1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19 * irrelevant.
20 */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 struct nd_region_data *ndrd)
27 {
28 int i, j;
29
30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 struct resource *res = &nvdimm->flush_wpq[i];
34 unsigned long pfn = PHYS_PFN(res->start);
35 void __iomem *flush_page;
36
37 /* check if flush hints share a page */
38 for (j = 0; j < i; j++) {
39 struct resource *res_j = &nvdimm->flush_wpq[j];
40 unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42 if (pfn == pfn_j)
43 break;
44 }
45
46 if (j < i)
47 flush_page = (void __iomem *) ((unsigned long)
48 ndrd_get_flush_wpq(ndrd, dimm, j)
49 & PAGE_MASK);
50 else
51 flush_page = devm_nvdimm_ioremap(dev,
52 PFN_PHYS(pfn), PAGE_SIZE);
53 if (!flush_page)
54 return -ENXIO;
55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 + (res->start & ~PAGE_MASK));
57 }
58
59 return 0;
60 }
61
nd_region_activate(struct nd_region * nd_region)62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 int i, j, num_flush = 0;
65 struct nd_region_data *ndrd;
66 struct device *dev = &nd_region->dev;
67 size_t flush_data_size = sizeof(void *);
68
69 nvdimm_bus_lock(&nd_region->dev);
70 for (i = 0; i < nd_region->ndr_mappings; i++) {
71 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 nvdimm_bus_unlock(&nd_region->dev);
76 return -EBUSY;
77 }
78
79 /* at least one null hint slot per-dimm for the "no-hint" case */
80 flush_data_size += sizeof(void *);
81 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 if (!nvdimm->num_flush)
83 continue;
84 flush_data_size += nvdimm->num_flush * sizeof(void *);
85 }
86 nvdimm_bus_unlock(&nd_region->dev);
87
88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 if (!ndrd)
90 return -ENOMEM;
91 dev_set_drvdata(dev, ndrd);
92
93 if (!num_flush)
94 return 0;
95
96 ndrd->hints_shift = ilog2(num_flush);
97 for (i = 0; i < nd_region->ndr_mappings; i++) {
98 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102 if (rc)
103 return rc;
104 }
105
106 /*
107 * Clear out entries that are duplicates. This should prevent the
108 * extra flushings.
109 */
110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 /* ignore if NULL already */
112 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 continue;
114
115 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 ndrd_get_flush_wpq(ndrd, j, 0))
118 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 }
120
121 return 0;
122 }
123
nd_region_release(struct device * dev)124 static void nd_region_release(struct device *dev)
125 {
126 struct nd_region *nd_region = to_nd_region(dev);
127 u16 i;
128
129 for (i = 0; i < nd_region->ndr_mappings; i++) {
130 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133 put_device(&nvdimm->dev);
134 }
135 free_percpu(nd_region->lane);
136 memregion_free(nd_region->id);
137 if (is_nd_blk(dev))
138 kfree(to_nd_blk_region(dev));
139 else
140 kfree(nd_region);
141 }
142
to_nd_region(struct device * dev)143 struct nd_region *to_nd_region(struct device *dev)
144 {
145 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
146
147 WARN_ON(dev->type->release != nd_region_release);
148 return nd_region;
149 }
150 EXPORT_SYMBOL_GPL(to_nd_region);
151
nd_region_dev(struct nd_region * nd_region)152 struct device *nd_region_dev(struct nd_region *nd_region)
153 {
154 if (!nd_region)
155 return NULL;
156 return &nd_region->dev;
157 }
158 EXPORT_SYMBOL_GPL(nd_region_dev);
159
to_nd_blk_region(struct device * dev)160 struct nd_blk_region *to_nd_blk_region(struct device *dev)
161 {
162 struct nd_region *nd_region = to_nd_region(dev);
163
164 WARN_ON(!is_nd_blk(dev));
165 return container_of(nd_region, struct nd_blk_region, nd_region);
166 }
167 EXPORT_SYMBOL_GPL(to_nd_blk_region);
168
nd_region_provider_data(struct nd_region * nd_region)169 void *nd_region_provider_data(struct nd_region *nd_region)
170 {
171 return nd_region->provider_data;
172 }
173 EXPORT_SYMBOL_GPL(nd_region_provider_data);
174
nd_blk_region_provider_data(struct nd_blk_region * ndbr)175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
176 {
177 return ndbr->blk_provider_data;
178 }
179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
180
nd_blk_region_set_provider_data(struct nd_blk_region * ndbr,void * data)181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
182 {
183 ndbr->blk_provider_data = data;
184 }
185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
186
187 /**
188 * nd_region_to_nstype() - region to an integer namespace type
189 * @nd_region: region-device to interrogate
190 *
191 * This is the 'nstype' attribute of a region as well, an input to the
192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193 * namespace devices with namespace drivers.
