1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sh_timer.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #ifdef CONFIG_SUPERH
30 #include <asm/platform_early.h>
31 #endif
32
33 struct sh_cmt_device;
34
35 /*
36 * The CMT comes in 5 different identified flavours, depending not only on the
37 * SoC but also on the particular instance. The following table lists the main
38 * characteristics of those flavours.
39 *
40 * 16B 32B 32B-F 48B R-Car Gen2
41 * -----------------------------------------------------------------------------
42 * Channels 2 1/4 1 6 2/8
43 * Control Width 16 16 16 16 32
44 * Counter Width 16 32 32 32/48 32/48
45 * Shared Start/Stop Y Y Y Y N
46 *
47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48 * located in the channel registers block. All other versions have a shared
49 * start/stop register located in the global space.
50 *
51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
52 * infers the start/stop bit position in the control register and the channel
53 * registers block address. Some CMT instances have a subset of channels
54 * available, in which case the index in the documentation doesn't match the
55 * "real" index as implemented in hardware. This is for instance the case with
56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57 * in the documentation but using start/stop bit 5 and having its registers
58 * block at 0x60.
59 *
60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62 */
63
64 enum sh_cmt_model {
65 SH_CMT_16BIT,
66 SH_CMT_32BIT,
67 SH_CMT_48BIT,
68 SH_CMT0_RCAR_GEN2,
69 SH_CMT1_RCAR_GEN2,
70 };
71
72 struct sh_cmt_info {
73 enum sh_cmt_model model;
74
75 unsigned int channels_mask;
76
77 unsigned long width; /* 16 or 32 bit version of hardware block */
78 u32 overflow_bit;
79 u32 clear_bits;
80
81 /* callbacks for CMSTR and CMCSR access */
82 u32 (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
84 u32 value);
85
86 /* callbacks for CMCNT and CMCOR access */
87 u32 (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89 };
90
91 struct sh_cmt_channel {
92 struct sh_cmt_device *cmt;
93
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
96
97 void __iomem *iostart;
98 void __iomem *ioctrl;
99
100 unsigned int timer_bit;
101 unsigned long flags;
102 u32 match_value;
103 u32 next_match_value;
104 u32 max_match_value;
105 raw_spinlock_t lock;
106 struct clock_event_device ced;
107 struct clocksource cs;
108 u64 total_cycles;
109 bool cs_enabled;
110 };
111
112 struct sh_cmt_device {
113 struct platform_device *pdev;
114
115 const struct sh_cmt_info *info;
116
117 void __iomem *mapbase;
118 struct clk *clk;
119 unsigned long rate;
120 unsigned int reg_delay;
121
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
126 unsigned int hw_channels;
127
128 bool has_clockevent;
129 bool has_clocksource;
130 };
131
132 #define SH_CMT16_CMCSR_CMF (1 << 7)
133 #define SH_CMT16_CMCSR_CMIE (1 << 6)
134 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
135 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
136 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
137 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140 #define SH_CMT32_CMCSR_CMF (1 << 15)
141 #define SH_CMT32_CMCSR_OVF (1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
143 #define SH_CMT32_CMCSR_STTF (1 << 12)
144 #define SH_CMT32_CMCSR_STPF (1 << 11)
145 #define SH_CMT32_CMCSR_SSIE (1 << 10)
146 #define SH_CMT32_CMCSR_CMS (1 << 9)
147 #define SH_CMT32_CMCSR_CMM (1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
sh_cmt_read16(void __iomem * base,unsigned long offs)160 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162 return ioread16(base + (offs << 1));
163 }
164
sh_cmt_read32(void __iomem * base,unsigned long offs)165 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167 return ioread32(base + (offs << 2));
168 }
169
sh_cmt_write16(void __iomem * base,unsigned long offs,u32 value)170 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171 {
172 iowrite16(value, base + (offs << 1));
173 }
174
