1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34
35 #include "mtdcore.h"
36
37 struct backing_dev_info *mtd_bdi;
38
39 #ifdef CONFIG_PM_SLEEP
40
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46 }
47
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55 }
56
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67 };
68
69 static DEFINE_IDR(mtd_idr);
70
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82 static LIST_HEAD(mtd_notifiers);
83
84
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97 }
98
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)153 static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173 {
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)217 static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228 {
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238 {
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247 {
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311 static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332
333 static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337 };
338
mtd_partid_debug_show(struct seq_file * s,void * p)339 static int mtd_partid_debug_show(struct seq_file *s, void *p)
340 {
341 struct mtd_info *mtd = s->private;
342
343 seq_printf(s, "%s\n", mtd->dbg.partid);
344
345 return 0;
346 }
347
348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
349
mtd_partname_debug_show(struct seq_file * s,void * p)350 static int mtd_partname_debug_show(struct seq_file *s, void *p)
351 {
352 struct mtd_info *mtd = s->private;
353
354 seq_printf(s, "%s\n", mtd->dbg.partname);
355
356 return 0;
357 }
358
359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
360
361 static struct dentry *dfs_dir_mtd;
362
mtd_debugfs_populate(struct mtd_info * mtd)363 static void mtd_debugfs_populate(struct mtd_info *mtd)
364 {
365 struct mtd_info *master = mtd_get_master(mtd);
366 struct device *dev = &mtd->dev;
367 struct dentry *root;
368
369 if (IS_ERR_OR_NULL(dfs_dir_mtd))
370 return;
371
372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
373 mtd->dbg.dfs_dir = root;
374
375 if (master->dbg.partid)
376 debugfs_create_file("partid", 0400, root, master,
377 &mtd_partid_debug_fops);
378
379 if (master->dbg.partname)
380 debugfs_create_file("partname", 0400, root, master,
381 &mtd_partname_debug_fops);
382 }
383
384 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
386 {
387 switch (mtd->type) {
388 case MTD_RAM:
389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
390 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
391 case MTD_ROM:
392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
393 NOMMU_MAP_READ;
394 default:
395 return NOMMU_MAP_COPY;
396 }
397 }
398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
399 #endif
400
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
402 void *cmd)
403 {
404 struct mtd_info *mtd;
405
406 mtd = container_of(n, struct mtd_info, reboot_notifier);
407 mtd->_reboot(mtd);
408
409 return NOTIFY_DONE;
410 }
411
412 /**
413 * mtd_wunit_to_pairing_info - get pairing information of a wunit
414 * @mtd: pointer to new MTD device info structure
415 * @wunit: write unit we are interested in
416 * @info: returned pairing information
417 *
418 * Retrieve pairing information associated to the wunit.
419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
420 * paired together, and where programming a page may influence the page it is
421 * paired with.
422 * The notion of page is replaced by the term wunit (write-unit) to stay
423 * consistent with the ->writesize field.
424 *
425 * The @wunit argument can be extracted from an absolute offset using
426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427 * to @wunit.
428 *
429 * From the pairing info the MTD user can find all the wunits paired with
430 * @wunit using the following loop:
431 *
432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
433 * info.pair = i;
434 * mtd_pairing_info_to_wunit(mtd, &info);
435 * ...
436 * }
437 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
439 struct mtd_pairing_info *info)
440 {
441 struct mtd_info *master = mtd_get_master(mtd);
442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
443
444 if (wunit < 0 || wunit >= npairs)
445 return -EINVAL;
446
447 if (master->pairing && master->pairing->get_info)
448 return master->pairing->get_info(master, wunit, info);
449
450 info->group = 0;
451 info->pair = wunit;
452
453 return 0;
454 }
455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456
457 /**
458 * mtd_pairing_info_to_wunit - get wunit from pairing information
459 * @mtd: pointer to new MTD device info structure
460 * @info: pairing information struct
461 *
462 * Returns a positive number representing the wunit associated to the info
463 * struct, or a negative error code.
464 *
465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467 * doc).
468 *
469 * It can also be used to only program the first page of each pair (i.e.
470 * page attached to group 0), which allows one to use an MLC NAND in
471 * software-emulated SLC mode:
472 *
473 * info.group = 0;
474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
475 * for (info.pair = 0; info.pair < npairs; info.pair++) {
476 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
478 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
479 * }
480 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
482 const struct mtd_pairing_info *info)
483 {
484 struct mtd_info *master = mtd_get_master(mtd);
485 int ngroups = mtd_pairing_groups(master);
486 int npairs = mtd_wunit_per_eb(master) / ngroups;
487
488 if (!info || info->pair < 0 || info->pair >= npairs ||
489 info->group < 0 || info->group >= ngroups)
490 return -EINVAL;
491
492 if (master->pairing && master->pairing->get_wunit)
493 return mtd->pairing->get_wunit(master, info);
494
495 return info->pair;
496 }
497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498
499 /**
500 * mtd_pairing_groups - get the number of pairing groups
501 * @mtd: pointer to new MTD device info structure
502 *
503 * Returns the number of pairing groups.
504 *
505 * This number is usually equal to the number of bits exposed by a single
506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
507 * to iterate over all pages of a given pair.
508 */
mtd_pairing_groups(struct mtd_info * mtd)509 int mtd_pairing_groups(struct mtd_info *mtd)
510 {
511 struct mtd_info *master = mtd_get_master(mtd);
512
513 if (!master->pairing || !master->pairing->ngroups)
514 return 1;
515
516 return master->pairing->ngroups;
517 }
518 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
519
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
521 void *val, size_t bytes)
522 {
523 struct mtd_info *mtd = priv;
524 size_t retlen;
525 int err;
526
527 err = mtd_read(mtd, offset, bytes, &retlen, val);
528 if (err && err != -EUCLEAN)
529 return err;
530
531 return retlen == bytes ? 0 : -EIO;
532 }
533
mtd_nvmem_add(struct mtd_info * mtd)534 static int mtd_nvmem_add(struct mtd_info *mtd)
535 {
536 struct device_node *node = mtd_get_of_node(mtd);
537 struct nvmem_config config = {};
538
539 config.id = -1;
540 config.dev = &mtd->dev;
541 config.name = dev_name(&mtd->dev);
542 config.owner = THIS_MODULE;
543 config.reg_read = mtd_nvmem_reg_read;
544 config.size = mtd->size;
545 config.word_size = 1;
546 config.stride = 1;
547 config.read_only = true;
548 config.root_only = true;
549 config.ignore_wp = true;
550 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
551 config.priv = mtd;
552
553 mtd->nvmem = nvmem_register(&config);
554 if (IS_ERR(mtd->nvmem)) {
555 /* Just ignore if there is no NVMEM support in the kernel */
556 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
557 mtd->nvmem = NULL;
558 } else {
559 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
560 return PTR_ERR(mtd->nvmem);
561 }
562 }
563
564 return 0;
565 }
566
567 /**
568 * add_mtd_device - register an MTD device
569 * @mtd: pointer to new MTD device info structure
570 *
571 * Add a device to the list of MTD devices present in the system, and
572 * notify each currently active MTD 'user' of its arrival. Returns
573 * zero on success or non-zero on failure.
574 */
575
add_mtd_device(struct mtd_info * mtd)576 int add_mtd_device(struct mtd_info *mtd)
577 {
578 struct mtd_info *master = mtd_get_master(mtd);
579 struct mtd_notifier *not;
580 int i, error;
581
582 /*
583 * May occur, for instance, on buggy drivers which call
584 * mtd_device_parse_register() multiple times on the same master MTD,
585 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
586 */
587 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
588 return -EEXIST;
589
590 BUG_ON(mtd->writesize == 0);
591
592 /*
593 * MTD drivers should implement ->_{write,read}() or
594 * ->_{write,read}_oob(), but not both.
