• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		fscrypt_destroy_keyring(s);
297 		put_user_ns(s->s_user_ns);
298 		kfree(s->s_subtype);
299 		call_rcu(&s->rcu, destroy_super_rcu);
300 	}
301 }
302 
303 /**
304  *	put_super	-	drop a temporary reference to superblock
305  *	@sb: superblock in question
306  *
307  *	Drops a temporary reference, frees superblock if there's no
308  *	references left.
309  */
put_super(struct super_block * sb)310 void put_super(struct super_block *sb)
311 {
312 	spin_lock(&sb_lock);
313 	__put_super(sb);
314 	spin_unlock(&sb_lock);
315 }
316 
317 
318 /**
319  *	deactivate_locked_super	-	drop an active reference to superblock
320  *	@s: superblock to deactivate
321  *
322  *	Drops an active reference to superblock, converting it into a temporary
323  *	one if there is no other active references left.  In that case we
324  *	tell fs driver to shut it down and drop the temporary reference we
325  *	had just acquired.
326  *
327  *	Caller holds exclusive lock on superblock; that lock is released.
328  */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 	struct file_system_type *fs = s->s_type;
332 	if (atomic_dec_and_test(&s->s_active)) {
333 		cleancache_invalidate_fs(s);
334 		unregister_shrinker(&s->s_shrink);
335 		fs->kill_sb(s);
336 
337 		/*
338 		 * Since list_lru_destroy() may sleep, we cannot call it from
339 		 * put_super(), where we hold the sb_lock. Therefore we destroy
340 		 * the lru lists right now.
341 		 */
342 		list_lru_destroy(&s->s_dentry_lru);
343 		list_lru_destroy(&s->s_inode_lru);
344 
345 		put_filesystem(fs);
346 		put_super(s);
347 	} else {
348 		up_write(&s->s_umount);
349 	}
350 }
351 
352 EXPORT_SYMBOL(deactivate_locked_super);
353 
354 /**
355  *	deactivate_super	-	drop an active reference to superblock
356  *	@s: superblock to deactivate
357  *
358  *	Variant of deactivate_locked_super(), except that superblock is *not*
359  *	locked by caller.  If we are going to drop the final active reference,
360  *	lock will be acquired prior to that.
361  */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 		down_write(&s->s_umount);
366 		deactivate_locked_super(s);
367 	}
368 }
369 
370 EXPORT_SYMBOL(deactivate_super);
371 
372 /**
373  *	grab_super - acquire an active reference
374  *	@s: reference we are trying to make active
375  *
376  *	Tries to acquire an active reference.  grab_super() is used when we
377  * 	had just found a superblock in super_blocks or fs_type->fs_supers
378  *	and want to turn it into a full-blown active reference.  grab_super()
379  *	is called with sb_lock held and drops it.  Returns 1 in case of
380  *	success, 0 if we had failed (superblock contents was already dead or
381  *	dying when grab_super() had been called).  Note that this is only
382  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
383  *	of their type), so increment of ->s_count is OK here.
384  */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 	s->s_count++;
388 	spin_unlock(&sb_lock);
389 	down_write(&s->s_umount);
390 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 		put_super(s);
392 		return 1;
393 	}
394 	up_write(&s->s_umount);
395 	put_super(s);
396 	return 0;
397 }
398 
399 /*
400  *	trylock_super - try to grab ->s_umount shared
401  *	@sb: reference we are trying to grab
402  *
403  *	Try to prevent fs shutdown.  This is used in places where we
404  *	cannot take an active reference but we need to ensure that the
405  *	filesystem is not shut down while we are working on it. It returns
406  *	false if we cannot acquire s_umount or if we lose the race and
407  *	filesystem already got into shutdown, and returns true with the s_umount
408  *	lock held in read mode in case of success. On successful return,
409  *	the caller must drop the s_umount lock when done.
410  *
411  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412  *	The reason why it's safe is that we are OK with doing trylock instead
413  *	of down_read().  There's a couple of places that are OK with that, but
414  *	it's very much not a general-purpose interface.
415  */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 	if (down_read_trylock(&sb->s_umount)) {
419 		if (!hlist_unhashed(&sb->s_instances) &&
420 		    sb->s_root && (sb->s_flags & SB_BORN))
421 			return true;
422 		up_read(&sb->s_umount);
423 	}
424 
425 	return false;
426 }
427 
428 /**
429  *	generic_shutdown_super	-	common helper for ->kill_sb()
430  *	@sb: superblock to kill
431  *
432  *	generic_shutdown_super() does all fs-independent work on superblock
433  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
434  *	that need destruction out of superblock, call generic_shutdown_super()
435  *	and release aforementioned objects.  Note: dentries and inodes _are_
436  *	taken care of and do not need specific handling.
437  *
438  *	Upon calling this function, the filesystem may no longer alter or
439  *	rearrange the set of dentries belonging to this super_block, nor may it
440  *	change the attachments of dentries to inodes.
441  */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 	const struct super_operations *sop = sb->s_op;
445 
446 	if (sb->s_root) {
447 		shrink_dcache_for_umount(sb);
448 		sync_filesystem(sb);
449 		sb->s_flags &= ~SB_ACTIVE;
450 
451 		cgroup_writeback_umount();
452 
453 		/* Evict all inodes with zero refcount. */
454 		evict_inodes(sb);
455 
456 		/*
457 		 * Clean up and evict any inodes that still have references due
458 		 * to fsnotify or the security policy.
459 		 */
460 		fsnotify_sb_delete(sb);
461 		security_sb_delete(sb);
462 
463 		/*
464 		 * Now that all potentially-encrypted inodes have been evicted,
465 		 * the fscrypt keyring can be destroyed.
