1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42
43 static int thaw_super_locked(struct super_block *sb);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
54 /*
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
60 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
63 {
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
70
71 sb = container_of(shrink, struct super_block, s_shrink);
72
73 /*
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
76 */
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
79
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
82
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
91
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96
97 /*
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
100 *
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
103 */
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
108
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
112 }
113
114 up_read(&sb->s_umount);
115 return freed;
116 }
117
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 struct super_block *sb;
122 long total_objects = 0;
123
124 sb = container_of(shrink, struct super_block, s_shrink);
125
126 /*
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
133 *
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
139 */
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
143
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149
150 if (!total_objects)
151 return SHRINK_EMPTY;
152
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
155 }
156
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
162
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
166 }
167
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
173 }
174
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
189 }
190
191 /**
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
196 *
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
199 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
202 {
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
206
207 if (!s)
208 return NULL;
209
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 /*
215 * sget() can have s_umount recursion.
216 *
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
220 *
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
225 *
226 * Annotate this by putting this lock in a different
227 * subclass.
228 */
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230
231 if (security_sb_alloc(s))
232 goto fail;
233
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
239 }
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
252
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
264
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
277
278 fail:
279 destroy_unused_super(s);
280 return NULL;
281 }
282
283 /* Superblock refcounting */
284
285 /*
286 * Drop a superblock's refcount. The caller must hold sb_lock.
287 */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 fscrypt_destroy_keyring(s);
297 put_user_ns(s->s_user_ns);
298 kfree(s->s_subtype);
299 call_rcu(&s->rcu, destroy_super_rcu);
300 }
301 }
302
303 /**
304 * put_super - drop a temporary reference to superblock
305 * @sb: superblock in question
306 *
307 * Drops a temporary reference, frees superblock if there's no
308 * references left.
309 */
put_super(struct super_block * sb)310 void put_super(struct super_block *sb)
311 {
312 spin_lock(&sb_lock);
313 __put_super(sb);
314 spin_unlock(&sb_lock);
315 }
316
317
318 /**
319 * deactivate_locked_super - drop an active reference to superblock
320 * @s: superblock to deactivate
321 *
322 * Drops an active reference to superblock, converting it into a temporary
323 * one if there is no other active references left. In that case we
324 * tell fs driver to shut it down and drop the temporary reference we
325 * had just acquired.
326 *
327 * Caller holds exclusive lock on superblock; that lock is released.
328 */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 struct file_system_type *fs = s->s_type;
332 if (atomic_dec_and_test(&s->s_active)) {
333 cleancache_invalidate_fs(s);
334 unregister_shrinker(&s->s_shrink);
335 fs->kill_sb(s);
336
337 /*
338 * Since list_lru_destroy() may sleep, we cannot call it from
339 * put_super(), where we hold the sb_lock. Therefore we destroy
340 * the lru lists right now.
341 */
342 list_lru_destroy(&s->s_dentry_lru);
343 list_lru_destroy(&s->s_inode_lru);
344
345 put_filesystem(fs);
346 put_super(s);
347 } else {
348 up_write(&s->s_umount);
349 }
350 }
351
352 EXPORT_SYMBOL(deactivate_locked_super);
353
354 /**
355 * deactivate_super - drop an active reference to superblock
356 * @s: superblock to deactivate
357 *
358 * Variant of deactivate_locked_super(), except that superblock is *not*
359 * locked by caller. If we are going to drop the final active reference,
360 * lock will be acquired prior to that.
361 */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 down_write(&s->s_umount);
366 deactivate_locked_super(s);
367 }
368 }
369
370 EXPORT_SYMBOL(deactivate_super);
371
372 /**
373 * grab_super - acquire an active reference
374 * @s: reference we are trying to make active
375 *
376 * Tries to acquire an active reference. grab_super() is used when we
377 * had just found a superblock in super_blocks or fs_type->fs_supers
378 * and want to turn it into a full-blown active reference. grab_super()
379 * is called with sb_lock held and drops it. Returns 1 in case of
380 * success, 0 if we had failed (superblock contents was already dead or
381 * dying when grab_super() had been called). Note that this is only
382 * called for superblocks not in rundown mode (== ones still on ->fs_supers
383 * of their type), so increment of ->s_count is OK here.
384 */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 s->s_count++;
388 spin_unlock(&sb_lock);
389 down_write(&s->s_umount);
390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 put_super(s);
392 return 1;
393 }
394 up_write(&s->s_umount);
395 put_super(s);
396 return 0;
397 }
398
399 /*
400 * trylock_super - try to grab ->s_umount shared
401 * @sb: reference we are trying to grab
402 *
403 * Try to prevent fs shutdown. This is used in places where we
404 * cannot take an active reference but we need to ensure that the
405 * filesystem is not shut down while we are working on it. It returns
406 * false if we cannot acquire s_umount or if we lose the race and
407 * filesystem already got into shutdown, and returns true with the s_umount
408 * lock held in read mode in case of success. On successful return,
409 * the caller must drop the s_umount lock when done.
410 *
411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412 * The reason why it's safe is that we are OK with doing trylock instead
413 * of down_read(). There's a couple of places that are OK with that, but
414 * it's very much not a general-purpose interface.
415 */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 if (down_read_trylock(&sb->s_umount)) {
419 if (!hlist_unhashed(&sb->s_instances) &&
420 sb->s_root && (sb->s_flags & SB_BORN))
421 return true;
422 up_read(&sb->s_umount);
423 }
424
425 return false;
426 }
427
428 /**
429 * generic_shutdown_super - common helper for ->kill_sb()
430 * @sb: superblock to kill
431 *
432 * generic_shutdown_super() does all fs-independent work on superblock
433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
434 * that need destruction out of superblock, call generic_shutdown_super()
435 * and release aforementioned objects. Note: dentries and inodes _are_
436 * taken care of and do not need specific handling.
437 *
438 * Upon calling this function, the filesystem may no longer alter or
439 * rearrange the set of dentries belonging to this super_block, nor may it
440 * change the attachments of dentries to inodes.
