1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35
36 #include "pnode.h"
37 #include "internal.h"
38
39 /* Maximum number of mounts in a mount namespace */
40 unsigned int sysctl_mount_max __read_mostly = 100000;
41
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46
47 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)48 static int __init set_mhash_entries(char *str)
49 {
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56
57 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)58 static int __init set_mphash_entries(char *str)
59 {
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77
78 struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
84 struct user_namespace *mnt_userns;
85 };
86
87 /* /sys/fs */
88 struct kobject *fs_kobj;
89 EXPORT_SYMBOL_GPL(fs_kobj);
90
91 /*
92 * vfsmount lock may be taken for read to prevent changes to the
93 * vfsmount hash, ie. during mountpoint lookups or walking back
94 * up the tree.
95 *
96 * It should be taken for write in all cases where the vfsmount
97 * tree or hash is modified or when a vfsmount structure is modified.
98 */
99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
100
lock_mount_hash(void)101 static inline void lock_mount_hash(void)
102 {
103 write_seqlock(&mount_lock);
104 }
105
unlock_mount_hash(void)106 static inline void unlock_mount_hash(void)
107 {
108 write_sequnlock(&mount_lock);
109 }
110
m_hash(struct vfsmount * mnt,struct dentry * dentry)111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
112 {
113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 tmp = tmp + (tmp >> m_hash_shift);
116 return &mount_hashtable[tmp & m_hash_mask];
117 }
118
mp_hash(struct dentry * dentry)119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
120 {
121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 tmp = tmp + (tmp >> mp_hash_shift);
123 return &mountpoint_hashtable[tmp & mp_hash_mask];
124 }
125
mnt_alloc_id(struct mount * mnt)126 static int mnt_alloc_id(struct mount *mnt)
127 {
128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129
130 if (res < 0)
131 return res;
132 mnt->mnt_id = res;
133 return 0;
134 }
135
mnt_free_id(struct mount * mnt)136 static void mnt_free_id(struct mount *mnt)
137 {
138 ida_free(&mnt_id_ida, mnt->mnt_id);
139 }
140
141 /*
142 * Allocate a new peer group ID
143 */
mnt_alloc_group_id(struct mount * mnt)144 static int mnt_alloc_group_id(struct mount *mnt)
145 {
146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
147
148 if (res < 0)
149 return res;
150 mnt->mnt_group_id = res;
151 return 0;
152 }
153
154 /*
155 * Release a peer group ID
156 */
mnt_release_group_id(struct mount * mnt)157 void mnt_release_group_id(struct mount *mnt)
158 {
159 ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 mnt->mnt_group_id = 0;
161 }
162
163 /*
164 * vfsmount lock must be held for read
165 */
mnt_add_count(struct mount * mnt,int n)166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
175 }
176
177 /*
178 * vfsmount lock must be held for write
179 */
mnt_get_count(struct mount * mnt)180 int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
194 }
195
alloc_vfsmnt(const char * name)196 static struct mount *alloc_vfsmnt(const char *name)
197 {
198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 if (mnt) {
200 int err;
201
202 err = mnt_alloc_id(mnt);
203 if (err)
204 goto out_free_cache;
205
206 if (name) {
207 mnt->mnt_devname = kstrdup_const(name,
208 GFP_KERNEL_ACCOUNT);
209 if (!mnt->mnt_devname)
210 goto out_free_id;
211 }
212
213 #ifdef CONFIG_SMP
214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 if (!mnt->mnt_pcp)
216 goto out_free_devname;
217
218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
219 #else
220 mnt->mnt_count = 1;
221 mnt->mnt_writers = 0;
222 #endif
223
224 INIT_HLIST_NODE(&mnt->mnt_hash);
225 INIT_LIST_HEAD(&mnt->mnt_child);
226 INIT_LIST_HEAD(&mnt->mnt_mounts);
227 INIT_LIST_HEAD(&mnt->mnt_list);
228 INIT_LIST_HEAD(&mnt->mnt_expire);
229 INIT_LIST_HEAD(&mnt->mnt_share);
230 INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 INIT_LIST_HEAD(&mnt->mnt_slave);
232 INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 INIT_LIST_HEAD(&mnt->mnt_umounting);
234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 mnt->mnt.mnt_userns = &init_user_ns;
236 }
237 return mnt;
238
239 #ifdef CONFIG_SMP
240 out_free_devname:
241 kfree_const(mnt->mnt_devname);
242 #endif
243 out_free_id:
244 mnt_free_id(mnt);
245 out_free_cache:
246 kmem_cache_free(mnt_cache, mnt);
247 return NULL;
248 }
249
250 /*
251 * Most r/o checks on a fs are for operations that take
252 * discrete amounts of time, like a write() or unlink().
253 * We must keep track of when those operations start
254 * (for permission checks) and when they end, so that
255 * we can determine when writes are able to occur to
256 * a filesystem.
257 */
258 /*
259 * __mnt_is_readonly: check whether a mount is read-only
260 * @mnt: the mount to check for its write status
261 *
262 * This shouldn't be used directly ouside of the VFS.
263 * It does not guarantee that the filesystem will stay
264 * r/w, just that it is right *now*. This can not and
265 * should not be used in place of IS_RDONLY(inode).
266 * mnt_want/drop_write() will _keep_ the filesystem
267 * r/w.
268 */
__mnt_is_readonly(struct vfsmount * mnt)269 bool __mnt_is_readonly(struct vfsmount *mnt)
270 {
271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
mnt_inc_writers(struct mount * mnt)275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 mnt->mnt_writers++;
281 #endif
282 }
283
mnt_dec_writers(struct mount * mnt)284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers--;
290 #endif
291 }
292
mnt_get_writers(struct mount * mnt)293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 unsigned int count = 0;
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 }
302
303 return count;
304 #else
305 return mnt->mnt_writers;
306 #endif
307 }
308
mnt_is_readonly(struct vfsmount * mnt)309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316 }
317
318 /*
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
323 */
324 /**
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
327 *
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
333 */
__mnt_want_write(struct vfsmount * m)334 int __mnt_want_write(struct vfsmount *m)
335 {
336 struct mount *mnt = real_mount(m);
337 int ret = 0;
338
339 preempt_disable();
340 mnt_inc_writers(mnt);
341 /*
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
347 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
355 if (mnt_is_readonly(m)) {
356 mnt_dec_writers(mnt);
357 ret = -EROFS;
358 }
359 preempt_enable();
360
361 return ret;
362 }
363
364 /**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
mnt_want_write(struct vfsmount * m)373 int mnt_want_write(struct vfsmount *m)
374 {
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384
385 /**
386 * __mnt_want_write_file - get write access to a file's mount
387 * @file: the file who's mount on which to take a write
388 *
389 * This is like __mnt_want_write, but if the file is already open for writing it
390 * skips incrementing mnt_writers (since the open file already has a reference)
391 * and instead only does the check for emergency r/o remounts. This must be
392 * paired with __mnt_drop_write_file.
393 */
__mnt_want_write_file(struct file * file)394 int __mnt_want_write_file(struct file *file)
395 {
396 if (file->f_mode & FMODE_WRITER) {
397 /*
398 * Superblock may have become readonly while there are still
399 * writable fd's, e.g. due to a fs error with errors=remount-ro
400 */
401 if (__mnt_is_readonly(file->f_path.mnt))
402 return -EROFS;
403 return 0;
404 }
405 return __mnt_want_write(file->f_path.mnt);
406 }
407
408 /**
409 * mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
412 * This is like mnt_want_write, but if the file is already open for writing it
413 * skips incrementing mnt_writers (since the open file already has a reference)
414 * and instead only does the freeze protection and the check for emergency r/o
415 * remounts. This must be paired with mnt_drop_write_file.
416 */
mnt_want_write_file(struct file * file)417 int mnt_want_write_file(struct file *file)
418 {
419 int ret;
420
421 sb_start_write(file_inode(file)->i_sb);
422 ret = __mnt_want_write_file(file);
423 if (ret)
424 sb_end_write(file_inode(file)->i_sb);
425 return ret;
426 }
427 EXPORT_SYMBOL_NS_GPL(mnt_want_write_file, ANDROID_GKI_VFS_EXPORT_ONLY);
428
429 /**
430 * __mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done
434 * performing writes to it. Must be matched with
435 * __mnt_want_write() call above.