466 		 */
467 		fscrypt_destroy_keyring(sb);
468 
469 		if (sb->s_dio_done_wq) {
470 			destroy_workqueue(sb->s_dio_done_wq);
471 			sb->s_dio_done_wq = NULL;
472 		}
473 
474 		if (sop->put_super)
475 			sop->put_super(sb);
476 
477 		if (!list_empty(&sb->s_inodes)) {
478 			printk("VFS: Busy inodes after unmount of %s. "
479 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
480 			   sb->s_id);
481 		}
482 	}
483 	spin_lock(&sb_lock);
484 	/* should be initialized for __put_super_and_need_restart() */
485 	hlist_del_init(&sb->s_instances);
486 	spin_unlock(&sb_lock);
487 	up_write(&sb->s_umount);
488 	if (sb->s_bdi != &noop_backing_dev_info) {
489 		bdi_put(sb->s_bdi);
490 		sb->s_bdi = &noop_backing_dev_info;
491 	}
492 }
493 
494 EXPORT_SYMBOL(generic_shutdown_super);
495 
mount_capable(struct fs_context * fc)496 bool mount_capable(struct fs_context *fc)
497 {
498 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
499 		return capable(CAP_SYS_ADMIN);
500 	else
501 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
502 }
503 
504 /**
505  * sget_fc - Find or create a superblock
506  * @fc:	Filesystem context.
507  * @test: Comparison callback
508  * @set: Setup callback
509  *
510  * Find or create a superblock using the parameters stored in the filesystem
511  * context and the two callback functions.
512  *
513  * If an extant superblock is matched, then that will be returned with an
514  * elevated reference count that the caller must transfer or discard.
515  *
516  * If no match is made, a new superblock will be allocated and basic
517  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
518  * the set() callback will be invoked), the superblock will be published and it
519  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
520  * as yet unset.
521  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))522 struct super_block *sget_fc(struct fs_context *fc,
523 			    int (*test)(struct super_block *, struct fs_context *),
524 			    int (*set)(struct super_block *, struct fs_context *))
525 {
526 	struct super_block *s = NULL;
527 	struct super_block *old;
528 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
529 	int err;
530 
531 retry:
532 	spin_lock(&sb_lock);
533 	if (test) {
534 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
535 			if (test(old, fc))
536 				goto share_extant_sb;
537 		}
538 	}
539 	if (!s) {
540 		spin_unlock(&sb_lock);
541 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
542 		if (!s)
543 			return ERR_PTR(-ENOMEM);
544 		goto retry;
545 	}
546 
547 	s->s_fs_info = fc->s_fs_info;
548 	err = set(s, fc);
549 	if (err) {
550 		s->s_fs_info = NULL;
551 		spin_unlock(&sb_lock);
552 		destroy_unused_super(s);
553 		return ERR_PTR(err);
554 	}
555 	fc->s_fs_info = NULL;
556 	s->s_type = fc->fs_type;
557 	s->s_iflags |= fc->s_iflags;
558 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
559 	list_add_tail(&s->s_list, &super_blocks);
560 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
561 	spin_unlock(&sb_lock);
562 	get_filesystem(s->s_type);
563 	register_shrinker_prepared(&s->s_shrink);
564 	return s;
565 
566 share_extant_sb:
567 	if (user_ns != old->s_user_ns) {
568 		spin_unlock(&sb_lock);
569 		destroy_unused_super(s);
570 		return ERR_PTR(-EBUSY);
571 	}
572 	if (!grab_super(old))
573 		goto retry;
574 	destroy_unused_super(s);
575 	return old;
576 }
577 EXPORT_SYMBOL(sget_fc);
578 
579 /**
580  *	sget	-	find or create a superblock
581  *	@type:	  filesystem type superblock should belong to
582  *	@test:	  comparison callback
583  *	@set:	  setup callback
584  *	@flags:	  mount flags
585  *	@data:	  argument to each of them
586  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)587 struct super_block *sget(struct file_system_type *type,
588 			int (*test)(struct super_block *,void *),
589 			int (*set)(struct super_block *,void *),
590 			int flags,
591 			void *data)
592 {
593 	struct user_namespace *user_ns = current_user_ns();
594 	struct super_block *s = NULL;
595 	struct super_block *old;
596 	int err;
597 
598 	/* We don't yet pass the user namespace of the parent
599 	 * mount through to here so always use &init_user_ns
600 	 * until that changes.
601 	 */
602 	if (flags & SB_SUBMOUNT)
603 		user_ns = &init_user_ns;
604 
605 retry:
606 	spin_lock(&sb_lock);
607 	if (test) {
608 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
609 			if (!test(old, data))
610 				continue;
611 			if (user_ns != old->s_user_ns) {
612 				spin_unlock(&sb_lock);
613 				destroy_unused_super(s);
614 				return ERR_PTR(-EBUSY);
615 			}
616 			if (!grab_super(old))
617 				goto retry;
618 			destroy_unused_super(s);
619 			return old;
620 		}
621 	}
622 	if (!s) {
623 		spin_unlock(&sb_lock);
624 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
625 		if (!s)
626 			return ERR_PTR(-ENOMEM);
627 		goto retry;
628 	}
629 
630 	err = set(s, data);
631 	if (err) {
632 		spin_unlock(&sb_lock);
633 		destroy_unused_super(s);
634 		return ERR_PTR(err);
635 	}
636 	s->s_type = type;
637 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
638 	list_add_tail(&s->s_list, &super_blocks);
639 	hlist_add_head(&s->s_instances, &type->fs_supers);
640 	spin_unlock(&sb_lock);
641 	get_filesystem(type);
642 	register_shrinker_prepared(&s->s_shrink);
643 	return s;
644 }
645 EXPORT_SYMBOL(sget);
646 
drop_super(struct super_block * sb)647 void drop_super(struct super_block *sb)
648 {
649 	up_read(&sb->s_umount);
650 	put_super(sb);
651 }
652 
653 EXPORT_SYMBOL(drop_super);
654 
drop_super_exclusive(struct super_block * sb)655 void drop_super_exclusive(struct super_block *sb)
656 {
657 	up_write(&sb->s_umount);
658 	put_super(sb);
659 }
660 EXPORT_SYMBOL(drop_super_exclusive);
661 
__iterate_supers(void (* f)(struct super_block *))662 static void __iterate_supers(void (*f)(struct super_block *))
663 {
664 	struct super_block *sb, *p = NULL;
665 
666 	spin_lock(&sb_lock);
667 	list_for_each_entry(sb, &super_blocks, s_list) {
668 		if (hlist_unhashed(&sb->s_instances))
669 			continue;
670 		sb->s_count++;
671 		spin_unlock(&sb_lock);
672 
673 		f(sb);
674 
675 		spin_lock(&sb_lock);
676 		if (p)
677 			__put_super(p);
678 		p = sb;
679 	}
680 	if (p)
681 		__put_super(p);
682 	spin_unlock(&sb_lock);
683 }
684 /**
685  *	iterate_supers - call function for all active superblocks
686  *	@f: function to call
687  *	@arg: argument to pass to it
688  *
689  *	Scans the superblock list and calls given function, passing it
690  *	locked superblock and given argument.