441 */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 const struct super_operations *sop = sb->s_op;
445
446 if (sb->s_root) {
447 shrink_dcache_for_umount(sb);
448 sync_filesystem(sb);
449 sb->s_flags &= ~SB_ACTIVE;
450
451 cgroup_writeback_umount();
452
453 /* Evict all inodes with zero refcount. */
454 evict_inodes(sb);
455
456 /*
457 * Clean up and evict any inodes that still have references due
458 * to fsnotify or the security policy.
459 */
460 fsnotify_sb_delete(sb);
461 security_sb_delete(sb);
462
463 /*
464 * Now that all potentially-encrypted inodes have been evicted,
465 * the fscrypt keyring can be destroyed.
466 */
467 fscrypt_destroy_keyring(sb);
468
469 if (sb->s_dio_done_wq) {
470 destroy_workqueue(sb->s_dio_done_wq);
471 sb->s_dio_done_wq = NULL;
472 }
473
474 if (sop->put_super)
475 sop->put_super(sb);
476
477 if (!list_empty(&sb->s_inodes)) {
478 printk("VFS: Busy inodes after unmount of %s. "
479 "Self-destruct in 5 seconds. Have a nice day...\n",
480 sb->s_id);
481 }
482 }
483 spin_lock(&sb_lock);
484 /* should be initialized for __put_super_and_need_restart() */
485 hlist_del_init(&sb->s_instances);
486 spin_unlock(&sb_lock);
487 up_write(&sb->s_umount);
488 if (sb->s_bdi != &noop_backing_dev_info) {
489 bdi_put(sb->s_bdi);
490 sb->s_bdi = &noop_backing_dev_info;
491 }
492 }
493
494 EXPORT_SYMBOL(generic_shutdown_super);
495
mount_capable(struct fs_context * fc)496 bool mount_capable(struct fs_context *fc)
497 {
498 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
499 return capable(CAP_SYS_ADMIN);
500 else
501 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
502 }
503
504 /**
505 * sget_fc - Find or create a superblock
506 * @fc: Filesystem context.
507 * @test: Comparison callback
508 * @set: Setup callback
509 *
510 * Find or create a superblock using the parameters stored in the filesystem
511 * context and the two callback functions.
512 *
513 * If an extant superblock is matched, then that will be returned with an
514 * elevated reference count that the caller must transfer or discard.
515 *
516 * If no match is made, a new superblock will be allocated and basic
517 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
518 * the set() callback will be invoked), the superblock will be published and it
519 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
520 * as yet unset.
521 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))522 struct super_block *sget_fc(struct fs_context *fc,
523 int (*test)(struct super_block *, struct fs_context *),
524 int (*set)(struct super_block *, struct fs_context *))
525 {
526 struct super_block *s = NULL;
527 struct super_block *old;
528 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
529 int err;
530
531 retry:
532 spin_lock(&sb_lock);
533 if (test) {
534 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
535 if (test(old, fc))
536 goto share_extant_sb;
537 }
538 }
539 if (!s) {
540 spin_unlock(&sb_lock);
541 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
542 if (!s)
543 return ERR_PTR(-ENOMEM);
544 goto retry;
545 }
546
547 s->s_fs_info = fc->s_fs_info;
548 err = set(s, fc);
549 if (err) {
550 s->s_fs_info = NULL;
551 spin_unlock(&sb_lock);
552 destroy_unused_super(s);
553 return ERR_PTR(err);
554 }
555 fc->s_fs_info = NULL;
556 s->s_type = fc->fs_type;
557 s->s_iflags |= fc->s_iflags;
558 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
559 list_add_tail(&s->s_list, &super_blocks);
560 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
561 spin_unlock(&sb_lock);
562 get_filesystem(s->s_type);
563 register_shrinker_prepared(&s->s_shrink);
564 return s;
565
566 share_extant_sb:
567 if (user_ns != old->s_user_ns) {
568 spin_unlock(&sb_lock);
569 destroy_unused_super(s);
570 return ERR_PTR(-EBUSY);
571 }
572 if (!grab_super(old))
573 goto retry;
574 destroy_unused_super(s);
575 return old;
576 }
577 EXPORT_SYMBOL(sget_fc);
578
579 /**
580 * sget - find or create a superblock
581 * @type: filesystem type superblock should belong to
582 * @test: comparison callback
583 * @set: setup callback
584 * @flags: mount flags
585 * @data: argument to each of them
586 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)587 struct super_block *sget(struct file_system_type *type,
588 int (*test)(struct super_block *,void *),
589 int (*set)(struct super_block *,void *),
590 int flags,
591 void *data)
592 {
593 struct user_namespace *user_ns = current_user_ns();
594 struct super_block *s = NULL;
595 struct super_block *old;
596 int err;
597
598 /* We don't yet pass the user namespace of the parent
599 * mount through to here so always use &init_user_ns
600 * until that changes.
601 */
602 if (flags & SB_SUBMOUNT)
603 user_ns = &init_user_ns;
604
605 retry:
606 spin_lock(&sb_lock);
607 if (test) {
608 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
609 if (!test(old, data))
610 continue;
611 if (user_ns != old->s_user_ns) {
612 spin_unlock(&sb_lock);
613 destroy_unused_super(s);
614 return ERR_PTR(-EBUSY);
615 }
616 if (!grab_super(old))
617 goto retry;
618 destroy_unused_super(s);
619 return old;
620 }
621 }
622 if (!s) {
623 spin_unlock(&sb_lock);
624 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
625 if (!s)
626 return ERR_PTR(-ENOMEM);
627 goto retry;
628 }
629
630 err = set(s, data);
631 if (err) {
632 spin_unlock(&sb_lock);
633 destroy_unused_super(s);
634 return ERR_PTR(err);
635 }
636 s->s_type = type;
637 strlcpy(s->s_id, type->name, sizeof(s->s_id));
638 list_add_tail(&s->s_list, &super_blocks);
639 hlist_add_head(&s->s_instances, &type->fs_supers);
640 spin_unlock(&sb_lock);
641 get_filesystem(type);
642 register_shrinker_prepared(&s->s_shrink);
643 return s;
644 }
645 EXPORT_SYMBOL(sget);
646
drop_super(struct super_block * sb)647 void drop_super(struct super_block *sb)
648 {
649 up_read(&sb->s_umount);
650 put_super(sb);
651 }
652
653 EXPORT_SYMBOL(drop_super);
654
drop_super_exclusive(struct super_block * sb)655 void drop_super_exclusive(struct super_block *sb)
656 {
657 up_write(&sb->s_umount);
658 put_super(sb);
659 }
660 EXPORT_SYMBOL(drop_super_exclusive);
661
__iterate_supers(void (* f)(struct super_block *))662 static void __iterate_supers(void (*f)(struct super_block *))
663 {
664 struct super_block *sb, *p = NULL;
665
666 spin_lock(&sb_lock);
667 list_for_each_entry(sb, &super_blocks, s_list) {
668 if (hlist_unhashed(&sb->s_instances))
669 continue;
670 sb->s_count++;
671 spin_unlock(&sb_lock);
672
673 f(sb);
674
675 spin_lock(&sb_lock);
676 if (p)
677 __put_super(p);
678 p = sb;
679 }
680 if (p)
681 __put_super(p);
682 spin_unlock(&sb_lock);
683 }
684 /**
685 * iterate_supers - call function for all active superblocks
686 * @f: function to call
687 * @arg: argument to pass to it
688 *
689 * Scans the superblock list and calls given function, passing it
690 * locked superblock and given argument.