sh_cmt_write32(void __iomem * base,unsigned long offs,u32 value)175 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176 {
177 iowrite32(value, base + (offs << 2));
178 }
179
180 static const struct sh_cmt_info sh_cmt_info[] = {
181 [SH_CMT_16BIT] = {
182 .model = SH_CMT_16BIT,
183 .width = 16,
184 .overflow_bit = SH_CMT16_CMCSR_CMF,
185 .clear_bits = ~SH_CMT16_CMCSR_CMF,
186 .read_control = sh_cmt_read16,
187 .write_control = sh_cmt_write16,
188 .read_count = sh_cmt_read16,
189 .write_count = sh_cmt_write16,
190 },
191 [SH_CMT_32BIT] = {
192 .model = SH_CMT_32BIT,
193 .width = 32,
194 .overflow_bit = SH_CMT32_CMCSR_CMF,
195 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 .read_control = sh_cmt_read16,
197 .write_control = sh_cmt_write16,
198 .read_count = sh_cmt_read32,
199 .write_count = sh_cmt_write32,
200 },
201 [SH_CMT_48BIT] = {
202 .model = SH_CMT_48BIT,
203 .channels_mask = 0x3f,
204 .width = 32,
205 .overflow_bit = SH_CMT32_CMCSR_CMF,
206 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207 .read_control = sh_cmt_read32,
208 .write_control = sh_cmt_write32,
209 .read_count = sh_cmt_read32,
210 .write_count = sh_cmt_write32,
211 },
212 [SH_CMT0_RCAR_GEN2] = {
213 .model = SH_CMT0_RCAR_GEN2,
214 .channels_mask = 0x60,
215 .width = 32,
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT1_RCAR_GEN2] = {
224 .model = SH_CMT1_RCAR_GEN2,
225 .channels_mask = 0xff,
226 .width = 32,
227 .overflow_bit = SH_CMT32_CMCSR_CMF,
228 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229 .read_control = sh_cmt_read32,
230 .write_control = sh_cmt_write32,
231 .read_count = sh_cmt_read32,
232 .write_count = sh_cmt_write32,
233 },
234 };
235
236 #define CMCSR 0 /* channel register */
237 #define CMCNT 1 /* channel register */
238 #define CMCOR 2 /* channel register */
239
240 #define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
241
sh_cmt_read_cmstr(struct sh_cmt_channel * ch)242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 {
244 if (ch->iostart)
245 return ch->cmt->info->read_control(ch->iostart, 0);
246 else
247 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248 }
249
sh_cmt_write_cmstr(struct sh_cmt_channel * ch,u32 value)250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 {
252 u32 old_value = sh_cmt_read_cmstr(ch);
253
254 if (value != old_value) {
255 if (ch->iostart) {
256 ch->cmt->info->write_control(ch->iostart, 0, value);
257 udelay(ch->cmt->reg_delay);
258 } else {
259 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 udelay(ch->cmt->reg_delay);
261 }
262 }
263 }
264
sh_cmt_read_cmcsr(struct sh_cmt_channel * ch)265 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266 {
267 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
268 }
269
sh_cmt_write_cmcsr(struct sh_cmt_channel * ch,u32 value)270 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271 {
272 u32 old_value = sh_cmt_read_cmcsr(ch);
273
274 if (value != old_value) {
275 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276 udelay(ch->cmt->reg_delay);
277 }
278 }
279
sh_cmt_read_cmcnt(struct sh_cmt_channel * ch)280 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281 {
282 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
283 }
284
sh_cmt_write_cmcnt(struct sh_cmt_channel * ch,u32 value)285 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286 {
287 /* Tests showed that we need to wait 3 clocks here */
288 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289 u32 reg;
290
291 if (ch->cmt->info->model > SH_CMT_16BIT) {
292 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293 !(reg & SH_CMT32_CMCSR_WRFLG),
294 1, cmcnt_delay, false, ch);
295 if (ret < 0)
296 return ret;
297 }
298
299 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
300 udelay(cmcnt_delay);
301 return 0;
302 }
303
sh_cmt_write_cmcor(struct sh_cmt_channel * ch,u32 value)304 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305 {
306 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307
308 if (value != old_value) {
309 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310 udelay(ch->cmt->reg_delay);