691  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)692 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
693 {
694 	struct super_block *sb, *p = NULL;
695 
696 	spin_lock(&sb_lock);
697 	list_for_each_entry(sb, &super_blocks, s_list) {
698 		if (hlist_unhashed(&sb->s_instances))
699 			continue;
700 		sb->s_count++;
701 		spin_unlock(&sb_lock);
702 
703 		down_read(&sb->s_umount);
704 		if (sb->s_root && (sb->s_flags & SB_BORN))
705 			f(sb, arg);
706 		up_read(&sb->s_umount);
707 
708 		spin_lock(&sb_lock);
709 		if (p)
710 			__put_super(p);
711 		p = sb;
712 	}
713 	if (p)
714 		__put_super(p);
715 	spin_unlock(&sb_lock);
716 }
717 
718 /**
719  *	iterate_supers_type - call function for superblocks of given type
720  *	@type: fs type
721  *	@f: function to call
722  *	@arg: argument to pass to it
723  *
724  *	Scans the superblock list and calls given function, passing it
725  *	locked superblock and given argument.
726  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)727 void iterate_supers_type(struct file_system_type *type,
728 	void (*f)(struct super_block *, void *), void *arg)
729 {
730 	struct super_block *sb, *p = NULL;
731 
732 	spin_lock(&sb_lock);
733 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
734 		sb->s_count++;
735 		spin_unlock(&sb_lock);
736 
737 		down_read(&sb->s_umount);
738 		if (sb->s_root && (sb->s_flags & SB_BORN))
739 			f(sb, arg);
740 		up_read(&sb->s_umount);
741 
742 		spin_lock(&sb_lock);
743 		if (p)
744 			__put_super(p);
745 		p = sb;
746 	}
747 	if (p)
748 		__put_super(p);
749 	spin_unlock(&sb_lock);
750 }
751 
752 EXPORT_SYMBOL(iterate_supers_type);
753 
754 /**
755  * get_super - get the superblock of a device
756  * @bdev: device to get the superblock for
757  *
758  * Scans the superblock list and finds the superblock of the file system
759  * mounted on the device given. %NULL is returned if no match is found.
760  */
get_super(struct block_device * bdev)761 struct super_block *get_super(struct block_device *bdev)
762 {
763 	struct super_block *sb;
764 
765 	if (!bdev)
766 		return NULL;
767 
768 	spin_lock(&sb_lock);
769 rescan:
770 	list_for_each_entry(sb, &super_blocks, s_list) {
771 		if (hlist_unhashed(&sb->s_instances))
772 			continue;
773 		if (sb->s_bdev == bdev) {
774 			sb->s_count++;
775 			spin_unlock(&sb_lock);
776 			down_read(&sb->s_umount);
777 			/* still alive? */
778 			if (sb->s_root && (sb->s_flags & SB_BORN))
779 				return sb;
780 			up_read(&sb->s_umount);
781 			/* nope, got unmounted */
782 			spin_lock(&sb_lock);
783 			__put_super(sb);
784 			goto rescan;
785 		}
786 	}
787 	spin_unlock(&sb_lock);
788 	return NULL;
789 }
790 
791 /**
792  * get_active_super - get an active reference to the superblock of a device
793  * @bdev: device to get the superblock for
794  *
795  * Scans the superblock list and finds the superblock of the file system
796  * mounted on the device given.  Returns the superblock with an active
797  * reference or %NULL if none was found.
798  */
get_active_super(struct block_device * bdev)799 struct super_block *get_active_super(struct block_device *bdev)
800 {
801 	struct super_block *sb;
802 
803 	if (!bdev)
804 		return NULL;
805 
806 restart:
807 	spin_lock(&sb_lock);
808 	list_for_each_entry(sb, &super_blocks, s_list) {
809 		if (hlist_unhashed(&sb->s_instances))
810 			continue;
811 		if (sb->s_bdev == bdev) {
812 			if (!grab_super(sb))
813 				goto restart;
814 			up_write(&sb->s_umount);
815 			return sb;
816 		}
817 	}
818 	spin_unlock(&sb_lock);
819 	return NULL;
820 }
821 
user_get_super(dev_t dev,bool excl)822 struct super_block *user_get_super(dev_t dev, bool excl)
823 {
824 	struct super_block *sb;
825 
826 	spin_lock(&sb_lock);
827 rescan:
828 	list_for_each_entry(sb, &super_blocks, s_list) {
829 		if (hlist_unhashed(&sb->s_instances))
830 			continue;
831 		if (sb->s_dev ==  dev) {
832 			sb->s_count++;
833 			spin_unlock(&sb_lock);
834 			if (excl)
835 				down_write(&sb->s_umount);
836 			else
837 				down_read(&sb->s_umount);
838 			/* still alive? */
839 			if (sb->s_root && (sb->s_flags & SB_BORN))
840 				return sb;
841 			if (excl)
842 				up_write(&sb->s_umount);
843 			else
844 				up_read(&sb->s_umount);
845 			/* nope, got unmounted */
846 			spin_lock(&sb_lock);
847 			__put_super(sb);
848 			goto rescan;
849 		}
850 	}
851 	spin_unlock(&sb_lock);
852 	return NULL;
853 }
854 
855 /**
856  * reconfigure_super - asks filesystem to change superblock parameters
857  * @fc: The superblock and configuration
858  *
859  * Alters the configuration parameters of a live superblock.
