• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3   *
4   *  This file is derived from the powermac console "imstt" driver:
5   *  Copyright (C) 1997 Sigurdur Asgeirsson
6   *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7   *  Modified by Danilo Beuche 1998
8   *  Some register values added by Damien Doligez, INRIA Rocquencourt
9   *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10   *
11   *  This file was written by Ryan Nielsen (ran@krazynet.com)
12   *  Most of the frame buffer device stuff was copied from atyfb.c
13   *
14   *  This file is subject to the terms and conditions of the GNU General Public
15   *  License. See the file COPYING in the main directory of this archive for
16   *  more details.
17   */
18  
19  #include <linux/module.h>
20  #include <linux/kernel.h>
21  #include <linux/errno.h>
22  #include <linux/string.h>
23  #include <linux/mm.h>
24  #include <linux/vmalloc.h>
25  #include <linux/delay.h>
26  #include <linux/interrupt.h>
27  #include <linux/fb.h>
28  #include <linux/init.h>
29  #include <linux/pci.h>
30  #include <asm/io.h>
31  #include <linux/uaccess.h>
32  
33  #if defined(CONFIG_PPC_PMAC)
34  #include <linux/nvram.h>
35  #include "macmodes.h"
36  #endif
37  
38  #ifndef __powerpc__
39  #define eieio()		/* Enforce In-order Execution of I/O */
40  #endif
41  
42  /* TwinTurbo (Cosmo) registers */
43  enum {
44  	S1SA	=  0, /* 0x00 */
45  	S2SA	=  1, /* 0x04 */
46  	SP	=  2, /* 0x08 */
47  	DSA	=  3, /* 0x0C */
48  	CNT	=  4, /* 0x10 */
49  	DP_OCTL	=  5, /* 0x14 */
50  	CLR	=  6, /* 0x18 */
51  	BI	=  8, /* 0x20 */
52  	MBC	=  9, /* 0x24 */
53  	BLTCTL	= 10, /* 0x28 */
54  
55  	/* Scan Timing Generator Registers */
56  	HES	= 12, /* 0x30 */
57  	HEB	= 13, /* 0x34 */
58  	HSB	= 14, /* 0x38 */
59  	HT	= 15, /* 0x3C */
60  	VES	= 16, /* 0x40 */
61  	VEB	= 17, /* 0x44 */
62  	VSB	= 18, /* 0x48 */
63  	VT	= 19, /* 0x4C */
64  	HCIV	= 20, /* 0x50 */
65  	VCIV	= 21, /* 0x54 */
66  	TCDR	= 22, /* 0x58 */
67  	VIL	= 23, /* 0x5C */
68  	STGCTL	= 24, /* 0x60 */
69  
70  	/* Screen Refresh Generator Registers */
71  	SSR	= 25, /* 0x64 */
72  	HRIR	= 26, /* 0x68 */
73  	SPR	= 27, /* 0x6C */
74  	CMR	= 28, /* 0x70 */
75  	SRGCTL	= 29, /* 0x74 */
76  
77  	/* RAM Refresh Generator Registers */
78  	RRCIV	= 30, /* 0x78 */
79  	RRSC	= 31, /* 0x7C */
80  	RRCR	= 34, /* 0x88 */
81  
82  	/* System Registers */
83  	GIOE	= 32, /* 0x80 */
84  	GIO	= 33, /* 0x84 */
85  	SCR	= 35, /* 0x8C */
86  	SSTATUS	= 36, /* 0x90 */
87  	PRC	= 37, /* 0x94 */
88  
89  #if 0
90  	/* PCI Registers */
91  	DVID	= 0x00000000L,
92  	SC	= 0x00000004L,
93  	CCR	= 0x00000008L,
94  	OG	= 0x0000000CL,
95  	BARM	= 0x00000010L,
96  	BARER	= 0x00000030L,
97  #endif
98  };
99  
100  /* IBM 624 RAMDAC Direct Registers */
101  enum {
102  	PADDRW	= 0x00,
103  	PDATA	= 0x04,
104  	PPMASK	= 0x08,
105  	PADDRR	= 0x0c,
106  	PIDXLO	= 0x10,
107  	PIDXHI	= 0x14,
108  	PIDXDATA= 0x18,
109  	PIDXCTL	= 0x1c
110  };
111  
112  /* IBM 624 RAMDAC Indirect Registers */
113  enum {
114  	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
115  	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
116  	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
117  	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
118  	DACOP		= 0x06,	/* (0x02) DAC Operation */
119  	PALETCTL	= 0x07,	/* (0x00) Palette Control */
120  	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
121  	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
122  	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
123  	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
124  	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
125  	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
126  	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
127  	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
128  	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
129  	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
130  	SYSCLKP		= 0x17,	/* () System Clock P */
131  	SYSCLKC		= 0x18,	/* () System Clock C */
132  	/*
133  	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
134  	 * c is charge pump bias which depends on the VCO frequency
135  	 */
136  	PIXM0		= 0x20,	/* () Pixel M 0 */
137  	PIXN0		= 0x21,	/* () Pixel N 0 */
138  	PIXP0		= 0x22,	/* () Pixel P 0 */
139  	PIXC0		= 0x23,	/* () Pixel C 0 */
140  	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
141  	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
142  	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
143  	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
144  	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
145  	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
146  	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
147  	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
148  	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
149  	CURS1R		= 0x40,	/* () Cursor 1 Red */
150  	CURS1G		= 0x41,	/* () Cursor 1 Green */
151  	CURS1B		= 0x42,	/* () Cursor 1 Blue */
152  	CURS2R		= 0x43,	/* () Cursor 2 Red */
153  	CURS2G		= 0x44,	/* () Cursor 2 Green */
154  	CURS2B		= 0x45,	/* () Cursor 2 Blue */
155  	CURS3R		= 0x46,	/* () Cursor 3 Red */
156  	CURS3G		= 0x47,	/* () Cursor 3 Green */
157  	CURS3B		= 0x48,	/* () Cursor 3 Blue */
158  	BORDR		= 0x60,	/* () Border Color Red */
159  	BORDG		= 0x61,	/* () Border Color Green */
160  	BORDB		= 0x62,	/* () Border Color Blue */
161  	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
162  	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
163  	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
164  	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
165  };
166  
167  /* TI TVP 3030 RAMDAC Direct Registers */
168  enum {
169  	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
170  	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
171  	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
172  	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
173  	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
174  	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
175  				/* 6  reserved */
176  	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
177  				/* 8  reserved */
178  	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
179  	TVPIDATA = 0x28,	/* 10 Index Data */
180  	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
181  	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
182  	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
183  	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
184  	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
185  };
186  
187  /* TI TVP 3030 RAMDAC Indirect Registers */
188  enum {
189  	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
190  	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
191  	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
192  	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
193  	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
194  	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
195  	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
196  	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
197  	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
198  	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
199  	TVPIRPLA = 0x2c,	/* PLL Address */
200  	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
201  	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
202  	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
203  	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
204  	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
205  	TVPIRCRL = 0x32,	/* Color-Key Red Low */
206  	TVPIRCRH = 0x33,	/* Color-Key Red High */
207  	TVPIRCGL = 0x34,	/* Color-Key Green Low */
208  	TVPIRCGH = 0x35,	/* Color-Key Green High */
209  	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
210  	TVPIRCBH = 0x37,	/* Color-Key Blue High */
211  	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
212  	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
213  	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
214  	TVPIRTMD = 0x3b,	/* Test Mode Data */
215  	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
216  	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
217  	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
218  	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
219  	TVPIRRES = 0xff		/* Software Reset [WO] */
220  };
221  
222  struct initvalues {
223  	__u8 addr, value;
224  };
225  
226  static struct initvalues ibm_initregs[] = {
227  	{ CLKCTL,	0x21 },
228  	{ SYNCCTL,	0x00 },
229  	{ HSYNCPOS,	0x00 },
230  	{ PWRMNGMT,	0x00 },
231  	{ DACOP,	0x02 },
232  	{ PALETCTL,	0x00 },
233  	{ SYSCLKCTL,	0x01 },
234  
235  	/*
236  	 * Note that colors in X are correct only if all video data is
237  	 * passed through the palette in the DAC.  That is, "indirect
238  	 * color" must be configured.  This is the case for the IBM DAC
239  	 * used in the 2MB and 4MB cards, at least.