311 }
312 }
313
sh_cmt_get_counter(struct sh_cmt_channel * ch,u32 * has_wrapped)314 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315 {
316 u32 v1, v2, v3;
317 u32 o1, o2;
318
319 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320
321 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
322 do {
323 o2 = o1;
324 v1 = sh_cmt_read_cmcnt(ch);
325 v2 = sh_cmt_read_cmcnt(ch);
326 v3 = sh_cmt_read_cmcnt(ch);
327 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330
331 *has_wrapped = o1;
332 return v2;
333 }
334
sh_cmt_start_stop_ch(struct sh_cmt_channel * ch,int start)335 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336 {
337 unsigned long flags;
338 u32 value;
339
340 /* start stop register shared by multiple timer channels */
341 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342 value = sh_cmt_read_cmstr(ch);
343
344 if (start)
345 value |= 1 << ch->timer_bit;
346 else
347 value &= ~(1 << ch->timer_bit);
348
349 sh_cmt_write_cmstr(ch, value);
350 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
351 }
352
sh_cmt_enable(struct sh_cmt_channel * ch)353 static int sh_cmt_enable(struct sh_cmt_channel *ch)
354 {
355 int ret;
356
357 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
358
359 /* enable clock */
360 ret = clk_enable(ch->cmt->clk);
361 if (ret) {
362 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
363 ch->index);
364 goto err0;
365 }
366
367 /* make sure channel is disabled */
368 sh_cmt_start_stop_ch(ch, 0);
369
370 /* configure channel, periodic mode and maximum timeout */
371 if (ch->cmt->info->width == 16) {
372 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
373 SH_CMT16_CMCSR_CKS512);
374 } else {
375 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
376 SH_CMT32_CMCSR_CMTOUT_IE : 0;
377 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
378 SH_CMT32_CMCSR_CMR_IRQ |
379 SH_CMT32_CMCSR_CKS_RCLK8);
380 }
381
382 sh_cmt_write_cmcor(ch, 0xffffffff);
383 ret = sh_cmt_write_cmcnt(ch, 0);
384
385 if (ret || sh_cmt_read_cmcnt(ch)) {
386 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387 ch->index);
388 ret = -ETIMEDOUT;
389 goto err1;
390 }
391
392 /* enable channel */
393 sh_cmt_start_stop_ch(ch, 1);
394 return 0;
395 err1:
396 /* stop clock */
397 clk_disable(ch->cmt->clk);
398
399 err0:
400 return ret;
401 }
402
sh_cmt_disable(struct sh_cmt_channel * ch)403 static void sh_cmt_disable(struct sh_cmt_channel *ch)
404 {
405 /* disable channel */
406 sh_cmt_start_stop_ch(ch, 0);
407
408 /* disable interrupts in CMT block */
409 sh_cmt_write_cmcsr(ch, 0);
410
411 /* stop clock */
412 clk_disable(ch->cmt->clk);
413
414 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
415 }
416
417 /* private flags */
418 #define FLAG_CLOCKEVENT (1 << 0)
419 #define FLAG_CLOCKSOURCE (1 << 1)
420 #define FLAG_REPROGRAM (1 << 2)
421 #define FLAG_SKIPEVENT (1 << 3)
422 #define FLAG_IRQCONTEXT (1 << 4)
423
sh_cmt_clock_event_program_verify(struct sh_cmt_channel * ch,int absolute)424 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
425 int absolute)
426 {
427 u32 value = ch->next_match_value;
428 u32 new_match;
429 u32 delay = 0;
430 u32 now = 0;
431 u32 has_wrapped;
432
433 now = sh_cmt_get_counter(ch, &has_wrapped);
434 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
435
436 if (has_wrapped) {
437 /* we're competing with the interrupt handler.
438 * -> let the interrupt handler reprogram the timer.
439 * -> interrupt number two handles the event.
440 */
441 ch->flags |= FLAG_SKIPEVENT;
442 return;
443 }
444
445 if (absolute)
446 now = 0;
447
448 do {
449 /* reprogram the timer hardware,
450 * but don't save the new match value yet.
451 */
452 new_match = now + value + delay;
453 if (new_match > ch->max_match_value)
454 new_match = ch->max_match_value;
455
456 sh_cmt_write_cmcor(ch, new_match);
457
458 now = sh_cmt_get_counter(ch, &has_wrapped);
459 if (has_wrapped && (new_match > ch->match_value)) {
460 /* we are changing to a greater match value,
461 * so this wrap must be caused by the counter
462 * matching the old value.