860  */
reconfigure_super(struct fs_context * fc)861 int reconfigure_super(struct fs_context *fc)
862 {
863 	struct super_block *sb = fc->root->d_sb;
864 	int retval;
865 	bool remount_ro = false;
866 	bool remount_rw = false;
867 	bool force = fc->sb_flags & SB_FORCE;
868 
869 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
870 		return -EINVAL;
871 	if (sb->s_writers.frozen != SB_UNFROZEN)
872 		return -EBUSY;
873 
874 	retval = security_sb_remount(sb, fc->security);
875 	if (retval)
876 		return retval;
877 
878 	if (fc->sb_flags_mask & SB_RDONLY) {
879 #ifdef CONFIG_BLOCK
880 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
881 		    bdev_read_only(sb->s_bdev))
882 			return -EACCES;
883 #endif
884 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
885 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
886 	}
887 
888 	if (remount_ro) {
889 		if (!hlist_empty(&sb->s_pins)) {
890 			up_write(&sb->s_umount);
891 			group_pin_kill(&sb->s_pins);
892 			down_write(&sb->s_umount);
893 			if (!sb->s_root)
894 				return 0;
895 			if (sb->s_writers.frozen != SB_UNFROZEN)
896 				return -EBUSY;
897 			remount_ro = !sb_rdonly(sb);
898 		}
899 	}
900 	shrink_dcache_sb(sb);
901 
902 	/* If we are reconfiguring to RDONLY and current sb is read/write,
903 	 * make sure there are no files open for writing.
904 	 */
905 	if (remount_ro) {
906 		if (force) {
907 			sb->s_readonly_remount = 1;
908 			smp_wmb();
909 		} else {
910 			retval = sb_prepare_remount_readonly(sb);
911 			if (retval)
912 				return retval;
913 		}
914 	} else if (remount_rw) {
915 		/*
916 		 * We set s_readonly_remount here to protect filesystem's
917 		 * reconfigure code from writes from userspace until
918 		 * reconfigure finishes.
919 		 */
920 		sb->s_readonly_remount = 1;
921 		smp_wmb();
922 	}
923 
924 	if (fc->ops->reconfigure) {
925 		retval = fc->ops->reconfigure(fc);
926 		if (retval) {
927 			if (!force)
928 				goto cancel_readonly;
929 			/* If forced remount, go ahead despite any errors */
930 			WARN(1, "forced remount of a %s fs returned %i\n",
931 			     sb->s_type->name, retval);
932 		}
933 	}
934 
935 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
936 				 (fc->sb_flags & fc->sb_flags_mask)));
937 	/* Needs to be ordered wrt mnt_is_readonly() */
938 	smp_wmb();
939 	sb->s_readonly_remount = 0;
940 
941 	/*
942 	 * Some filesystems modify their metadata via some other path than the
943 	 * bdev buffer cache (eg. use a private mapping, or directories in
944 	 * pagecache, etc). Also file data modifications go via their own
945 	 * mappings. So If we try to mount readonly then copy the filesystem
946 	 * from bdev, we could get stale data, so invalidate it to give a best
947 	 * effort at coherency.
948 	 */
949 	if (remount_ro && sb->s_bdev)
950 		invalidate_bdev(sb->s_bdev);
951 	return 0;
952 
953 cancel_readonly:
954 	sb->s_readonly_remount = 0;
955 	return retval;
956 }
957 
do_emergency_remount_callback(struct super_block * sb)958 static void do_emergency_remount_callback(struct super_block *sb)
959 {
960 	down_write(&sb->s_umount);
961 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
962 	    !sb_rdonly(sb)) {
963 		struct fs_context *fc;
964 
965 		fc = fs_context_for_reconfigure(sb->s_root,
966 					SB_RDONLY | SB_FORCE, SB_RDONLY);
967 		if (!IS_ERR(fc)) {
968 			if (parse_monolithic_mount_data(fc, NULL) == 0)
969 				(void)reconfigure_super(fc);
970 			put_fs_context(fc);
971 		}
972 	}
973 	up_write(&sb->s_umount);
974 }
975 
do_emergency_remount(struct work_struct * work)976 static void do_emergency_remount(struct work_struct *work)
977 {
978 	__iterate_supers(do_emergency_remount_callback);
979 	kfree(work);
980 	printk("Emergency Remount complete\n");
981 }
982 
emergency_remount(void)983 void emergency_remount(void)
984 {
985 	struct work_struct *work;
986 
987 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
988 	if (work) {
989 		INIT_WORK(work, do_emergency_remount);
990 		schedule_work(work);
991 	}
992 }
993 
do_thaw_all_callback(struct super_block * sb)994 static void do_thaw_all_callback(struct super_block *sb)
995 {
996 	down_write(&sb->s_umount);
997 	if (sb->s_root && sb->s_flags & SB_BORN) {
998 		emergency_thaw_bdev(sb);
999 		thaw_super_locked(sb);
1000 	} else {
1001 		up_write(&sb->s_umount);
1002 	}
1003 }
1004 
do_thaw_all(struct work_struct * work)1005 static void do_thaw_all(struct work_struct *work)
1006 {
1007 	__iterate_supers(do_thaw_all_callback);
1008 	kfree(work);
1009 	printk(KERN_WARNING "Emergency Thaw complete\n");
1010 }
1011 
1012 /**
1013  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1014  *
1015  * Used for emergency unfreeze of all filesystems via SysRq
1016  */
emergency_thaw_all(void)1017 void emergency_thaw_all(void)
1018 {
1019 	struct work_struct *work;
1020 
1021 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1022 	if (work) {
1023 		INIT_WORK(work, do_thaw_all);
1024 		schedule_work(work);
1025 	}
1026 }
1027 
1028 static DEFINE_IDA(unnamed_dev_ida);
1029 
1030 /**
1031  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1032  * @p: Pointer to a dev_t.
1033  *
1034  * Filesystems which don't use real block devices can call this function
1035  * to allocate a virtual block device.
1036  *
1037  * Context: Any context.  Frequently called while holding sb_lock.
1038  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1039  * or -ENOMEM if memory allocation failed.
