157
1158 rpcrdma_bc_receive_call(r_xprt, rep);
1159 return true;
1160 }
1161 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1162 {
1163 return false;
1164 }
1165 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1166
decode_rdma_segment(struct xdr_stream * xdr,u32 * length)1167 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1168 {
1169 u32 handle;
1170 u64 offset;
1171 __be32 *p;
1172
1173 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1174 if (unlikely(!p))
1175 return -EIO;
1176
1177 xdr_decode_rdma_segment(p, &handle, length, &offset);
1178 trace_xprtrdma_decode_seg(handle, *length, offset);
1179 return 0;
1180 }
1181
decode_write_chunk(struct xdr_stream * xdr,u32 * length)1182 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1183 {
1184 u32 segcount, seglength;
1185 __be32 *p;
1186
1187 p = xdr_inline_decode(xdr, sizeof(*p));
1188 if (unlikely(!p))
1189 return -EIO;
1190
1191 *length = 0;
1192 segcount = be32_to_cpup(p);
1193 while (segcount--) {
1194 if (decode_rdma_segment(xdr, &seglength))
1195 return -EIO;
1196 *length += seglength;
1197 }
1198
1199 return 0;
1200 }
1201
1202 /* In RPC-over-RDMA Version One replies, a Read list is never
1203 * expected. This decoder is a stub that returns an error if
1204 * a Read list is present.
1205 */
decode_read_list(struct xdr_stream * xdr)1206 static int decode_read_list(struct xdr_stream *xdr)
1207 {
1208 __be32 *p;
1209
1210 p = xdr_inline_decode(xdr, sizeof(*p));
1211 if (unlikely(!p))
1212 return -EIO;
1213 if (unlikely(xdr_item_is_present(p)))
1214 return -EIO;
1215 return 0;
1216 }
1217
1218 /* Supports only one Write chunk in the Write list
1219 */
decode_write_list(struct xdr_stream * xdr,u32 * length)1220 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1221 {
1222 u32 chunklen;
1223 bool first;
1224 __be32 *p;
1225
1226 *length = 0;
1227 first = true;
1228 do {
1229 p = xdr_inline_decode(xdr, sizeof(*p));
1230 if (unlikely(!p))
1231 return -EIO;
1232 if (xdr_item_is_absent(p))
1233 break;
1234 if (!first)
1235 return -EIO;
1236
1237 if (decode_write_chunk(xdr, &chunklen))
1238 return -EIO;
1239 *length += chunklen;
1240 first = false;
1241 } while (true);
1242 return 0;
1243 }
1244
decode_reply_chunk(struct xdr_stream * xdr,u32 * length)1245 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1246 {
1247 __be32 *p;
1248
1249 p = xdr_inline_decode(xdr, sizeof(*p));
1250 if (unlikely(!p))
1251 return -EIO;
1252
1253 *length = 0;
1254 if (xdr_item_is_present(p))
1255 if (decode_write_chunk(xdr, length))
1256 return -EIO;
1257 return 0;
1258 }
1259
1260 static int
rpcrdma_decode_msg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1261 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1262 struct rpc_rqst *rqst)
1263 {
1264 struct xdr_stream *xdr = &rep->rr_stream;
1265 u32 writelist, replychunk, rpclen;
1266 char *base;
1267
1268 /* Decode the chunk lists */
1269 if (decode_read_list(xdr))
1270 return -EIO;
1271 if (decode_write_list(xdr, &writelist))