691 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)692 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
693 {
694 struct super_block *sb, *p = NULL;
695
696 spin_lock(&sb_lock);
697 list_for_each_entry(sb, &super_blocks, s_list) {
698 if (hlist_unhashed(&sb->s_instances))
699 continue;
700 sb->s_count++;
701 spin_unlock(&sb_lock);
702
703 down_read(&sb->s_umount);
704 if (sb->s_root && (sb->s_flags & SB_BORN))
705 f(sb, arg);
706 up_read(&sb->s_umount);
707
708 spin_lock(&sb_lock);
709 if (p)
710 __put_super(p);
711 p = sb;
712 }
713 if (p)
714 __put_super(p);
715 spin_unlock(&sb_lock);
716 }
717
718 /**
719 * iterate_supers_type - call function for superblocks of given type
720 * @type: fs type
721 * @f: function to call
722 * @arg: argument to pass to it
723 *
724 * Scans the superblock list and calls given function, passing it
725 * locked superblock and given argument.
726 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)727 void iterate_supers_type(struct file_system_type *type,
728 void (*f)(struct super_block *, void *), void *arg)
729 {
730 struct super_block *sb, *p = NULL;
731
732 spin_lock(&sb_lock);
733 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
734 sb->s_count++;
735 spin_unlock(&sb_lock);
736
737 down_read(&sb->s_umount);
738 if (sb->s_root && (sb->s_flags & SB_BORN))
739 f(sb, arg);
740 up_read(&sb->s_umount);
741
742 spin_lock(&sb_lock);
743 if (p)
744 __put_super(p);
745 p = sb;
746 }
747 if (p)
748 __put_super(p);
749 spin_unlock(&sb_lock);
750 }
751
752 EXPORT_SYMBOL(iterate_supers_type);
753
754 /**
755 * get_super - get the superblock of a device
756 * @bdev: device to get the superblock for
757 *
758 * Scans the superblock list and finds the superblock of the file system
759 * mounted on the device given. %NULL is returned if no match is found.
760 */
get_super(struct block_device * bdev)761 struct super_block *get_super(struct block_device *bdev)
762 {
763 struct super_block *sb;
764
765 if (!bdev)
766 return NULL;
767
768 spin_lock(&sb_lock);
769 rescan:
770 list_for_each_entry(sb, &super_blocks, s_list) {
771 if (hlist_unhashed(&sb->s_instances))
772 continue;
773 if (sb->s_bdev == bdev) {
774 sb->s_count++;
775 spin_unlock(&sb_lock);
776 down_read(&sb->s_umount);
777 /* still alive? */
778 if (sb->s_root && (sb->s_flags & SB_BORN))
779 return sb;
780 up_read(&sb->s_umount);
781 /* nope, got unmounted */
782 spin_lock(&sb_lock);
783 __put_super(sb);
784 goto rescan;
785 }
786 }
787 spin_unlock(&sb_lock);
788 return NULL;
789 }
790
791 /**
792 * get_active_super - get an active reference to the superblock of a device
793 * @bdev: device to get the superblock for
794 *
795 * Scans the superblock list and finds the superblock of the file system
796 * mounted on the device given. Returns the superblock with an active
797 * reference or %NULL if none was found.
798 */
get_active_super(struct block_device * bdev)799 struct super_block *get_active_super(struct block_device *bdev)
800 {
801 struct super_block *sb;
802
803 if (!bdev)
804 return NULL;
805
806 restart:
807 spin_lock(&sb_lock);
808 list_for_each_entry(sb, &super_blocks, s_list) {
809 if (hlist_unhashed(&sb->s_instances))
810 continue;
811 if (sb->s_bdev == bdev) {
812 if (!grab_super(sb))
813 goto restart;
814 up_write(&sb->s_umount);
815 return sb;
816 }
817 }
818 spin_unlock(&sb_lock);
819 return NULL;
820 }
821
user_get_super(dev_t dev,bool excl)822 struct super_block *user_get_super(dev_t dev, bool excl)
823 {
824 struct super_block *sb;
825
826 spin_lock(&sb_lock);
827 rescan:
828 list_for_each_entry(sb, &super_blocks, s_list) {
829 if (hlist_unhashed(&sb->s_instances))
830 continue;
831 if (sb->s_dev == dev) {
832 sb->s_count++;
833 spin_unlock(&sb_lock);
834 if (excl)
835 down_write(&sb->s_umount);
836 else
837 down_read(&sb->s_umount);
838 /* still alive? */
839 if (sb->s_root && (sb->s_flags & SB_BORN))
840 return sb;
841 if (excl)
842 up_write(&sb->s_umount);
843 else
844 up_read(&sb->s_umount);
845 /* nope, got unmounted */
846 spin_lock(&sb_lock);
847 __put_super(sb);
848 goto rescan;
849 }
850 }
851 spin_unlock(&sb_lock);
852 return NULL;
853 }
854
855 /**
856 * reconfigure_super - asks filesystem to change superblock parameters
857 * @fc: The superblock and configuration
858 *
859 * Alters the configuration parameters of a live superblock.