595 */
596 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
597 (mtd->_read && mtd->_read_oob)))
598 return -EINVAL;
599
600 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
601 !(mtd->flags & MTD_NO_ERASE)))
602 return -EINVAL;
603
604 /*
605 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
606 * master is an MLC NAND and has a proper pairing scheme defined.
607 * We also reject masters that implement ->_writev() for now, because
608 * NAND controller drivers don't implement this hook, and adding the
609 * SLC -> MLC address/length conversion to this path is useless if we
610 * don't have a user.
611 */
612 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
613 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
614 !master->pairing || master->_writev))
615 return -EINVAL;
616
617 mutex_lock(&mtd_table_mutex);
618
619 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
620 if (i < 0) {
621 error = i;
622 goto fail_locked;
623 }
624
625 mtd->index = i;
626 mtd->usecount = 0;
627
628 /* default value if not set by driver */
629 if (mtd->bitflip_threshold == 0)
630 mtd->bitflip_threshold = mtd->ecc_strength;
631
632 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
633 int ngroups = mtd_pairing_groups(master);
634
635 mtd->erasesize /= ngroups;
636 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
637 mtd->erasesize;
638 }
639
640 if (is_power_of_2(mtd->erasesize))
641 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
642 else
643 mtd->erasesize_shift = 0;
644
645 if (is_power_of_2(mtd->writesize))
646 mtd->writesize_shift = ffs(mtd->writesize) - 1;
647 else
648 mtd->writesize_shift = 0;
649
650 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
651 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
652
653 /* Some chips always power up locked. Unlock them now */
654 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
655 error = mtd_unlock(mtd, 0, mtd->size);
656 if (error && error != -EOPNOTSUPP)
657 printk(KERN_WARNING
658 "%s: unlock failed, writes may not work\n",
659 mtd->name);
660 /* Ignore unlock failures? */
661 error = 0;
662 }
663
664 /* Caller should have set dev.parent to match the
665 * physical device, if appropriate.
666 */
667 mtd->dev.type = &mtd_devtype;
668 mtd->dev.class = &mtd_class;
669 mtd->dev.devt = MTD_DEVT(i);
670 dev_set_name(&mtd->dev, "mtd%d", i);
671 dev_set_drvdata(&mtd->dev, mtd);
672 of_node_get(mtd_get_of_node(mtd));
673 error = device_register(&mtd->dev);
674 if (error) {
675 put_device(&mtd->dev);
676 goto fail_added;
677 }
678
679 /* Add the nvmem provider */
680 error = mtd_nvmem_add(mtd);
681 if (error)
682 goto fail_nvmem_add;
683
684 mtd_debugfs_populate(mtd);
685
686 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
687 "mtd%dro", i);
688
689 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
690 /* No need to get a refcount on the module containing
691 the notifier, since we hold the mtd_table_mutex */
692 list_for_each_entry(not, &mtd_notifiers, list)
693 not->add(mtd);
694
695 mutex_unlock(&mtd_table_mutex);
696 /* We _know_ we aren't being removed, because
697 our caller is still holding us here. So none
698 of this try_ nonsense, and no bitching about it
699 either. :) */
700 __module_get(THIS_MODULE);
701 return 0;
702
703 fail_nvmem_add:
704 device_unregister(&mtd->dev);
705 fail_added:
706 of_node_put(mtd_get_of_node(mtd));
707 idr_remove(&mtd_idr, i);
708 fail_locked:
709 mutex_unlock(&mtd_table_mutex);
710 return error;
711 }
712
713 /**
714 * del_mtd_device - unregister an MTD device
715 * @mtd: pointer to MTD device info structure
716 *
717 * Remove a device from the list of MTD devices present in the system,
718 * and notify each currently active MTD 'user' of its departure.
719 * Returns zero on success or 1 on failure, which currently will happen
720 * if the requested device does not appear to be present in the list.
721 */
722
del_mtd_device(struct mtd_info * mtd)723 int del_mtd_device(struct mtd_info *mtd)
724 {
725 int ret;
726 struct mtd_notifier *not;
727
728 mutex_lock(&mtd_table_mutex);
729
730 if (idr_find(&mtd_idr, mtd->index) != mtd) {
731 ret = -ENODEV;
732 goto out_error;
733 }
734
735 /* No need to get a refcount on the module containing
736 the notifier, since we hold the mtd_table_mutex */
737 list_for_each_entry(not, &mtd_notifiers, list)
738 not->remove(mtd);
739
740 if (mtd->usecount) {
741 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
742 mtd->index, mtd->name, mtd->usecount);
743 ret = -EBUSY;
744 } else {
745 debugfs_remove_recursive(mtd->dbg.dfs_dir);
746
747 /* Try to remove the NVMEM provider */
748 if (mtd->nvmem)
749 nvmem_unregister(mtd->nvmem);
750
751 device_unregister(&mtd->dev);
752
753 idr_remove(&mtd_idr, mtd->index);
754 of_node_put(mtd_get_of_node(mtd));
755
756 module_put(THIS_MODULE);
757 ret = 0;
758 }
759
760 out_error:
761 mutex_unlock(&mtd_table_mutex);
762 return ret;
763 }
764
765 /*
766 * Set a few defaults based on the parent devices, if not provided by the
767 * driver
768 */
mtd_set_dev_defaults(struct mtd_info * mtd)769 static void mtd_set_dev_defaults(struct mtd_info *mtd)
770 {
771 if (mtd->dev.parent) {
772 if (!mtd->owner && mtd->dev.parent->driver)
773 mtd->owner = mtd->dev.parent->driver->owner;
774 if (!mtd->name)
775 mtd->name = dev_name(mtd->dev.parent);
776 } else {
777 pr_debug("mtd device won't show a device symlink in sysfs\n");
778 }
779
780 INIT_LIST_HEAD(&mtd->partitions);
781 mutex_init(&mtd->master.partitions_lock);
782 mutex_init(&mtd->master.chrdev_lock);
783 }
784
mtd_otp_size(struct mtd_info * mtd,bool is_user)785 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
786 {
787 struct otp_info *info;
788 ssize_t size = 0;
789 unsigned int i;
790 size_t retlen;
791 int ret;
792
793 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
794 if (!info)
795 return -ENOMEM;
796
797 if (is_user)
798 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
799 else
800 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
801 if (ret)
802 goto err;
803
804 for (i = 0; i < retlen / sizeof(*info); i++)
805 size += info[i].length;
806
807 kfree(info);
808 return size;
809
810 err:
811 kfree(info);
812
813 /* ENODATA means there is no OTP region. */
814 return ret == -ENODATA ? 0 : ret;
815 }
816
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)817 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
818 const char *compatible,
819 int size,
820 nvmem_reg_read_t reg_read)
821 {
822 struct nvmem_device *nvmem = NULL;
823 struct nvmem_config config = {};
824 struct device_node *np;
825
826 /* DT binding is optional */
827 np = of_get_compatible_child(mtd->dev.of_node, compatible);
828
829 /* OTP nvmem will be registered on the physical device */
830 config.dev = mtd->dev.parent;
831 config.name = compatible;
832 config.id = NVMEM_DEVID_AUTO;
833 config.owner = THIS_MODULE;
834 config.type = NVMEM_TYPE_OTP;
835 config.root_only = true;
836 config.ignore_wp = true;
837 config.reg_read = reg_read;
838 config.size = size;
839 config.of_node = np;
840 config.priv = mtd;
841
842 nvmem = nvmem_register(&config);
843 /* Just ignore if there is no NVMEM support in the kernel */