436 */
__mnt_drop_write(struct vfsmount * mnt)437 void __mnt_drop_write(struct vfsmount *mnt)
438 {
439 preempt_disable();
440 mnt_dec_writers(real_mount(mnt));
441 preempt_enable();
442 }
443
444 /**
445 * mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done performing writes to it and
449 * also allows filesystem to be frozen again. Must be matched with
450 * mnt_want_write() call above.
451 */
mnt_drop_write(struct vfsmount * mnt)452 void mnt_drop_write(struct vfsmount *mnt)
453 {
454 __mnt_drop_write(mnt);
455 sb_end_write(mnt->mnt_sb);
456 }
457 EXPORT_SYMBOL_GPL(mnt_drop_write);
458
__mnt_drop_write_file(struct file * file)459 void __mnt_drop_write_file(struct file *file)
460 {
461 if (!(file->f_mode & FMODE_WRITER))
462 __mnt_drop_write(file->f_path.mnt);
463 }
464
mnt_drop_write_file(struct file * file)465 void mnt_drop_write_file(struct file *file)
466 {
467 __mnt_drop_write_file(file);
468 sb_end_write(file_inode(file)->i_sb);
469 }
470 EXPORT_SYMBOL_NS(mnt_drop_write_file, ANDROID_GKI_VFS_EXPORT_ONLY);
471
mnt_hold_writers(struct mount * mnt)472 static inline int mnt_hold_writers(struct mount *mnt)
473 {
474 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
475 /*
476 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
477 * should be visible before we do.
478 */
479 smp_mb();
480
481 /*
482 * With writers on hold, if this value is zero, then there are
483 * definitely no active writers (although held writers may subsequently
484 * increment the count, they'll have to wait, and decrement it after
485 * seeing MNT_READONLY).
486 *
487 * It is OK to have counter incremented on one CPU and decremented on
488 * another: the sum will add up correctly. The danger would be when we
489 * sum up each counter, if we read a counter before it is incremented,
490 * but then read another CPU's count which it has been subsequently
491 * decremented from -- we would see more decrements than we should.
492 * MNT_WRITE_HOLD protects against this scenario, because
493 * mnt_want_write first increments count, then smp_mb, then spins on
494 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
495 * we're counting up here.
496 */
497 if (mnt_get_writers(mnt) > 0)
498 return -EBUSY;
499
500 return 0;
501 }
502
mnt_unhold_writers(struct mount * mnt)503 static inline void mnt_unhold_writers(struct mount *mnt)
504 {
505 /*
506 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
507 * that become unheld will see MNT_READONLY.
508 */
509 smp_wmb();
510 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
511 }
512
mnt_make_readonly(struct mount * mnt)513 static int mnt_make_readonly(struct mount *mnt)
514 {
515 int ret;
516
517 ret = mnt_hold_writers(mnt);
518 if (!ret)
519 mnt->mnt.mnt_flags |= MNT_READONLY;
520 mnt_unhold_writers(mnt);
521 return ret;
522 }
523
sb_prepare_remount_readonly(struct super_block * sb)524 int sb_prepare_remount_readonly(struct super_block *sb)
525 {
526 struct mount *mnt;
527 int err = 0;
528
529 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
530 if (atomic_long_read(&sb->s_remove_count))
531 return -EBUSY;
532
533 lock_mount_hash();
534 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
536 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
537 smp_mb();
538 if (mnt_get_writers(mnt) > 0) {
539 err = -EBUSY;
540 break;
541 }
542 }
543 }
544 if (!err && atomic_long_read(&sb->s_remove_count))
545 err = -EBUSY;
546
547 if (!err) {
548 sb->s_readonly_remount = 1;
549 smp_wmb();
550 }
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
553 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
554 }
555 unlock_mount_hash();
556
557 return err;
558 }
559
free_vfsmnt(struct mount * mnt)560 static void free_vfsmnt(struct mount *mnt)
561 {
562 struct user_namespace *mnt_userns;
563
564 mnt_userns = mnt_user_ns(&mnt->mnt);
565 if (!initial_idmapping(mnt_userns))
566 put_user_ns(mnt_userns);
567 kfree_const(mnt->mnt_devname);
568 #ifdef CONFIG_SMP
569 free_percpu(mnt->mnt_pcp);
570 #endif
571 kmem_cache_free(mnt_cache, mnt);
572 }
573
delayed_free_vfsmnt(struct rcu_head * head)574 static void delayed_free_vfsmnt(struct rcu_head *head)
575 {
576 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
577 }
578
579 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)580 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
581 {
582 struct mount *mnt;
583 if (read_seqretry(&mount_lock, seq))
584 return 1;
585 if (bastard == NULL)
586 return 0;
587 mnt = real_mount(bastard);
588 mnt_add_count(mnt, 1);
589 smp_mb(); // see mntput_no_expire()
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return 0;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return 1;
595 }
596 lock_mount_hash();
597 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
598 mnt_add_count(mnt, -1);
599 unlock_mount_hash();
600 return 1;
601 }
602 unlock_mount_hash();
603 /* caller will mntput() */
604 return -1;
605 }
606
607 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)608 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
609 {
610 int res = __legitimize_mnt(bastard, seq);
611 if (likely(!res))
612 return true;
613 if (unlikely(res < 0)) {
614 rcu_read_unlock();
615 mntput(bastard);
616 rcu_read_lock();
617 }
618 return false;
619 }
620
621 /*
622 * find the first mount at @dentry on vfsmount @mnt.
623 * call under rcu_read_lock()
624 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)625 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
626 {
627 struct hlist_head *head = m_hash(mnt, dentry);
628 struct mount *p;
629
630 hlist_for_each_entry_rcu(p, head, mnt_hash)
631 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
632 return p;
633 return NULL;
634 }
635
636 /*
637 * lookup_mnt - Return the first child mount mounted at path
638 *
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
641 *
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
645 *
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
649 *
650 * lookup_mnt takes a reference to the found vfsmount.
651 */
lookup_mnt(const struct path * path)652 struct vfsmount *lookup_mnt(const struct path *path)
653 {
654 struct mount *child_mnt;
655 struct vfsmount *m;
656 unsigned seq;
657
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
666 }
667
lock_ns_list(struct mnt_namespace * ns)668 static inline void lock_ns_list(struct mnt_namespace *ns)
669 {
670 spin_lock(&ns->ns_lock);
671 }
672
unlock_ns_list(struct mnt_namespace * ns)673 static inline void unlock_ns_list(struct mnt_namespace *ns)
674 {
675 spin_unlock(&ns->ns_lock);
676 }
677
mnt_is_cursor(struct mount * mnt)678 static inline bool mnt_is_cursor(struct mount *mnt)
679 {
680 return mnt->mnt.mnt_flags & MNT_CURSOR;
681 }
682
683 /*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
__is_local_mountpoint(struct dentry * dentry)698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 down_read(&namespace_sem);
705 lock_ns_list(ns);
706 list_for_each_entry(mnt, &ns->list, mnt_list) {
707 if (mnt_is_cursor(mnt))
708 continue;
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 unlock_ns_list(ns);
714 up_read(&namespace_sem);
715
716 return is_covered;
717 }
718
lookup_mountpoint(struct dentry * dentry)719 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 {
721 struct hlist_head *chain = mp_hash(dentry);
722 struct mountpoint *mp;
723
724 hlist_for_each_entry(mp, chain, m_hash) {
725 if (mp->m_dentry == dentry) {
726 mp->m_count++;
727 return mp;
728 }
729 }
730 return NULL;
731 }
732
get_mountpoint(struct dentry * dentry)733 static struct mountpoint *get_mountpoint(struct dentry *dentry)
734 {
735 struct mountpoint *mp, *new = NULL;
736 int ret;
737
738 if (d_mountpoint(dentry)) {
739 /* might be worth a WARN_ON() */
740 if (d_unlinked(dentry))
741 return ERR_PTR(-ENOENT);
742 mountpoint:
743 read_seqlock_excl(&mount_lock);
744 mp = lookup_mountpoint(dentry);
745 read_sequnlock_excl(&mount_lock);
746 if (mp)
747 goto done;
748 }
749
750 if (!new)
751 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 if (!new)
753 return ERR_PTR(-ENOMEM);
754
755
756 /* Exactly one processes may set d_mounted */
757 ret = d_set_mounted(dentry);
758
759 /* Someone else set d_mounted? */
760 if (ret == -EBUSY)
761 goto mountpoint;
762
763 /* The dentry is not available as a mountpoint? */
764 mp = ERR_PTR(ret);
765 if (ret)
766 goto done;
767
768 /* Add the new mountpoint to the hash table */
769 read_seqlock_excl(&mount_lock);
770 new->m_dentry = dget(dentry);
771 new->m_count = 1;
772 hlist_add_head(&new->m_hash, mp_hash(dentry));
773 INIT_HLIST_HEAD(&new->m_list);
774 read_sequnlock_excl(&mount_lock);
775
776 mp = new;
777 new = NULL;
778 done:
779 kfree(new);
780 return mp;
781 }
782
783 /*
784 * vfsmount lock must be held. Additionally, the caller is responsible
785 * for serializing calls for given disposal list.