860 */
reconfigure_super(struct fs_context * fc)861 int reconfigure_super(struct fs_context *fc)
862 {
863 struct super_block *sb = fc->root->d_sb;
864 int retval;
865 bool remount_ro = false;
866 bool remount_rw = false;
867 bool force = fc->sb_flags & SB_FORCE;
868
869 if (fc->sb_flags_mask & ~MS_RMT_MASK)
870 return -EINVAL;
871 if (sb->s_writers.frozen != SB_UNFROZEN)
872 return -EBUSY;
873
874 retval = security_sb_remount(sb, fc->security);
875 if (retval)
876 return retval;
877
878 if (fc->sb_flags_mask & SB_RDONLY) {
879 #ifdef CONFIG_BLOCK
880 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
881 bdev_read_only(sb->s_bdev))
882 return -EACCES;
883 #endif
884 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
885 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
886 }
887
888 if (remount_ro) {
889 if (!hlist_empty(&sb->s_pins)) {
890 up_write(&sb->s_umount);
891 group_pin_kill(&sb->s_pins);
892 down_write(&sb->s_umount);
893 if (!sb->s_root)
894 return 0;
895 if (sb->s_writers.frozen != SB_UNFROZEN)
896 return -EBUSY;
897 remount_ro = !sb_rdonly(sb);
898 }
899 }
900 shrink_dcache_sb(sb);
901
902 /* If we are reconfiguring to RDONLY and current sb is read/write,
903 * make sure there are no files open for writing.
904 */
905 if (remount_ro) {
906 if (force) {
907 sb->s_readonly_remount = 1;
908 smp_wmb();
909 } else {
910 retval = sb_prepare_remount_readonly(sb);
911 if (retval)
912 return retval;
913 }
914 } else if (remount_rw) {
915 /*
916 * We set s_readonly_remount here to protect filesystem's
917 * reconfigure code from writes from userspace until
918 * reconfigure finishes.
919 */
920 sb->s_readonly_remount = 1;
921 smp_wmb();
922 }
923
924 if (fc->ops->reconfigure) {
925 retval = fc->ops->reconfigure(fc);
926 if (retval) {
927 if (!force)
928 goto cancel_readonly;
929 /* If forced remount, go ahead despite any errors */
930 WARN(1, "forced remount of a %s fs returned %i\n",
931 sb->s_type->name, retval);
932 }
933 }
934
935 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
936 (fc->sb_flags & fc->sb_flags_mask)));
937 /* Needs to be ordered wrt mnt_is_readonly() */
938 smp_wmb();
939 sb->s_readonly_remount = 0;
940
941 /*
942 * Some filesystems modify their metadata via some other path than the
943 * bdev buffer cache (eg. use a private mapping, or directories in
944 * pagecache, etc). Also file data modifications go via their own
945 * mappings. So If we try to mount readonly then copy the filesystem
946 * from bdev, we could get stale data, so invalidate it to give a best
947 * effort at coherency.
948 */
949 if (remount_ro && sb->s_bdev)
950 invalidate_bdev(sb->s_bdev);
951 return 0;
952
953 cancel_readonly:
954 sb->s_readonly_remount = 0;
955 return retval;
956 }
957
do_emergency_remount_callback(struct super_block * sb)958 static void do_emergency_remount_callback(struct super_block *sb)
959 {
960 down_write(&sb->s_umount);
961 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
962 !sb_rdonly(sb)) {
963 struct fs_context *fc;
964
965 fc = fs_context_for_reconfigure(sb->s_root,
966 SB_RDONLY | SB_FORCE, SB_RDONLY);
967 if (!IS_ERR(fc)) {
968 if (parse_monolithic_mount_data(fc, NULL) == 0)
969 (void)reconfigure_super(fc);
970 put_fs_context(fc);
971 }
972 }
973 up_write(&sb->s_umount);
974 }
975
do_emergency_remount(struct work_struct * work)976 static void do_emergency_remount(struct work_struct *work)
977 {
978 __iterate_supers(do_emergency_remount_callback);
979 kfree(work);
980 printk("Emergency Remount complete\n");
981 }
982
emergency_remount(void)983 void emergency_remount(void)
984 {
985 struct work_struct *work;
986
987 work = kmalloc(sizeof(*work), GFP_ATOMIC);
988 if (work) {
989 INIT_WORK(work, do_emergency_remount);
990 schedule_work(work);
991 }
992 }
993
do_thaw_all_callback(struct super_block * sb)994 static void do_thaw_all_callback(struct super_block *sb)
995 {
996 down_write(&sb->s_umount);
997 if (sb->s_root && sb->s_flags & SB_BORN) {
998 emergency_thaw_bdev(sb);
999 thaw_super_locked(sb);
1000 } else {
1001 up_write(&sb->s_umount);
1002 }
1003 }
1004
do_thaw_all(struct work_struct * work)1005 static void do_thaw_all(struct work_struct *work)
1006 {
1007 __iterate_supers(do_thaw_all_callback);
1008 kfree(work);
1009 printk(KERN_WARNING "Emergency Thaw complete\n");
1010 }
1011
1012 /**
1013 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1014 *
1015 * Used for emergency unfreeze of all filesystems via SysRq
1016 */
emergency_thaw_all(void)1017 void emergency_thaw_all(void)
1018 {
1019 struct work_struct *work;
1020
1021 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1022 if (work) {
1023 INIT_WORK(work, do_thaw_all);
1024 schedule_work(work);
1025 }
1026 }
1027
1028 static DEFINE_IDA(unnamed_dev_ida);
1029
1030 /**
1031 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1032 * @p: Pointer to a dev_t.
1033 *
1034 * Filesystems which don't use real block devices can call this function
1035 * to allocate a virtual block device.
1036 *
1037 * Context: Any context. Frequently called while holding sb_lock.
1038 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1039 * or -ENOMEM if memory allocation failed.