463 * -> first interrupt reprograms the timer.
464 * -> interrupt number two handles the event.
465 */
466 ch->flags |= FLAG_SKIPEVENT;
467 break;
468 }
469
470 if (has_wrapped) {
471 /* we are changing to a smaller match value,
472 * so the wrap must be caused by the counter
473 * matching the new value.
474 * -> save programmed match value.
475 * -> let isr handle the event.
476 */
477 ch->match_value = new_match;
478 break;
479 }
480
481 /* be safe: verify hardware settings */
482 if (now < new_match) {
483 /* timer value is below match value, all good.
484 * this makes sure we won't miss any match events.
485 * -> save programmed match value.
486 * -> let isr handle the event.
487 */
488 ch->match_value = new_match;
489 break;
490 }
491
492 /* the counter has reached a value greater
493 * than our new match value. and since the
494 * has_wrapped flag isn't set we must have
495 * programmed a too close event.
496 * -> increase delay and retry.
497 */
498 if (delay)
499 delay <<= 1;
500 else
501 delay = 1;
502
503 if (!delay)
504 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
505 ch->index);
506
507 } while (delay);
508 }
509
__sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)510 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 {
512 if (delta > ch->max_match_value)
513 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
514 ch->index);
515
516 ch->next_match_value = delta;
517 sh_cmt_clock_event_program_verify(ch, 0);
518 }
519
sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)520 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
521 {
522 unsigned long flags;
523
524 raw_spin_lock_irqsave(&ch->lock, flags);
525 __sh_cmt_set_next(ch, delta);
526 raw_spin_unlock_irqrestore(&ch->lock, flags);
527 }
528
sh_cmt_interrupt(int irq,void * dev_id)529 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530 {
531 struct sh_cmt_channel *ch = dev_id;
532
533 /* clear flags */
534 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 ch->cmt->info->clear_bits);
536
537 /* update clock source counter to begin with if enabled
538 * the wrap flag should be cleared by the timer specific
539 * isr before we end up here.
540 */
541 if (ch->flags & FLAG_CLOCKSOURCE)
542 ch->total_cycles += ch->match_value + 1;
543
544 if (!(ch->flags & FLAG_REPROGRAM))
545 ch->next_match_value = ch->max_match_value;
546
547 ch->flags |= FLAG_IRQCONTEXT;
548
549 if (ch->flags & FLAG_CLOCKEVENT) {
550 if (!(ch->flags & FLAG_SKIPEVENT)) {
551 if (clockevent_state_oneshot(&ch->ced)) {
552 ch->next_match_value = ch->max_match_value;
553 ch->flags |= FLAG_REPROGRAM;
554 }
555
556 ch->ced.event_handler(&ch->ced);
557 }
558 }
559
560 ch->flags &= ~FLAG_SKIPEVENT;
561
562 if (ch->flags & FLAG_REPROGRAM) {
563 ch->flags &= ~FLAG_REPROGRAM;
564 sh_cmt_clock_event_program_verify(ch, 1);
565
566 if (ch->flags & FLAG_CLOCKEVENT)
567 if ((clockevent_state_shutdown(&ch->ced))
568 || (ch->match_value == ch->next_match_value))
569 ch->flags &= ~FLAG_REPROGRAM;
570 }
571
572 ch->flags &= ~FLAG_IRQCONTEXT;
573
574 return IRQ_HANDLED;
575 }
576
sh_cmt_start(struct sh_cmt_channel * ch,unsigned long flag)577 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
578 {
579 int ret = 0;
580 unsigned long flags;
581
582 if (flag & FLAG_CLOCKSOURCE)
583 pm_runtime_get_sync(&ch->cmt->pdev->dev);
584
585 raw_spin_lock_irqsave(&ch->lock, flags);
586
587 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
588 if (flag & FLAG_CLOCKEVENT)
589 pm_runtime_get_sync(&ch->cmt->pdev->dev);
590 ret = sh_cmt_enable(ch);
591 }
592
593 if (ret)
594 goto out;
595 ch->flags |= flag;
596
597 /* setup timeout if no clockevent */
598 if (ch->cmt->num_channels == 1 &&
599 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
600 __sh_cmt_set_next(ch, ch->max_match_value);
601 out:
602 raw_spin_unlock_irqrestore(&ch->lock, flags);
603
604 return ret;
605 }
606
sh_cmt_stop(struct sh_cmt_channel * ch,unsigned long flag)607 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
608 {
609 unsigned long flags;
610 unsigned long f;
611
612 raw_spin_lock_irqsave(&ch->lock, flags);
613
614 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
615 ch->flags &= ~flag;
616
617 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
618 sh_cmt_disable(ch);
619 if (flag & FLAG_CLOCKEVENT)
620 pm_runtime_put(&ch->cmt->pdev->dev);
621 }