1272 return -EIO;
1273 if (decode_reply_chunk(xdr, &replychunk))
1274 return -EIO;
1275
1276 /* RDMA_MSG sanity checks */
1277 if (unlikely(replychunk))
1278 return -EIO;
1279
1280 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1281 base = (char *)xdr_inline_decode(xdr, 0);
1282 rpclen = xdr_stream_remaining(xdr);
1283 r_xprt->rx_stats.fixup_copy_count +=
1284 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1285
1286 r_xprt->rx_stats.total_rdma_reply += writelist;
1287 return rpclen + xdr_align_size(writelist);
1288 }
1289
1290 static noinline int
rpcrdma_decode_nomsg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1291 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1292 {
1293 struct xdr_stream *xdr = &rep->rr_stream;
1294 u32 writelist, replychunk;
1295
1296 /* Decode the chunk lists */
1297 if (decode_read_list(xdr))
1298 return -EIO;
1299 if (decode_write_list(xdr, &writelist))
1300 return -EIO;
1301 if (decode_reply_chunk(xdr, &replychunk))
1302 return -EIO;
1303
1304 /* RDMA_NOMSG sanity checks */
1305 if (unlikely(writelist))
1306 return -EIO;
1307 if (unlikely(!replychunk))
1308 return -EIO;
1309
1310 /* Reply chunk buffer already is the reply vector */
1311 r_xprt->rx_stats.total_rdma_reply += replychunk;
1312 return replychunk;
1313 }
1314
1315 static noinline int
rpcrdma_decode_error(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1316 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1317 struct rpc_rqst *rqst)
1318 {
1319 struct xdr_stream *xdr = &rep->rr_stream;
1320 __be32 *p;
1321
1322 p = xdr_inline_decode(xdr, sizeof(*p));
1323 if (unlikely(!p))
1324 return -EIO;
1325
1326 switch (*p) {
1327 case err_vers:
1328 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1329 if (!p)
1330 break;
1331 trace_xprtrdma_err_vers(rqst, p, p + 1);
1332 break;
1333 case err_chunk:
1334 trace_xprtrdma_err_chunk(rqst);
1335 break;
1336 default:
1337 trace_xprtrdma_err_unrecognized(rqst, p);
1338 }
1339
1340 return -EIO;
1341 }
1342
1343 /**
1344 * rpcrdma_unpin_rqst - Release rqst without completing it
1345 * @rep: RPC/RDMA Receive context
1346 *
1347 * This is done when a connection is lost so that a Reply
1348 * can be dropped and its matching Call can be subsequently
1349 * retransmitted on a new connection.
1350 */
rpcrdma_unpin_rqst(struct rpcrdma_rep * rep)1351 void rpcrdma_unpin_rqst(struct rpcrdma_rep *rep)
1352 {
1353 struct rpc_xprt *xprt = &rep->rr_rxprt->rx_xprt;
1354 struct rpc_rqst *rqst = rep->rr_rqst;
1355 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
1356
1357 req->rl_reply = NULL;
1358 rep->rr_rqst = NULL;
1359
1360 spin_lock(&xprt->queue_lock);
1361 xprt_unpin_rqst(rqst);
1362 spin_unlock(&xprt->queue_lock);
1363 }
1364
1365 /**
1366 * rpcrdma_complete_rqst - Pass completed rqst back to RPC
1367 * @rep: RPC/RDMA Receive context
1368 *
1369 * Reconstruct the RPC reply and complete the transaction
1370 * while @rqst is still pinned to ensure the rep, rqst, and
1371 * rq_task pointers remain stable.