1040  */
get_anon_bdev(dev_t * p)1041 int get_anon_bdev(dev_t *p)
1042 {
1043 	int dev;
1044 
1045 	/*
1046 	 * Many userspace utilities consider an FSID of 0 invalid.
1047 	 * Always return at least 1 from get_anon_bdev.
1048 	 */
1049 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1050 			GFP_ATOMIC);
1051 	if (dev == -ENOSPC)
1052 		dev = -EMFILE;
1053 	if (dev < 0)
1054 		return dev;
1055 
1056 	*p = MKDEV(0, dev);
1057 	return 0;
1058 }
1059 EXPORT_SYMBOL(get_anon_bdev);
1060 
free_anon_bdev(dev_t dev)1061 void free_anon_bdev(dev_t dev)
1062 {
1063 	ida_free(&unnamed_dev_ida, MINOR(dev));
1064 }
1065 EXPORT_SYMBOL(free_anon_bdev);
1066 
set_anon_super(struct super_block * s,void * data)1067 int set_anon_super(struct super_block *s, void *data)
1068 {
1069 	return get_anon_bdev(&s->s_dev);
1070 }
1071 EXPORT_SYMBOL(set_anon_super);
1072 
kill_anon_super(struct super_block * sb)1073 void kill_anon_super(struct super_block *sb)
1074 {
1075 	dev_t dev = sb->s_dev;
1076 	generic_shutdown_super(sb);
1077 	free_anon_bdev(dev);
1078 }
1079 EXPORT_SYMBOL(kill_anon_super);
1080 
kill_litter_super(struct super_block * sb)1081 void kill_litter_super(struct super_block *sb)
1082 {
1083 	if (sb->s_root)
1084 		d_genocide(sb->s_root);
1085 	kill_anon_super(sb);
1086 }
1087 EXPORT_SYMBOL(kill_litter_super);
1088 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1089 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1090 {
1091 	return set_anon_super(sb, NULL);
1092 }
1093 EXPORT_SYMBOL(set_anon_super_fc);
1094 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1095 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1096 {
1097 	return sb->s_fs_info == fc->s_fs_info;
1098 }
1099 
test_single_super(struct super_block * s,struct fs_context * fc)1100 static int test_single_super(struct super_block *s, struct fs_context *fc)
1101 {
1102 	return 1;
1103 }
1104 
1105 /**
1106  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1107  * @fc: The filesystem context holding the parameters
1108  * @keying: How to distinguish superblocks
1109  * @fill_super: Helper to initialise a new superblock
1110  *
1111  * Search for a superblock and create a new one if not found.  The search
1112  * criterion is controlled by @keying.  If the search fails, a new superblock
1113  * is created and @fill_super() is called to initialise it.
1114  *
1115  * @keying can take one of a number of values:
1116  *
1117  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1118  *     system.  This is typically used for special system filesystems.
1119  *
1120  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1121  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1122  *     key again will turn up the superblock for that key.
1123  *
1124  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1125  *     unkeyed.  Each call will get a new superblock.
1126  *
1127  * A permissions check is made by sget_fc() unless we're getting a superblock
1128  * for a kernel-internal mount or a submount.
1129  */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1130 int vfs_get_super(struct fs_context *fc,
1131 		  enum vfs_get_super_keying keying,
1132 		  int (*fill_super)(struct super_block *sb,
1133 				    struct fs_context *fc))
1134 {
1135 	int (*test)(struct super_block *, struct fs_context *);
1136 	struct super_block *sb;
1137 	int err;
1138 
1139 	switch (keying) {
1140 	case vfs_get_single_super:
1141 	case vfs_get_single_reconf_super:
1142 		test = test_single_super;
1143 		break;
1144 	case vfs_get_keyed_super:
1145 		test = test_keyed_super;
1146 		break;
1147 	case vfs_get_independent_super:
1148 		test = NULL;
1149 		break;
1150 	default:
1151 		BUG();
1152 	}
1153 
1154 	sb = sget_fc(fc, test, set_anon_super_fc);
1155 	if (IS_ERR(sb))
1156 		return PTR_ERR(sb);
1157 
1158 	if (!sb->s_root) {
1159 		err = fill_super(sb, fc);
1160 		if (err)
1161 			goto error;
1162 
1163 		sb->s_flags |= SB_ACTIVE;
1164 		fc->root = dget(sb->s_root);
1165 	} else {
1166 		fc->root = dget(sb->s_root);
1167 		if (keying == vfs_get_single_reconf_super) {
1168 			err = reconfigure_super(fc);
1169 			if (err < 0) {
1170 				dput(fc->root);
1171 				fc->root = NULL;
1172 				goto error;
1173 			}
1174 		}
1175 	}
1176 
1177 	return 0;
1178 
1179 error:
1180 	deactivate_locked_super(sb);
1181 	return err;
1182 }
1183 EXPORT_SYMBOL(vfs_get_super);
1184 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1185 int get_tree_nodev(struct fs_context *fc,
1186 		  int (*fill_super)(struct super_block *sb,
1187 				    struct fs_context *fc))
1188 {
1189 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1190 }
1191 EXPORT_SYMBOL(get_tree_nodev);
1192 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1193 int get_tree_single(struct fs_context *fc,
1194 		  int (*fill_super)(struct super_block *sb,
1195 				    struct fs_context *fc))
1196 {
1197 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1198 }
1199 EXPORT_SYMBOL(get_tree_single);
1200 
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1201 int get_tree_single_reconf(struct fs_context *fc,
1202 		  int (*fill_super)(struct super_block *sb,
1203 				    struct fs_context *fc))
1204 {
1205 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1206 }
1207 EXPORT_SYMBOL(get_tree_single_reconf);
1208 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1209 int get_tree_keyed(struct fs_context *fc,
1210 		  int (*fill_super)(struct super_block *sb,