786 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)787 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
788 {
789 if (!--mp->m_count) {
790 struct dentry *dentry = mp->m_dentry;
791 BUG_ON(!hlist_empty(&mp->m_list));
792 spin_lock(&dentry->d_lock);
793 dentry->d_flags &= ~DCACHE_MOUNTED;
794 spin_unlock(&dentry->d_lock);
795 dput_to_list(dentry, list);
796 hlist_del(&mp->m_hash);
797 kfree(mp);
798 }
799 }
800
801 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)802 static void put_mountpoint(struct mountpoint *mp)
803 {
804 __put_mountpoint(mp, &ex_mountpoints);
805 }
806
check_mnt(struct mount * mnt)807 static inline int check_mnt(struct mount *mnt)
808 {
809 return mnt->mnt_ns == current->nsproxy->mnt_ns;
810 }
811
812 /*
813 * vfsmount lock must be held for write
814 */
touch_mnt_namespace(struct mnt_namespace * ns)815 static void touch_mnt_namespace(struct mnt_namespace *ns)
816 {
817 if (ns) {
818 ns->event = ++event;
819 wake_up_interruptible(&ns->poll);
820 }
821 }
822
823 /*
824 * vfsmount lock must be held for write
825 */
__touch_mnt_namespace(struct mnt_namespace * ns)826 static void __touch_mnt_namespace(struct mnt_namespace *ns)
827 {
828 if (ns && ns->event != event) {
829 ns->event = event;
830 wake_up_interruptible(&ns->poll);
831 }
832 }
833
834 /*
835 * vfsmount lock must be held for write
836 */
unhash_mnt(struct mount * mnt)837 static struct mountpoint *unhash_mnt(struct mount *mnt)
838 {
839 struct mountpoint *mp;
840 mnt->mnt_parent = mnt;
841 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
842 list_del_init(&mnt->mnt_child);
843 hlist_del_init_rcu(&mnt->mnt_hash);
844 hlist_del_init(&mnt->mnt_mp_list);
845 mp = mnt->mnt_mp;
846 mnt->mnt_mp = NULL;
847 return mp;
848 }
849
850 /*
851 * vfsmount lock must be held for write
852 */
umount_mnt(struct mount * mnt)853 static void umount_mnt(struct mount *mnt)
854 {
855 put_mountpoint(unhash_mnt(mnt));
856 }
857
858 /*
859 * vfsmount lock must be held for write
860 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)861 void mnt_set_mountpoint(struct mount *mnt,
862 struct mountpoint *mp,
863 struct mount *child_mnt)
864 {
865 mp->m_count++;
866 mnt_add_count(mnt, 1); /* essentially, that's mntget */
867 child_mnt->mnt_mountpoint = mp->m_dentry;
868 child_mnt->mnt_parent = mnt;
869 child_mnt->mnt_mp = mp;
870 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
871 }
872
__attach_mnt(struct mount * mnt,struct mount * parent)873 static void __attach_mnt(struct mount *mnt, struct mount *parent)
874 {
875 hlist_add_head_rcu(&mnt->mnt_hash,
876 m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
878 }
879
880 /*
881 * vfsmount lock must be held for write
882 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)883 static void attach_mnt(struct mount *mnt,
884 struct mount *parent,
885 struct mountpoint *mp)
886 {
887 mnt_set_mountpoint(parent, mp, mnt);
888 __attach_mnt(mnt, parent);
889 }
890
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
892 {
893 struct mountpoint *old_mp = mnt->mnt_mp;
894 struct mount *old_parent = mnt->mnt_parent;
895
896 list_del_init(&mnt->mnt_child);
897 hlist_del_init(&mnt->mnt_mp_list);
898 hlist_del_init_rcu(&mnt->mnt_hash);
899
900 attach_mnt(mnt, parent, mp);
901
902 put_mountpoint(old_mp);
903 mnt_add_count(old_parent, -1);
904 }
905
906 /*
907 * vfsmount lock must be held for write
908 */
commit_tree(struct mount * mnt)909 static void commit_tree(struct mount *mnt)
910 {
911 struct mount *parent = mnt->mnt_parent;
912 struct mount *m;
913 LIST_HEAD(head);
914 struct mnt_namespace *n = parent->mnt_ns;
915
916 BUG_ON(parent == mnt);
917
918 list_add_tail(&head, &mnt->mnt_list);
919 list_for_each_entry(m, &head, mnt_list)
920 m->mnt_ns = n;
921
922 list_splice(&head, n->list.prev);
923
924 n->mounts += n->pending_mounts;
925 n->pending_mounts = 0;
926
927 __attach_mnt(mnt, parent);
928 touch_mnt_namespace(n);
929 }
930
next_mnt(struct mount * p,struct mount * root)931 static struct mount *next_mnt(struct mount *p, struct mount *root)
932 {
933 struct list_head *next = p->mnt_mounts.next;
934 if (next == &p->mnt_mounts) {
935 while (1) {
936 if (p == root)
937 return NULL;
938 next = p->mnt_child.next;
939 if (next != &p->mnt_parent->mnt_mounts)
940 break;
941 p = p->mnt_parent;
942 }
943 }
944 return list_entry(next, struct mount, mnt_child);
945 }
946
skip_mnt_tree(struct mount * p)947 static struct mount *skip_mnt_tree(struct mount *p)
948 {
949 struct list_head *prev = p->mnt_mounts.prev;
950 while (prev != &p->mnt_mounts) {
951 p = list_entry(prev, struct mount, mnt_child);
952 prev = p->mnt_mounts.prev;
953 }
954 return p;
955 }
956
957 /**
958 * vfs_create_mount - Create a mount for a configured superblock
959 * @fc: The configuration context with the superblock attached
960 *
961 * Create a mount to an already configured superblock. If necessary, the
962 * caller should invoke vfs_get_tree() before calling this.
963 *
964 * Note that this does not attach the mount to anything.
965 */
vfs_create_mount(struct fs_context * fc)966 struct vfsmount *vfs_create_mount(struct fs_context *fc)
967 {
968 struct mount *mnt;
969 struct user_namespace *fs_userns;
970
971 if (!fc->root)
972 return ERR_PTR(-EINVAL);
973
974 mnt = alloc_vfsmnt(fc->source ?: "none");
975 if (!mnt)
976 return ERR_PTR(-ENOMEM);
977
978 if (fc->sb_flags & SB_KERNMOUNT)
979 mnt->mnt.mnt_flags = MNT_INTERNAL;
980
981 atomic_inc(&fc->root->d_sb->s_active);
982 mnt->mnt.mnt_sb = fc->root->d_sb;
983 mnt->mnt.mnt_root = dget(fc->root);
984 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
985 mnt->mnt_parent = mnt;
986
987 fs_userns = mnt->mnt.mnt_sb->s_user_ns;
988 if (!initial_idmapping(fs_userns))
989 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
990
991 lock_mount_hash();
992 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
993 unlock_mount_hash();
994 return &mnt->mnt;
995 }
996 EXPORT_SYMBOL(vfs_create_mount);
997
fc_mount(struct fs_context * fc)998 struct vfsmount *fc_mount(struct fs_context *fc)
999 {
1000 int err = vfs_get_tree(fc);
1001 if (!err) {
1002 up_write(&fc->root->d_sb->s_umount);
1003 return vfs_create_mount(fc);
1004 }
1005 return ERR_PTR(err);
1006 }
1007 EXPORT_SYMBOL(fc_mount);
1008
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1009 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1010 int flags, const char *name,
1011 void *data)
1012 {
1013 struct fs_context *fc;
1014 struct vfsmount *mnt;
1015 int ret = 0;
1016
1017 if (!type)
1018 return ERR_PTR(-EINVAL);
1019
1020 fc = fs_context_for_mount(type, flags);
1021 if (IS_ERR(fc))
1022 return ERR_CAST(fc);
1023
1024 if (name)
1025 ret = vfs_parse_fs_string(fc, "source",
1026 name, strlen(name));
1027 if (!ret)
1028 ret = parse_monolithic_mount_data(fc, data);
1029 if (!ret)
1030 mnt = fc_mount(fc);
1031 else
1032 mnt = ERR_PTR(ret);
1033
1034 put_fs_context(fc);
1035 return mnt;
1036 }
1037 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1038
1039 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1040 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1041 const char *name, void *data)
1042 {
1043 /* Until it is worked out how to pass the user namespace
1044 * through from the parent mount to the submount don't support
1045 * unprivileged mounts with submounts.