240  	 */
241  	{ BPP8,		0x00 },
242  	{ BPP16,	0x01 },
243  	{ BPP24,	0x00 },
244  	{ BPP32,	0x00 },
245  
246  	{ PIXCTL1,	0x05 },
247  	{ PIXCTL2,	0x00 },
248  	{ SYSCLKN,	0x08 },
249  	{ SYSCLKM,	0x4f },
250  	{ SYSCLKP,	0x00 },
251  	{ SYSCLKC,	0x00 },
252  	{ CURSCTL,	0x00 },
253  	{ CURSACCTL,	0x01 },
254  	{ CURSACATTR,	0xa8 },
255  	{ CURS1R,	0xff },
256  	{ CURS1G,	0xff },
257  	{ CURS1B,	0xff },
258  	{ CURS2R,	0xff },
259  	{ CURS2G,	0xff },
260  	{ CURS2B,	0xff },
261  	{ CURS3R,	0xff },
262  	{ CURS3G,	0xff },
263  	{ CURS3B,	0xff },
264  	{ BORDR,	0xff },
265  	{ BORDG,	0xff },
266  	{ BORDB,	0xff },
267  	{ MISCTL1,	0x01 },
268  	{ MISCTL2,	0x45 },
269  	{ MISCTL3,	0x00 },
270  	{ KEYCTL,	0x00 }
271  };
272  
273  static struct initvalues tvp_initregs[] = {
274  	{ TVPIRICC,	0x00 },
275  	{ TVPIRBRC,	0xe4 },
276  	{ TVPIRLAC,	0x06 },
277  	{ TVPIRTCC,	0x80 },
278  	{ TVPIRMXC,	0x4d },
279  	{ TVPIRCLS,	0x05 },
280  	{ TVPIRPPG,	0x00 },
281  	{ TVPIRGEC,	0x00 },
282  	{ TVPIRMIC,	0x08 },
283  	{ TVPIRCKL,	0xff },
284  	{ TVPIRCKH,	0xff },
285  	{ TVPIRCRL,	0xff },
286  	{ TVPIRCRH,	0xff },
287  	{ TVPIRCGL,	0xff },
288  	{ TVPIRCGH,	0xff },
289  	{ TVPIRCBL,	0xff },
290  	{ TVPIRCBH,	0xff },
291  	{ TVPIRCKC,	0x00 },
292  	{ TVPIRPLA,	0x00 },
293  	{ TVPIRPPD,	0xc0 },
294  	{ TVPIRPPD,	0xd5 },
295  	{ TVPIRPPD,	0xea },
296  	{ TVPIRPLA,	0x00 },
297  	{ TVPIRMPD,	0xb9 },
298  	{ TVPIRMPD,	0x3a },
299  	{ TVPIRMPD,	0xb1 },
300  	{ TVPIRPLA,	0x00 },
301  	{ TVPIRLPD,	0xc1 },
302  	{ TVPIRLPD,	0x3d },
303  	{ TVPIRLPD,	0xf3 },
304  };
305  
306  struct imstt_regvals {
307  	__u32 pitch;
308  	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
309  	__u8 pclk_m, pclk_n, pclk_p;
310  	/* Values of the tvp which change depending on colormode x resolution */
311  	__u8 mlc[3];	/* Memory Loop Config 0x39 */
312  	__u8 lckl_p[3];	/* P value of LCKL PLL */
313  };
314  
315  struct imstt_par {
316  	struct imstt_regvals init;
317  	__u32 __iomem *dc_regs;
318  	unsigned long cmap_regs_phys;
319  	__u8 *cmap_regs;
320  	__u32 ramdac;
321  	__u32 palette[16];
322  };
323  
324  enum {
325  	IBM = 0,
326  	TVP = 1
327  };
328  
329  #define INIT_BPP		8
330  #define INIT_XRES		640
331  #define INIT_YRES		480
332  
333  static int inverse = 0;
334  static char fontname[40] __initdata = { 0 };
335  #if defined(CONFIG_PPC_PMAC)
336  static signed char init_vmode = -1, init_cmode = -1;
337  #endif
338  
339  static struct imstt_regvals tvp_reg_init_2 = {
340  	512,
341  	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
342  	0xec, 0x2a, 0xf3,
343  	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
344  };
345  
346  static struct imstt_regvals tvp_reg_init_6 = {
347  	640,
348  	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
349  	0xef, 0x2e, 0xb2,
350  	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
351  };
352  
353  static struct imstt_regvals tvp_reg_init_12 = {
354  	800,
355  	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
356  	0xf6, 0x2e, 0xf2,
357  	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
358  };
359  
360  static struct imstt_regvals tvp_reg_init_13 = {
361  	832,
362  	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
363  	0xfe, 0x3e, 0xf1,
364  	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
365  };
366  
367  static struct imstt_regvals tvp_reg_init_17 = {
368  	1024,
369  	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
370  	0xfc, 0x3a, 0xf1,
371  	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
372  };
373  
374  static struct imstt_regvals tvp_reg_init_18 = {
375  	1152,
376    	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
377  	0xfd, 0x3a, 0xf1,
378  	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
379  };
380  
381  static struct imstt_regvals tvp_reg_init_19 = {
382  	1280,
383  	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
384  	0xf7, 0x36, 0xf0,
385  	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
386  };
387  
388  static struct imstt_regvals tvp_reg_init_20 = {
389  	1280,
390  	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
391  	0xf0, 0x2d, 0xf0,
392  	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
393  };
394  
395  /*
396   * PCI driver prototypes
397   */
398  static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
399  static void imsttfb_remove(struct pci_dev *pdev);
400  
401  /*
402   * Register access
403   */
read_reg_le32(volatile u32 __iomem * base,int regindex)404  static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
405  {
406  #ifdef __powerpc__
407  	return in_le32(base + regindex);
408  #else
409  	return readl(base + regindex);
410  #endif
411  }
412  
write_reg_le32(volatile u32 __iomem * base,int regindex,u32 val)413  static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
414  {
415  #ifdef __powerpc__
416  	out_le32(base + regindex, val);
417  #else
418  	writel(val, base + regindex);
419  #endif
420  }
421  
422  static __u32
getclkMHz(struct imstt_par * par)423  getclkMHz(struct imstt_par *par)
424  {
425  	__u32 clk_m, clk_n, clk_p;
426  
427  	clk_m = par->init.pclk_m;
428  	clk_n = par->init.pclk_n;
429  	clk_p = par->init.pclk_p;
430  
431  	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
432  }
433  
434  static void
setclkMHz(struct imstt_par * par,__u32 MHz)435  setclkMHz(struct imstt_par *par, __u32 MHz)
436  {
437  	__u32 clk_m, clk_n, x, stage, spilled;
438  
439  	clk_m = clk_n = 0;
440  	stage = spilled = 0;
441  	for (;;) {
442  		switch (stage) {
443  			case 0:
444  				clk_m++;
445  				break;
446  			case 1:
447  				clk_n++;
448  				break;
449  		}
450  		x = 20 * (clk_m + 1) / (clk_n + 1);
451  		if (x == MHz)
452  			break;
453  		if (x > MHz) {
454  			spilled = 1;
455  			stage = 1;
456  		} else if (spilled && x < MHz) {
457  			stage = 0;
458  		}
459  	}
460  
461  	par->init.pclk_m = clk_m;
462  	par->init.pclk_n = clk_n;
463  	par->init.pclk_p = 0;
464  }
465  
466  static struct imstt_regvals *
compute_imstt_regvals_ibm(struct imstt_par * par,int xres,int yres)467  compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
468  {
469  	struct imstt_regvals *init = &par->init;
470  	__u32 MHz, hes, heb, veb, htp, vtp;
471  
472  	switch (xres) {
473  		case 640:
474  			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
475  			MHz = 30 /* .25 */ ;
476  			break;
477  		case 832:
478  			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
479  			MHz = 57 /* .27_ */ ;
480  			break;
481  		case 1024:
482  			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