1211 				    struct fs_context *fc),
1212 		void *key)
1213 {
1214 	fc->s_fs_info = key;
1215 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1216 }
1217 EXPORT_SYMBOL(get_tree_keyed);
1218 
1219 #ifdef CONFIG_BLOCK
1220 
set_bdev_super(struct super_block * s,void * data)1221 static int set_bdev_super(struct super_block *s, void *data)
1222 {
1223 	s->s_bdev = data;
1224 	s->s_dev = s->s_bdev->bd_dev;
1225 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1226 
1227 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1228 		s->s_iflags |= SB_I_STABLE_WRITES;
1229 	return 0;
1230 }
1231 
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1232 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1233 {
1234 	return set_bdev_super(s, fc->sget_key);
1235 }
1236 
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1237 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1238 {
1239 	return s->s_bdev == fc->sget_key;
1240 }
1241 
1242 /**
1243  * get_tree_bdev - Get a superblock based on a single block device
1244  * @fc: The filesystem context holding the parameters
1245  * @fill_super: Helper to initialise a new superblock
1246  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1247 int get_tree_bdev(struct fs_context *fc,
1248 		int (*fill_super)(struct super_block *,
1249 				  struct fs_context *))
1250 {
1251 	struct block_device *bdev;
1252 	struct super_block *s;
1253 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1254 	int error = 0;
1255 
1256 	if (!(fc->sb_flags & SB_RDONLY))
1257 		mode |= FMODE_WRITE;
1258 
1259 	if (!fc->source)
1260 		return invalf(fc, "No source specified");
1261 
1262 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1263 	if (IS_ERR(bdev)) {
1264 		errorf(fc, "%s: Can't open blockdev", fc->source);
1265 		return PTR_ERR(bdev);
1266 	}
1267 
1268 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1269 	 * will protect the lockfs code from trying to start a snapshot while
1270 	 * we are mounting
1271 	 */
1272 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1273 	if (bdev->bd_fsfreeze_count > 0) {
1274 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1275 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1276 		blkdev_put(bdev, mode);
1277 		return -EBUSY;
1278 	}
1279 
1280 	fc->sb_flags |= SB_NOSEC;
1281 	fc->sget_key = bdev;
1282 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1283 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1284 	if (IS_ERR(s)) {
1285 		blkdev_put(bdev, mode);
1286 		return PTR_ERR(s);
1287 	}
1288 
1289 	if (s->s_root) {
1290 		/* Don't summarily change the RO/RW state. */
1291 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1292 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1293 			deactivate_locked_super(s);
1294 			blkdev_put(bdev, mode);
1295 			return -EBUSY;
1296 		}
1297 
1298 		/*
1299 		 * s_umount nests inside open_mutex during
1300 		 * __invalidate_device().  blkdev_put() acquires
1301 		 * open_mutex and can't be called under s_umount.  Drop
1302 		 * s_umount temporarily.  This is safe as we're
1303 		 * holding an active reference.
1304 		 */
1305 		up_write(&s->s_umount);
1306 		blkdev_put(bdev, mode);
1307 		down_write(&s->s_umount);
1308 	} else {
1309 		s->s_mode = mode;
1310 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1311 		sb_set_blocksize(s, block_size(bdev));
1312 		error = fill_super(s, fc);
1313 		if (error) {
1314 			deactivate_locked_super(s);
1315 			return error;
1316 		}
1317 
1318 		s->s_flags |= SB_ACTIVE;
1319 		bdev->bd_super = s;
1320 	}
1321 
1322 	BUG_ON(fc->root);
1323 	fc->root = dget(s->s_root);
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL(get_tree_bdev);
1327 
test_bdev_super(struct super_block * s,void * data)1328 static int test_bdev_super(struct super_block *s, void *data)
1329 {
1330 	return (void *)s->s_bdev == data;
1331 }
1332 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1333 struct dentry *mount_bdev(struct file_system_type *fs_type,
1334 	int flags, const char *dev_name, void *data,
1335 	int (*fill_super)(struct super_block *, void *, int))
1336 {
1337 	struct block_device *bdev;
1338 	struct super_block *s;
1339 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1340 	int error = 0;
1341 
1342 	if (!(flags & SB_RDONLY))
1343 		mode |= FMODE_WRITE;
1344 
1345 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1346 	if (IS_ERR(bdev))
1347 		return ERR_CAST(bdev);
1348 
1349 	/*
1350 	 * once the super is inserted into the list by sget, s_umount
1351 	 * will protect the lockfs code from trying to start a snapshot
1352 	 * while we are mounting
1353 	 */
1354 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1355 	if (bdev->bd_fsfreeze_count > 0) {
1356 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1357 		error = -EBUSY;
1358 		goto error_bdev;
1359 	}
1360 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1361 		 bdev);
1362 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1363 	if (IS_ERR(s))
1364 		goto error_s;
1365 
1366 	if (s->s_root) {
1367 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1368 			deactivate_locked_super(s);
1369 			error = -EBUSY;
1370 			goto error_bdev;
1371 		}
1372 
1373 		/*
1374 		 * s_umount nests inside open_mutex during
1375 		 * __invalidate_device().  blkdev_put() acquires
1376 		 * open_mutex and can't be called under s_umount.  Drop
1377 		 * s_umount temporarily.  This is safe as we're
1378 		 * holding an active reference.