194 */
nd_region_to_nstype(struct nd_region * nd_region)195 int nd_region_to_nstype(struct nd_region *nd_region)
196 {
197 if (is_memory(&nd_region->dev)) {
198 u16 i, label;
199
200 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
201 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
202 struct nvdimm *nvdimm = nd_mapping->nvdimm;
203
204 if (test_bit(NDD_LABELING, &nvdimm->flags))
205 label++;
206 }
207 if (label)
208 return ND_DEVICE_NAMESPACE_PMEM;
209 else
210 return ND_DEVICE_NAMESPACE_IO;
211 } else if (is_nd_blk(&nd_region->dev)) {
212 return ND_DEVICE_NAMESPACE_BLK;
213 }
214
215 return 0;
216 }
217 EXPORT_SYMBOL(nd_region_to_nstype);
218
region_size(struct nd_region * nd_region)219 static unsigned long long region_size(struct nd_region *nd_region)
220 {
221 if (is_memory(&nd_region->dev)) {
222 return nd_region->ndr_size;
223 } else if (nd_region->ndr_mappings == 1) {
224 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
225
226 return nd_mapping->size;
227 }
228
229 return 0;
230 }
231
size_show(struct device * dev,struct device_attribute * attr,char * buf)232 static ssize_t size_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234 {
235 struct nd_region *nd_region = to_nd_region(dev);
236
237 return sprintf(buf, "%llu\n", region_size(nd_region));
238 }
239 static DEVICE_ATTR_RO(size);
240
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)241 static ssize_t deep_flush_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
243 {
244 struct nd_region *nd_region = to_nd_region(dev);
245
246 /*
247 * NOTE: in the nvdimm_has_flush() error case this attribute is
248 * not visible.
249 */
250 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
251 }
252
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)253 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t len)
255 {
256 bool flush;
257 int rc = strtobool(buf, &flush);
258 struct nd_region *nd_region = to_nd_region(dev);
259
260 if (rc)
261 return rc;
262 if (!flush)
263 return -EINVAL;
264 rc = nvdimm_flush(nd_region, NULL);
265 if (rc)
266 return rc;
267
268 return len;
269 }
270 static DEVICE_ATTR_RW(deep_flush);
271
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)272 static ssize_t mappings_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
274 {
275 struct nd_region *nd_region = to_nd_region(dev);
276
277 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
278 }
279 static DEVICE_ATTR_RO(mappings);
280
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t nstype_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct nd_region *nd_region = to_nd_region(dev);
285
286 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
287 }
288 static DEVICE_ATTR_RO(nstype);
289
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)290 static ssize_t set_cookie_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292 {
293 struct nd_region *nd_region = to_nd_region(dev);
294 struct nd_interleave_set *nd_set = nd_region->nd_set;
295 ssize_t rc = 0;
296
297 if (is_memory(dev) && nd_set)
298 /* pass, should be precluded by region_visible */;
299 else
300 return -ENXIO;
301
302 /*
303 * The cookie to show depends on which specification of the
304 * labels we are using. If there are not labels then default to
305 * the v1.1 namespace label cookie definition. To read all this
306 * data we need to wait for probing to settle.
307 */
308 nd_device_lock(dev);
309 nvdimm_bus_lock(dev);
310 wait_nvdimm_bus_probe_idle(dev);
311 if (nd_region->ndr_mappings) {
312 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
313 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
314
315 if (ndd) {
316 struct nd_namespace_index *nsindex;
317
318 nsindex = to_namespace_index(ndd, ndd->ns_current);
319 rc = sprintf(buf, "%#llx\n",
320 nd_region_interleave_set_cookie(nd_region,
321 nsindex));
322 }
323 }
324 nvdimm_bus_unlock(dev);
325 nd_device_unlock(dev);
326
327 if (rc)
328 return rc;
329 return sprintf(buf, "%#llx\n", nd_set->cookie1);
330 }
331 static DEVICE_ATTR_RO(set_cookie);
332
nd_region_available_dpa(struct nd_region * nd_region)333 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
334 {
335 resource_size_t blk_max_overlap = 0, available, overlap;
336 int i;
337
338 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
339
340 retry:
341 available = 0;
342 overlap = blk_max_overlap;
343 for (i = 0; i < nd_region->ndr_mappings; i++) {
344 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
345 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
346
347 /* if a dimm is disabled the available capacity is zero */
348 if (!ndd)
349 return 0;
350
351 if (is_memory(&nd_region->dev)) {
352 available += nd_pmem_available_dpa(nd_region,
353 nd_mapping, &overlap);
354 if (overlap > blk_max_overlap) {
355 blk_max_overlap = overlap;
356 goto retry;
357 }
358 } else if (is_nd_blk(&nd_region->dev))
359 available += nd_blk_available_dpa(nd_region);
360 }
361
362 return available;
363 }
364
nd_region_allocatable_dpa(struct nd_region * nd_region)365 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
366 {
367 resource_size_t available = 0;
368 int i;
369
370 if (is_memory(&nd_region->dev))
371 available = PHYS_ADDR_MAX;
372
373 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
374 for (i = 0; i < nd_region->ndr_mappings; i++) {
375 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
376
377 if (is_memory(&nd_region->dev))
378 available = min(available,
379 nd_pmem_max_contiguous_dpa(nd_region,
380 nd_mapping));
381 else if (is_nd_blk(&nd_region->dev))
382 available += nd_blk_available_dpa(nd_region);
383 }
384 if (is_memory(&nd_region->dev))
385 return available * nd_region->ndr_mappings;
386 return available;
387 }
388
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)389 static ssize_t available_size_show(struct device *dev,
390 struct device_attribute *attr, char *buf)
391 {
392 struct nd_region *nd_region = to_nd_region(dev);
393 unsigned long long available = 0;
394
395 /*
396 * Flush in-flight updates and grab a snapshot of the available
397 * size. Of course, this value is potentially invalidated the
398 * memory nvdimm_bus_lock() is dropped, but that's userspace's
399 * problem to not race itself.