1046 */
1047 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1048 return ERR_PTR(-EPERM);
1049
1050 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1051 }
1052 EXPORT_SYMBOL_GPL(vfs_submount);
1053
clone_mnt(struct mount * old,struct dentry * root,int flag)1054 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1055 int flag)
1056 {
1057 struct super_block *sb = old->mnt.mnt_sb;
1058 struct mount *mnt;
1059 int err;
1060
1061 mnt = alloc_vfsmnt(old->mnt_devname);
1062 if (!mnt)
1063 return ERR_PTR(-ENOMEM);
1064
1065 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1066 mnt->mnt_group_id = 0; /* not a peer of original */
1067 else
1068 mnt->mnt_group_id = old->mnt_group_id;
1069
1070 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1071 err = mnt_alloc_group_id(mnt);
1072 if (err)
1073 goto out_free;
1074 }
1075
1076 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1077 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1078
1079 atomic_inc(&sb->s_active);
1080 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1081 if (!initial_idmapping(mnt->mnt.mnt_userns))
1082 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1083 mnt->mnt.mnt_sb = sb;
1084 mnt->mnt.mnt_root = dget(root);
1085 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1086 mnt->mnt_parent = mnt;
1087 lock_mount_hash();
1088 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1089 unlock_mount_hash();
1090
1091 if ((flag & CL_SLAVE) ||
1092 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1093 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1094 mnt->mnt_master = old;
1095 CLEAR_MNT_SHARED(mnt);
1096 } else if (!(flag & CL_PRIVATE)) {
1097 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1098 list_add(&mnt->mnt_share, &old->mnt_share);
1099 if (IS_MNT_SLAVE(old))
1100 list_add(&mnt->mnt_slave, &old->mnt_slave);
1101 mnt->mnt_master = old->mnt_master;
1102 } else {
1103 CLEAR_MNT_SHARED(mnt);
1104 }
1105 if (flag & CL_MAKE_SHARED)
1106 set_mnt_shared(mnt);
1107
1108 /* stick the duplicate mount on the same expiry list
1109 * as the original if that was on one */
1110 if (flag & CL_EXPIRE) {
1111 if (!list_empty(&old->mnt_expire))
1112 list_add(&mnt->mnt_expire, &old->mnt_expire);
1113 }
1114
1115 return mnt;
1116
1117 out_free:
1118 mnt_free_id(mnt);
1119 free_vfsmnt(mnt);
1120 return ERR_PTR(err);
1121 }
1122
cleanup_mnt(struct mount * mnt)1123 static void cleanup_mnt(struct mount *mnt)
1124 {
1125 struct hlist_node *p;
1126 struct mount *m;
1127 /*
1128 * The warning here probably indicates that somebody messed
1129 * up a mnt_want/drop_write() pair. If this happens, the
1130 * filesystem was probably unable to make r/w->r/o transitions.
1131 * The locking used to deal with mnt_count decrement provides barriers,
1132 * so mnt_get_writers() below is safe.
1133 */
1134 WARN_ON(mnt_get_writers(mnt));
1135 if (unlikely(mnt->mnt_pins.first))
1136 mnt_pin_kill(mnt);
1137 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1138 hlist_del(&m->mnt_umount);
1139 mntput(&m->mnt);
1140 }
1141 fsnotify_vfsmount_delete(&mnt->mnt);
1142 dput(mnt->mnt.mnt_root);
1143 deactivate_super(mnt->mnt.mnt_sb);
1144 mnt_free_id(mnt);
1145 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1146 }
1147
__cleanup_mnt(struct rcu_head * head)1148 static void __cleanup_mnt(struct rcu_head *head)
1149 {
1150 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1151 }
1152
1153 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1154 static void delayed_mntput(struct work_struct *unused)
1155 {
1156 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1157 struct mount *m, *t;
1158
1159 llist_for_each_entry_safe(m, t, node, mnt_llist)
1160 cleanup_mnt(m);
1161 }
1162 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1163
mntput_no_expire(struct mount * mnt)1164 static void mntput_no_expire(struct mount *mnt)
1165 {
1166 LIST_HEAD(list);
1167 int count;
1168
1169 rcu_read_lock();
1170 if (likely(READ_ONCE(mnt->mnt_ns))) {
1171 /*
1172 * Since we don't do lock_mount_hash() here,
1173 * ->mnt_ns can change under us. However, if it's
1174 * non-NULL, then there's a reference that won't
1175 * be dropped until after an RCU delay done after
1176 * turning ->mnt_ns NULL. So if we observe it
1177 * non-NULL under rcu_read_lock(), the reference
1178 * we are dropping is not the final one.
1179 */
1180 mnt_add_count(mnt, -1);
1181 rcu_read_unlock();
1182 return;
1183 }
1184 lock_mount_hash();
1185 /*
1186 * make sure that if __legitimize_mnt() has not seen us grab
1187 * mount_lock, we'll see their refcount increment here.
1188 */
1189 smp_mb();
1190 mnt_add_count(mnt, -1);
1191 count = mnt_get_count(mnt);
1192 if (count != 0) {
1193 WARN_ON(count < 0);
1194 rcu_read_unlock();
1195 unlock_mount_hash();
1196 return;
1197 }
1198 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1199 rcu_read_unlock();
1200 unlock_mount_hash();
1201 return;
1202 }
1203 mnt->mnt.mnt_flags |= MNT_DOOMED;
1204 rcu_read_unlock();
1205
1206 list_del(&mnt->mnt_instance);
1207
1208 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1209 struct mount *p, *tmp;
1210 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1211 __put_mountpoint(unhash_mnt(p), &list);
1212 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1213 }
1214 }
1215 unlock_mount_hash();
1216 shrink_dentry_list(&list);
1217
1218 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1219 struct task_struct *task = current;
1220 if (likely(!(task->flags & PF_KTHREAD))) {
1221 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1222 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1223 return;
1224 }
1225 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1226 schedule_delayed_work(&delayed_mntput_work, 1);
1227 return;
1228 }
1229 cleanup_mnt(mnt);
1230 }
1231
mntput(struct vfsmount * mnt)1232 void mntput(struct vfsmount *mnt)
1233 {
1234 if (mnt) {
1235 struct mount *m = real_mount(mnt);
1236 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1237 if (unlikely(m->mnt_expiry_mark))
1238 m->mnt_expiry_mark = 0;
1239 mntput_no_expire(m);
1240 }
1241 }
1242 EXPORT_SYMBOL(mntput);
1243
mntget(struct vfsmount * mnt)1244 struct vfsmount *mntget(struct vfsmount *mnt)
1245 {
1246 if (mnt)
1247 mnt_add_count(real_mount(mnt), 1);
1248 return mnt;
1249 }
1250 EXPORT_SYMBOL_NS_GPL(mntget, ANDROID_GKI_VFS_EXPORT_ONLY);
1251
1252 /**
1253 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1254 * @path: path to check
1255 *
1256 * d_mountpoint() can only be used reliably to establish if a dentry is
1257 * not mounted in any namespace and that common case is handled inline.
1258 * d_mountpoint() isn't aware of the possibility there may be multiple
1259 * mounts using a given dentry in a different namespace. This function
1260 * checks if the passed in path is a mountpoint rather than the dentry
1261 * alone.