1379 		 */
1380 		up_write(&s->s_umount);
1381 		blkdev_put(bdev, mode);
1382 		down_write(&s->s_umount);
1383 	} else {
1384 		s->s_mode = mode;
1385 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1386 		sb_set_blocksize(s, block_size(bdev));
1387 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1388 		if (error) {
1389 			deactivate_locked_super(s);
1390 			goto error;
1391 		}
1392 
1393 		s->s_flags |= SB_ACTIVE;
1394 		bdev->bd_super = s;
1395 	}
1396 
1397 	return dget(s->s_root);
1398 
1399 error_s:
1400 	error = PTR_ERR(s);
1401 error_bdev:
1402 	blkdev_put(bdev, mode);
1403 error:
1404 	return ERR_PTR(error);
1405 }
1406 EXPORT_SYMBOL_NS(mount_bdev, ANDROID_GKI_VFS_EXPORT_ONLY);
1407 
kill_block_super(struct super_block * sb)1408 void kill_block_super(struct super_block *sb)
1409 {
1410 	struct block_device *bdev = sb->s_bdev;
1411 	fmode_t mode = sb->s_mode;
1412 
1413 	bdev->bd_super = NULL;
1414 	generic_shutdown_super(sb);
1415 	sync_blockdev(bdev);
1416 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1417 	blkdev_put(bdev, mode | FMODE_EXCL);
1418 }
1419 
1420 EXPORT_SYMBOL_NS(kill_block_super, ANDROID_GKI_VFS_EXPORT_ONLY);
1421 #endif
1422 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1423 struct dentry *mount_nodev(struct file_system_type *fs_type,
1424 	int flags, void *data,
1425 	int (*fill_super)(struct super_block *, void *, int))
1426 {
1427 	int error;
1428 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1429 
1430 	if (IS_ERR(s))
1431 		return ERR_CAST(s);
1432 
1433 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1434 	if (error) {
1435 		deactivate_locked_super(s);
1436 		return ERR_PTR(error);
1437 	}
1438 	s->s_flags |= SB_ACTIVE;
1439 	return dget(s->s_root);
1440 }
1441 EXPORT_SYMBOL_NS(mount_nodev, ANDROID_GKI_VFS_EXPORT_ONLY);
1442 
reconfigure_single(struct super_block * s,int flags,void * data)1443 int reconfigure_single(struct super_block *s,
1444 		       int flags, void *data)
1445 {
1446 	struct fs_context *fc;
1447 	int ret;
1448 
1449 	/* The caller really need to be passing fc down into mount_single(),
1450 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1451 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1452 	 * mount should be rejected if the parameters are not compatible.
1453 	 */
1454 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1455 	if (IS_ERR(fc))
1456 		return PTR_ERR(fc);
1457 
1458 	ret = parse_monolithic_mount_data(fc, data);
1459 	if (ret < 0)
1460 		goto out;
1461 
1462 	ret = reconfigure_super(fc);
1463 out:
1464 	put_fs_context(fc);
1465 	return ret;
1466 }
1467 
compare_single(struct super_block * s,void * p)1468 static int compare_single(struct super_block *s, void *p)
1469 {
1470 	return 1;
1471 }
1472 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1473 struct dentry *mount_single(struct file_system_type *fs_type,
1474 	int flags, void *data,
1475 	int (*fill_super)(struct super_block *, void *, int))
1476 {
1477 	struct super_block *s;
1478 	int error;
1479 
1480 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1481 	if (IS_ERR(s))
1482 		return ERR_CAST(s);
1483 	if (!s->s_root) {
1484 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1485 		if (!error)
1486 			s->s_flags |= SB_ACTIVE;
1487 	} else {
1488 		error = reconfigure_single(s, flags, data);
1489 	}
1490 	if (unlikely(error)) {
1491 		deactivate_locked_super(s);
1492 		return ERR_PTR(error);
1493 	}
1494 	return dget(s->s_root);
1495 }
1496 EXPORT_SYMBOL(mount_single);
1497 
1498 /**
1499  * vfs_get_tree - Get the mountable root
1500  * @fc: The superblock configuration context.
1501  *
1502  * The filesystem is invoked to get or create a superblock which can then later
1503  * be used for mounting.  The filesystem places a pointer to the root to be
1504  * used for mounting in @fc->root.
1505  */
vfs_get_tree(struct fs_context * fc)1506 int vfs_get_tree(struct fs_context *fc)
1507 {
1508 	struct super_block *sb;
1509 	int error;
1510 
1511 	if (fc->root)
1512 		return -EBUSY;
1513 
1514 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1515 	 * on the superblock.
1516 	 */
1517 	error = fc->ops->get_tree(fc);
1518 	if (error < 0)
1519 		return error;
1520 
1521 	if (!fc->root) {
1522 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1523 		       fc->fs_type->name);
1524 		/* We don't know what the locking state of the superblock is -
1525 		 * if there is a superblock.
1526 		 */
1527 		BUG();
1528 	}
1529 
1530 	sb = fc->root->d_sb;
1531 	WARN_ON(!sb->s_bdi);
1532 
1533 	/*
1534 	 * Write barrier is for super_cache_count(). We place it before setting
1535 	 * SB_BORN as the data dependency between the two functions is the
1536 	 * superblock structure contents that we just set up, not the SB_BORN
1537 	 * flag.
1538 	 */
1539 	smp_wmb();
1540 	sb->s_flags |= SB_BORN;
1541 
1542 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1543 	if (unlikely(error)) {
1544 		fc_drop_locked(fc);
1545 		return error;
1546 	}
1547 
1548 	/*
1549 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1550 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1551 	 * this warning for a little while to try and catch filesystems that
1552 	 * violate this rule.
1553 	 */
1554 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1555 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL(vfs_get_tree);
1560 
1561 /*
1562  * Setup private BDI for given superblock. It gets automatically cleaned up
1563  * in generic_shutdown_super().
1564  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1565 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1566 {
1567 	struct backing_dev_info *bdi;
1568 	int err;
1569 	va_list args;
1570 
1571 	bdi = bdi_alloc(NUMA_NO_NODE);
1572 	if (!bdi)
1573 		return -ENOMEM;
1574 
1575 	va_start(args, fmt);
1576 	err = bdi_register_va(bdi, fmt, args);
1577 	va_end(args);
1578 	if (err) {
1579 		bdi_put(bdi);
1580 		return err;
1581 	}
1582 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1583 	sb->s_bdi = bdi;
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL(super_setup_bdi_name);
1588 
1589 /*
1590  * Setup private BDI for given superblock. I gets automatically cleaned up
1591  * in generic_shutdown_super().
1592  */
super_setup_bdi(struct super_block * sb)1593 int super_setup_bdi(struct super_block *sb)
1594 {
1595 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1596 
1597 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1598 				    atomic_long_inc_return(&bdi_seq));
1599 }
1600 EXPORT_SYMBOL(super_setup_bdi);
1601 
1602 /**
1603  * sb_wait_write - wait until all writers to given file system finish
1604  * @sb: the super for which we wait
1605  * @level: type of writers we wait for (normal vs page fault)
1606  *
1607  * This function waits until there are no writers of given type to given file
1608  * system.