400 */
401 nd_device_lock(dev);
402 nvdimm_bus_lock(dev);
403 wait_nvdimm_bus_probe_idle(dev);
404 available = nd_region_available_dpa(nd_region);
405 nvdimm_bus_unlock(dev);
406 nd_device_unlock(dev);
407
408 return sprintf(buf, "%llu\n", available);
409 }
410 static DEVICE_ATTR_RO(available_size);
411
max_available_extent_show(struct device * dev,struct device_attribute * attr,char * buf)412 static ssize_t max_available_extent_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct nd_region *nd_region = to_nd_region(dev);
416 unsigned long long available = 0;
417
418 nd_device_lock(dev);
419 nvdimm_bus_lock(dev);
420 wait_nvdimm_bus_probe_idle(dev);
421 available = nd_region_allocatable_dpa(nd_region);
422 nvdimm_bus_unlock(dev);
423 nd_device_unlock(dev);
424
425 return sprintf(buf, "%llu\n", available);
426 }
427 static DEVICE_ATTR_RO(max_available_extent);
428
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)429 static ssize_t init_namespaces_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct nd_region_data *ndrd = dev_get_drvdata(dev);
433 ssize_t rc;
434
435 nvdimm_bus_lock(dev);
436 if (ndrd)
437 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
438 else
439 rc = -ENXIO;
440 nvdimm_bus_unlock(dev);
441
442 return rc;
443 }
444 static DEVICE_ATTR_RO(init_namespaces);
445
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)446 static ssize_t namespace_seed_show(struct device *dev,
447 struct device_attribute *attr, char *buf)
448 {
449 struct nd_region *nd_region = to_nd_region(dev);
450 ssize_t rc;
451
452 nvdimm_bus_lock(dev);
453 if (nd_region->ns_seed)
454 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
455 else
456 rc = sprintf(buf, "\n");
457 nvdimm_bus_unlock(dev);
458 return rc;
459 }
460 static DEVICE_ATTR_RO(namespace_seed);
461
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)462 static ssize_t btt_seed_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct nd_region *nd_region = to_nd_region(dev);
466 ssize_t rc;
467
468 nvdimm_bus_lock(dev);
469 if (nd_region->btt_seed)
470 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
471 else
472 rc = sprintf(buf, "\n");
473 nvdimm_bus_unlock(dev);
474
475 return rc;
476 }
477 static DEVICE_ATTR_RO(btt_seed);
478
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)479 static ssize_t pfn_seed_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct nd_region *nd_region = to_nd_region(dev);
483 ssize_t rc;
484
485 nvdimm_bus_lock(dev);
486 if (nd_region->pfn_seed)
487 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
488 else
489 rc = sprintf(buf, "\n");
490 nvdimm_bus_unlock(dev);
491
492 return rc;
493 }
494 static DEVICE_ATTR_RO(pfn_seed);
495
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)496 static ssize_t dax_seed_show(struct device *dev,
497 struct device_attribute *attr, char *buf)
498 {
499 struct nd_region *nd_region = to_nd_region(dev);
500 ssize_t rc;
501
502 nvdimm_bus_lock(dev);
503 if (nd_region->dax_seed)
504 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
505 else
506 rc = sprintf(buf, "\n");
507 nvdimm_bus_unlock(dev);
508
509 return rc;
510 }
511 static DEVICE_ATTR_RO(dax_seed);
512
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)513 static ssize_t read_only_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct nd_region *nd_region = to_nd_region(dev);
517
518 return sprintf(buf, "%d\n", nd_region->ro);
519 }
520
revalidate_read_only(struct device * dev,void * data)521 static int revalidate_read_only(struct device *dev, void *data)
522 {
523 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
524 return 0;
525 }
526
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)527 static ssize_t read_only_store(struct device *dev,
528 struct device_attribute *attr, const char *buf, size_t len)
529 {
530 bool ro;
531 int rc = strtobool(buf, &ro);
532 struct nd_region *nd_region = to_nd_region(dev);
533
534 if (rc)
535 return rc;
536
537 nd_region->ro = ro;
538 device_for_each_child(dev, NULL, revalidate_read_only);
539 return len;
540 }
541 static DEVICE_ATTR_RW(read_only);
542
align_show(struct device * dev,struct device_attribute * attr,char * buf)543 static ssize_t align_show(struct device *dev,
544 struct device_attribute *attr, char *buf)
545 {
546 struct nd_region *nd_region = to_nd_region(dev);
547
548 return sprintf(buf, "%#lx\n", nd_region->align);
549 }
550
align_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)551 static ssize_t align_store(struct device *dev,
552 struct device_attribute *attr, const char *buf, size_t len)
553 {
554 struct nd_region *nd_region = to_nd_region(dev);
555 unsigned long val, dpa;
556 u32 remainder;
557 int rc;
558
559 rc = kstrtoul(buf, 0, &val);
560 if (rc)
561 return rc;
562
563 if (!nd_region->ndr_mappings)
564 return -ENXIO;
565
566 /*
567 * Ensure space-align is evenly divisible by the region
568 * interleave-width because the kernel typically has no facility
569 * to determine which DIMM(s), dimm-physical-addresses, would
570 * contribute to the tail capacity in system-physical-address
571 * space for the namespace.