483  			MHz = 80;
484  			break;
485  		case 1152:
486  			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
487  			MHz = 101 /* .6_ */ ;
488  			break;
489  		case 1280:
490  			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
491  			MHz = yres == 960 ? 126 : 135;
492  			break;
493  		case 1600:
494  			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
495  			MHz = 200;
496  			break;
497  		default:
498  			return NULL;
499  	}
500  
501  	setclkMHz(par, MHz);
502  
503  	init->hes = hes;
504  	init->heb = heb;
505  	init->hsb = init->heb + (xres >> 3);
506  	init->ht = init->hsb + htp;
507  	init->ves = 0x0003;
508  	init->veb = veb;
509  	init->vsb = init->veb + yres;
510  	init->vt = init->vsb + vtp;
511  	init->vil = init->vsb;
512  
513  	init->pitch = xres;
514  	return init;
515  }
516  
517  static struct imstt_regvals *
compute_imstt_regvals_tvp(struct imstt_par * par,int xres,int yres)518  compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
519  {
520  	struct imstt_regvals *init;
521  
522  	switch (xres) {
523  		case 512:
524  			init = &tvp_reg_init_2;
525  			break;
526  		case 640:
527  			init = &tvp_reg_init_6;
528  			break;
529  		case 800:
530  			init = &tvp_reg_init_12;
531  			break;
532  		case 832:
533  			init = &tvp_reg_init_13;
534  			break;
535  		case 1024:
536  			init = &tvp_reg_init_17;
537  			break;
538  		case 1152:
539  			init = &tvp_reg_init_18;
540  			break;
541  		case 1280:
542  			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
543  			break;
544  		default:
545  			return NULL;
546  	}
547  	par->init = *init;
548  	return init;
549  }
550  
551  static struct imstt_regvals *
compute_imstt_regvals(struct imstt_par * par,u_int xres,u_int yres)552  compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
553  {
554  	if (par->ramdac == IBM)
555  		return compute_imstt_regvals_ibm(par, xres, yres);
556  	else
557  		return compute_imstt_regvals_tvp(par, xres, yres);
558  }
559  
560  static void
set_imstt_regvals_ibm(struct imstt_par * par,u_int bpp)561  set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
562  {
563  	struct imstt_regvals *init = &par->init;
564  	__u8 pformat = (bpp >> 3) + 2;
565  
566  	par->cmap_regs[PIDXHI] = 0;		eieio();
567  	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
568  	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
569  	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
570  	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
571  	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
572  	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
573  	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
574  	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
575  
576  	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
577  	par->cmap_regs[PIDXDATA] = pformat;	eieio();
578  }
579  
580  static void
set_imstt_regvals_tvp(struct imstt_par * par,u_int bpp)581  set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
582  {
583  	struct imstt_regvals *init = &par->init;
584  	__u8 tcc, mxc, lckl_n, mic;
585  	__u8 mlc, lckl_p;
586  
587  	switch (bpp) {
588  		default:
589  		case 8:
590  			tcc = 0x80;
591  			mxc = 0x4d;
592  			lckl_n = 0xc1;
593  			mlc = init->mlc[0];
594  			lckl_p = init->lckl_p[0];
595  			break;
596  		case 16:
597  			tcc = 0x44;
598  			mxc = 0x55;
599  			lckl_n = 0xe1;
600  			mlc = init->mlc[1];
601  			lckl_p = init->lckl_p[1];
602  			break;
603  		case 24:
604  			tcc = 0x5e;
605  			mxc = 0x5d;
606  			lckl_n = 0xf1;
607  			mlc = init->mlc[2];
608  			lckl_p = init->lckl_p[2];
609  			break;
610  		case 32:
611  			tcc = 0x46;
612  			mxc = 0x5d;
613  			lckl_n = 0xf1;
614  			mlc = init->mlc[2];
615  			lckl_p = init->lckl_p[2];
616  			break;
617  	}
618  	mic = 0x08;
619  
620  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
621  	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
622  	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
623  	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
624  	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
625  	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
626  	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
627  	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
628  
629  	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
630  	par->cmap_regs[TVPIDATA] = tcc;			eieio();
631  	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
632  	par->cmap_regs[TVPIDATA] = mxc;			eieio();
633  	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
634  	par->cmap_regs[TVPIDATA] = mic;			eieio();
635  
636  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
637  	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
638  	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
639  	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
640  
641  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
642  	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
643  	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
644  	par->cmap_regs[TVPIDATA] = mlc;			eieio();
645  
646  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
647  	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
648  	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
649  	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
650  }
651  
652  static void
set_imstt_regvals(struct fb_info * info,u_int bpp)653  set_imstt_regvals (struct fb_info *info, u_int bpp)
654  {
655  	struct imstt_par *par = info->par;
656  	struct imstt_regvals *init = &par->init;
657  	__u32 ctl, pitch, byteswap, scr;
658  
659  	if (par->ramdac == IBM)
660  		set_imstt_regvals_ibm(par, bpp);
661  	else
662  		set_imstt_regvals_tvp(par, bpp);
663  
664    /*
665     * From what I (jsk) can gather poking around with MacsBug,
666     * bits 8 and 9 in the SCR register control endianness
667     * correction (byte swapping).  These bits must be set according
668     * to the color depth as follows:
669     *     Color depth    Bit 9   Bit 8
670     *     ==========     =====   =====
671     *        8bpp          0       0
672     *       16bpp          0       1
673     *       32bpp          1       1
674     */
675  	switch (bpp) {
676  		default:
677  		case 8:
678  			ctl = 0x17b1;
679  			pitch = init->pitch >> 2;
680  			byteswap = 0x000;
681  			break;
682  		case 16:
683  			ctl = 0x17b3;
684  			pitch = init->pitch >> 1;
685  			byteswap = 0x100;
686  			break;
687  		case 24:
688  			ctl = 0x17b9;
689  			pitch = init->pitch - (init->pitch >> 2);
690  			byteswap = 0x200;