844 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
845 nvmem = NULL;
846
847 of_node_put(np);
848
849 return nvmem;
850 }
851
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)852 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
853 void *val, size_t bytes)
854 {
855 struct mtd_info *mtd = priv;
856 size_t retlen;
857 int ret;
858
859 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
860 if (ret)
861 return ret;
862
863 return retlen == bytes ? 0 : -EIO;
864 }
865
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)866 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
867 void *val, size_t bytes)
868 {
869 struct mtd_info *mtd = priv;
870 size_t retlen;
871 int ret;
872
873 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
874 if (ret)
875 return ret;
876
877 return retlen == bytes ? 0 : -EIO;
878 }
879
mtd_otp_nvmem_add(struct mtd_info * mtd)880 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
881 {
882 struct device *dev = mtd->dev.parent;
883 struct nvmem_device *nvmem;
884 ssize_t size;
885 int err;
886
887 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
888 size = mtd_otp_size(mtd, true);
889 if (size < 0)
890 return size;
891
892 if (size > 0) {
893 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
894 mtd_nvmem_user_otp_reg_read);
895 if (IS_ERR(nvmem)) {
896 dev_err(dev, "Failed to register OTP NVMEM device\n");
897 return PTR_ERR(nvmem);
898 }
899 mtd->otp_user_nvmem = nvmem;
900 }
901 }
902
903 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
904 size = mtd_otp_size(mtd, false);
905 if (size < 0) {
906 err = size;
907 goto err;
908 }
909
910 if (size > 0) {
911 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
912 mtd_nvmem_fact_otp_reg_read);
913 if (IS_ERR(nvmem)) {
914 dev_err(dev, "Failed to register OTP NVMEM device\n");
915 err = PTR_ERR(nvmem);
916 goto err;
917 }
918 mtd->otp_factory_nvmem = nvmem;
919 }
920 }
921
922 return 0;
923
924 err:
925 if (mtd->otp_user_nvmem)
926 nvmem_unregister(mtd->otp_user_nvmem);
927 return err;
928 }
929
930 /**
931 * mtd_device_parse_register - parse partitions and register an MTD device.
932 *
933 * @mtd: the MTD device to register
934 * @types: the list of MTD partition probes to try, see
935 * 'parse_mtd_partitions()' for more information
936 * @parser_data: MTD partition parser-specific data
937 * @parts: fallback partition information to register, if parsing fails;
938 * only valid if %nr_parts > %0
939 * @nr_parts: the number of partitions in parts, if zero then the full
940 * MTD device is registered if no partition info is found
941 *
942 * This function aggregates MTD partitions parsing (done by
943 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
944 * basically follows the most common pattern found in many MTD drivers:
945 *
946 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
947 * registered first.
948 * * Then It tries to probe partitions on MTD device @mtd using parsers
949 * specified in @types (if @types is %NULL, then the default list of parsers
950 * is used, see 'parse_mtd_partitions()' for more information). If none are
951 * found this functions tries to fallback to information specified in
952 * @parts/@nr_parts.
953 * * If no partitions were found this function just registers the MTD device
954 * @mtd and exits.
955 *
956 * Returns zero in case of success and a negative error code in case of failure.
957 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)958 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
959 struct mtd_part_parser_data *parser_data,
960 const struct mtd_partition *parts,
961 int nr_parts)
962 {
963 int ret;
964
965 mtd_set_dev_defaults(mtd);
966
967 ret = mtd_otp_nvmem_add(mtd);
968 if (ret)
969 goto out;
970
971 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
972 ret = add_mtd_device(mtd);
973 if (ret)
974 goto out;
975 }
976
977 /* Prefer parsed partitions over driver-provided fallback */
978 ret = parse_mtd_partitions(mtd, types, parser_data);
979 if (ret == -EPROBE_DEFER)
980 goto out;
981
982 if (ret > 0)
983 ret = 0;
984 else if (nr_parts)
985 ret = add_mtd_partitions(mtd, parts, nr_parts);
986 else if (!device_is_registered(&mtd->dev))
987 ret = add_mtd_device(mtd);
988 else
989 ret = 0;
990
991 if (ret)
992 goto out;
993
994 /*
995 * FIXME: some drivers unfortunately call this function more than once.
996 * So we have to check if we've already assigned the reboot notifier.
997 *
998 * Generally, we can make multiple calls work for most cases, but it
999 * does cause problems with parse_mtd_partitions() above (e.g.,
1000 * cmdlineparts will register partitions more than once).
1001 */
1002 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1003 "MTD already registered\n");
1004 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1005 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1006 register_reboot_notifier(&mtd->reboot_notifier);
1007 }
1008
1009 out:
1010 if (ret) {
1011 nvmem_unregister(mtd->otp_user_nvmem);
1012 nvmem_unregister(mtd->otp_factory_nvmem);
1013 }
1014
1015 if (ret && device_is_registered(&mtd->dev))
1016 del_mtd_device(mtd);
1017
1018 return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1021
1022 /**
1023 * mtd_device_unregister - unregister an existing MTD device.
1024 *
1025 * @master: the MTD device to unregister. This will unregister both the master
1026 * and any partitions if registered.
1027 */
mtd_device_unregister(struct mtd_info * master)1028 int mtd_device_unregister(struct mtd_info *master)
1029 {
1030 int err;
1031
1032 if (master->_reboot)
1033 unregister_reboot_notifier(&master->reboot_notifier);
1034
1035 if (master->otp_user_nvmem)
1036 nvmem_unregister(master->otp_user_nvmem);
1037
1038 if (master->otp_factory_nvmem)
1039 nvmem_unregister(master->otp_factory_nvmem);
1040
1041 err = del_mtd_partitions(master);
1042 if (err)
1043 return err;
1044
1045 if (!device_is_registered(&master->dev))
1046 return 0;
1047
1048 return del_mtd_device(master);
1049 }
1050 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1051
1052 /**
1053 * register_mtd_user - register a 'user' of MTD devices.
1054 * @new: pointer to notifier info structure
1055 *
1056 * Registers a pair of callbacks function to be called upon addition
1057 * or removal of MTD devices. Causes the 'add' callback to be immediately
1058 * invoked for each MTD device currently present in the system.
1059 */
register_mtd_user(struct mtd_notifier * new)1060 void register_mtd_user (struct mtd_notifier *new)
1061 {
1062 struct mtd_info *mtd;
1063
1064 mutex_lock(&mtd_table_mutex);
1065
1066 list_add(&new->list, &mtd_notifiers);
1067
1068 __module_get(THIS_MODULE);
1069
1070 mtd_for_each_device(mtd)
1071 new->add(mtd);
1072
1073 mutex_unlock(&mtd_table_mutex);
1074 }
1075 EXPORT_SYMBOL_GPL(register_mtd_user);
1076
1077 /**
1078 * unregister_mtd_user - unregister a 'user' of MTD devices.
1079 * @old: pointer to notifier info structure
1080 *
1081 * Removes a callback function pair from the list of 'users' to be
1082 * notified upon addition or removal of MTD devices. Causes the
1083 * 'remove' callback to be immediately invoked for each MTD device
1084 * currently present in the system.