1262 */
path_is_mountpoint(const struct path * path)1263 bool path_is_mountpoint(const struct path *path)
1264 {
1265 unsigned seq;
1266 bool res;
1267
1268 if (!d_mountpoint(path->dentry))
1269 return false;
1270
1271 rcu_read_lock();
1272 do {
1273 seq = read_seqbegin(&mount_lock);
1274 res = __path_is_mountpoint(path);
1275 } while (read_seqretry(&mount_lock, seq));
1276 rcu_read_unlock();
1277
1278 return res;
1279 }
1280 EXPORT_SYMBOL(path_is_mountpoint);
1281
mnt_clone_internal(const struct path * path)1282 struct vfsmount *mnt_clone_internal(const struct path *path)
1283 {
1284 struct mount *p;
1285 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1286 if (IS_ERR(p))
1287 return ERR_CAST(p);
1288 p->mnt.mnt_flags |= MNT_INTERNAL;
1289 return &p->mnt;
1290 }
1291
1292 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1293 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1294 struct list_head *p)
1295 {
1296 struct mount *mnt, *ret = NULL;
1297
1298 lock_ns_list(ns);
1299 list_for_each_continue(p, &ns->list) {
1300 mnt = list_entry(p, typeof(*mnt), mnt_list);
1301 if (!mnt_is_cursor(mnt)) {
1302 ret = mnt;
1303 break;
1304 }
1305 }
1306 unlock_ns_list(ns);
1307
1308 return ret;
1309 }
1310
1311 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1312 static void *m_start(struct seq_file *m, loff_t *pos)
1313 {
1314 struct proc_mounts *p = m->private;
1315 struct list_head *prev;
1316
1317 down_read(&namespace_sem);
1318 if (!*pos) {
1319 prev = &p->ns->list;
1320 } else {
1321 prev = &p->cursor.mnt_list;
1322
1323 /* Read after we'd reached the end? */
1324 if (list_empty(prev))
1325 return NULL;
1326 }
1327
1328 return mnt_list_next(p->ns, prev);
1329 }
1330
m_next(struct seq_file * m,void * v,loff_t * pos)1331 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1332 {
1333 struct proc_mounts *p = m->private;
1334 struct mount *mnt = v;
1335
1336 ++*pos;
1337 return mnt_list_next(p->ns, &mnt->mnt_list);
1338 }
1339
m_stop(struct seq_file * m,void * v)1340 static void m_stop(struct seq_file *m, void *v)
1341 {
1342 struct proc_mounts *p = m->private;
1343 struct mount *mnt = v;
1344
1345 lock_ns_list(p->ns);
1346 if (mnt)
1347 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1348 else
1349 list_del_init(&p->cursor.mnt_list);
1350 unlock_ns_list(p->ns);
1351 up_read(&namespace_sem);
1352 }
1353
m_show(struct seq_file * m,void * v)1354 static int m_show(struct seq_file *m, void *v)
1355 {
1356 struct proc_mounts *p = m->private;
1357 struct mount *r = v;
1358 return p->show(m, &r->mnt);
1359 }
1360
1361 const struct seq_operations mounts_op = {
1362 .start = m_start,
1363 .next = m_next,
1364 .stop = m_stop,
1365 .show = m_show,
1366 };
1367
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1368 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1369 {
1370 down_read(&namespace_sem);
1371 lock_ns_list(ns);
1372 list_del(&cursor->mnt_list);
1373 unlock_ns_list(ns);
1374 up_read(&namespace_sem);
1375 }
1376 #endif /* CONFIG_PROC_FS */
1377
1378 /**
1379 * may_umount_tree - check if a mount tree is busy
1380 * @m: root of mount tree
1381 *
1382 * This is called to check if a tree of mounts has any
1383 * open files, pwds, chroots or sub mounts that are
1384 * busy.
1385 */
may_umount_tree(struct vfsmount * m)1386 int may_umount_tree(struct vfsmount *m)
1387 {
1388 struct mount *mnt = real_mount(m);
1389 int actual_refs = 0;
1390 int minimum_refs = 0;
1391 struct mount *p;
1392 BUG_ON(!m);
1393
1394 /* write lock needed for mnt_get_count */
1395 lock_mount_hash();
1396 for (p = mnt; p; p = next_mnt(p, mnt)) {
1397 actual_refs += mnt_get_count(p);
1398 minimum_refs += 2;
1399 }
1400 unlock_mount_hash();
1401
1402 if (actual_refs > minimum_refs)
1403 return 0;
1404
1405 return 1;
1406 }
1407
1408 EXPORT_SYMBOL(may_umount_tree);
1409
1410 /**
1411 * may_umount - check if a mount point is busy
1412 * @mnt: root of mount
1413 *
1414 * This is called to check if a mount point has any
1415 * open files, pwds, chroots or sub mounts. If the
1416 * mount has sub mounts this will return busy
1417 * regardless of whether the sub mounts are busy.
1418 *
1419 * Doesn't take quota and stuff into account. IOW, in some cases it will
1420 * give false negatives. The main reason why it's here is that we need
1421 * a non-destructive way to look for easily umountable filesystems.
1422 */
may_umount(struct vfsmount * mnt)1423 int may_umount(struct vfsmount *mnt)
1424 {
1425 int ret = 1;
1426 down_read(&namespace_sem);
1427 lock_mount_hash();
1428 if (propagate_mount_busy(real_mount(mnt), 2))
1429 ret = 0;
1430 unlock_mount_hash();
1431 up_read(&namespace_sem);
1432 return ret;
1433 }
1434
1435 EXPORT_SYMBOL(may_umount);
1436
namespace_unlock(void)1437 static void namespace_unlock(void)
1438 {
1439 struct hlist_head head;
1440 struct hlist_node *p;
1441 struct mount *m;
1442 LIST_HEAD(list);
1443
1444 hlist_move_list(&unmounted, &head);
1445 list_splice_init(&ex_mountpoints, &list);
1446
1447 up_write(&namespace_sem);
1448
1449 shrink_dentry_list(&list);
1450
1451 if (likely(hlist_empty(&head)))
1452 return;
1453
1454 synchronize_rcu_expedited();
1455
1456 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1457 hlist_del(&m->mnt_umount);
1458 mntput(&m->mnt);
1459 }
1460 }
1461
namespace_lock(void)1462 static inline void namespace_lock(void)
1463 {
1464 down_write(&namespace_sem);
1465 }
1466
1467 enum umount_tree_flags {
1468 UMOUNT_SYNC = 1,
1469 UMOUNT_PROPAGATE = 2,
1470 UMOUNT_CONNECTED = 4,
1471 };
1472
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1473 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 /* Leaving mounts connected is only valid for lazy umounts */
1476 if (how & UMOUNT_SYNC)
1477 return true;
1478
1479 /* A mount without a parent has nothing to be connected to */
1480 if (!mnt_has_parent(mnt))
1481 return true;
1482
1483 /* Because the reference counting rules change when mounts are
1484 * unmounted and connected, umounted mounts may not be
1485 * connected to mounted mounts.
1486 */
1487 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1488 return true;
1489
1490 /* Has it been requested that the mount remain connected? */
1491 if (how & UMOUNT_CONNECTED)
1492 return false;
1493
1494 /* Is the mount locked such that it needs to remain connected? */
1495 if (IS_MNT_LOCKED(mnt))
1496 return false;
1497
1498 /* By default disconnect the mount */
1499 return true;
1500 }
1501
1502 /*
1503 * mount_lock must be held
1504 * namespace_sem must be held for write
1505 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1506 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1507 {
1508 LIST_HEAD(tmp_list);
1509 struct mount *p;
1510
1511 if (how & UMOUNT_PROPAGATE)
1512 propagate_mount_unlock(mnt);
1513
1514 /* Gather the mounts to umount */
1515 for (p = mnt; p; p = next_mnt(p, mnt)) {
1516 p->mnt.mnt_flags |= MNT_UMOUNT;
1517 list_move(&p->mnt_list, &tmp_list);
1518 }
1519
1520 /* Hide the mounts from mnt_mounts */
1521 list_for_each_entry(p, &tmp_list, mnt_list) {
1522 list_del_init(&p->mnt_child);
1523 }
1524
1525 /* Add propogated mounts to the tmp_list */
1526 if (how & UMOUNT_PROPAGATE)
1527 propagate_umount(&tmp_list);
1528
1529 while (!list_empty(&tmp_list)) {
1530 struct mnt_namespace *ns;
1531 bool disconnect;
1532 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1533 list_del_init(&p->mnt_expire);
1534 list_del_init(&p->mnt_list);
1535 ns = p->mnt_ns;
1536 if (ns) {
1537 ns->mounts--;
1538 __touch_mnt_namespace(ns);
1539 }
1540 p->mnt_ns = NULL;
1541 if (how & UMOUNT_SYNC)
1542 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1543
1544 disconnect = disconnect_mount(p, how);
1545 if (mnt_has_parent(p)) {
1546 mnt_add_count(p->mnt_parent, -1);
1547 if (!disconnect) {
1548 /* Don't forget about p */
1549 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1550 } else {
1551 umount_mnt(p);
1552 }
1553 }
1554 change_mnt_propagation(p, MS_PRIVATE);
1555 if (disconnect)
1556 hlist_add_head(&p->mnt_umount, &unmounted);
1557 }
1558 }
1559
1560 static void shrink_submounts(struct mount *mnt);
1561
do_umount_root(struct super_block * sb)1562 static int do_umount_root(struct super_block *sb)
1563 {
1564 int ret = 0;
1565
1566 down_write(&sb->s_umount);
1567 if (!sb_rdonly(sb)) {
1568 struct fs_context *fc;
1569
1570 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1571 SB_RDONLY);
1572 if (IS_ERR(fc)) {
1573 ret = PTR_ERR(fc);
1574 } else {
1575 ret = parse_monolithic_mount_data(fc, NULL);
1576 if (!ret)
1577 ret = reconfigure_super(fc);
1578 put_fs_context(fc);
1579 }
1580 }
1581 up_write(&sb->s_umount);
1582 return ret;
1583 }
1584
do_umount(struct mount * mnt,int flags)1585 static int do_umount(struct mount *mnt, int flags)
1586 {
1587 struct super_block *sb = mnt->mnt.mnt_sb;
1588 int retval;
1589
1590 retval = security_sb_umount(&mnt->mnt, flags);
1591 if (retval)
1592 return retval;
1593
1594 /*
1595 * Allow userspace to request a mountpoint be expired rather than
1596 * unmounting unconditionally. Unmount only happens if:
1597 * (1) the mark is already set (the mark is cleared by mntput())
1598 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1599 */
1600 if (flags & MNT_EXPIRE) {
1601 if (&mnt->mnt == current->fs->root.mnt ||
1602 flags & (MNT_FORCE | MNT_DETACH))
1603 return -EINVAL;
1604
1605 /*
1606 * probably don't strictly need the lock here if we examined
1607 * all race cases, but it's a slowpath.