572 */
573 dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
574 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
575 || val > region_size(nd_region) || remainder)
576 return -EINVAL;
577
578 /*
579 * Given that space allocation consults this value multiple
580 * times ensure it does not change for the duration of the
581 * allocation.
582 */
583 nvdimm_bus_lock(dev);
584 nd_region->align = val;
585 nvdimm_bus_unlock(dev);
586
587 return len;
588 }
589 static DEVICE_ATTR_RW(align);
590
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)591 static ssize_t region_badblocks_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct nd_region *nd_region = to_nd_region(dev);
595 ssize_t rc;
596
597 nd_device_lock(dev);
598 if (dev->driver)
599 rc = badblocks_show(&nd_region->bb, buf, 0);
600 else
601 rc = -ENXIO;
602 nd_device_unlock(dev);
603
604 return rc;
605 }
606 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
607
resource_show(struct device * dev,struct device_attribute * attr,char * buf)608 static ssize_t resource_show(struct device *dev,
609 struct device_attribute *attr, char *buf)
610 {
611 struct nd_region *nd_region = to_nd_region(dev);
612
613 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
614 }
615 static DEVICE_ATTR_ADMIN_RO(resource);
616
persistence_domain_show(struct device * dev,struct device_attribute * attr,char * buf)617 static ssize_t persistence_domain_show(struct device *dev,
618 struct device_attribute *attr, char *buf)
619 {
620 struct nd_region *nd_region = to_nd_region(dev);
621
622 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
623 return sprintf(buf, "cpu_cache\n");
624 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
625 return sprintf(buf, "memory_controller\n");
626 else
627 return sprintf(buf, "\n");
628 }
629 static DEVICE_ATTR_RO(persistence_domain);
630
631 static struct attribute *nd_region_attributes[] = {
632 &dev_attr_size.attr,
633 &dev_attr_align.attr,
634 &dev_attr_nstype.attr,
635 &dev_attr_mappings.attr,
636 &dev_attr_btt_seed.attr,
637 &dev_attr_pfn_seed.attr,
638 &dev_attr_dax_seed.attr,
639 &dev_attr_deep_flush.attr,
640 &dev_attr_read_only.attr,
641 &dev_attr_set_cookie.attr,
642 &dev_attr_available_size.attr,
643 &dev_attr_max_available_extent.attr,
644 &dev_attr_namespace_seed.attr,
645 &dev_attr_init_namespaces.attr,
646 &dev_attr_badblocks.attr,
647 &dev_attr_resource.attr,
648 &dev_attr_persistence_domain.attr,
649 NULL,
650 };
651
region_visible(struct kobject * kobj,struct attribute * a,int n)652 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
653 {
654 struct device *dev = container_of(kobj, typeof(*dev), kobj);
655 struct nd_region *nd_region = to_nd_region(dev);
656 struct nd_interleave_set *nd_set = nd_region->nd_set;
657 int type = nd_region_to_nstype(nd_region);
658
659 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
660 return 0;
661
662 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
663 return 0;
664
665 if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
666 return 0;
667
668 if (a == &dev_attr_resource.attr && !is_memory(dev))
669 return 0;
670
671 if (a == &dev_attr_deep_flush.attr) {
672 int has_flush = nvdimm_has_flush(nd_region);
673
674 if (has_flush == 1)
675 return a->mode;
676 else if (has_flush == 0)
677 return 0444;
678 else
679 return 0;
680 }
681
682 if (a == &dev_attr_persistence_domain.attr) {
683 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
684 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
685 return 0;
686 return a->mode;
687 }
688
689 if (a == &dev_attr_align.attr)
690 return a->mode;
691
692 if (a != &dev_attr_set_cookie.attr
693 && a != &dev_attr_available_size.attr)
694 return a->mode;
695
696 if ((type == ND_DEVICE_NAMESPACE_PMEM
697 || type == ND_DEVICE_NAMESPACE_BLK)
698 && a == &dev_attr_available_size.attr)
699 return a->mode;
700 else if (is_memory(dev) && nd_set)
701 return a->mode;
702
703 return 0;
704 }
705
mappingN(struct device * dev,char * buf,int n)706 static ssize_t mappingN(struct device *dev, char *buf, int n)
707 {
708 struct nd_region *nd_region = to_nd_region(dev);
709 struct nd_mapping *nd_mapping;
710 struct nvdimm *nvdimm;
711
712 if (n >= nd_region->ndr_mappings)
713 return -ENXIO;
714 nd_mapping = &nd_region->mapping[n];
715 nvdimm = nd_mapping->nvdimm;
716
717 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
718 nd_mapping->start, nd_mapping->size,
719 nd_mapping->position);
720 }
721
722 #define REGION_MAPPING(idx) \
723 static ssize_t mapping##idx##_show(struct device *dev, \
724 struct device_attribute *attr, char *buf) \
725 { \
726 return mappingN(dev, buf, idx); \
727 } \
728 static DEVICE_ATTR_RO(mapping##idx)
729
730 /*
731 * 32 should be enough for a while, even in the presence of socket
732 * interleave a 32-way interleave set is a degenerate case.