1085 */
unregister_mtd_user(struct mtd_notifier * old)1086 int unregister_mtd_user (struct mtd_notifier *old)
1087 {
1088 struct mtd_info *mtd;
1089
1090 mutex_lock(&mtd_table_mutex);
1091
1092 module_put(THIS_MODULE);
1093
1094 mtd_for_each_device(mtd)
1095 old->remove(mtd);
1096
1097 list_del(&old->list);
1098 mutex_unlock(&mtd_table_mutex);
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1102
1103 /**
1104 * get_mtd_device - obtain a validated handle for an MTD device
1105 * @mtd: last known address of the required MTD device
1106 * @num: internal device number of the required MTD device
1107 *
1108 * Given a number and NULL address, return the num'th entry in the device
1109 * table, if any. Given an address and num == -1, search the device table
1110 * for a device with that address and return if it's still present. Given
1111 * both, return the num'th driver only if its address matches. Return
1112 * error code if not.
1113 */
get_mtd_device(struct mtd_info * mtd,int num)1114 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1115 {
1116 struct mtd_info *ret = NULL, *other;
1117 int err = -ENODEV;
1118
1119 mutex_lock(&mtd_table_mutex);
1120
1121 if (num == -1) {
1122 mtd_for_each_device(other) {
1123 if (other == mtd) {
1124 ret = mtd;
1125 break;
1126 }
1127 }
1128 } else if (num >= 0) {
1129 ret = idr_find(&mtd_idr, num);
1130 if (mtd && mtd != ret)
1131 ret = NULL;
1132 }
1133
1134 if (!ret) {
1135 ret = ERR_PTR(err);
1136 goto out;
1137 }
1138
1139 err = __get_mtd_device(ret);
1140 if (err)
1141 ret = ERR_PTR(err);
1142 out:
1143 mutex_unlock(&mtd_table_mutex);
1144 return ret;
1145 }
1146 EXPORT_SYMBOL_GPL(get_mtd_device);
1147
1148
__get_mtd_device(struct mtd_info * mtd)1149 int __get_mtd_device(struct mtd_info *mtd)
1150 {
1151 struct mtd_info *master = mtd_get_master(mtd);
1152 int err;
1153
1154 if (!try_module_get(master->owner))
1155 return -ENODEV;
1156
1157 if (master->_get_device) {
1158 err = master->_get_device(mtd);
1159
1160 if (err) {
1161 module_put(master->owner);
1162 return err;
1163 }
1164 }
1165
1166 master->usecount++;
1167
1168 while (mtd->parent) {
1169 mtd->usecount++;
1170 mtd = mtd->parent;
1171 }
1172
1173 return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(__get_mtd_device);
1176
1177 /**
1178 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1179 * device name
1180 * @name: MTD device name to open
1181 *
1182 * This function returns MTD device description structure in case of
1183 * success and an error code in case of failure.
1184 */
get_mtd_device_nm(const char * name)1185 struct mtd_info *get_mtd_device_nm(const char *name)
1186 {
1187 int err = -ENODEV;
1188 struct mtd_info *mtd = NULL, *other;
1189
1190 mutex_lock(&mtd_table_mutex);
1191
1192 mtd_for_each_device(other) {
1193 if (!strcmp(name, other->name)) {
1194 mtd = other;
1195 break;
1196 }
1197 }
1198
1199 if (!mtd)
1200 goto out_unlock;
1201
1202 err = __get_mtd_device(mtd);
1203 if (err)
1204 goto out_unlock;
1205
1206 mutex_unlock(&mtd_table_mutex);
1207 return mtd;
1208
1209 out_unlock:
1210 mutex_unlock(&mtd_table_mutex);
1211 return ERR_PTR(err);
1212 }
1213 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1214
put_mtd_device(struct mtd_info * mtd)1215 void put_mtd_device(struct mtd_info *mtd)
1216 {
1217 mutex_lock(&mtd_table_mutex);
1218 __put_mtd_device(mtd);
1219 mutex_unlock(&mtd_table_mutex);
1220
1221 }
1222 EXPORT_SYMBOL_GPL(put_mtd_device);
1223
__put_mtd_device(struct mtd_info * mtd)1224 void __put_mtd_device(struct mtd_info *mtd)
1225 {
1226 struct mtd_info *master = mtd_get_master(mtd);
1227
1228 while (mtd->parent) {
1229 --mtd->usecount;
1230 BUG_ON(mtd->usecount < 0);
1231 mtd = mtd->parent;
1232 }
1233
1234 master->usecount--;
1235
1236 if (master->_put_device)
1237 master->_put_device(master);
1238
1239 module_put(master->owner);
1240 }
1241 EXPORT_SYMBOL_GPL(__put_mtd_device);
1242
1243 /*
1244 * Erase is an synchronous operation. Device drivers are epected to return a
1245 * negative error code if the operation failed and update instr->fail_addr
1246 * to point the portion that was not properly erased.
1247 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1248 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1249 {
1250 struct mtd_info *master = mtd_get_master(mtd);
1251 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1252 struct erase_info adjinstr;
1253 int ret;
1254
1255 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1256 adjinstr = *instr;
1257
1258 if (!mtd->erasesize || !master->_erase)
1259 return -ENOTSUPP;
1260
1261 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1262 return -EINVAL;
1263 if (!(mtd->flags & MTD_WRITEABLE))
1264 return -EROFS;
1265
1266 if (!instr->len)
1267 return 0;
1268
1269 ledtrig_mtd_activity();
1270
1271 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1272 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1273 master->erasesize;
1274 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1275 master->erasesize) -
1276 adjinstr.addr;
1277 }
1278
1279 adjinstr.addr += mst_ofs;
1280
1281 ret = master->_erase(master, &adjinstr);
1282
1283 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1284 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1285 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1286 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1287 master);
1288 instr->fail_addr *= mtd->erasesize;
1289 }
1290 }
1291
1292 return ret;
1293 }
1294 EXPORT_SYMBOL_GPL(mtd_erase);
1295
1296 /*
1297 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1298 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1299 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1300 void **virt, resource_size_t *phys)
1301 {
1302 struct mtd_info *master = mtd_get_master(mtd);
1303
1304 *retlen = 0;
1305 *virt = NULL;
1306 if (phys)
1307 *phys = 0;
1308 if (!master->_point)
1309 return -EOPNOTSUPP;
1310 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1311 return -EINVAL;
1312 if (!len)
1313 return 0;
1314
1315 from = mtd_get_master_ofs(mtd, from);
1316 return master->_point(master, from, len, retlen, virt, phys);
1317 }
1318 EXPORT_SYMBOL_GPL(mtd_point);
1319
1320 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1321 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1322 {
1323 struct mtd_info *master = mtd_get_master(mtd);
1324
1325 if (!master->_unpoint)
1326 return -EOPNOTSUPP;
1327 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1328 return -EINVAL;
1329 if (!len)
1330 return 0;
1331 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1332 }
1333 EXPORT_SYMBOL_GPL(mtd_unpoint);
1334
1335 /*
1336 * Allow NOMMU mmap() to directly map the device (if not NULL)
1337 * - return the address to which the offset maps
1338 * - return -ENOSYS to indicate refusal to do the mapping
1339 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1340 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1341 unsigned long offset, unsigned long flags)
1342 {
1343 size_t retlen;
1344 void *virt;
1345 int ret;
1346
1347 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1348 if (ret)
1349 return ret;
1350 if (retlen != len) {
1351 mtd_unpoint(mtd, offset, retlen);
1352 return -ENOSYS;
1353 }
1354 return (unsigned long)virt;
1355 }
1356 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1357
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1358 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1359 const struct mtd_ecc_stats *old_stats)
1360 {
1361 struct mtd_ecc_stats diff;
1362
1363 if (master == mtd)
1364 return;
1365
1366 diff = master->ecc_stats;
1367 diff.failed -= old_stats->failed;
1368 diff.corrected -= old_stats->corrected;
1369
1370 while (mtd->parent) {
1371 mtd->ecc_stats.failed += diff.failed;
1372 mtd->ecc_stats.corrected += diff.corrected;
1373 mtd = mtd->parent;
1374 }
1375 }
1376
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1377 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1378 u_char *buf)
1379 {
1380 struct mtd_oob_ops ops = {
1381 .len = len,
1382 .datbuf = buf,
1383 };
1384 int ret;
1385
1386 ret = mtd_read_oob(mtd, from, &ops);
1387 *retlen = ops.retlen;
1388
1389 return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(mtd_read);
1392
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1393 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1394 const u_char *buf)
1395 {
1396 struct mtd_oob_ops ops = {
1397 .len = len,
1398 .datbuf = (u8 *)buf,
1399 };
1400 int ret;
1401
1402 ret = mtd_write_oob(mtd, to, &ops);
1403 *retlen = ops.retlen;
1404
1405 return ret;
1406 }
1407 EXPORT_SYMBOL_GPL(mtd_write);
1408
1409 /*
1410 * In blackbox flight recorder like scenarios we want to make successful writes
1411 * in interrupt context. panic_write() is only intended to be called when its
1412 * known the kernel is about to panic and we need the write to succeed. Since
1413 * the kernel is not going to be running for much longer, this function can
1414 * break locks and delay to ensure the write succeeds (but not sleep).