1608 */
1609 lock_mount_hash();
1610 if (mnt_get_count(mnt) != 2) {
1611 unlock_mount_hash();
1612 return -EBUSY;
1613 }
1614 unlock_mount_hash();
1615
1616 if (!xchg(&mnt->mnt_expiry_mark, 1))
1617 return -EAGAIN;
1618 }
1619
1620 /*
1621 * If we may have to abort operations to get out of this
1622 * mount, and they will themselves hold resources we must
1623 * allow the fs to do things. In the Unix tradition of
1624 * 'Gee thats tricky lets do it in userspace' the umount_begin
1625 * might fail to complete on the first run through as other tasks
1626 * must return, and the like. Thats for the mount program to worry
1627 * about for the moment.
1628 */
1629
1630 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1631 sb->s_op->umount_begin(sb);
1632 }
1633
1634 /*
1635 * No sense to grab the lock for this test, but test itself looks
1636 * somewhat bogus. Suggestions for better replacement?
1637 * Ho-hum... In principle, we might treat that as umount + switch
1638 * to rootfs. GC would eventually take care of the old vfsmount.
1639 * Actually it makes sense, especially if rootfs would contain a
1640 * /reboot - static binary that would close all descriptors and
1641 * call reboot(9). Then init(8) could umount root and exec /reboot.
1642 */
1643 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1644 /*
1645 * Special case for "unmounting" root ...
1646 * we just try to remount it readonly.
1647 */
1648 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1649 return -EPERM;
1650 return do_umount_root(sb);
1651 }
1652
1653 namespace_lock();
1654 lock_mount_hash();
1655
1656 /* Recheck MNT_LOCKED with the locks held */
1657 retval = -EINVAL;
1658 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1659 goto out;
1660
1661 event++;
1662 if (flags & MNT_DETACH) {
1663 if (!list_empty(&mnt->mnt_list))
1664 umount_tree(mnt, UMOUNT_PROPAGATE);
1665 retval = 0;
1666 } else {
1667 shrink_submounts(mnt);
1668 retval = -EBUSY;
1669 if (!propagate_mount_busy(mnt, 2)) {
1670 if (!list_empty(&mnt->mnt_list))
1671 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1672 retval = 0;
1673 }
1674 }
1675 out:
1676 unlock_mount_hash();
1677 namespace_unlock();
1678 return retval;
1679 }
1680
1681 /*
1682 * __detach_mounts - lazily unmount all mounts on the specified dentry
1683 *
1684 * During unlink, rmdir, and d_drop it is possible to loose the path
1685 * to an existing mountpoint, and wind up leaking the mount.
1686 * detach_mounts allows lazily unmounting those mounts instead of
1687 * leaking them.
1688 *
1689 * The caller may hold dentry->d_inode->i_mutex.
1690 */
__detach_mounts(struct dentry * dentry)1691 void __detach_mounts(struct dentry *dentry)
1692 {
1693 struct mountpoint *mp;
1694 struct mount *mnt;
1695
1696 namespace_lock();
1697 lock_mount_hash();
1698 mp = lookup_mountpoint(dentry);
1699 if (!mp)
1700 goto out_unlock;
1701
1702 event++;
1703 while (!hlist_empty(&mp->m_list)) {
1704 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1705 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1706 umount_mnt(mnt);
1707 hlist_add_head(&mnt->mnt_umount, &unmounted);
1708 }
1709 else umount_tree(mnt, UMOUNT_CONNECTED);
1710 }
1711 put_mountpoint(mp);
1712 out_unlock:
1713 unlock_mount_hash();
1714 namespace_unlock();
1715 }
1716
1717 /*
1718 * Is the caller allowed to modify his namespace?
1719 */
may_mount(void)1720 static inline bool may_mount(void)
1721 {
1722 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1723 }
1724
warn_mandlock(void)1725 static void warn_mandlock(void)
1726 {
1727 pr_warn_once("=======================================================\n"
1728 "WARNING: The mand mount option has been deprecated and\n"
1729 " and is ignored by this kernel. Remove the mand\n"
1730 " option from the mount to silence this warning.\n"
1731 "=======================================================\n");
1732 }
1733
can_umount(const struct path * path,int flags)1734 static int can_umount(const struct path *path, int flags)
1735 {
1736 struct mount *mnt = real_mount(path->mnt);
1737
1738 if (!may_mount())
1739 return -EPERM;
1740 if (path->dentry != path->mnt->mnt_root)
1741 return -EINVAL;
1742 if (!check_mnt(mnt))
1743 return -EINVAL;
1744 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1745 return -EINVAL;
1746 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1747 return -EPERM;
1748 return 0;
1749 }
1750
1751 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1752 int path_umount(struct path *path, int flags)
1753 {
1754 struct mount *mnt = real_mount(path->mnt);
1755 int ret;
1756
1757 ret = can_umount(path, flags);
1758 if (!ret)
1759 ret = do_umount(mnt, flags);
1760
1761 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1762 dput(path->dentry);
1763 mntput_no_expire(mnt);
1764 return ret;
1765 }
1766
ksys_umount(char __user * name,int flags)1767 static int ksys_umount(char __user *name, int flags)
1768 {
1769 int lookup_flags = LOOKUP_MOUNTPOINT;
1770 struct path path;
1771 int ret;
1772
1773 // basic validity checks done first
1774 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1775 return -EINVAL;
1776
1777 if (!(flags & UMOUNT_NOFOLLOW))
1778 lookup_flags |= LOOKUP_FOLLOW;
1779 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1780 if (ret)
1781 return ret;
1782 return path_umount(&path, flags);
1783 }
1784
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1785 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1786 {
1787 return ksys_umount(name, flags);
1788 }
1789
1790 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1791
1792 /*
1793 * The 2.0 compatible umount. No flags.
1794 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1795 SYSCALL_DEFINE1(oldumount, char __user *, name)
1796 {
1797 return ksys_umount(name, 0);
1798 }
1799
1800 #endif
1801
is_mnt_ns_file(struct dentry * dentry)1802 static bool is_mnt_ns_file(struct dentry *dentry)
1803 {
1804 /* Is this a proxy for a mount namespace? */
1805 return dentry->d_op == &ns_dentry_operations &&
1806 dentry->d_fsdata == &mntns_operations;
1807 }
1808
to_mnt_ns(struct ns_common * ns)1809 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1810 {
1811 return container_of(ns, struct mnt_namespace, ns);
1812 }
1813
from_mnt_ns(struct mnt_namespace * mnt)1814 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1815 {
1816 return &mnt->ns;
1817 }
1818
mnt_ns_loop(struct dentry * dentry)1819 static bool mnt_ns_loop(struct dentry *dentry)
1820 {
1821 /* Could bind mounting the mount namespace inode cause a
1822 * mount namespace loop?