733 */
734 REGION_MAPPING(0);
735 REGION_MAPPING(1);
736 REGION_MAPPING(2);
737 REGION_MAPPING(3);
738 REGION_MAPPING(4);
739 REGION_MAPPING(5);
740 REGION_MAPPING(6);
741 REGION_MAPPING(7);
742 REGION_MAPPING(8);
743 REGION_MAPPING(9);
744 REGION_MAPPING(10);
745 REGION_MAPPING(11);
746 REGION_MAPPING(12);
747 REGION_MAPPING(13);
748 REGION_MAPPING(14);
749 REGION_MAPPING(15);
750 REGION_MAPPING(16);
751 REGION_MAPPING(17);
752 REGION_MAPPING(18);
753 REGION_MAPPING(19);
754 REGION_MAPPING(20);
755 REGION_MAPPING(21);
756 REGION_MAPPING(22);
757 REGION_MAPPING(23);
758 REGION_MAPPING(24);
759 REGION_MAPPING(25);
760 REGION_MAPPING(26);
761 REGION_MAPPING(27);
762 REGION_MAPPING(28);
763 REGION_MAPPING(29);
764 REGION_MAPPING(30);
765 REGION_MAPPING(31);
766
mapping_visible(struct kobject * kobj,struct attribute * a,int n)767 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
768 {
769 struct device *dev = container_of(kobj, struct device, kobj);
770 struct nd_region *nd_region = to_nd_region(dev);
771
772 if (n < nd_region->ndr_mappings)
773 return a->mode;
774 return 0;
775 }
776
777 static struct attribute *mapping_attributes[] = {
778 &dev_attr_mapping0.attr,
779 &dev_attr_mapping1.attr,
780 &dev_attr_mapping2.attr,
781 &dev_attr_mapping3.attr,
782 &dev_attr_mapping4.attr,
783 &dev_attr_mapping5.attr,
784 &dev_attr_mapping6.attr,
785 &dev_attr_mapping7.attr,
786 &dev_attr_mapping8.attr,
787 &dev_attr_mapping9.attr,
788 &dev_attr_mapping10.attr,
789 &dev_attr_mapping11.attr,
790 &dev_attr_mapping12.attr,
791 &dev_attr_mapping13.attr,
792 &dev_attr_mapping14.attr,
793 &dev_attr_mapping15.attr,
794 &dev_attr_mapping16.attr,
795 &dev_attr_mapping17.attr,
796 &dev_attr_mapping18.attr,
797 &dev_attr_mapping19.attr,
798 &dev_attr_mapping20.attr,
799 &dev_attr_mapping21.attr,
800 &dev_attr_mapping22.attr,
801 &dev_attr_mapping23.attr,
802 &dev_attr_mapping24.attr,
803 &dev_attr_mapping25.attr,
804 &dev_attr_mapping26.attr,
805 &dev_attr_mapping27.attr,
806 &dev_attr_mapping28.attr,
807 &dev_attr_mapping29.attr,
808 &dev_attr_mapping30.attr,
809 &dev_attr_mapping31.attr,
810 NULL,
811 };
812
813 static const struct attribute_group nd_mapping_attribute_group = {
814 .is_visible = mapping_visible,
815 .attrs = mapping_attributes,
816 };
817
818 static const struct attribute_group nd_region_attribute_group = {
819 .attrs = nd_region_attributes,
820 .is_visible = region_visible,
821 };
822
823 static const struct attribute_group *nd_region_attribute_groups[] = {
824 &nd_device_attribute_group,
825 &nd_region_attribute_group,
826 &nd_numa_attribute_group,
827 &nd_mapping_attribute_group,
828 NULL,
829 };
830
831 static const struct device_type nd_blk_device_type = {
832 .name = "nd_blk",
833 .release = nd_region_release,
834 .groups = nd_region_attribute_groups,
835 };
836
837 static const struct device_type nd_pmem_device_type = {
838 .name = "nd_pmem",
839 .release = nd_region_release,
840 .groups = nd_region_attribute_groups,
841 };
842
843 static const struct device_type nd_volatile_device_type = {
844 .name = "nd_volatile",
845 .release = nd_region_release,
846 .groups = nd_region_attribute_groups,
847 };
848
is_nd_pmem(struct device * dev)849 bool is_nd_pmem(struct device *dev)
850 {
851 return dev ? dev->type == &nd_pmem_device_type : false;
852 }
853
is_nd_blk(struct device * dev)854 bool is_nd_blk(struct device *dev)
855 {
856 return dev ? dev->type == &nd_blk_device_type : false;
857 }
858
is_nd_volatile(struct device * dev)859 bool is_nd_volatile(struct device *dev)
860 {
861 return dev ? dev->type == &nd_volatile_device_type : false;
862 }
863
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)864 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
865 struct nd_namespace_index *nsindex)
866 {
867 struct nd_interleave_set *nd_set = nd_region->nd_set;
868
869 if (!nd_set)
870 return 0;
871
872 if (nsindex && __le16_to_cpu(nsindex->major) == 1
873 && __le16_to_cpu(nsindex->minor) == 1)
874 return nd_set->cookie1;
875 return nd_set->cookie2;
876 }
877
nd_region_interleave_set_altcookie(struct nd_region * nd_region)878 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
879 {
880 struct nd_interleave_set *nd_set = nd_region->nd_set;
881
882 if (nd_set)
883 return nd_set->altcookie;
884 return 0;
885 }
886
nd_mapping_free_labels(struct nd_mapping * nd_mapping)887 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
888 {
889 struct nd_label_ent *label_ent, *e;
890
891 lockdep_assert_held(&nd_mapping->lock);
892 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
893 list_del(&label_ent->list);
894 kfree(label_ent);
895 }
896 }
897
898 /*
899 * When a namespace is activated create new seeds for the next
900 * namespace, or namespace-personality to be configured.