1372 */
rpcrdma_complete_rqst(struct rpcrdma_rep * rep)1373 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1374 {
1375 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1376 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1377 struct rpc_rqst *rqst = rep->rr_rqst;
1378 int status;
1379
1380 switch (rep->rr_proc) {
1381 case rdma_msg:
1382 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1383 break;
1384 case rdma_nomsg:
1385 status = rpcrdma_decode_nomsg(r_xprt, rep);
1386 break;
1387 case rdma_error:
1388 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1389 break;
1390 default:
1391 status = -EIO;
1392 }
1393 if (status < 0)
1394 goto out_badheader;
1395
1396 out:
1397 spin_lock(&xprt->queue_lock);
1398 xprt_complete_rqst(rqst->rq_task, status);
1399 xprt_unpin_rqst(rqst);
1400 spin_unlock(&xprt->queue_lock);
1401 return;
1402
1403 out_badheader:
1404 trace_xprtrdma_reply_hdr_err(rep);
1405 r_xprt->rx_stats.bad_reply_count++;
1406 rqst->rq_task->tk_status = status;
1407 status = 0;
1408 goto out;
1409 }
1410
rpcrdma_reply_done(struct kref * kref)1411 static void rpcrdma_reply_done(struct kref *kref)
1412 {
1413 struct rpcrdma_req *req =
1414 container_of(kref, struct rpcrdma_req, rl_kref);
1415
1416 rpcrdma_complete_rqst(req->rl_reply);
1417 }
1418
1419 /**
1420 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1421 * @rep: Incoming rpcrdma_rep object to process
1422 *
1423 * Errors must result in the RPC task either being awakened, or
1424 * allowed to timeout, to discover the errors at that time.
1425 */
rpcrdma_reply_handler(struct rpcrdma_rep * rep)1426 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1427 {
1428 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1429 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1430 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1431 struct rpcrdma_req *req;
1432 struct rpc_rqst *rqst;
1433 u32 credits;
1434 __be32 *p;
1435
1436 /* Any data means we had a useful conversation, so
1437 * then we don't need to delay the next reconnect.
1438 */
1439 if (xprt->reestablish_timeout)
1440 xprt->reestablish_timeout = 0;
1441
1442 /* Fixed transport header fields */
1443 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1444 rep->rr_hdrbuf.head[0].iov_base, NULL);
1445 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1446 if (unlikely(!p))
1447 goto out_shortreply;
1448 rep->rr_xid = *p++;
1449 rep->rr_vers = *p++;
1450 credits = be32_to_cpu(*p++);
1451 rep->rr_proc = *p++;
1452
1453 if (rep->rr_vers != rpcrdma_version)
1454 goto out_badversion;
1455
1456 if (rpcrdma_is_bcall(r_xprt, rep))
1457 return;
1458
1459 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1460 * get context for handling any incoming chunks.
1461 */
1462 spin_lock(&xprt->queue_lock);
1463 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1464 if (!rqst)
1465 goto out_norqst;
1466 xprt_pin_rqst(rqst);
1467 spin_unlock(&xprt->queue_lock);
1468
1469 if (credits == 0)
1470 credits = 1; /* don't deadlock */
1471 else if (credits > r_xprt->rx_ep->re_max_requests)
1472 credits = r_xprt->rx_ep->re_max_requests;
1473 rpcrdma_post_recvs(r_xprt, credits + (buf->rb_bc_srv_max_requests << 1),
1474 false);
1475 if (buf->rb_credits != credits)
1476 rpcrdma_update_cwnd(r_xprt, credits);
1477
1478 req = rpcr_to_rdmar(rqst);
1479 if (unlikely(req->rl_reply))
1480 rpcrdma_rep_put(buf, req->rl_reply);
1481 req->rl_reply = rep;
1482 rep->rr_rqst = rqst;
1483
1484 trace_xprtrdma_reply(rqst->rq_task, rep, credits);
1485
1486 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1487 frwr_reminv(rep, &req->rl_registered);
1488 if (!list_empty(&req->rl_registered))
1489 frwr_unmap_async(r_xprt, req);
1490 /* LocalInv completion will complete the RPC */
1491 else
1492 kref_put(&req->rl_kref, rpcrdma_reply_done);
1493 return;
1494
1495 out_badversion:
1496 trace_xprtrdma_reply_vers_err(rep);
1497 goto out;
1498
1499 out_norqst:
1500 spin_unlock(&xprt->queue_lock);
1501 trace_xprtrdma_reply_rqst_err(rep);
1502 goto out;
1503
1504 out_shortreply:
1505 trace_xprtrdma_reply_short_err(rep);
1506
1507 out:
1508 rpcrdma_rep_put(buf, rep);
1509 }
1510