1040 */
get_anon_bdev(dev_t * p)1041 int get_anon_bdev(dev_t *p)
1042 {
1043 int dev;
1044
1045 /*
1046 * Many userspace utilities consider an FSID of 0 invalid.
1047 * Always return at least 1 from get_anon_bdev.
1048 */
1049 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1050 GFP_ATOMIC);
1051 if (dev == -ENOSPC)
1052 dev = -EMFILE;
1053 if (dev < 0)
1054 return dev;
1055
1056 *p = MKDEV(0, dev);
1057 return 0;
1058 }
1059 EXPORT_SYMBOL(get_anon_bdev);
1060
free_anon_bdev(dev_t dev)1061 void free_anon_bdev(dev_t dev)
1062 {
1063 ida_free(&unnamed_dev_ida, MINOR(dev));
1064 }
1065 EXPORT_SYMBOL(free_anon_bdev);
1066
set_anon_super(struct super_block * s,void * data)1067 int set_anon_super(struct super_block *s, void *data)
1068 {
1069 return get_anon_bdev(&s->s_dev);
1070 }
1071 EXPORT_SYMBOL(set_anon_super);
1072
kill_anon_super(struct super_block * sb)1073 void kill_anon_super(struct super_block *sb)
1074 {
1075 dev_t dev = sb->s_dev;
1076 generic_shutdown_super(sb);
1077 free_anon_bdev(dev);
1078 }
1079 EXPORT_SYMBOL(kill_anon_super);
1080
kill_litter_super(struct super_block * sb)1081 void kill_litter_super(struct super_block *sb)
1082 {
1083 if (sb->s_root)
1084 d_genocide(sb->s_root);
1085 kill_anon_super(sb);
1086 }
1087 EXPORT_SYMBOL(kill_litter_super);
1088
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1089 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1090 {
1091 return set_anon_super(sb, NULL);
1092 }
1093 EXPORT_SYMBOL(set_anon_super_fc);
1094
test_keyed_super(struct super_block * sb,struct fs_context * fc)1095 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1096 {
1097 return sb->s_fs_info == fc->s_fs_info;
1098 }
1099
test_single_super(struct super_block * s,struct fs_context * fc)1100 static int test_single_super(struct super_block *s, struct fs_context *fc)
1101 {
1102 return 1;
1103 }
1104
1105 /**
1106 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1107 * @fc: The filesystem context holding the parameters
1108 * @keying: How to distinguish superblocks
1109 * @fill_super: Helper to initialise a new superblock
1110 *
1111 * Search for a superblock and create a new one if not found. The search
1112 * criterion is controlled by @keying. If the search fails, a new superblock
1113 * is created and @fill_super() is called to initialise it.
1114 *
1115 * @keying can take one of a number of values:
1116 *
1117 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1118 * system. This is typically used for special system filesystems.
1119 *
1120 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1121 * distinct keys (where the key is in s_fs_info). Searching for the same
1122 * key again will turn up the superblock for that key.
1123 *
1124 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1125 * unkeyed. Each call will get a new superblock.
1126 *
1127 * A permissions check is made by sget_fc() unless we're getting a superblock
1128 * for a kernel-internal mount or a submount.
1129 */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1130 int vfs_get_super(struct fs_context *fc,
1131 enum vfs_get_super_keying keying,
1132 int (*fill_super)(struct super_block *sb,
1133 struct fs_context *fc))
1134 {
1135 int (*test)(struct super_block *, struct fs_context *);
1136 struct super_block *sb;
1137 int err;
1138
1139 switch (keying) {
1140 case vfs_get_single_super:
1141 case vfs_get_single_reconf_super:
1142 test = test_single_super;
1143 break;
1144 case vfs_get_keyed_super:
1145 test = test_keyed_super;
1146 break;
1147 case vfs_get_independent_super:
1148 test = NULL;
1149 break;
1150 default:
1151 BUG();
1152 }
1153
1154 sb = sget_fc(fc, test, set_anon_super_fc);
1155 if (IS_ERR(sb))
1156 return PTR_ERR(sb);
1157
1158 if (!sb->s_root) {
1159 err = fill_super(sb, fc);
1160 if (err)
1161 goto error;
1162
1163 sb->s_flags |= SB_ACTIVE;
1164 fc->root = dget(sb->s_root);
1165 } else {
1166 fc->root = dget(sb->s_root);
1167 if (keying == vfs_get_single_reconf_super) {
1168 err = reconfigure_super(fc);
1169 if (err < 0) {
1170 dput(fc->root);
1171 fc->root = NULL;
1172 goto error;
1173 }
1174 }
1175 }
1176
1177 return 0;
1178
1179 error:
1180 deactivate_locked_super(sb);
1181 return err;
1182 }
1183 EXPORT_SYMBOL(vfs_get_super);
1184
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1185 int get_tree_nodev(struct fs_context *fc,
1186 int (*fill_super)(struct super_block *sb,
1187 struct fs_context *fc))
1188 {
1189 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1190 }
1191 EXPORT_SYMBOL(get_tree_nodev);
1192
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1193 int get_tree_single(struct fs_context *fc,
1194 int (*fill_super)(struct super_block *sb,
1195 struct fs_context *fc))
1196 {
1197 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1198 }
1199 EXPORT_SYMBOL(get_tree_single);
1200
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1201 int get_tree_single_reconf(struct fs_context *fc,
1202 int (*fill_super)(struct super_block *sb,
1203 struct fs_context *fc))
1204 {
1205 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1206 }
1207 EXPORT_SYMBOL(get_tree_single_reconf);
1208
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1209 int get_tree_keyed(struct fs_context *fc,