622
623 /* adjust the timeout to maximum if only clocksource left */
624 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
625 __sh_cmt_set_next(ch, ch->max_match_value);
626
627 raw_spin_unlock_irqrestore(&ch->lock, flags);
628
629 if (flag & FLAG_CLOCKSOURCE)
630 pm_runtime_put(&ch->cmt->pdev->dev);
631 }
632
cs_to_sh_cmt(struct clocksource * cs)633 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
634 {
635 return container_of(cs, struct sh_cmt_channel, cs);
636 }
637
sh_cmt_clocksource_read(struct clocksource * cs)638 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
639 {
640 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641 u32 has_wrapped;
642
643 if (ch->cmt->num_channels == 1) {
644 unsigned long flags;
645 u64 value;
646 u32 raw;
647
648 raw_spin_lock_irqsave(&ch->lock, flags);
649 value = ch->total_cycles;
650 raw = sh_cmt_get_counter(ch, &has_wrapped);
651
652 if (unlikely(has_wrapped))
653 raw += ch->match_value + 1;
654 raw_spin_unlock_irqrestore(&ch->lock, flags);
655
656 return value + raw;
657 }
658
659 return sh_cmt_get_counter(ch, &has_wrapped);
660 }
661
sh_cmt_clocksource_enable(struct clocksource * cs)662 static int sh_cmt_clocksource_enable(struct clocksource *cs)
663 {
664 int ret;
665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666
667 WARN_ON(ch->cs_enabled);
668
669 ch->total_cycles = 0;
670
671 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
672 if (!ret)
673 ch->cs_enabled = true;
674
675 return ret;
676 }
677
sh_cmt_clocksource_disable(struct clocksource * cs)678 static void sh_cmt_clocksource_disable(struct clocksource *cs)
679 {
680 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
681
682 WARN_ON(!ch->cs_enabled);
683
684 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685 ch->cs_enabled = false;
686 }
687
sh_cmt_clocksource_suspend(struct clocksource * cs)688 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
689 {
690 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
691
692 if (!ch->cs_enabled)
693 return;
694
695 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
696 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
697 }
698
sh_cmt_clocksource_resume(struct clocksource * cs)699 static void sh_cmt_clocksource_resume(struct clocksource *cs)
700 {
701 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
702
703 if (!ch->cs_enabled)
704 return;
705
706 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
707 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
708 }
709
sh_cmt_register_clocksource(struct sh_cmt_channel * ch,const char * name)710 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
711 const char *name)
712 {
713 struct clocksource *cs = &ch->cs;
714
715 cs->name = name;
716 cs->rating = 125;
717 cs->read = sh_cmt_clocksource_read;
718 cs->enable = sh_cmt_clocksource_enable;
719 cs->disable = sh_cmt_clocksource_disable;
720 cs->suspend = sh_cmt_clocksource_suspend;
721 cs->resume = sh_cmt_clocksource_resume;
722 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
723 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
724
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
726 ch->index);
727
728 clocksource_register_hz(cs, ch->cmt->rate);
729 return 0;
730 }
731
ced_to_sh_cmt(struct clock_event_device * ced)732 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
733 {
734 return container_of(ced, struct sh_cmt_channel, ced);
735 }
736
sh_cmt_clock_event_start(struct sh_cmt_channel * ch,int periodic)737 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
738 {
739 sh_cmt_start(ch, FLAG_CLOCKEVENT);
740
741 if (periodic)
742 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
743 else
744 sh_cmt_set_next(ch, ch->max_match_value);
745 }
746
sh_cmt_clock_event_shutdown(struct clock_event_device * ced)747 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
748 {
749 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750
751 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 return 0;
753 }
754
sh_cmt_clock_event_set_state(struct clock_event_device * ced,int periodic)755 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
756 int periodic)
757 {
758 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759
760 /* deal with old setting first */
761 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
762 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