691  			break;
692  		case 32:
693  			ctl = 0x17b5;
694  			pitch = init->pitch;
695  			byteswap = 0x300;
696  			break;
697  	}
698  	if (par->ramdac == TVP)
699  		ctl -= 0x30;
700  
701  	write_reg_le32(par->dc_regs, HES, init->hes);
702  	write_reg_le32(par->dc_regs, HEB, init->heb);
703  	write_reg_le32(par->dc_regs, HSB, init->hsb);
704  	write_reg_le32(par->dc_regs, HT, init->ht);
705  	write_reg_le32(par->dc_regs, VES, init->ves);
706  	write_reg_le32(par->dc_regs, VEB, init->veb);
707  	write_reg_le32(par->dc_regs, VSB, init->vsb);
708  	write_reg_le32(par->dc_regs, VT, init->vt);
709  	write_reg_le32(par->dc_regs, VIL, init->vil);
710  	write_reg_le32(par->dc_regs, HCIV, 1);
711  	write_reg_le32(par->dc_regs, VCIV, 1);
712  	write_reg_le32(par->dc_regs, TCDR, 4);
713  	write_reg_le32(par->dc_regs, RRCIV, 1);
714  	write_reg_le32(par->dc_regs, RRSC, 0x980);
715  	write_reg_le32(par->dc_regs, RRCR, 0x11);
716  
717  	if (par->ramdac == IBM) {
718  		write_reg_le32(par->dc_regs, HRIR, 0x0100);
719  		write_reg_le32(par->dc_regs, CMR, 0x00ff);
720  		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
721  	} else {
722  		write_reg_le32(par->dc_regs, HRIR, 0x0200);
723  		write_reg_le32(par->dc_regs, CMR, 0x01ff);
724  		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
725  	}
726  
727  	switch (info->fix.smem_len) {
728  		case 0x200000:
729  			scr = 0x059d | byteswap;
730  			break;
731  		/* case 0x400000:
732  		   case 0x800000: */
733  		default:
734  			pitch >>= 1;
735  			scr = 0x150dd | byteswap;
736  			break;
737  	}
738  
739  	write_reg_le32(par->dc_regs, SCR, scr);
740  	write_reg_le32(par->dc_regs, SPR, pitch);
741  	write_reg_le32(par->dc_regs, STGCTL, ctl);
742  }
743  
744  static inline void
set_offset(struct fb_var_screeninfo * var,struct fb_info * info)745  set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
746  {
747  	struct imstt_par *par = info->par;
748  	__u32 off = var->yoffset * (info->fix.line_length >> 3)
749  		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
750  	write_reg_le32(par->dc_regs, SSR, off);
751  }
752  
753  static inline void
set_555(struct imstt_par * par)754  set_555 (struct imstt_par *par)
755  {
756  	if (par->ramdac == IBM) {
757  		par->cmap_regs[PIDXHI] = 0;		eieio();
758  		par->cmap_regs[PIDXLO] = BPP16;		eieio();
759  		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
760  	} else {
761  		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
762  		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
763  	}
764  }
765  
766  static inline void
set_565(struct imstt_par * par)767  set_565 (struct imstt_par *par)
768  {
769  	if (par->ramdac == IBM) {
770  		par->cmap_regs[PIDXHI] = 0;		eieio();
771  		par->cmap_regs[PIDXLO] = BPP16;		eieio();
772  		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
773  	} else {
774  		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
775  		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
776  	}
777  }
778  
779  static int
imsttfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)780  imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
781  {
782  	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
783  	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
784  	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
785  	    || var->nonstd
786  	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
787  		return -EINVAL;
788  
789  	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
790  	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
791  		return -EINVAL;
792  
793  	switch (var->bits_per_pixel) {
794  		case 8:
795  			var->red.offset = 0;
796  			var->red.length = 8;
797  			var->green.offset = 0;
798  			var->green.length = 8;
799  			var->blue.offset = 0;
800  			var->blue.length = 8;
801  			var->transp.offset = 0;
802  			var->transp.length = 0;
803  			break;
804  		case 16:	/* RGB 555 or 565 */
805  			if (var->green.length != 6)
806  				var->red.offset = 10;
807  			var->red.length = 5;
808  			var->green.offset = 5;
809  			if (var->green.length != 6)
810  				var->green.length = 5;
811  			var->blue.offset = 0;
812  			var->blue.length = 5;
813  			var->transp.offset = 0;
814  			var->transp.length = 0;
815  			break;
816  		case 24:	/* RGB 888 */
817  			var->red.offset = 16;
818  			var->red.length = 8;
819  			var->green.offset = 8;
820  			var->green.length = 8;
821  			var->blue.offset = 0;
822  			var->blue.length = 8;
823  			var->transp.offset = 0;
824  			var->transp.length = 0;
825  			break;
826  		case 32:	/* RGBA 8888 */
827  			var->red.offset = 16;
828  			var->red.length = 8;
829  			var->green.offset = 8;
830  			var->green.length = 8;
831  			var->blue.offset = 0;
832  			var->blue.length = 8;
833  			var->transp.offset = 24;
834  			var->transp.length = 8;
835  			break;
836  	}
837  
838  	if (var->yres == var->yres_virtual) {
839  		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
840  		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
841  		if (var->yres_virtual < var->yres)
842  			var->yres_virtual = var->yres;
843  	}
844  
845  	var->red.msb_right = 0;
846  	var->green.msb_right = 0;
847  	var->blue.msb_right = 0;
848  	var->transp.msb_right = 0;
849  	var->height = -1;
850  	var->width = -1;
851  	var->vmode = FB_VMODE_NONINTERLACED;
852  	var->left_margin = var->right_margin = 16;
853  	var->upper_margin = var->lower_margin = 16;
854  	var->hsync_len = var->vsync_len = 8;
855  	return 0;
856  }
857  
858  static int
imsttfb_set_par(struct fb_info * info)859  imsttfb_set_par(struct fb_info *info)
860  {
861  	struct imstt_par *par = info->par;
862  
863  	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
864  		return -EINVAL;
865  
866  	if (info->var.green.length == 6)
867  		set_565(par);
868  	else
869  		set_555(par);
870  	set_imstt_regvals(info, info->var.bits_per_pixel);
871  	info->var.pixclock = 1000000 / getclkMHz(par);
872  	return 0;
873  }
874  
875  static int
imsttfb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)876  imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
877  		   u_int transp, struct fb_info *info)
878  {
879  	struct imstt_par *par = info->par;
880  	u_int bpp = info->var.bits_per_pixel;
881  
882  	if (regno > 255)
883  		return 1;
884  
885  	red >>= 8;
886  	green >>= 8;
887  	blue >>= 8;
888  
889  	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
890  	if (0 && bpp == 16)	/* screws up X */
891  		par->cmap_regs[PADDRW] = regno << 3;
892  	else
893  		par->cmap_regs[PADDRW] = regno;
894  	eieio();
895  