1415 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1416 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1417 const u_char *buf)
1418 {
1419 struct mtd_info *master = mtd_get_master(mtd);
1420
1421 *retlen = 0;
1422 if (!master->_panic_write)
1423 return -EOPNOTSUPP;
1424 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1425 return -EINVAL;
1426 if (!(mtd->flags & MTD_WRITEABLE))
1427 return -EROFS;
1428 if (!len)
1429 return 0;
1430 if (!master->oops_panic_write)
1431 master->oops_panic_write = true;
1432
1433 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1434 retlen, buf);
1435 }
1436 EXPORT_SYMBOL_GPL(mtd_panic_write);
1437
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1438 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1439 struct mtd_oob_ops *ops)
1440 {
1441 /*
1442 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1443 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1444 * this case.
1445 */
1446 if (!ops->datbuf)
1447 ops->len = 0;
1448
1449 if (!ops->oobbuf)
1450 ops->ooblen = 0;
1451
1452 if (offs < 0 || offs + ops->len > mtd->size)
1453 return -EINVAL;
1454
1455 if (ops->ooblen) {
1456 size_t maxooblen;
1457
1458 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1459 return -EINVAL;
1460
1461 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1462 mtd_div_by_ws(offs, mtd)) *
1463 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1464 if (ops->ooblen > maxooblen)
1465 return -EINVAL;
1466 }
1467
1468 return 0;
1469 }
1470
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1471 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1472 struct mtd_oob_ops *ops)
1473 {
1474 struct mtd_info *master = mtd_get_master(mtd);
1475 int ret;
1476
1477 from = mtd_get_master_ofs(mtd, from);
1478 if (master->_read_oob)
1479 ret = master->_read_oob(master, from, ops);
1480 else
1481 ret = master->_read(master, from, ops->len, &ops->retlen,
1482 ops->datbuf);
1483
1484 return ret;
1485 }
1486
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1487 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1488 struct mtd_oob_ops *ops)
1489 {
1490 struct mtd_info *master = mtd_get_master(mtd);
1491 int ret;
1492
1493 to = mtd_get_master_ofs(mtd, to);
1494 if (master->_write_oob)
1495 ret = master->_write_oob(master, to, ops);
1496 else
1497 ret = master->_write(master, to, ops->len, &ops->retlen,
1498 ops->datbuf);
1499
1500 return ret;
1501 }
1502
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1503 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1504 struct mtd_oob_ops *ops)
1505 {
1506 struct mtd_info *master = mtd_get_master(mtd);
1507 int ngroups = mtd_pairing_groups(master);
1508 int npairs = mtd_wunit_per_eb(master) / ngroups;
1509 struct mtd_oob_ops adjops = *ops;
1510 unsigned int wunit, oobavail;
1511 struct mtd_pairing_info info;
1512 int max_bitflips = 0;
1513 u32 ebofs, pageofs;
1514 loff_t base, pos;
1515
1516 ebofs = mtd_mod_by_eb(start, mtd);
1517 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1518 info.group = 0;
1519 info.pair = mtd_div_by_ws(ebofs, mtd);
1520 pageofs = mtd_mod_by_ws(ebofs, mtd);
1521 oobavail = mtd_oobavail(mtd, ops);
1522
1523 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1524 int ret;
1525
1526 if (info.pair >= npairs) {
1527 info.pair = 0;
1528 base += master->erasesize;
1529 }
1530
1531 wunit = mtd_pairing_info_to_wunit(master, &info);
1532 pos = mtd_wunit_to_offset(mtd, base, wunit);
1533
1534 adjops.len = ops->len - ops->retlen;
1535 if (adjops.len > mtd->writesize - pageofs)
1536 adjops.len = mtd->writesize - pageofs;
1537
1538 adjops.ooblen = ops->ooblen - ops->oobretlen;
1539 if (adjops.ooblen > oobavail - adjops.ooboffs)
1540 adjops.ooblen = oobavail - adjops.ooboffs;
1541
1542 if (read) {
1543 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1544 if (ret > 0)
1545 max_bitflips = max(max_bitflips, ret);
1546 } else {
1547 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1548 }
1549
1550 if (ret < 0)
1551 return ret;
1552
1553 max_bitflips = max(max_bitflips, ret);
1554 ops->retlen += adjops.retlen;
1555 ops->oobretlen += adjops.oobretlen;
1556 adjops.datbuf += adjops.retlen;
1557 adjops.oobbuf += adjops.oobretlen;
1558 adjops.ooboffs = 0;
1559 pageofs = 0;
1560 info.pair++;
1561 }
1562
1563 return max_bitflips;
1564 }
1565
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1566 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1567 {
1568 struct mtd_info *master = mtd_get_master(mtd);
1569 struct mtd_ecc_stats old_stats = master->ecc_stats;
1570 int ret_code;
1571
1572 ops->retlen = ops->oobretlen = 0;
1573
1574 ret_code = mtd_check_oob_ops(mtd, from, ops);
1575 if (ret_code)
1576 return ret_code;
1577
1578 ledtrig_mtd_activity();
1579
1580 /* Check the validity of a potential fallback on mtd->_read */
1581 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1582 return -EOPNOTSUPP;
1583
1584 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1585 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1586 else
1587 ret_code = mtd_read_oob_std(mtd, from, ops);
1588
1589 mtd_update_ecc_stats(mtd, master, &old_stats);
1590
1591 /*
1592 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1593 * similar to mtd->_read(), returning a non-negative integer
1594 * representing max bitflips. In other cases, mtd->_read_oob() may
1595 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1596 */
1597 if (unlikely(ret_code < 0))
1598 return ret_code;
1599 if (mtd->ecc_strength == 0)
1600 return 0; /* device lacks ecc */
1601 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1602 }
1603 EXPORT_SYMBOL_GPL(mtd_read_oob);
1604
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1605 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1606 struct mtd_oob_ops *ops)
1607 {
1608 struct mtd_info *master = mtd_get_master(mtd);
1609 int ret;
1610
1611 ops->retlen = ops->oobretlen = 0;
1612
1613 if (!(mtd->flags & MTD_WRITEABLE))
1614 return -EROFS;
1615
1616 ret = mtd_check_oob_ops(mtd, to, ops);
1617 if (ret)
1618 return ret;
1619
1620 ledtrig_mtd_activity();
1621
1622 /* Check the validity of a potential fallback on mtd->_write */
1623 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1624 return -EOPNOTSUPP;
1625
1626 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1627 return mtd_io_emulated_slc(mtd, to, false, ops);
1628
1629 return mtd_write_oob_std(mtd, to, ops);
1630 }
1631 EXPORT_SYMBOL_GPL(mtd_write_oob);
1632
1633 /**
1634 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1635 * @mtd: MTD device structure
1636 * @section: ECC section. Depending on the layout you may have all the ECC
1637 * bytes stored in a single contiguous section, or one section
1638 * per ECC chunk (and sometime several sections for a single ECC
1639 * ECC chunk)
1640 * @oobecc: OOB region struct filled with the appropriate ECC position
1641 * information
1642 *
1643 * This function returns ECC section information in the OOB area. If you want
1644 * to get all the ECC bytes information, then you should call
1645 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1646 *
1647 * Returns zero on success, a negative error code otherwise.