763
764 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
765 ch->index, periodic ? "periodic" : "oneshot");
766 sh_cmt_clock_event_start(ch, periodic);
767 return 0;
768 }
769
sh_cmt_clock_event_set_oneshot(struct clock_event_device * ced)770 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
771 {
772 return sh_cmt_clock_event_set_state(ced, 0);
773 }
774
sh_cmt_clock_event_set_periodic(struct clock_event_device * ced)775 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
776 {
777 return sh_cmt_clock_event_set_state(ced, 1);
778 }
779
sh_cmt_clock_event_next(unsigned long delta,struct clock_event_device * ced)780 static int sh_cmt_clock_event_next(unsigned long delta,
781 struct clock_event_device *ced)
782 {
783 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
784
785 BUG_ON(!clockevent_state_oneshot(ced));
786 if (likely(ch->flags & FLAG_IRQCONTEXT))
787 ch->next_match_value = delta - 1;
788 else
789 sh_cmt_set_next(ch, delta - 1);
790
791 return 0;
792 }
793
sh_cmt_clock_event_suspend(struct clock_event_device * ced)794 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
795 {
796 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
797
798 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
799 clk_unprepare(ch->cmt->clk);
800 }
801
sh_cmt_clock_event_resume(struct clock_event_device * ced)802 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
803 {
804 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
805
806 clk_prepare(ch->cmt->clk);
807 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
808 }
809
sh_cmt_register_clockevent(struct sh_cmt_channel * ch,const char * name)810 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
811 const char *name)
812 {
813 struct clock_event_device *ced = &ch->ced;
814 int irq;
815 int ret;
816
817 irq = platform_get_irq(ch->cmt->pdev, ch->index);
818 if (irq < 0)
819 return irq;
820
821 ret = request_irq(irq, sh_cmt_interrupt,
822 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
823 dev_name(&ch->cmt->pdev->dev), ch);
824 if (ret) {
825 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
826 ch->index, irq);
827 return ret;
828 }
829
830 ced->name = name;
831 ced->features = CLOCK_EVT_FEAT_PERIODIC;
832 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
833 ced->rating = 125;
834 ced->cpumask = cpu_possible_mask;
835 ced->set_next_event = sh_cmt_clock_event_next;
836 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
837 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
838 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
839 ced->suspend = sh_cmt_clock_event_suspend;
840 ced->resume = sh_cmt_clock_event_resume;
841
842 /* TODO: calculate good shift from rate and counter bit width */
843 ced->shift = 32;
844 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
845 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
846 ced->max_delta_ticks = ch->max_match_value;
847 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
848 ced->min_delta_ticks = 0x1f;
849
850 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
851 ch->index);
852 clockevents_register_device(ced);
853
854 return 0;
855 }
856
sh_cmt_register(struct sh_cmt_channel * ch,const char * name,bool clockevent,bool clocksource)857 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
858 bool clockevent, bool clocksource)
859 {
860 int ret;
861
862 if (clockevent) {
863 ch->cmt->has_clockevent = true;
864 ret = sh_cmt_register_clockevent(ch, name);
865 if (ret < 0)
866 return ret;
867 }
868
869 if (clocksource) {
870 ch->cmt->has_clocksource = true;
871 sh_cmt_register_clocksource(ch, name);
872 }
873
874 return 0;
875 }
876
sh_cmt_setup_channel(struct sh_cmt_channel * ch,unsigned int index,unsigned int hwidx,bool clockevent,bool clocksource,struct sh_cmt_device * cmt)877 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
878 unsigned int hwidx, bool clockevent,
879 bool clocksource, struct sh_cmt_device *cmt)
880 {
881 u32 value;
882 int ret;
883
884 /* Skip unused channels. */
885 if (!clockevent && !clocksource)
886 return 0;
887
888 ch->cmt = cmt;
889 ch->index = index;
890 ch->hwidx = hwidx;
891 ch->timer_bit = hwidx;
892
893 /*
894 * Compute the address of the channel control register block. For the
895 * timers with a per-channel start/stop register, compute its address
896 * as well.