896  	par->cmap_regs[PDATA] = red;	eieio();
897  	par->cmap_regs[PDATA] = green;	eieio();
898  	par->cmap_regs[PDATA] = blue;	eieio();
899  
900  	if (regno < 16)
901  		switch (bpp) {
902  			case 16:
903  				par->palette[regno] =
904  					(regno << (info->var.green.length ==
905  					5 ? 10 : 11)) | (regno << 5) | regno;
906  				break;
907  			case 24:
908  				par->palette[regno] =
909  					(regno << 16) | (regno << 8) | regno;
910  				break;
911  			case 32: {
912  				int i = (regno << 8) | regno;
913  				par->palette[regno] = (i << 16) |i;
914  				break;
915  			}
916  		}
917  	return 0;
918  }
919  
920  static int
imsttfb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)921  imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
922  {
923  	if (var->xoffset + info->var.xres > info->var.xres_virtual
924  	    || var->yoffset + info->var.yres > info->var.yres_virtual)
925  		return -EINVAL;
926  
927  	info->var.xoffset = var->xoffset;
928  	info->var.yoffset = var->yoffset;
929  	set_offset(var, info);
930  	return 0;
931  }
932  
933  static int
imsttfb_blank(int blank,struct fb_info * info)934  imsttfb_blank(int blank, struct fb_info *info)
935  {
936  	struct imstt_par *par = info->par;
937  	__u32 ctrl;
938  
939  	ctrl = read_reg_le32(par->dc_regs, STGCTL);
940  	if (blank > 0) {
941  		switch (blank) {
942  		case FB_BLANK_NORMAL:
943  		case FB_BLANK_POWERDOWN:
944  			ctrl &= ~0x00000380;
945  			if (par->ramdac == IBM) {
946  				par->cmap_regs[PIDXHI] = 0;		eieio();
947  				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
948  				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
949  				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
950  				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
951  				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
952  				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
953  				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
954  				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
955  				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
956  				par->cmap_regs[PIDXDATA] = 0xc0;
957  			}
958  			break;
959  		case FB_BLANK_VSYNC_SUSPEND:
960  			ctrl &= ~0x00000020;
961  			break;
962  		case FB_BLANK_HSYNC_SUSPEND:
963  			ctrl &= ~0x00000010;
964  			break;
965  		}
966  	} else {
967  		if (par->ramdac == IBM) {
968  			ctrl |= 0x000017b0;
969  			par->cmap_regs[PIDXHI] = 0;		eieio();
970  			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
971  			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
972  			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
973  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
974  			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
975  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
976  			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
977  			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
978  			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
979  			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
980  		} else
981  			ctrl |= 0x00001780;
982  	}
983  	write_reg_le32(par->dc_regs, STGCTL, ctrl);
984  	return 0;
985  }
986  
987  static void
imsttfb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)988  imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
989  {
990  	struct imstt_par *par = info->par;
991  	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
992  
993  	bgc = rect->color;
994  	bgc |= (bgc << 8);
995  	bgc |= (bgc << 16);
996  
997  	Bpp = info->var.bits_per_pixel >> 3,
998  	line_pitch = info->fix.line_length;
999  
1000  	dy = rect->dy * line_pitch;
1001  	dx = rect->dx * Bpp;
1002  	height = rect->height;
1003  	height--;
1004  	width = rect->width * Bpp;
1005  	width--;
1006  
1007  	if (rect->rop == ROP_COPY) {
1008  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1009  		write_reg_le32(par->dc_regs, DSA, dy + dx);
1010  		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1011  		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1012  		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1013  		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1014  		write_reg_le32(par->dc_regs, CLR, bgc);
1015  		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1016  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1017  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1018  	} else {
1019  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020  		write_reg_le32(par->dc_regs, DSA, dy + dx);
1021  		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1022  		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1023  		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1024  		write_reg_le32(par->dc_regs, SP, line_pitch);
1025  		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1026  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1027  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1028  	}
1029  }
1030  
1031  static void
imsttfb_copyarea(struct fb_info * info,const struct fb_copyarea * area)1032  imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1033  {
1034  	struct imstt_par *par = info->par;
1035  	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1036   	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1037  
1038  	Bpp = info->var.bits_per_pixel >> 3,
1039  
1040  	sx = area->sx * Bpp;
1041  	sy = area->sy;
1042  	dx = area->dx * Bpp;
1043  	dy = area->dy;
1044  	height = area->height;
1045  	height--;
1046  	width = area->width * Bpp;
1047  	width--;
1048  
1049  	line_pitch = info->fix.line_length;
1050  	bltctl = 0x05;
1051  	sp = line_pitch << 16;
1052  	cnt = height << 16;
1053  
1054  	if (sy < dy) {
1055  		sy += height;
1056  		dy += height;
1057  		sp |= -(line_pitch) & 0xffff;
1058  		dp_octl = -(line_pitch) & 0xffff;
1059  	} else {
1060  		sp |= line_pitch;
1061  		dp_octl = line_pitch;
1062  	}
1063  	if (sx < dx) {
1064  		sx += width;
1065  		dx += width;
1066  		bltctl |= 0x80;
1067  		cnt |= -(width) & 0xffff;
1068  	} else {
1069  		cnt |= width;
1070  	}
1071  	fb_offset_old = sy * line_pitch + sx;
1072  	fb_offset_new = dy * line_pitch + dx;
1073  
1074  	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1075  	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1076  	write_reg_le32(par->dc_regs, SP, sp);
1077  	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1078  	write_reg_le32(par->dc_regs, CNT, cnt);
1079  	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1080  	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1081  	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1082  	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1083  }