1823 */
1824 struct mnt_namespace *mnt_ns;
1825 if (!is_mnt_ns_file(dentry))
1826 return false;
1827
1828 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1829 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1830 }
1831
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1832 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1833 int flag)
1834 {
1835 struct mount *res, *p, *q, *r, *parent;
1836
1837 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1838 return ERR_PTR(-EINVAL);
1839
1840 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1841 return ERR_PTR(-EINVAL);
1842
1843 res = q = clone_mnt(mnt, dentry, flag);
1844 if (IS_ERR(q))
1845 return q;
1846
1847 q->mnt_mountpoint = mnt->mnt_mountpoint;
1848
1849 p = mnt;
1850 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1851 struct mount *s;
1852 if (!is_subdir(r->mnt_mountpoint, dentry))
1853 continue;
1854
1855 for (s = r; s; s = next_mnt(s, r)) {
1856 if (!(flag & CL_COPY_UNBINDABLE) &&
1857 IS_MNT_UNBINDABLE(s)) {
1858 if (s->mnt.mnt_flags & MNT_LOCKED) {
1859 /* Both unbindable and locked. */
1860 q = ERR_PTR(-EPERM);
1861 goto out;
1862 } else {
1863 s = skip_mnt_tree(s);
1864 continue;
1865 }
1866 }
1867 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1868 is_mnt_ns_file(s->mnt.mnt_root)) {
1869 s = skip_mnt_tree(s);
1870 continue;
1871 }
1872 while (p != s->mnt_parent) {
1873 p = p->mnt_parent;
1874 q = q->mnt_parent;
1875 }
1876 p = s;
1877 parent = q;
1878 q = clone_mnt(p, p->mnt.mnt_root, flag);
1879 if (IS_ERR(q))
1880 goto out;
1881 lock_mount_hash();
1882 list_add_tail(&q->mnt_list, &res->mnt_list);
1883 attach_mnt(q, parent, p->mnt_mp);
1884 unlock_mount_hash();
1885 }
1886 }
1887 return res;
1888 out:
1889 if (res) {
1890 lock_mount_hash();
1891 umount_tree(res, UMOUNT_SYNC);
1892 unlock_mount_hash();
1893 }
1894 return q;
1895 }
1896
1897 /* Caller should check returned pointer for errors */
1898
collect_mounts(const struct path * path)1899 struct vfsmount *collect_mounts(const struct path *path)
1900 {
1901 struct mount *tree;
1902 namespace_lock();
1903 if (!check_mnt(real_mount(path->mnt)))
1904 tree = ERR_PTR(-EINVAL);
1905 else
1906 tree = copy_tree(real_mount(path->mnt), path->dentry,
1907 CL_COPY_ALL | CL_PRIVATE);
1908 namespace_unlock();
1909 if (IS_ERR(tree))
1910 return ERR_CAST(tree);
1911 return &tree->mnt;
1912 }
1913
1914 static void free_mnt_ns(struct mnt_namespace *);
1915 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1916
dissolve_on_fput(struct vfsmount * mnt)1917 void dissolve_on_fput(struct vfsmount *mnt)
1918 {
1919 struct mnt_namespace *ns;
1920 namespace_lock();
1921 lock_mount_hash();
1922 ns = real_mount(mnt)->mnt_ns;
1923 if (ns) {
1924 if (is_anon_ns(ns))
1925 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1926 else
1927 ns = NULL;
1928 }
1929 unlock_mount_hash();
1930 namespace_unlock();
1931 if (ns)
1932 free_mnt_ns(ns);
1933 }
1934
drop_collected_mounts(struct vfsmount * mnt)1935 void drop_collected_mounts(struct vfsmount *mnt)
1936 {
1937 namespace_lock();
1938 lock_mount_hash();
1939 umount_tree(real_mount(mnt), 0);
1940 unlock_mount_hash();
1941 namespace_unlock();
1942 }
1943
has_locked_children(struct mount * mnt,struct dentry * dentry)1944 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1945 {
1946 struct mount *child;
1947
1948 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1949 if (!is_subdir(child->mnt_mountpoint, dentry))
1950 continue;
1951
1952 if (child->mnt.mnt_flags & MNT_LOCKED)
1953 return true;
1954 }
1955 return false;
1956 }
1957
1958 /**
1959 * clone_private_mount - create a private clone of a path
1960 * @path: path to clone
1961 *
1962 * This creates a new vfsmount, which will be the clone of @path. The new mount
1963 * will not be attached anywhere in the namespace and will be private (i.e.
1964 * changes to the originating mount won't be propagated into this).
1965 *
1966 * Release with mntput().
1967 */
clone_private_mount(const struct path * path)1968 struct vfsmount *clone_private_mount(const struct path *path)
1969 {
1970 struct mount *old_mnt = real_mount(path->mnt);
1971 struct mount *new_mnt;
1972
1973 down_read(&namespace_sem);
1974 if (IS_MNT_UNBINDABLE(old_mnt))
1975 goto invalid;
1976
1977 if (!check_mnt(old_mnt))
1978 goto invalid;
1979
1980 if (has_locked_children(old_mnt, path->dentry))
1981 goto invalid;
1982
1983 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1984 up_read(&namespace_sem);
1985
1986 if (IS_ERR(new_mnt))
1987 return ERR_CAST(new_mnt);
1988
1989 /* Longterm mount to be removed by kern_unmount*() */
1990 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1991
1992 return &new_mnt->mnt;
1993
1994 invalid:
1995 up_read(&namespace_sem);
1996 return ERR_PTR(-EINVAL);
1997 }
1998 EXPORT_SYMBOL_GPL(clone_private_mount);
1999
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2000 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2001 struct vfsmount *root)
2002 {
2003 struct mount *mnt;
2004 int res = f(root, arg);
2005 if (res)
2006 return res;
2007 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2008 res = f(&mnt->mnt, arg);
2009 if (res)
2010 return res;
2011 }
2012 return 0;
2013 }
2014
lock_mnt_tree(struct mount * mnt)2015 static void lock_mnt_tree(struct mount *mnt)
2016 {
2017 struct mount *p;
2018
2019 for (p = mnt; p; p = next_mnt(p, mnt)) {
2020 int flags = p->mnt.mnt_flags;
2021 /* Don't allow unprivileged users to change mount flags */
2022 flags |= MNT_LOCK_ATIME;
2023
2024 if (flags & MNT_READONLY)
2025 flags |= MNT_LOCK_READONLY;
2026
2027 if (flags & MNT_NODEV)
2028 flags |= MNT_LOCK_NODEV;
2029
2030 if (flags & MNT_NOSUID)
2031 flags |= MNT_LOCK_NOSUID;
2032
2033 if (flags & MNT_NOEXEC)
2034 flags |= MNT_LOCK_NOEXEC;
2035 /* Don't allow unprivileged users to reveal what is under a mount */
2036 if (list_empty(&p->mnt_expire))
2037 flags |= MNT_LOCKED;
2038 p->mnt.mnt_flags = flags;
2039 }
2040 }
2041
cleanup_group_ids(struct mount * mnt,struct mount * end)2042 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2043 {
2044 struct mount *p;
2045
2046 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2047 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2048 mnt_release_group_id(p);
2049 }
2050 }
2051
invent_group_ids(struct mount * mnt,bool recurse)2052 static int invent_group_ids(struct mount *mnt, bool recurse)
2053 {
2054 struct mount *p;
2055
2056 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2057 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2058 int err = mnt_alloc_group_id(p);
2059 if (err) {
2060 cleanup_group_ids(mnt, p);
2061 return err;
2062 }
2063 }
2064 }
2065
2066 return 0;
2067 }
2068
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2069 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2070 {
2071 unsigned int max = READ_ONCE(sysctl_mount_max);
2072 unsigned int mounts = 0, old, pending, sum;
2073 struct mount *p;
2074
2075 for (p = mnt; p; p = next_mnt(p, mnt))
2076 mounts++;
2077
2078 old = ns->mounts;
2079 pending = ns->pending_mounts;
2080 sum = old + pending;
2081 if ((old > sum) ||
2082 (pending > sum) ||
2083 (max < sum) ||
2084 (mounts > (max - sum)))
2085 return -ENOSPC;
2086
2087 ns->pending_mounts = pending + mounts;
2088 return 0;
2089 }
2090
2091 /*
2092 * @source_mnt : mount tree to be attached
2093 * @nd : place the mount tree @source_mnt is attached
2094 * @parent_nd : if non-null, detach the source_mnt from its parent and
2095 * store the parent mount and mountpoint dentry.