1210 int (*fill_super)(struct super_block *sb,
1211 struct fs_context *fc),
1212 void *key)
1213 {
1214 fc->s_fs_info = key;
1215 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1216 }
1217 EXPORT_SYMBOL(get_tree_keyed);
1218
1219 #ifdef CONFIG_BLOCK
1220
set_bdev_super(struct super_block * s,void * data)1221 static int set_bdev_super(struct super_block *s, void *data)
1222 {
1223 s->s_bdev = data;
1224 s->s_dev = s->s_bdev->bd_dev;
1225 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1226
1227 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1228 s->s_iflags |= SB_I_STABLE_WRITES;
1229 return 0;
1230 }
1231
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1232 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1233 {
1234 return set_bdev_super(s, fc->sget_key);
1235 }
1236
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1237 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1238 {
1239 return s->s_bdev == fc->sget_key;
1240 }
1241
1242 /**
1243 * get_tree_bdev - Get a superblock based on a single block device
1244 * @fc: The filesystem context holding the parameters
1245 * @fill_super: Helper to initialise a new superblock
1246 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1247 int get_tree_bdev(struct fs_context *fc,
1248 int (*fill_super)(struct super_block *,
1249 struct fs_context *))
1250 {
1251 struct block_device *bdev;
1252 struct super_block *s;
1253 fmode_t mode = FMODE_READ | FMODE_EXCL;
1254 int error = 0;
1255
1256 if (!(fc->sb_flags & SB_RDONLY))
1257 mode |= FMODE_WRITE;
1258
1259 if (!fc->source)
1260 return invalf(fc, "No source specified");
1261
1262 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1263 if (IS_ERR(bdev)) {
1264 errorf(fc, "%s: Can't open blockdev", fc->source);
1265 return PTR_ERR(bdev);
1266 }
1267
1268 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1269 * will protect the lockfs code from trying to start a snapshot while
1270 * we are mounting
1271 */
1272 mutex_lock(&bdev->bd_fsfreeze_mutex);
1273 if (bdev->bd_fsfreeze_count > 0) {
1274 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1275 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1276 blkdev_put(bdev, mode);
1277 return -EBUSY;
1278 }
1279
1280 fc->sb_flags |= SB_NOSEC;
1281 fc->sget_key = bdev;
1282 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1283 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1284 if (IS_ERR(s)) {
1285 blkdev_put(bdev, mode);
1286 return PTR_ERR(s);
1287 }
1288
1289 if (s->s_root) {
1290 /* Don't summarily change the RO/RW state. */
1291 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1292 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1293 deactivate_locked_super(s);
1294 blkdev_put(bdev, mode);
1295 return -EBUSY;
1296 }
1297
1298 /*
1299 * s_umount nests inside open_mutex during
1300 * __invalidate_device(). blkdev_put() acquires
1301 * open_mutex and can't be called under s_umount. Drop
1302 * s_umount temporarily. This is safe as we're
1303 * holding an active reference.
1304 */
1305 up_write(&s->s_umount);
1306 blkdev_put(bdev, mode);
1307 down_write(&s->s_umount);
1308 } else {
1309 s->s_mode = mode;
1310 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1311 sb_set_blocksize(s, block_size(bdev));
1312 error = fill_super(s, fc);
1313 if (error) {
1314 deactivate_locked_super(s);
1315 return error;
1316 }
1317
1318 s->s_flags |= SB_ACTIVE;
1319 bdev->bd_super = s;
1320 }
1321
1322 BUG_ON(fc->root);
1323 fc->root = dget(s->s_root);
1324 return 0;
1325 }
1326 EXPORT_SYMBOL(get_tree_bdev);
1327
test_bdev_super(struct super_block * s,void * data)1328 static int test_bdev_super(struct super_block *s, void *data)
1329 {
1330 return (void *)s->s_bdev == data;
1331 }
1332
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1333 struct dentry *mount_bdev(struct file_system_type *fs_type,
1334 int flags, const char *dev_name, void *data,
1335 int (*fill_super)(struct super_block *, void *, int))
1336 {
1337 struct block_device *bdev;
1338 struct super_block *s;
1339 fmode_t mode = FMODE_READ | FMODE_EXCL;
1340 int error = 0;
1341
1342 if (!(flags & SB_RDONLY))
1343 mode |= FMODE_WRITE;
1344
1345 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1346 if (IS_ERR(bdev))
1347 return ERR_CAST(bdev);
1348
1349 /*
1350 * once the super is inserted into the list by sget, s_umount
1351 * will protect the lockfs code from trying to start a snapshot
1352 * while we are mounting
1353 */
1354 mutex_lock(&bdev->bd_fsfreeze_mutex);
1355 if (bdev->bd_fsfreeze_count > 0) {
1356 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1357 error = -EBUSY;
1358 goto error_bdev;
1359 }
1360 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1361 bdev);
1362 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1363 if (IS_ERR(s))
1364 goto error_s;
1365
1366 if (s->s_root) {
1367 if ((flags ^ s->s_flags) & SB_RDONLY) {
1368 deactivate_locked_super(s);
1369 error = -EBUSY;
1370 goto error_bdev;
1371 }
1372
1373 /*
1374 * s_umount nests inside open_mutex during
1375 * __invalidate_device(). blkdev_put() acquires
1376 * open_mutex and can't be called under s_umount. Drop
1377 * s_umount temporarily. This is safe as we're
1378 * holding an active reference.