1648 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1649 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1650 struct mtd_oob_region *oobecc)
1651 {
1652 struct mtd_info *master = mtd_get_master(mtd);
1653
1654 memset(oobecc, 0, sizeof(*oobecc));
1655
1656 if (!master || section < 0)
1657 return -EINVAL;
1658
1659 if (!master->ooblayout || !master->ooblayout->ecc)
1660 return -ENOTSUPP;
1661
1662 return master->ooblayout->ecc(master, section, oobecc);
1663 }
1664 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1665
1666 /**
1667 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1668 * section
1669 * @mtd: MTD device structure
1670 * @section: Free section you are interested in. Depending on the layout
1671 * you may have all the free bytes stored in a single contiguous
1672 * section, or one section per ECC chunk plus an extra section
1673 * for the remaining bytes (or other funky layout).
1674 * @oobfree: OOB region struct filled with the appropriate free position
1675 * information
1676 *
1677 * This function returns free bytes position in the OOB area. If you want
1678 * to get all the free bytes information, then you should call
1679 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1680 *
1681 * Returns zero on success, a negative error code otherwise.
1682 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1683 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1684 struct mtd_oob_region *oobfree)
1685 {
1686 struct mtd_info *master = mtd_get_master(mtd);
1687
1688 memset(oobfree, 0, sizeof(*oobfree));
1689
1690 if (!master || section < 0)
1691 return -EINVAL;
1692
1693 if (!master->ooblayout || !master->ooblayout->free)
1694 return -ENOTSUPP;
1695
1696 return master->ooblayout->free(master, section, oobfree);
1697 }
1698 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1699
1700 /**
1701 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1702 * @mtd: mtd info structure
1703 * @byte: the byte we are searching for
1704 * @sectionp: pointer where the section id will be stored
1705 * @oobregion: used to retrieve the ECC position
1706 * @iter: iterator function. Should be either mtd_ooblayout_free or
1707 * mtd_ooblayout_ecc depending on the region type you're searching for
1708 *
1709 * This function returns the section id and oobregion information of a
1710 * specific byte. For example, say you want to know where the 4th ECC byte is
1711 * stored, you'll use:
1712 *
1713 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1714 *
1715 * Returns zero on success, a negative error code otherwise.
1716 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1717 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1718 int *sectionp, struct mtd_oob_region *oobregion,
1719 int (*iter)(struct mtd_info *,
1720 int section,
1721 struct mtd_oob_region *oobregion))
1722 {
1723 int pos = 0, ret, section = 0;
1724
1725 memset(oobregion, 0, sizeof(*oobregion));
1726
1727 while (1) {
1728 ret = iter(mtd, section, oobregion);
1729 if (ret)
1730 return ret;
1731
1732 if (pos + oobregion->length > byte)
1733 break;
1734
1735 pos += oobregion->length;
1736 section++;
1737 }
1738
1739 /*
1740 * Adjust region info to make it start at the beginning at the
1741 * 'start' ECC byte.
1742 */
1743 oobregion->offset += byte - pos;
1744 oobregion->length -= byte - pos;
1745 *sectionp = section;
1746
1747 return 0;
1748 }
1749
1750 /**
1751 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1752 * ECC byte
1753 * @mtd: mtd info structure
1754 * @eccbyte: the byte we are searching for
1755 * @section: pointer where the section id will be stored
1756 * @oobregion: OOB region information
1757 *
1758 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1759 * byte.
1760 *
1761 * Returns zero on success, a negative error code otherwise.
1762 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1763 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1764 int *section,
1765 struct mtd_oob_region *oobregion)
1766 {
1767 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1768 mtd_ooblayout_ecc);
1769 }
1770 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1771
1772 /**
1773 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1774 * @mtd: mtd info structure
1775 * @buf: destination buffer to store OOB bytes
1776 * @oobbuf: OOB buffer
1777 * @start: first byte to retrieve
1778 * @nbytes: number of bytes to retrieve
1779 * @iter: section iterator
1780 *
1781 * Extract bytes attached to a specific category (ECC or free)
1782 * from the OOB buffer and copy them into buf.
1783 *
1784 * Returns zero on success, a negative error code otherwise.
1785 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1786 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1787 const u8 *oobbuf, int start, int nbytes,
1788 int (*iter)(struct mtd_info *,
1789 int section,
1790 struct mtd_oob_region *oobregion))
1791 {
1792 struct mtd_oob_region oobregion;
1793 int section, ret;
1794
1795 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1796 &oobregion, iter);
1797
1798 while (!ret) {
1799 int cnt;
1800
1801 cnt = min_t(int, nbytes, oobregion.length);
1802 memcpy(buf, oobbuf + oobregion.offset, cnt);
1803 buf += cnt;
1804 nbytes -= cnt;
1805
1806 if (!nbytes)
1807 break;
1808
1809 ret = iter(mtd, ++section, &oobregion);
1810 }
1811
1812 return ret;
1813 }
1814
1815 /**
1816 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1817 * @mtd: mtd info structure
1818 * @buf: source buffer to get OOB bytes from
1819 * @oobbuf: OOB buffer
1820 * @start: first OOB byte to set
1821 * @nbytes: number of OOB bytes to set
1822 * @iter: section iterator
1823 *
1824 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1825 * is selected by passing the appropriate iterator.
1826 *
1827 * Returns zero on success, a negative error code otherwise.
1828 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1829 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1830 u8 *oobbuf, int start, int nbytes,
1831 int (*iter)(struct mtd_info *,
1832 int section,
1833 struct mtd_oob_region *oobregion))
1834 {
1835 struct mtd_oob_region oobregion;
1836 int section, ret;
1837
1838 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1839 &oobregion, iter);
1840
1841 while (!ret) {
1842 int cnt;
1843
1844 cnt = min_t(int, nbytes, oobregion.length);
1845 memcpy(oobbuf + oobregion.offset, buf, cnt);
1846 buf += cnt;
1847 nbytes -= cnt;
1848
1849 if (!nbytes)
1850 break;
1851
1852 ret = iter(mtd, ++section, &oobregion);
1853 }
1854
1855 return ret;
1856 }
1857
1858 /**
1859 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1860 * @mtd: mtd info structure
1861 * @iter: category iterator
1862 *
1863 * Count the number of bytes in a given category.
1864 *
1865 * Returns a positive value on success, a negative error code otherwise.