1609  */
sb_wait_write(struct super_block * sb,int level)1610 static void sb_wait_write(struct super_block *sb, int level)
1611 {
1612 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1613 }
1614 
1615 /*
1616  * We are going to return to userspace and forget about these locks, the
1617  * ownership goes to the caller of thaw_super() which does unlock().
1618  */
lockdep_sb_freeze_release(struct super_block * sb)1619 static void lockdep_sb_freeze_release(struct super_block *sb)
1620 {
1621 	int level;
1622 
1623 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1624 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1625 }
1626 
1627 /*
1628  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1629  */
lockdep_sb_freeze_acquire(struct super_block * sb)1630 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1631 {
1632 	int level;
1633 
1634 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1635 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1636 }
1637 
sb_freeze_unlock(struct super_block * sb,int level)1638 static void sb_freeze_unlock(struct super_block *sb, int level)
1639 {
1640 	for (level--; level >= 0; level--)
1641 		percpu_up_write(sb->s_writers.rw_sem + level);
1642 }
1643 
1644 /**
1645  * freeze_super - lock the filesystem and force it into a consistent state
1646  * @sb: the super to lock
1647  *
1648  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1649  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1650  * -EBUSY.
1651  *
1652  * During this function, sb->s_writers.frozen goes through these values:
1653  *
1654  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1655  *
1656  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1657  * writes should be blocked, though page faults are still allowed. We wait for
1658  * all writes to complete and then proceed to the next stage.
1659  *
1660  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1661  * but internal fs threads can still modify the filesystem (although they
1662  * should not dirty new pages or inodes), writeback can run etc. After waiting
1663  * for all running page faults we sync the filesystem which will clean all
1664  * dirty pages and inodes (no new dirty pages or inodes can be created when
1665  * sync is running).
1666  *
1667  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1668  * modification are blocked (e.g. XFS preallocation truncation on inode
1669  * reclaim). This is usually implemented by blocking new transactions for
1670  * filesystems that have them and need this additional guard. After all
1671  * internal writers are finished we call ->freeze_fs() to finish filesystem
1672  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1673  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1674  *
1675  * sb->s_writers.frozen is protected by sb->s_umount.
1676  */
freeze_super(struct super_block * sb)1677 int freeze_super(struct super_block *sb)
1678 {
1679 	int ret;
1680 
1681 	atomic_inc(&sb->s_active);
1682 	down_write(&sb->s_umount);
1683 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1684 		deactivate_locked_super(sb);
1685 		return -EBUSY;
1686 	}
1687 
1688 	if (!(sb->s_flags & SB_BORN)) {
1689 		up_write(&sb->s_umount);
1690 		return 0;	/* sic - it's "nothing to do" */
1691 	}
1692 
1693 	if (sb_rdonly(sb)) {
1694 		/* Nothing to do really... */
1695 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1696 		up_write(&sb->s_umount);
1697 		return 0;
1698 	}
1699 
1700 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1701 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1702 	up_write(&sb->s_umount);
1703 	sb_wait_write(sb, SB_FREEZE_WRITE);
1704 	down_write(&sb->s_umount);
1705 
1706 	/* Now we go and block page faults... */
1707 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1708 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1709 
1710 	/* All writers are done so after syncing there won't be dirty data */
1711 	ret = sync_filesystem(sb);
1712 	if (ret) {
1713 		sb->s_writers.frozen = SB_UNFROZEN;
1714 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1715 		wake_up(&sb->s_writers.wait_unfrozen);
1716 		deactivate_locked_super(sb);
1717 		return ret;
1718 	}
1719 
1720 	/* Now wait for internal filesystem counter */
1721 	sb->s_writers.frozen = SB_FREEZE_FS;
1722 	sb_wait_write(sb, SB_FREEZE_FS);
1723 
1724 	if (sb->s_op->freeze_fs) {
1725 		ret = sb->s_op->freeze_fs(sb);
1726 		if (ret) {
1727 			printk(KERN_ERR
1728 				"VFS:Filesystem freeze failed\n");
1729 			sb->s_writers.frozen = SB_UNFROZEN;
1730 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1731 			wake_up(&sb->s_writers.wait_unfrozen);
1732 			deactivate_locked_super(sb);
1733 			return ret;
1734 		}
1735 	}
1736 	/*
1737 	 * For debugging purposes so that fs can warn if it sees write activity
1738 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1739 	 */
1740 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1741 	lockdep_sb_freeze_release(sb);
1742 	up_write(&sb->s_umount);
1743 	return 0;
1744 }
1745 EXPORT_SYMBOL(freeze_super);
1746 
thaw_super_locked(struct super_block * sb)1747 static int thaw_super_locked(struct super_block *sb)
1748 {
1749 	int error;
1750 
1751 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1752 		up_write(&sb->s_umount);
1753 		return -EINVAL;
1754 	}
1755 
1756 	if (sb_rdonly(sb)) {
1757 		sb->s_writers.frozen = SB_UNFROZEN;
1758 		goto out;
1759 	}
1760 
1761 	lockdep_sb_freeze_acquire(sb);
1762 
1763 	if (sb->s_op->unfreeze_fs) {
1764 		error = sb->s_op->unfreeze_fs(sb);
1765 		if (error) {
1766 			printk(KERN_ERR
1767 				"VFS:Filesystem thaw failed\n");
1768 			lockdep_sb_freeze_release(sb);
1769 			up_write(&sb->s_umount);
1770 			return error;
1771 		}
1772 	}
1773 
1774 	sb->s_writers.frozen = SB_UNFROZEN;
1775 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1776 out:
1777 	wake_up(&sb->s_writers.wait_unfrozen);
1778 	deactivate_locked_super(sb);
1779 	return 0;
1780 }
1781 
1782 /**
1783  * thaw_super -- unlock filesystem
1784  * @sb: the super to thaw
1785  *
1786  * Unlocks the filesystem and marks it writeable again after freeze_super().
1787  */
thaw_super(struct super_block * sb)1788 int thaw_super(struct super_block *sb)
1789 {
1790 	down_write(&sb->s_umount);
1791 	return thaw_super_locked(sb);
1792 }
1793 EXPORT_SYMBOL(thaw_super);
1794