1379 */
1380 up_write(&s->s_umount);
1381 blkdev_put(bdev, mode);
1382 down_write(&s->s_umount);
1383 } else {
1384 s->s_mode = mode;
1385 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1386 sb_set_blocksize(s, block_size(bdev));
1387 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1388 if (error) {
1389 deactivate_locked_super(s);
1390 goto error;
1391 }
1392
1393 s->s_flags |= SB_ACTIVE;
1394 bdev->bd_super = s;
1395 }
1396
1397 return dget(s->s_root);
1398
1399 error_s:
1400 error = PTR_ERR(s);
1401 error_bdev:
1402 blkdev_put(bdev, mode);
1403 error:
1404 return ERR_PTR(error);
1405 }
1406 EXPORT_SYMBOL_NS(mount_bdev, ANDROID_GKI_VFS_EXPORT_ONLY);
1407
kill_block_super(struct super_block * sb)1408 void kill_block_super(struct super_block *sb)
1409 {
1410 struct block_device *bdev = sb->s_bdev;
1411 fmode_t mode = sb->s_mode;
1412
1413 bdev->bd_super = NULL;
1414 generic_shutdown_super(sb);
1415 sync_blockdev(bdev);
1416 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1417 blkdev_put(bdev, mode | FMODE_EXCL);
1418 }
1419
1420 EXPORT_SYMBOL_NS(kill_block_super, ANDROID_GKI_VFS_EXPORT_ONLY);
1421 #endif
1422
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1423 struct dentry *mount_nodev(struct file_system_type *fs_type,
1424 int flags, void *data,
1425 int (*fill_super)(struct super_block *, void *, int))
1426 {
1427 int error;
1428 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1429
1430 if (IS_ERR(s))
1431 return ERR_CAST(s);
1432
1433 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1434 if (error) {
1435 deactivate_locked_super(s);
1436 return ERR_PTR(error);
1437 }
1438 s->s_flags |= SB_ACTIVE;
1439 return dget(s->s_root);
1440 }
1441 EXPORT_SYMBOL_NS(mount_nodev, ANDROID_GKI_VFS_EXPORT_ONLY);
1442
reconfigure_single(struct super_block * s,int flags,void * data)1443 int reconfigure_single(struct super_block *s,
1444 int flags, void *data)
1445 {
1446 struct fs_context *fc;
1447 int ret;
1448
1449 /* The caller really need to be passing fc down into mount_single(),
1450 * then a chunk of this can be removed. [Bollocks -- AV]
1451 * Better yet, reconfiguration shouldn't happen, but rather the second
1452 * mount should be rejected if the parameters are not compatible.
1453 */
1454 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1455 if (IS_ERR(fc))
1456 return PTR_ERR(fc);
1457
1458 ret = parse_monolithic_mount_data(fc, data);
1459 if (ret < 0)
1460 goto out;
1461
1462 ret = reconfigure_super(fc);
1463 out:
1464 put_fs_context(fc);
1465 return ret;
1466 }
1467
compare_single(struct super_block * s,void * p)1468 static int compare_single(struct super_block *s, void *p)
1469 {
1470 return 1;
1471 }
1472
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1473 struct dentry *mount_single(struct file_system_type *fs_type,
1474 int flags, void *data,
1475 int (*fill_super)(struct super_block *, void *, int))
1476 {
1477 struct super_block *s;
1478 int error;
1479
1480 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1481 if (IS_ERR(s))
1482 return ERR_CAST(s);
1483 if (!s->s_root) {
1484 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1485 if (!error)
1486 s->s_flags |= SB_ACTIVE;
1487 } else {
1488 error = reconfigure_single(s, flags, data);
1489 }
1490 if (unlikely(error)) {
1491 deactivate_locked_super(s);
1492 return ERR_PTR(error);
1493 }
1494 return dget(s->s_root);
1495 }
1496 EXPORT_SYMBOL(mount_single);
1497
1498 /**
1499 * vfs_get_tree - Get the mountable root
1500 * @fc: The superblock configuration context.
1501 *
1502 * The filesystem is invoked to get or create a superblock which can then later
1503 * be used for mounting. The filesystem places a pointer to the root to be
1504 * used for mounting in @fc->root.
1505 */
vfs_get_tree(struct fs_context * fc)1506 int vfs_get_tree(struct fs_context *fc)
1507 {
1508 struct super_block *sb;
1509 int error;
1510
1511 if (fc->root)
1512 return -EBUSY;
1513
1514 /* Get the mountable root in fc->root, with a ref on the root and a ref
1515 * on the superblock.
1516 */
1517 error = fc->ops->get_tree(fc);
1518 if (error < 0)
1519 return error;
1520
1521 if (!fc->root) {
1522 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1523 fc->fs_type->name);
1524 /* We don't know what the locking state of the superblock is -
1525 * if there is a superblock.
1526 */
1527 BUG();
1528 }
1529
1530 sb = fc->root->d_sb;
1531 WARN_ON(!sb->s_bdi);
1532
1533 /*
1534 * Write barrier is for super_cache_count(). We place it before setting
1535 * SB_BORN as the data dependency between the two functions is the
1536 * superblock structure contents that we just set up, not the SB_BORN
1537 * flag.
1538 */
1539 smp_wmb();
1540 sb->s_flags |= SB_BORN;
1541
1542 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1543 if (unlikely(error)) {
1544 fc_drop_locked(fc);
1545 return error;
1546 }
1547
1548 /*
1549 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1550 * but s_maxbytes was an unsigned long long for many releases. Throw
1551 * this warning for a little while to try and catch filesystems that
1552 * violate this rule.
1553 */
1554 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1555 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1556
1557 return 0;
1558 }
1559 EXPORT_SYMBOL(vfs_get_tree);
1560
1561 /*
1562 * Setup private BDI for given superblock. It gets automatically cleaned up
1563 * in generic_shutdown_super().
1564 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1565 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1566 {
1567 struct backing_dev_info *bdi;
1568 int err;
1569 va_list args;
1570
1571 bdi = bdi_alloc(NUMA_NO_NODE);
1572 if (!bdi)
1573 return -ENOMEM;
1574
1575 va_start(args, fmt);
1576 err = bdi_register_va(bdi, fmt, args);
1577 va_end(args);
1578 if (err) {
1579 bdi_put(bdi);
1580 return err;
1581 }
1582 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1583 sb->s_bdi = bdi;
1584
1585 return 0;
1586 }
1587 EXPORT_SYMBOL(super_setup_bdi_name);
1588
1589 /*
1590 * Setup private BDI for given superblock. I gets automatically cleaned up
1591 * in generic_shutdown_super().
1592 */
super_setup_bdi(struct super_block * sb)1593 int super_setup_bdi(struct super_block *sb)
1594 {
1595 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1596
1597 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1598 atomic_long_inc_return(&bdi_seq));
1599 }
1600 EXPORT_SYMBOL(super_setup_bdi);
1601
1602 /**
1603 * sb_wait_write - wait until all writers to given file system finish
1604 * @sb: the super for which we wait
1605 * @level: type of writers we wait for (normal vs page fault)
1606 *
1607 * This function waits until there are no writers of given type to given file
1608 * system.