1084  
1085  #if 0
1086  static int
1087  imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1088  {
1089  	u_int x, y;
1090  
1091  	if (width > 32 || height > 32)
1092  		return -EINVAL;
1093  
1094  	if (par->ramdac == IBM) {
1095  		par->cmap_regs[PIDXHI] = 1;	eieio();
1096  		for (x = 0; x < 0x100; x++) {
1097  			par->cmap_regs[PIDXLO] = x;		eieio();
1098  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1099  		}
1100  		par->cmap_regs[PIDXHI] = 1;	eieio();
1101  		for (y = 0; y < height; y++)
1102  			for (x = 0; x < width >> 2; x++) {
1103  				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1104  				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1105  			}
1106  		par->cmap_regs[PIDXHI] = 0;		eieio();
1107  		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1108  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1109  		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1110  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1111  		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1112  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1113  		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1114  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1115  		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1116  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1117  		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1118  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1119  		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1120  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1121  		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1122  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1123  		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1124  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1125  	} else {
1126  		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1127  		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1128  		par->cmap_regs[TVPADDRW] = 0;		eieio();
1129  		for (x = 0; x < 0x200; x++) {
1130  			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1131  		}
1132  		for (x = 0; x < 0x200; x++) {
1133  			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1134  		}
1135  		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1136  		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1137  		for (y = 0; y < height; y++)
1138  			for (x = 0; x < width >> 3; x++) {
1139  				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1140  				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1141  			}
1142  		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1143  		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1144  		for (y = 0; y < height; y++)
1145  			for (x = 0; x < width >> 3; x++) {
1146  				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1147  				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1148  			}
1149  		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1150  		for (x = 0; x < 12; x++) {
1151  			par->cmap_regs[TVPCDATA] = fgc;
1152  			eieio();
1153  		}
1154  	}
1155  	return 1;
1156  }
1157  
1158  static void
1159  imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1160  {
1161  	if (par->ramdac == IBM) {
1162  		par->cmap_regs[PIDXHI] = 0;	eieio();
1163  		if (!on) {
1164  			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1165  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1166  		} else {
1167  			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1168  			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1169  			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1170  			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1171  			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1172  			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1173  			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1174  			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1175  			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1176  			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1177  		}
1178  	} else {
1179  		if (!on) {
1180  			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1181  			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1182  		} else {
1183  			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1184  
1185  			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1186  			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1187  			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1188  			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1189  			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1190  			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1191  		}
1192  	}
1193  }
1194  
1195  static int
1196  imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1197  {
1198  	struct imstt_par *par = info->par;
1199          u32 flags = cursor->set, fg, bg, xx, yy;
1200  
1201  	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1202  		return 1;
1203  
1204  	imstt_set_cursor(info, cursor, 0);
1205  
1206  	if (flags & FB_CUR_SETPOS) {
1207  		xx = cursor->image.dx - info->var.xoffset;
1208  		yy = cursor->image.dy - info->var.yoffset;
1209  	}
1210  
1211  	if (flags & FB_CUR_SETSIZE) {
1212          }
1213  
1214          if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1215                  int fg_idx = cursor->image.fg_color;
1216                  int width = (cursor->image.width+7)/8;
1217                  u8 *dat = (u8 *) cursor->image.data;
1218                  u8 *dst = (u8 *) cursor->dest;
1219                  u8 *msk = (u8 *) cursor->mask;
1220  
1221                  switch (cursor->rop) {
1222                  case ROP_XOR:
1223                          for (i = 0; i < cursor->image.height; i++) {
1224                                  for (j = 0; j < width; j++) {
1225                                          d_idx = i * MAX_CURS/8  + j;
1226                                          data[d_idx] =  byte_rev[dat[s_idx] ^
1227                                                                  dst[s_idx]];
1228                                          mask[d_idx] = byte_rev[msk[s_idx]];
1229                                          s_idx++;
1230                                  }
1231                          }
1232                          break;
1233                  case ROP_COPY:
1234                  default:
1235                          for (i = 0; i < cursor->image.height; i++) {
1236                                  for (j = 0; j < width; j++) {