901 */
nd_region_advance_seeds(struct nd_region * nd_region,struct device * dev)902 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
903 {
904 nvdimm_bus_lock(dev);
905 if (nd_region->ns_seed == dev) {
906 nd_region_create_ns_seed(nd_region);
907 } else if (is_nd_btt(dev)) {
908 struct nd_btt *nd_btt = to_nd_btt(dev);
909
910 if (nd_region->btt_seed == dev)
911 nd_region_create_btt_seed(nd_region);
912 if (nd_region->ns_seed == &nd_btt->ndns->dev)
913 nd_region_create_ns_seed(nd_region);
914 } else if (is_nd_pfn(dev)) {
915 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
916
917 if (nd_region->pfn_seed == dev)
918 nd_region_create_pfn_seed(nd_region);
919 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
920 nd_region_create_ns_seed(nd_region);
921 } else if (is_nd_dax(dev)) {
922 struct nd_dax *nd_dax = to_nd_dax(dev);
923
924 if (nd_region->dax_seed == dev)
925 nd_region_create_dax_seed(nd_region);
926 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
927 nd_region_create_ns_seed(nd_region);
928 }
929 nvdimm_bus_unlock(dev);
930 }
931
nd_blk_region_init(struct nd_region * nd_region)932 int nd_blk_region_init(struct nd_region *nd_region)
933 {
934 struct device *dev = &nd_region->dev;
935 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
936
937 if (!is_nd_blk(dev))
938 return 0;
939
940 if (nd_region->ndr_mappings < 1) {
941 dev_dbg(dev, "invalid BLK region\n");
942 return -ENXIO;
943 }
944
945 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
946 }
947
948 /**
949 * nd_region_acquire_lane - allocate and lock a lane
950 * @nd_region: region id and number of lanes possible
951 *
952 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
953 * We optimize for the common case where there are 256 lanes, one
954 * per-cpu. For larger systems we need to lock to share lanes. For now
955 * this implementation assumes the cost of maintaining an allocator for
956 * free lanes is on the order of the lock hold time, so it implements a
957 * static lane = cpu % num_lanes mapping.
958 *
959 * In the case of a BTT instance on top of a BLK namespace a lane may be
960 * acquired recursively. We lock on the first instance.
961 *
962 * In the case of a BTT instance on top of PMEM, we only acquire a lane
963 * for the BTT metadata updates.
964 */
nd_region_acquire_lane(struct nd_region * nd_region)965 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
966 {
967 unsigned int cpu, lane;
968
969 migrate_disable();
970 cpu = smp_processor_id();
971 if (nd_region->num_lanes < nr_cpu_ids) {
972 struct nd_percpu_lane *ndl_lock, *ndl_count;
973
974 lane = cpu % nd_region->num_lanes;
975 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
976 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
977 if (ndl_count->count++ == 0)
978 spin_lock(&ndl_lock->lock);
979 } else
980 lane = cpu;
981
982 return lane;
983 }
984 EXPORT_SYMBOL(nd_region_acquire_lane);
985
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)986 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
987 {
988 if (nd_region->num_lanes < nr_cpu_ids) {
989 unsigned int cpu = smp_processor_id();
990 struct nd_percpu_lane *ndl_lock, *ndl_count;
991
992 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
993 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
994 if (--ndl_count->count == 0)
995 spin_unlock(&ndl_lock->lock);
996 }
997 migrate_enable();
998 }
999 EXPORT_SYMBOL(nd_region_release_lane);
1000
1001 /*
1002 * PowerPC requires this alignment for memremap_pages(). All other archs
1003 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
1004 */
1005 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
1006
default_align(struct nd_region * nd_region)1007 static unsigned long default_align(struct nd_region *nd_region)
1008 {
1009 unsigned long align;
1010 int i, mappings;
1011 u32 remainder;
1012
1013 if (is_nd_blk(&nd_region->dev))
1014 align = PAGE_SIZE;
1015 else
1016 align = MEMREMAP_COMPAT_ALIGN_MAX;
1017
1018 for (i = 0; i < nd_region->ndr_mappings; i++) {
1019 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1020 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1021
1022 if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1023 align = MEMREMAP_COMPAT_ALIGN_MAX;
1024 break;
1025 }
1026 }
1027
1028 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
1029 align = PAGE_SIZE;
1030
1031 mappings = max_t(u16, 1, nd_region->ndr_mappings);
1032 div_u64_rem(align, mappings, &remainder);
1033 if (remainder)
1034 align *= mappings;
1035
1036 return align;
1037 }
1038
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,const struct device_type * dev_type,const char * caller)1039 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1040 struct nd_region_desc *ndr_desc,
1041 const struct device_type *dev_type, const char *caller)
1042 {
1043 struct nd_region *nd_region;
1044 struct device *dev;
1045 void *region_buf;
1046 unsigned int i;
1047 int ro = 0;
1048
1049 for (i = 0; i < ndr_desc->num_mappings; i++) {
1050 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1051 struct nvdimm *nvdimm = mapping->nvdimm;
1052