1866 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1867 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1868 int (*iter)(struct mtd_info *,
1869 int section,
1870 struct mtd_oob_region *oobregion))
1871 {
1872 struct mtd_oob_region oobregion;
1873 int section = 0, ret, nbytes = 0;
1874
1875 while (1) {
1876 ret = iter(mtd, section++, &oobregion);
1877 if (ret) {
1878 if (ret == -ERANGE)
1879 ret = nbytes;
1880 break;
1881 }
1882
1883 nbytes += oobregion.length;
1884 }
1885
1886 return ret;
1887 }
1888
1889 /**
1890 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1891 * @mtd: mtd info structure
1892 * @eccbuf: destination buffer to store ECC bytes
1893 * @oobbuf: OOB buffer
1894 * @start: first ECC byte to retrieve
1895 * @nbytes: number of ECC bytes to retrieve
1896 *
1897 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1898 *
1899 * Returns zero on success, a negative error code otherwise.
1900 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1901 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1902 const u8 *oobbuf, int start, int nbytes)
1903 {
1904 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1905 mtd_ooblayout_ecc);
1906 }
1907 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1908
1909 /**
1910 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1911 * @mtd: mtd info structure
1912 * @eccbuf: source buffer to get ECC bytes from
1913 * @oobbuf: OOB buffer
1914 * @start: first ECC byte to set
1915 * @nbytes: number of ECC bytes to set
1916 *
1917 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1918 *
1919 * Returns zero on success, a negative error code otherwise.
1920 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1921 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1922 u8 *oobbuf, int start, int nbytes)
1923 {
1924 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1925 mtd_ooblayout_ecc);
1926 }
1927 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1928
1929 /**
1930 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1931 * @mtd: mtd info structure
1932 * @databuf: destination buffer to store ECC bytes
1933 * @oobbuf: OOB buffer
1934 * @start: first ECC byte to retrieve
1935 * @nbytes: number of ECC bytes to retrieve
1936 *
1937 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1938 *
1939 * Returns zero on success, a negative error code otherwise.
1940 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1941 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1942 const u8 *oobbuf, int start, int nbytes)
1943 {
1944 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1945 mtd_ooblayout_free);
1946 }
1947 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1948
1949 /**
1950 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1951 * @mtd: mtd info structure
1952 * @databuf: source buffer to get data bytes from
1953 * @oobbuf: OOB buffer
1954 * @start: first ECC byte to set
1955 * @nbytes: number of ECC bytes to set
1956 *
1957 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1958 *
1959 * Returns zero on success, a negative error code otherwise.
1960 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1961 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1962 u8 *oobbuf, int start, int nbytes)
1963 {
1964 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1965 mtd_ooblayout_free);
1966 }
1967 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1968
1969 /**
1970 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1971 * @mtd: mtd info structure
1972 *
1973 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1974 *
1975 * Returns zero on success, a negative error code otherwise.
1976 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1977 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1978 {
1979 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1980 }
1981 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1982
1983 /**
1984 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1985 * @mtd: mtd info structure
1986 *
1987 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1988 *
1989 * Returns zero on success, a negative error code otherwise.
1990 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1991 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1992 {
1993 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1994 }
1995 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1996
1997 /*
1998 * Method to access the protection register area, present in some flash
1999 * devices. The user data is one time programmable but the factory data is read
2000 * only.
2001 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2002 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2003 struct otp_info *buf)
2004 {
2005 struct mtd_info *master = mtd_get_master(mtd);
2006
2007 if (!master->_get_fact_prot_info)
2008 return -EOPNOTSUPP;
2009 if (!len)
2010 return 0;
2011 return master->_get_fact_prot_info(master, len, retlen, buf);
2012 }
2013 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2014
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2015 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2016 size_t *retlen, u_char *buf)
2017 {
2018 struct mtd_info *master = mtd_get_master(mtd);
2019
2020 *retlen = 0;
2021 if (!master->_read_fact_prot_reg)
2022 return -EOPNOTSUPP;
2023 if (!len)
2024 return 0;
2025 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2026 }
2027 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2028
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2029 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2030 struct otp_info *buf)
2031 {
2032 struct mtd_info *master = mtd_get_master(mtd);
2033
2034 if (!master->_get_user_prot_info)
2035 return -EOPNOTSUPP;
2036 if (!len)
2037 return 0;
2038 return master->_get_user_prot_info(master, len, retlen, buf);
2039 }
2040 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2041
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2042 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2043 size_t *retlen, u_char *buf)
2044 {
2045 struct mtd_info *master = mtd_get_master(mtd);
2046
2047 *retlen = 0;
2048 if (!master->_read_user_prot_reg)
2049 return -EOPNOTSUPP;
2050 if (!len)
2051 return 0;
2052 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2053 }
2054 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2055
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2056 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2057 size_t *retlen, const u_char *buf)
2058 {
2059 struct mtd_info *master = mtd_get_master(mtd);
2060 int ret;
2061
2062 *retlen = 0;
2063 if (!master->_write_user_prot_reg)
2064 return -EOPNOTSUPP;
2065 if (!len)
2066 return 0;
2067 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2068 if (ret)
2069 return ret;
2070
2071 /*
2072 * If no data could be written at all, we are out of memory and
2073 * must return -ENOSPC.
2074 */
2075 return (*retlen) ? 0 : -ENOSPC;
2076 }
2077 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2078
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2079 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2080 {
2081 struct mtd_info *master = mtd_get_master(mtd);
2082
2083 if (!master->_lock_user_prot_reg)
2084 return -EOPNOTSUPP;
2085 if (!len)
2086 return 0;
2087 return master->_lock_user_prot_reg(master, from, len);
2088 }
2089 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2090
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2091 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2092 {
2093 struct mtd_info *master = mtd_get_master(mtd);
2094
2095 if (!master->_erase_user_prot_reg)
2096 return -EOPNOTSUPP;
2097 if (!len)
2098 return 0;
2099 return master->_erase_user_prot_reg(master, from, len);
2100 }
2101 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2102
2103 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2104 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2105 {
2106 struct mtd_info *master = mtd_get_master(mtd);
2107
2108 if (!master->_lock)
2109 return -EOPNOTSUPP;
2110 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2111 return -EINVAL;
2112 if (!len)
2113 return 0;
2114
2115 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2116 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2117 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2118 }
2119
2120 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2121 }
2122 EXPORT_SYMBOL_GPL(mtd_lock);
2123
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2124 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2125 {
2126 struct mtd_info *master = mtd_get_master(mtd);
2127
2128 if (!master->_unlock)
2129 return -EOPNOTSUPP;
2130 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2131 return -EINVAL;
2132 if (!len)
2133 return 0;
2134
2135 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2136 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2137 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2138 }
2139
2140 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2141 }
2142 EXPORT_SYMBOL_GPL(mtd_unlock);
2143
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2144 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2145 {
2146 struct mtd_info *master = mtd_get_master(mtd);
2147
2148 if (!master->_is_locked)
2149 return -EOPNOTSUPP;
2150 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2151 return -EINVAL;
2152 if (!len)
2153 return 0;
2154
2155 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2156 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2157 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2158 }
2159
2160 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2161 }
2162 EXPORT_SYMBOL_GPL(mtd_is_locked);
2163
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2164 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2165 {
2166 struct mtd_info *master = mtd_get_master(mtd);
2167
2168 if (ofs < 0 || ofs >= mtd->size)
2169 return -EINVAL;
2170 if (!master->_block_isreserved)
2171 return 0;
2172
2173 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2174 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2175
2176 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2177 }
2178 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2179
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2180 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2181 {
2182 struct mtd_info *master = mtd_get_master(mtd);
2183
2184 if (ofs < 0 || ofs >= mtd->size)
2185 return -EINVAL;
2186 if (!master->_block_isbad)
2187 return 0;
2188
2189 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2190 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2191
2192 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2193 }
2194 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2195
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2196 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2197 {
2198 struct mtd_info *master = mtd_get_master(mtd);
2199 int ret;
2200
2201 if (!master->_block_markbad)
2202 return -EOPNOTSUPP;
2203 if (ofs < 0 || ofs >= mtd->size)
2204 return -EINVAL;
2205 if (!(mtd->flags & MTD_WRITEABLE))
2206 return -EROFS;
2207
2208 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2209 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2210
2211 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2212 if (ret)
2213 return ret;
2214
2215 while (mtd->parent) {
2216 mtd->ecc_stats.badblocks++;
2217 mtd = mtd->parent;
2218 }
2219
2220 return 0;
2221 }
2222 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2223
2224 /*
2225 * default_mtd_writev - the default writev method
2226 * @mtd: mtd device description object pointer
2227 * @vecs: the vectors to write
2228 * @count: count of vectors in @vecs
2229 * @to: the MTD device offset to write to
2230 * @retlen: on exit contains the count of bytes written to the MTD device.