1609 */
sb_wait_write(struct super_block * sb,int level)1610 static void sb_wait_write(struct super_block *sb, int level)
1611 {
1612 percpu_down_write(sb->s_writers.rw_sem + level-1);
1613 }
1614
1615 /*
1616 * We are going to return to userspace and forget about these locks, the
1617 * ownership goes to the caller of thaw_super() which does unlock().
1618 */
lockdep_sb_freeze_release(struct super_block * sb)1619 static void lockdep_sb_freeze_release(struct super_block *sb)
1620 {
1621 int level;
1622
1623 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1624 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1625 }
1626
1627 /*
1628 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1629 */
lockdep_sb_freeze_acquire(struct super_block * sb)1630 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1631 {
1632 int level;
1633
1634 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1635 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1636 }
1637
sb_freeze_unlock(struct super_block * sb,int level)1638 static void sb_freeze_unlock(struct super_block *sb, int level)
1639 {
1640 for (level--; level >= 0; level--)
1641 percpu_up_write(sb->s_writers.rw_sem + level);
1642 }
1643
1644 /**
1645 * freeze_super - lock the filesystem and force it into a consistent state
1646 * @sb: the super to lock
1647 *
1648 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1649 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1650 * -EBUSY.
1651 *
1652 * During this function, sb->s_writers.frozen goes through these values:
1653 *
1654 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1655 *
1656 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1657 * writes should be blocked, though page faults are still allowed. We wait for
1658 * all writes to complete and then proceed to the next stage.
1659 *
1660 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1661 * but internal fs threads can still modify the filesystem (although they
1662 * should not dirty new pages or inodes), writeback can run etc. After waiting
1663 * for all running page faults we sync the filesystem which will clean all
1664 * dirty pages and inodes (no new dirty pages or inodes can be created when
1665 * sync is running).
1666 *
1667 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1668 * modification are blocked (e.g. XFS preallocation truncation on inode
1669 * reclaim). This is usually implemented by blocking new transactions for
1670 * filesystems that have them and need this additional guard. After all
1671 * internal writers are finished we call ->freeze_fs() to finish filesystem
1672 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1673 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1674 *
1675 * sb->s_writers.frozen is protected by sb->s_umount.
1676 */
freeze_super(struct super_block * sb)1677 int freeze_super(struct super_block *sb)
1678 {
1679 int ret;
1680
1681 atomic_inc(&sb->s_active);
1682 down_write(&sb->s_umount);
1683 if (sb->s_writers.frozen != SB_UNFROZEN) {
1684 deactivate_locked_super(sb);
1685 return -EBUSY;
1686 }
1687
1688 if (!(sb->s_flags & SB_BORN)) {
1689 up_write(&sb->s_umount);
1690 return 0; /* sic - it's "nothing to do" */
1691 }
1692
1693 if (sb_rdonly(sb)) {
1694 /* Nothing to do really... */
1695 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1696 up_write(&sb->s_umount);
1697 return 0;
1698 }
1699
1700 sb->s_writers.frozen = SB_FREEZE_WRITE;
1701 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1702 up_write(&sb->s_umount);
1703 sb_wait_write(sb, SB_FREEZE_WRITE);
1704 down_write(&sb->s_umount);
1705
1706 /* Now we go and block page faults... */
1707 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1708 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1709
1710 /* All writers are done so after syncing there won't be dirty data */
1711 ret = sync_filesystem(sb);
1712 if (ret) {
1713 sb->s_writers.frozen = SB_UNFROZEN;
1714 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1715 wake_up(&sb->s_writers.wait_unfrozen);
1716 deactivate_locked_super(sb);
1717 return ret;
1718 }
1719
1720 /* Now wait for internal filesystem counter */
1721 sb->s_writers.frozen = SB_FREEZE_FS;
1722 sb_wait_write(sb, SB_FREEZE_FS);
1723
1724 if (sb->s_op->freeze_fs) {
1725 ret = sb->s_op->freeze_fs(sb);
1726 if (ret) {
1727 printk(KERN_ERR
1728 "VFS:Filesystem freeze failed\n");
1729 sb->s_writers.frozen = SB_UNFROZEN;
1730 sb_freeze_unlock(sb, SB_FREEZE_FS);
1731 wake_up(&sb->s_writers.wait_unfrozen);
1732 deactivate_locked_super(sb);
1733 return ret;
1734 }
1735 }
1736 /*
1737 * For debugging purposes so that fs can warn if it sees write activity
1738 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1739 */
1740 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1741 lockdep_sb_freeze_release(sb);
1742 up_write(&sb->s_umount);
1743 return 0;
1744 }
1745 EXPORT_SYMBOL(freeze_super);
1746
thaw_super_locked(struct super_block * sb)1747 static int thaw_super_locked(struct super_block *sb)
1748 {
1749 int error;
1750
1751 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1752 up_write(&sb->s_umount);
1753 return -EINVAL;
1754 }
1755
1756 if (sb_rdonly(sb)) {
1757 sb->s_writers.frozen = SB_UNFROZEN;
1758 goto out;
1759 }
1760
1761 lockdep_sb_freeze_acquire(sb);
1762
1763 if (sb->s_op->unfreeze_fs) {
1764 error = sb->s_op->unfreeze_fs(sb);
1765 if (error) {
1766 printk(KERN_ERR
1767 "VFS:Filesystem thaw failed\n");
1768 lockdep_sb_freeze_release(sb);
1769 up_write(&sb->s_umount);
1770 return error;
1771 }
1772 }
1773
1774 sb->s_writers.frozen = SB_UNFROZEN;
1775 sb_freeze_unlock(sb, SB_FREEZE_FS);
1776 out:
1777 wake_up(&sb->s_writers.wait_unfrozen);
1778 deactivate_locked_super(sb);
1779 return 0;
1780 }
1781
1782 /**
1783 * thaw_super -- unlock filesystem
1784 * @sb: the super to thaw
1785 *
1786 * Unlocks the filesystem and marks it writeable again after freeze_super().
1787 */
thaw_super(struct super_block * sb)1788 int thaw_super(struct super_block *sb)
1789 {
1790 down_write(&sb->s_umount);
1791 return thaw_super_locked(sb);
1792 }
1793 EXPORT_SYMBOL(thaw_super);
1794