1053 if ((mapping->start | mapping->size) % PAGE_SIZE) {
1054 dev_err(&nvdimm_bus->dev,
1055 "%s: %s mapping%d is not %ld aligned\n",
1056 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1057 return NULL;
1058 }
1059
1060 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1061 ro = 1;
1062
1063 if (test_bit(NDD_NOBLK, &nvdimm->flags)
1064 && dev_type == &nd_blk_device_type) {
1065 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1066 caller, dev_name(&nvdimm->dev), i);
1067 return NULL;
1068 }
1069 }
1070
1071 if (dev_type == &nd_blk_device_type) {
1072 struct nd_blk_region_desc *ndbr_desc;
1073 struct nd_blk_region *ndbr;
1074
1075 ndbr_desc = to_blk_region_desc(ndr_desc);
1076 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1077 * ndr_desc->num_mappings,
1078 GFP_KERNEL);
1079 if (ndbr) {
1080 nd_region = &ndbr->nd_region;
1081 ndbr->enable = ndbr_desc->enable;
1082 ndbr->do_io = ndbr_desc->do_io;
1083 }
1084 region_buf = ndbr;
1085 } else {
1086 nd_region = kzalloc(struct_size(nd_region, mapping,
1087 ndr_desc->num_mappings),
1088 GFP_KERNEL);
1089 region_buf = nd_region;
1090 }
1091
1092 if (!region_buf)
1093 return NULL;
1094 nd_region->id = memregion_alloc(GFP_KERNEL);
1095 if (nd_region->id < 0)
1096 goto err_id;
1097
1098 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1099 if (!nd_region->lane)
1100 goto err_percpu;
1101
1102 for (i = 0; i < nr_cpu_ids; i++) {
1103 struct nd_percpu_lane *ndl;
1104
1105 ndl = per_cpu_ptr(nd_region->lane, i);
1106 spin_lock_init(&ndl->lock);
1107 ndl->count = 0;
1108 }
1109
1110 for (i = 0; i < ndr_desc->num_mappings; i++) {
1111 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1112 struct nvdimm *nvdimm = mapping->nvdimm;
1113
1114 nd_region->mapping[i].nvdimm = nvdimm;
1115 nd_region->mapping[i].start = mapping->start;
1116 nd_region->mapping[i].size = mapping->size;
1117 nd_region->mapping[i].position = mapping->position;
1118 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1119 mutex_init(&nd_region->mapping[i].lock);
1120
1121 get_device(&nvdimm->dev);
1122 }
1123 nd_region->ndr_mappings = ndr_desc->num_mappings;
1124 nd_region->provider_data = ndr_desc->provider_data;
1125 nd_region->nd_set = ndr_desc->nd_set;
1126 nd_region->num_lanes = ndr_desc->num_lanes;
1127 nd_region->flags = ndr_desc->flags;
1128 nd_region->ro = ro;
1129 nd_region->numa_node = ndr_desc->numa_node;
1130 nd_region->target_node = ndr_desc->target_node;
1131 ida_init(&nd_region->ns_ida);
1132 ida_init(&nd_region->btt_ida);
1133 ida_init(&nd_region->pfn_ida);
1134 ida_init(&nd_region->dax_ida);
1135 dev = &nd_region->dev;
1136 dev_set_name(dev, "region%d", nd_region->id);
1137 dev->parent = &nvdimm_bus->dev;
1138 dev->type = dev_type;
1139 dev->groups = ndr_desc->attr_groups;
1140 dev->of_node = ndr_desc->of_node;
1141 nd_region->ndr_size = resource_size(ndr_desc->res);
1142 nd_region->ndr_start = ndr_desc->res->start;
1143 nd_region->align = default_align(nd_region);
1144 if (ndr_desc->flush)
1145 nd_region->flush = ndr_desc->flush;
1146 else
1147 nd_region->flush = NULL;
1148
1149 nd_device_register(dev);
1150
1151 return nd_region;
1152
1153 err_percpu:
1154 memregion_free(nd_region->id);
1155 err_id:
1156 kfree(region_buf);
1157 return NULL;
1158 }
1159
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1160 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1161 struct nd_region_desc *ndr_desc)
1162 {
1163 ndr_desc->num_lanes = ND_MAX_LANES;
1164 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1165 __func__);
1166 }
1167 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1168
nvdimm_blk_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1169 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1170 struct nd_region_desc *ndr_desc)
1171 {
1172 if (ndr_desc->num_mappings > 1)
1173 return NULL;
1174 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1175 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1176 __func__);
1177 }
1178 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1179
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1180 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1181 struct nd_region_desc *ndr_desc)
1182 {
1183 ndr_desc->num_lanes = ND_MAX_LANES;
1184 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1185 __func__);
1186 }
1187 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1188
nvdimm_flush(struct nd_region * nd_region,struct bio * bio)1189 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1190 {
1191 int rc = 0;
1192
1193 if (!nd_region->flush)
1194 rc = generic_nvdimm_flush(nd_region);
1195 else {
1196 if (nd_region->flush(nd_region, bio))
1197 rc = -EIO;
1198 }
1199
1200 return rc;
1201 }
1202 /**
1203 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1204 * @nd_region: blk or interleaved pmem region
1205 */
generic_nvdimm_flush(struct nd_region * nd_region)1206 int generic_nvdimm_flush(struct nd_region *nd_region)
1207 {
1208 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1209 int i, idx;
1210
1211 /*
1212 * Try to encourage some diversity in flush hint addresses
1213 * across cpus assuming a limited number of flush hints.