897 */
898 switch (cmt->info->model) {
899 case SH_CMT_16BIT:
900 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
901 break;
902 case SH_CMT_32BIT:
903 case SH_CMT_48BIT:
904 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
905 break;
906 case SH_CMT0_RCAR_GEN2:
907 case SH_CMT1_RCAR_GEN2:
908 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
909 ch->ioctrl = ch->iostart + 0x10;
910 ch->timer_bit = 0;
911
912 /* Enable the clock supply to the channel */
913 value = ioread32(cmt->mapbase + CMCLKE);
914 value |= BIT(hwidx);
915 iowrite32(value, cmt->mapbase + CMCLKE);
916 break;
917 }
918
919 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
920 ch->max_match_value = ~0;
921 else
922 ch->max_match_value = (1 << cmt->info->width) - 1;
923
924 ch->match_value = ch->max_match_value;
925 raw_spin_lock_init(&ch->lock);
926
927 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
928 clockevent, clocksource);
929 if (ret) {
930 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
931 ch->index);
932 return ret;
933 }
934 ch->cs_enabled = false;
935
936 return 0;
937 }
938
sh_cmt_map_memory(struct sh_cmt_device * cmt)939 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
940 {
941 struct resource *mem;
942
943 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
944 if (!mem) {
945 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
946 return -ENXIO;
947 }
948
949 cmt->mapbase = ioremap(mem->start, resource_size(mem));
950 if (cmt->mapbase == NULL) {
951 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
952 return -ENXIO;
953 }
954
955 return 0;
956 }
957
958 static const struct platform_device_id sh_cmt_id_table[] = {
959 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
960 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
961 { }
962 };
963 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
964
965 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
966 {
967 /* deprecated, preserved for backward compatibility */
968 .compatible = "renesas,cmt-48",
969 .data = &sh_cmt_info[SH_CMT_48BIT]
970 },
971 {
972 /* deprecated, preserved for backward compatibility */
973 .compatible = "renesas,cmt-48-gen2",
974 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
975 },
976 {
977 .compatible = "renesas,r8a7740-cmt1",
978 .data = &sh_cmt_info[SH_CMT_48BIT]
979 },
980 {
981 .compatible = "renesas,sh73a0-cmt1",
982 .data = &sh_cmt_info[SH_CMT_48BIT]
983 },
984 {
985 .compatible = "renesas,rcar-gen2-cmt0",
986 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
987 },
988 {
989 .compatible = "renesas,rcar-gen2-cmt1",
990 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
991 },
992 {
993 .compatible = "renesas,rcar-gen3-cmt0",
994 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
995 },
996 {
997 .compatible = "renesas,rcar-gen3-cmt1",
998 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
999 },
1000 { }
1001 };
1002 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1003
sh_cmt_setup(struct sh_cmt_device * cmt,struct platform_device * pdev)1004 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1005 {
1006 unsigned int mask, i;
1007 unsigned long rate;
1008 int ret;
1009
1010 cmt->pdev = pdev;
1011 raw_spin_lock_init(&cmt->lock);
1012
1013 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1014 cmt->info = of_device_get_match_data(&pdev->dev);
1015 cmt->hw_channels = cmt->info->channels_mask;
1016 } else if (pdev->dev.platform_data) {
1017 struct sh_timer_config *cfg = pdev->dev.platform_data;
1018 const struct platform_device_id *id = pdev->id_entry;
1019
1020 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1021 cmt->hw_channels = cfg->channels_mask;
1022 } else {
1023 dev_err(&cmt->pdev->dev, "missing platform data\n");
1024 return -ENXIO;
1025 }
1026
1027 /* Get hold of clock. */
1028 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1029 if (IS_ERR(cmt->clk)) {
1030 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1031 return PTR_ERR(cmt->clk);
1032 }
1033
1034 ret = clk_prepare(cmt->clk);
1035 if (ret < 0)
1036 goto err_clk_put;
1037
1038 /* Determine clock rate. */
1039 ret = clk_enable(cmt->clk);
1040 if (ret < 0)
1041 goto err_clk_unprepare;
1042
1043 rate = clk_get_rate(cmt->clk);
1044 if (!rate) {
1045 ret = -EINVAL;
1046 goto err_clk_disable;
1047 }
1048
1049 /* We shall wait 2 input clks after register writes */
1050 if (cmt->info->model >= SH_CMT_48BIT)
1051 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1052 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1053
1054 /* Map the memory resource(s). */
1055 ret = sh_cmt_map_memory(cmt);
1056 if (ret < 0)
1057 goto err_clk_disable;
1058
1059 /* Allocate and setup the channels. */
1060 cmt->num_channels = hweight8(cmt->hw_channels);
1061 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1062 GFP_KERNEL);
1063 if (cmt->channels == NULL) {
1064 ret = -ENOMEM;
1065 goto err_unmap;
1066 }
1067
1068 /*
1069 * Use the first channel as a clock event device and the second channel
1070 * as a clock source. If only one channel is available use it for both.