1237                                          d_idx = i * MAX_CURS/8 + j;
1238                                          data[d_idx] = byte_rev[dat[s_idx]];
1239                                          mask[d_idx] = byte_rev[msk[s_idx]];
1240                                          s_idx++;
1241                                  }
1242  			}
1243  			break;
1244  		}
1245  
1246  		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1247                       ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1248                       ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1249  
1250  		imsttfb_load_cursor_image(par, xx, yy, fgc);
1251  	}
1252  	if (cursor->enable)
1253  		imstt_set_cursor(info, cursor, 1);
1254  	return 0;
1255  }
1256  #endif
1257  
1258  #define FBIMSTT_SETREG		0x545401
1259  #define FBIMSTT_GETREG		0x545402
1260  #define FBIMSTT_SETCMAPREG	0x545403
1261  #define FBIMSTT_GETCMAPREG	0x545404
1262  #define FBIMSTT_SETIDXREG	0x545405
1263  #define FBIMSTT_GETIDXREG	0x545406
1264  
1265  static int
imsttfb_ioctl(struct fb_info * info,u_int cmd,u_long arg)1266  imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1267  {
1268  	struct imstt_par *par = info->par;
1269  	void __user *argp = (void __user *)arg;
1270  	__u32 reg[2];
1271  	__u8 idx[2];
1272  
1273  	switch (cmd) {
1274  		case FBIMSTT_SETREG:
1275  			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1276  				return -EFAULT;
1277  			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1278  			return 0;
1279  		case FBIMSTT_GETREG:
1280  			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1281  				return -EFAULT;
1282  			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1283  			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1284  				return -EFAULT;
1285  			return 0;
1286  		case FBIMSTT_SETCMAPREG:
1287  			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1288  				return -EFAULT;
1289  			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1290  			return 0;
1291  		case FBIMSTT_GETCMAPREG:
1292  			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1293  				return -EFAULT;
1294  			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1295  			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1296  				return -EFAULT;
1297  			return 0;
1298  		case FBIMSTT_SETIDXREG:
1299  			if (copy_from_user(idx, argp, 2))
1300  				return -EFAULT;
1301  			par->cmap_regs[PIDXHI] = 0;		eieio();
1302  			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1303  			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1304  			return 0;
1305  		case FBIMSTT_GETIDXREG:
1306  			if (copy_from_user(idx, argp, 1))
1307  				return -EFAULT;
1308  			par->cmap_regs[PIDXHI] = 0;		eieio();
1309  			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1310  			idx[1] = par->cmap_regs[PIDXDATA];
1311  			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1312  				return -EFAULT;
1313  			return 0;
1314  		default:
1315  			return -ENOIOCTLCMD;
1316  	}
1317  }
1318  
1319  static const struct pci_device_id imsttfb_pci_tbl[] = {
1320  	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1321  	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1322  	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1323  	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1324  	{ 0, }
1325  };
1326  
1327  MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1328  
1329  static struct pci_driver imsttfb_pci_driver = {
1330  	.name =		"imsttfb",
1331  	.id_table =	imsttfb_pci_tbl,
1332  	.probe =	imsttfb_probe,
1333  	.remove =	imsttfb_remove,
1334  };
1335  
1336  static const struct fb_ops imsttfb_ops = {
1337  	.owner 		= THIS_MODULE,
1338  	.fb_check_var	= imsttfb_check_var,
1339  	.fb_set_par 	= imsttfb_set_par,
1340  	.fb_setcolreg 	= imsttfb_setcolreg,
1341  	.fb_pan_display = imsttfb_pan_display,
1342  	.fb_blank 	= imsttfb_blank,
1343  	.fb_fillrect	= imsttfb_fillrect,
1344  	.fb_copyarea	= imsttfb_copyarea,
1345  	.fb_imageblit	= cfb_imageblit,
1346  	.fb_ioctl 	= imsttfb_ioctl,
1347  };
1348  
init_imstt(struct fb_info * info)1349  static int init_imstt(struct fb_info *info)
1350  {
1351  	struct imstt_par *par = info->par;
1352  	__u32 i, tmp, *ip, *end;
1353  
1354  	tmp = read_reg_le32(par->dc_regs, PRC);
1355  	if (par->ramdac == IBM)
1356  		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1357  	else
1358  		info->fix.smem_len = 0x800000;
1359  
1360  	ip = (__u32 *)info->screen_base;
1361  	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1362  	while (ip < end)
1363  		*ip++ = 0;
1364  
1365  	/* initialize the card */
1366  	tmp = read_reg_le32(par->dc_regs, STGCTL);
1367  	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1368  	write_reg_le32(par->dc_regs, SSR, 0);
1369  
1370  	/* set default values for DAC registers */
1371  	if (par->ramdac == IBM) {
1372  		par->cmap_regs[PPMASK] = 0xff;
1373  		eieio();
1374  		par->cmap_regs[PIDXHI] = 0;
1375  		eieio();
1376  		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1377  			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1378  			eieio();
1379  			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1380  			eieio();
1381  		}
1382  	} else {
1383  		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1384  			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1385  			eieio();
1386  			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1387  			eieio();
1388  		}
1389  	}
1390  
1391  #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1392  	if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1393  		int vmode = init_vmode, cmode = init_cmode;
1394  
1395  		if (vmode == -1) {
1396  			vmode = nvram_read_byte(NV_VMODE);
1397  			if (vmode <= 0 || vmode > VMODE_MAX)
1398  				vmode = VMODE_640_480_67;
1399  		}
1400  		if (cmode == -1) {
1401  			cmode = nvram_read_byte(NV_CMODE);
1402  			if (cmode < CMODE_8 || cmode > CMODE_32)
1403  				cmode = CMODE_8;
1404  		}
1405  		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1406  			info->var.xres = info->var.xres_virtual = INIT_XRES;
1407  			info->var.yres = info->var.yres_virtual = INIT_YRES;
1408  			info->var.bits_per_pixel = INIT_BPP;
1409  		}
1410  	} else
1411  #endif
1412  	{
1413  		info->var.xres = info->var.xres_virtual = INIT_XRES;
1414  		info->var.yres = info->var.yres_virtual = INIT_YRES;
1415  		info->var.bits_per_pixel = INIT_BPP;
1416  	}
1417  
1418  	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1419  	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1420  		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1421  		framebuffer_release(info);