1214 */
1215 idx = this_cpu_read(flush_idx);
1216 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1217
1218 /*
1219 * The pmem_wmb() is needed to 'sfence' all
1220 * previous writes such that they are architecturally visible for
1221 * the platform buffer flush. Note that we've already arranged for pmem
1222 * writes to avoid the cache via memcpy_flushcache(). The final
1223 * wmb() ensures ordering for the NVDIMM flush write.
1224 */
1225 pmem_wmb();
1226 for (i = 0; i < nd_region->ndr_mappings; i++)
1227 if (ndrd_get_flush_wpq(ndrd, i, 0))
1228 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1229 wmb();
1230
1231 return 0;
1232 }
1233 EXPORT_SYMBOL_GPL(nvdimm_flush);
1234
1235 /**
1236 * nvdimm_has_flush - determine write flushing requirements
1237 * @nd_region: blk or interleaved pmem region
1238 *
1239 * Returns 1 if writes require flushing
1240 * Returns 0 if writes do not require flushing
1241 * Returns -ENXIO if flushing capability can not be determined
1242 */
nvdimm_has_flush(struct nd_region * nd_region)1243 int nvdimm_has_flush(struct nd_region *nd_region)
1244 {
1245 int i;
1246
1247 /* no nvdimm or pmem api == flushing capability unknown */
1248 if (nd_region->ndr_mappings == 0
1249 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1250 return -ENXIO;
1251
1252 /* Test if an explicit flush function is defined */
1253 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1254 return 1;
1255
1256 /* Test if any flush hints for the region are available */
1257 for (i = 0; i < nd_region->ndr_mappings; i++) {
1258 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1259 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1260
1261 /* flush hints present / available */
1262 if (nvdimm->num_flush)
1263 return 1;
1264 }
1265
1266 /*
1267 * The platform defines dimm devices without hints nor explicit flush,
1268 * assume platform persistence mechanism like ADR
1269 */
1270 return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1273
nvdimm_has_cache(struct nd_region * nd_region)1274 int nvdimm_has_cache(struct nd_region *nd_region)
1275 {
1276 return is_nd_pmem(&nd_region->dev) &&
1277 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1278 }
1279 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1280
is_nvdimm_sync(struct nd_region * nd_region)1281 bool is_nvdimm_sync(struct nd_region *nd_region)
1282 {
1283 if (is_nd_volatile(&nd_region->dev))
1284 return true;
1285
1286 return is_nd_pmem(&nd_region->dev) &&
1287 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1288 }
1289 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1290
1291 struct conflict_context {
1292 struct nd_region *nd_region;
1293 resource_size_t start, size;
1294 };
1295
region_conflict(struct device * dev,void * data)1296 static int region_conflict(struct device *dev, void *data)
1297 {
1298 struct nd_region *nd_region;
1299 struct conflict_context *ctx = data;
1300 resource_size_t res_end, region_end, region_start;
1301
1302 if (!is_memory(dev))
1303 return 0;
1304
1305 nd_region = to_nd_region(dev);
1306 if (nd_region == ctx->nd_region)
1307 return 0;
1308
1309 res_end = ctx->start + ctx->size;
1310 region_start = nd_region->ndr_start;
1311 region_end = region_start + nd_region->ndr_size;
1312 if (ctx->start >= region_start && ctx->start < region_end)
1313 return -EBUSY;
1314 if (res_end > region_start && res_end <= region_end)
1315 return -EBUSY;
1316 return 0;
1317 }
1318
nd_region_conflict(struct nd_region * nd_region,resource_size_t start,resource_size_t size)1319 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1320 resource_size_t size)
1321 {
1322 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1323 struct conflict_context ctx = {
1324 .nd_region = nd_region,
1325 .start = start,
1326 .size = size,
1327 };
1328
1329 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1330 }
1331