2231 *
2232 * This function returns zero in case of success and a negative error code in
2233 * case of failure.
2234 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2235 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2236 unsigned long count, loff_t to, size_t *retlen)
2237 {
2238 unsigned long i;
2239 size_t totlen = 0, thislen;
2240 int ret = 0;
2241
2242 for (i = 0; i < count; i++) {
2243 if (!vecs[i].iov_len)
2244 continue;
2245 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2246 vecs[i].iov_base);
2247 totlen += thislen;
2248 if (ret || thislen != vecs[i].iov_len)
2249 break;
2250 to += vecs[i].iov_len;
2251 }
2252 *retlen = totlen;
2253 return ret;
2254 }
2255
2256 /*
2257 * mtd_writev - the vector-based MTD write method
2258 * @mtd: mtd device description object pointer
2259 * @vecs: the vectors to write
2260 * @count: count of vectors in @vecs
2261 * @to: the MTD device offset to write to
2262 * @retlen: on exit contains the count of bytes written to the MTD device.
2263 *
2264 * This function returns zero in case of success and a negative error code in
2265 * case of failure.
2266 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2267 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2268 unsigned long count, loff_t to, size_t *retlen)
2269 {
2270 struct mtd_info *master = mtd_get_master(mtd);
2271
2272 *retlen = 0;
2273 if (!(mtd->flags & MTD_WRITEABLE))
2274 return -EROFS;
2275
2276 if (!master->_writev)
2277 return default_mtd_writev(mtd, vecs, count, to, retlen);
2278
2279 return master->_writev(master, vecs, count,
2280 mtd_get_master_ofs(mtd, to), retlen);
2281 }
2282 EXPORT_SYMBOL_GPL(mtd_writev);
2283
2284 /**
2285 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2286 * @mtd: mtd device description object pointer
2287 * @size: a pointer to the ideal or maximum size of the allocation, points
2288 * to the actual allocation size on success.
2289 *
2290 * This routine attempts to allocate a contiguous kernel buffer up to
2291 * the specified size, backing off the size of the request exponentially
2292 * until the request succeeds or until the allocation size falls below
2293 * the system page size. This attempts to make sure it does not adversely
2294 * impact system performance, so when allocating more than one page, we
2295 * ask the memory allocator to avoid re-trying, swapping, writing back
2296 * or performing I/O.
2297 *
2298 * Note, this function also makes sure that the allocated buffer is aligned to
2299 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2300 *
2301 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2302 * to handle smaller (i.e. degraded) buffer allocations under low- or
2303 * fragmented-memory situations where such reduced allocations, from a
2304 * requested ideal, are allowed.
2305 *
2306 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2307 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2308 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2309 {
2310 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2311 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2312 void *kbuf;
2313
2314 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2315
2316 while (*size > min_alloc) {
2317 kbuf = kmalloc(*size, flags);
2318 if (kbuf)
2319 return kbuf;
2320
2321 *size >>= 1;
2322 *size = ALIGN(*size, mtd->writesize);
2323 }
2324
2325 /*
2326 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2327 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2328 */
2329 return kmalloc(*size, GFP_KERNEL);
2330 }
2331 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2332
2333 #ifdef CONFIG_PROC_FS
2334
2335 /*====================================================================*/
2336 /* Support for /proc/mtd */
2337
mtd_proc_show(struct seq_file * m,void * v)2338 static int mtd_proc_show(struct seq_file *m, void *v)
2339 {
2340 struct mtd_info *mtd;
2341
2342 seq_puts(m, "dev: size erasesize name\n");
2343 mutex_lock(&mtd_table_mutex);
2344 mtd_for_each_device(mtd) {
2345 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2346 mtd->index, (unsigned long long)mtd->size,
2347 mtd->erasesize, mtd->name);
2348 }
2349 mutex_unlock(&mtd_table_mutex);
2350 return 0;
2351 }
2352 #endif /* CONFIG_PROC_FS */
2353
2354 /*====================================================================*/
2355 /* Init code */
2356
mtd_bdi_init(const char * name)2357 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2358 {
2359 struct backing_dev_info *bdi;
2360 int ret;
2361
2362 bdi = bdi_alloc(NUMA_NO_NODE);
2363 if (!bdi)
2364 return ERR_PTR(-ENOMEM);
2365 bdi->ra_pages = 0;
2366 bdi->io_pages = 0;
2367
2368 /*
2369 * We put '-0' suffix to the name to get the same name format as we
2370 * used to get. Since this is called only once, we get a unique name.
2371 */
2372 ret = bdi_register(bdi, "%.28s-0", name);
2373 if (ret)
2374 bdi_put(bdi);
2375
2376 return ret ? ERR_PTR(ret) : bdi;
2377 }
2378
2379 static struct proc_dir_entry *proc_mtd;
2380
init_mtd(void)2381 static int __init init_mtd(void)
2382 {
2383 int ret;
2384
2385 ret = class_register(&mtd_class);
2386 if (ret)
2387 goto err_reg;
2388
2389 mtd_bdi = mtd_bdi_init("mtd");
2390 if (IS_ERR(mtd_bdi)) {
2391 ret = PTR_ERR(mtd_bdi);
2392 goto err_bdi;
2393 }
2394
2395 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2396
2397 ret = init_mtdchar();
2398 if (ret)
2399 goto out_procfs;
2400
2401 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2402
2403 return 0;
2404
2405 out_procfs:
2406 if (proc_mtd)
2407 remove_proc_entry("mtd", NULL);
2408 bdi_put(mtd_bdi);
2409 err_bdi:
2410 class_unregister(&mtd_class);
2411 err_reg:
2412 pr_err("Error registering mtd class or bdi: %d\n", ret);
2413 return ret;
2414 }
2415
cleanup_mtd(void)2416 static void __exit cleanup_mtd(void)
2417 {
2418 debugfs_remove_recursive(dfs_dir_mtd);
2419 cleanup_mtdchar();
2420 if (proc_mtd)
2421 remove_proc_entry("mtd", NULL);
2422 class_unregister(&mtd_class);
2423 bdi_put(mtd_bdi);
2424 idr_destroy(&mtd_idr);
2425 }
2426
2427 module_init(init_mtd);
2428 module_exit(cleanup_mtd);
2429
2430 MODULE_LICENSE("GPL");
2431 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2432 MODULE_DESCRIPTION("Core MTD registration and access routines");
2433