1071 */
1072 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1073 unsigned int hwidx = ffs(mask) - 1;
1074 bool clocksource = i == 1 || cmt->num_channels == 1;
1075 bool clockevent = i == 0;
1076
1077 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1078 clockevent, clocksource, cmt);
1079 if (ret < 0)
1080 goto err_unmap;
1081
1082 mask &= ~(1 << hwidx);
1083 }
1084
1085 clk_disable(cmt->clk);
1086
1087 platform_set_drvdata(pdev, cmt);
1088
1089 return 0;
1090
1091 err_unmap:
1092 kfree(cmt->channels);
1093 iounmap(cmt->mapbase);
1094 err_clk_disable:
1095 clk_disable(cmt->clk);
1096 err_clk_unprepare:
1097 clk_unprepare(cmt->clk);
1098 err_clk_put:
1099 clk_put(cmt->clk);
1100 return ret;
1101 }
1102
sh_cmt_probe(struct platform_device * pdev)1103 static int sh_cmt_probe(struct platform_device *pdev)
1104 {
1105 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1106 int ret;
1107
1108 if (!is_sh_early_platform_device(pdev)) {
1109 pm_runtime_set_active(&pdev->dev);
1110 pm_runtime_enable(&pdev->dev);
1111 }
1112
1113 if (cmt) {
1114 dev_info(&pdev->dev, "kept as earlytimer\n");
1115 goto out;
1116 }
1117
1118 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1119 if (cmt == NULL)
1120 return -ENOMEM;
1121
1122 ret = sh_cmt_setup(cmt, pdev);
1123 if (ret) {
1124 kfree(cmt);
1125 pm_runtime_idle(&pdev->dev);
1126 return ret;
1127 }
1128 if (is_sh_early_platform_device(pdev))
1129 return 0;
1130
1131 out:
1132 if (cmt->has_clockevent || cmt->has_clocksource)
1133 pm_runtime_irq_safe(&pdev->dev);
1134 else
1135 pm_runtime_idle(&pdev->dev);
1136
1137 return 0;
1138 }
1139
sh_cmt_remove(struct platform_device * pdev)1140 static int sh_cmt_remove(struct platform_device *pdev)
1141 {
1142 return -EBUSY; /* cannot unregister clockevent and clocksource */
1143 }
1144
1145 static struct platform_driver sh_cmt_device_driver = {
1146 .probe = sh_cmt_probe,
1147 .remove = sh_cmt_remove,
1148 .driver = {
1149 .name = "sh_cmt",
1150 .of_match_table = of_match_ptr(sh_cmt_of_table),
1151 },
1152 .id_table = sh_cmt_id_table,
1153 };
1154
sh_cmt_init(void)1155 static int __init sh_cmt_init(void)
1156 {
1157 return platform_driver_register(&sh_cmt_device_driver);
1158 }
1159
sh_cmt_exit(void)1160 static void __exit sh_cmt_exit(void)
1161 {
1162 platform_driver_unregister(&sh_cmt_device_driver);
1163 }
1164
1165 #ifdef CONFIG_SUPERH
1166 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1167 #endif
1168
1169 subsys_initcall(sh_cmt_init);
1170 module_exit(sh_cmt_exit);
1171
1172 MODULE_AUTHOR("Magnus Damm");
1173 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1174 MODULE_LICENSE("GPL v2");
1175