1422  		return -ENODEV;
1423  	}
1424  
1425  	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1426  	info->fix.mmio_len = 0x1000;
1427  	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1428  	info->fix.type = FB_TYPE_PACKED_PIXELS;
1429  	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1430  							: FB_VISUAL_DIRECTCOLOR;
1431  	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1432  	info->fix.xpanstep = 8;
1433  	info->fix.ypanstep = 1;
1434  	info->fix.ywrapstep = 0;
1435  
1436  	info->var.accel_flags = FB_ACCELF_TEXT;
1437  
1438  //	if (par->ramdac == IBM)
1439  //		imstt_cursor_init(info);
1440  	if (info->var.green.length == 6)
1441  		set_565(par);
1442  	else
1443  		set_555(par);
1444  	set_imstt_regvals(info, info->var.bits_per_pixel);
1445  
1446  	info->var.pixclock = 1000000 / getclkMHz(par);
1447  
1448  	info->fbops = &imsttfb_ops;
1449  	info->flags = FBINFO_DEFAULT |
1450                        FBINFO_HWACCEL_COPYAREA |
1451  	              FBINFO_HWACCEL_FILLRECT |
1452  	              FBINFO_HWACCEL_YPAN;
1453  
1454  	fb_alloc_cmap(&info->cmap, 0, 0);
1455  
1456  	if (register_framebuffer(info) < 0) {
1457  		framebuffer_release(info);
1458  		return -ENODEV;
1459  	}
1460  
1461  	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1462  	fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1463  		info->fix.id, info->fix.smem_len >> 20, tmp);
1464  	return 0;
1465  }
1466  
imsttfb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1467  static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1468  {
1469  	unsigned long addr, size;
1470  	struct imstt_par *par;
1471  	struct fb_info *info;
1472  	struct device_node *dp;
1473  	int ret = -ENOMEM;
1474  
1475  	dp = pci_device_to_OF_node(pdev);
1476  	if(dp)
1477  		printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1478  	else if (IS_ENABLED(CONFIG_OF))
1479  		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1480  
1481  	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1482  	if (!info)
1483  		return -ENOMEM;
1484  
1485  	par = info->par;
1486  
1487  	addr = pci_resource_start (pdev, 0);
1488  	size = pci_resource_len (pdev, 0);
1489  
1490  	if (!request_mem_region(addr, size, "imsttfb")) {
1491  		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1492  		ret = -ENODEV;
1493  		goto release_info;
1494  	}
1495  
1496  	switch (pdev->device) {
1497  		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1498  			par->ramdac = IBM;
1499  			if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1500  			    of_node_name_eq(dp, "IMS,tt128mb8A"))
1501  				par->ramdac = TVP;
1502  			break;
1503  		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1504  			par->ramdac = TVP;
1505  			break;
1506  		default:
1507  			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1508  					 "contact maintainer.\n", pdev->device);
1509  			ret = -ENODEV;
1510  			goto release_mem_region;
1511  	}
1512  
1513  	info->fix.smem_start = addr;
1514  	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1515  					    0x400000 : 0x800000);
1516  	if (!info->screen_base)
1517  		goto release_mem_region;
1518  	info->fix.mmio_start = addr + 0x800000;
1519  	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1520  	if (!par->dc_regs)
1521  		goto unmap_screen_base;
1522  	par->cmap_regs_phys = addr + 0x840000;
1523  	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1524  	if (!par->cmap_regs)
1525  		goto unmap_dc_regs;
1526  	info->pseudo_palette = par->palette;
1527  	ret = init_imstt(info);
1528  	if (ret)
1529  		goto unmap_cmap_regs;
1530  
1531  	pci_set_drvdata(pdev, info);
1532  	return 0;
1533  
1534  unmap_cmap_regs:
1535  	iounmap(par->cmap_regs);
1536  unmap_dc_regs:
1537  	iounmap(par->dc_regs);
1538  unmap_screen_base:
1539  	iounmap(info->screen_base);
1540  release_mem_region:
1541  	release_mem_region(addr, size);
1542  release_info:
1543  	framebuffer_release(info);
1544  	return ret;
1545  }
1546  
imsttfb_remove(struct pci_dev * pdev)1547  static void imsttfb_remove(struct pci_dev *pdev)
1548  {
1549  	struct fb_info *info = pci_get_drvdata(pdev);
1550  	struct imstt_par *par = info->par;
1551  	int size = pci_resource_len(pdev, 0);
1552  
1553  	unregister_framebuffer(info);
1554  	iounmap(par->cmap_regs);
1555  	iounmap(par->dc_regs);
1556  	iounmap(info->screen_base);
1557  	release_mem_region(info->fix.smem_start, size);
1558  	framebuffer_release(info);
1559  }
1560  
1561  #ifndef MODULE
1562  static int __init
imsttfb_setup(char * options)1563  imsttfb_setup(char *options)
1564  {
1565  	char *this_opt;
1566  
1567  	if (!options || !*options)
1568  		return 0;
1569  
1570  	while ((this_opt = strsep(&options, ",")) != NULL) {
1571  		if (!strncmp(this_opt, "font:", 5)) {
1572  			char *p;
1573  			int i;
1574  
1575  			p = this_opt + 5;
1576  			for (i = 0; i < sizeof(fontname) - 1; i++)
1577  				if (!*p || *p == ' ' || *p == ',')
1578  					break;
1579  			memcpy(fontname, this_opt + 5, i);
1580  			fontname[i] = 0;
1581  		} else if (!strncmp(this_opt, "inverse", 7)) {
1582  			inverse = 1;
1583  			fb_invert_cmaps();
1584  		}
1585  #if defined(CONFIG_PPC_PMAC)
1586  		else if (!strncmp(this_opt, "vmode:", 6)) {
1587  			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1588  			if (vmode > 0 && vmode <= VMODE_MAX)
1589  				init_vmode = vmode;
1590  		} else if (!strncmp(this_opt, "cmode:", 6)) {
1591  			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1592  			switch (cmode) {
1593  				case CMODE_8:
1594  				case 8:
1595  					init_cmode = CMODE_8;
1596  					break;
1597  				case CMODE_16:
1598  				case 15:
1599  				case 16:
1600  					init_cmode = CMODE_16;
1601  					break;
1602  				case CMODE_32:
1603  				case 24:
1604  				case 32:
1605  					init_cmode = CMODE_32;
1606  					break;
1607  			}
1608  		}
1609  #endif
1610  	}
1611  	return 0;
1612  }
1613  
1614  #endif /* MODULE */
1615  
imsttfb_init(void)1616  static int __init imsttfb_init(void)
1617  {
1618  #ifndef MODULE
1619  	char *option = NULL;
1620  
1621  	if (fb_get_options("imsttfb", &option))
1622  		return -ENODEV;
1623  
1624  	imsttfb_setup(option);
1625  #endif
1626  	return pci_register_driver(&imsttfb_pci_driver);
1627  }
1628  
imsttfb_exit(void)1629  static void __exit imsttfb_exit(void)
1630  {
1631  	pci_unregister_driver(&imsttfb_pci_driver);
1632  }
1633  
1634  MODULE_LICENSE("GPL");
1635  
1636  module_init(imsttfb_init);
1637  module_exit(imsttfb_exit);
1638  
1639