2096 * (done when source_mnt is moved)
2097 *
2098 * NOTE: in the table below explains the semantics when a source mount
2099 * of a given type is attached to a destination mount of a given type.
2100 * ---------------------------------------------------------------------------
2101 * | BIND MOUNT OPERATION |
2102 * |**************************************************************************
2103 * | source-->| shared | private | slave | unbindable |
2104 * | dest | | | | |
2105 * | | | | | | |
2106 * | v | | | | |
2107 * |**************************************************************************
2108 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2109 * | | | | | |
2110 * |non-shared| shared (+) | private | slave (*) | invalid |
2111 * ***************************************************************************
2112 * A bind operation clones the source mount and mounts the clone on the
2113 * destination mount.
2114 *
2115 * (++) the cloned mount is propagated to all the mounts in the propagation
2116 * tree of the destination mount and the cloned mount is added to
2117 * the peer group of the source mount.
2118 * (+) the cloned mount is created under the destination mount and is marked
2119 * as shared. The cloned mount is added to the peer group of the source
2120 * mount.
2121 * (+++) the mount is propagated to all the mounts in the propagation tree
2122 * of the destination mount and the cloned mount is made slave
2123 * of the same master as that of the source mount. The cloned mount
2124 * is marked as 'shared and slave'.
2125 * (*) the cloned mount is made a slave of the same master as that of the
2126 * source mount.
2127 *
2128 * ---------------------------------------------------------------------------
2129 * | MOVE MOUNT OPERATION |
2130 * |**************************************************************************
2131 * | source-->| shared | private | slave | unbindable |
2132 * | dest | | | | |
2133 * | | | | | | |
2134 * | v | | | | |
2135 * |**************************************************************************
2136 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2137 * | | | | | |
2138 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2139 * ***************************************************************************
2140 *
2141 * (+) the mount is moved to the destination. And is then propagated to
2142 * all the mounts in the propagation tree of the destination mount.
2143 * (+*) the mount is moved to the destination.
2144 * (+++) the mount is moved to the destination and is then propagated to
2145 * all the mounts belonging to the destination mount's propagation tree.
2146 * the mount is marked as 'shared and slave'.
2147 * (*) the mount continues to be a slave at the new location.
2148 *
2149 * if the source mount is a tree, the operations explained above is
2150 * applied to each mount in the tree.
2151 * Must be called without spinlocks held, since this function can sleep
2152 * in allocations.
2153 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2154 static int attach_recursive_mnt(struct mount *source_mnt,
2155 struct mount *dest_mnt,
2156 struct mountpoint *dest_mp,
2157 bool moving)
2158 {
2159 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2160 HLIST_HEAD(tree_list);
2161 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2162 struct mountpoint *smp;
2163 struct mount *child, *p;
2164 struct hlist_node *n;
2165 int err;
2166
2167 /* Preallocate a mountpoint in case the new mounts need
2168 * to be tucked under other mounts.
2169 */
2170 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2171 if (IS_ERR(smp))
2172 return PTR_ERR(smp);
2173
2174 /* Is there space to add these mounts to the mount namespace? */
2175 if (!moving) {
2176 err = count_mounts(ns, source_mnt);
2177 if (err)
2178 goto out;
2179 }
2180
2181 if (IS_MNT_SHARED(dest_mnt)) {
2182 err = invent_group_ids(source_mnt, true);
2183 if (err)
2184 goto out;
2185 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2186 lock_mount_hash();
2187 if (err)
2188 goto out_cleanup_ids;
2189 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2190 set_mnt_shared(p);
2191 } else {
2192 lock_mount_hash();
2193 }
2194 if (moving) {
2195 unhash_mnt(source_mnt);
2196 attach_mnt(source_mnt, dest_mnt, dest_mp);
2197 touch_mnt_namespace(source_mnt->mnt_ns);
2198 } else {
2199 if (source_mnt->mnt_ns) {
2200 /* move from anon - the caller will destroy */
2201 list_del_init(&source_mnt->mnt_ns->list);
2202 }
2203 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2204 commit_tree(source_mnt);
2205 }
2206
2207 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2208 struct mount *q;
2209 hlist_del_init(&child->mnt_hash);
2210 q = __lookup_mnt(&child->mnt_parent->mnt,
2211 child->mnt_mountpoint);
2212 if (q)
2213 mnt_change_mountpoint(child, smp, q);
2214 /* Notice when we are propagating across user namespaces */
2215 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2216 lock_mnt_tree(child);
2217 child->mnt.mnt_flags &= ~MNT_LOCKED;
2218 commit_tree(child);
2219 }
2220 put_mountpoint(smp);
2221 unlock_mount_hash();
2222
2223 return 0;
2224
2225 out_cleanup_ids:
2226 while (!hlist_empty(&tree_list)) {
2227 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2228 child->mnt_parent->mnt_ns->pending_mounts = 0;
2229 umount_tree(child, UMOUNT_SYNC);
2230 }
2231 unlock_mount_hash();
2232 cleanup_group_ids(source_mnt, NULL);
2233 out:
2234 ns->pending_mounts = 0;
2235
2236 read_seqlock_excl(&mount_lock);
2237 put_mountpoint(smp);
2238 read_sequnlock_excl(&mount_lock);
2239
2240 return err;
2241 }
2242
lock_mount(struct path * path)2243 static struct mountpoint *lock_mount(struct path *path)
2244 {
2245 struct vfsmount *mnt;
2246 struct dentry *dentry = path->dentry;
2247 retry:
2248 inode_lock(dentry->d_inode);
2249 if (unlikely(cant_mount(dentry))) {
2250 inode_unlock(dentry->d_inode);
2251 return ERR_PTR(-ENOENT);
2252 }
2253 namespace_lock();
2254 mnt = lookup_mnt(path);
2255 if (likely(!mnt)) {
2256 struct mountpoint *mp = get_mountpoint(dentry);
2257 if (IS_ERR(mp)) {
2258 namespace_unlock();
2259 inode_unlock(dentry->d_inode);
2260 return mp;
2261 }
2262 return mp;
2263 }
2264 namespace_unlock();
2265 inode_unlock(path->dentry->d_inode);
2266 path_put(path);
2267 path->mnt = mnt;
2268 dentry = path->dentry = dget(mnt->mnt_root);
2269 goto retry;
2270 }
2271
unlock_mount(struct mountpoint * where)2272 static void unlock_mount(struct mountpoint *where)
2273 {
2274 struct dentry *dentry = where->m_dentry;
2275
2276 read_seqlock_excl(&mount_lock);
2277 put_mountpoint(where);
2278 read_sequnlock_excl(&mount_lock);
2279
2280 namespace_unlock();
2281 inode_unlock(dentry->d_inode);
2282 }
2283
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2284 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2285 {
2286 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2287 return -EINVAL;
2288
2289 if (d_is_dir(mp->m_dentry) !=
2290 d_is_dir(mnt->mnt.mnt_root))
2291 return -ENOTDIR;
2292
2293 return attach_recursive_mnt(mnt, p, mp, false);
2294 }
2295
2296 /*
2297 * Sanity check the flags to change_mnt_propagation.
2298 */
2299
flags_to_propagation_type(int ms_flags)2300 static int flags_to_propagation_type(int ms_flags)
2301 {
2302 int type = ms_flags & ~(MS_REC | MS_SILENT);
2303
2304 /* Fail if any non-propagation flags are set */
2305 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2306 return 0;
2307 /* Only one propagation flag should be set */
2308 if (!is_power_of_2(type))
2309 return 0;
2310 return type;
2311 }
2312
2313 /*
2314 * recursively change the type of the mountpoint.
2315 */
do_change_type(struct path * path,int ms_flags)2316 static int do_change_type(struct path *path, int ms_flags)
2317 {
2318 struct mount *m;
2319 struct mount *mnt = real_mount(path->mnt);
2320 int recurse = ms_flags & MS_REC;
2321 int type;
2322 int err = 0;
2323
2324 if (path->dentry != path->mnt->mnt_root)
2325 return -EINVAL;
2326
2327 type = flags_to_propagation_type(ms_flags);
2328 if (!type)
2329 return -EINVAL;
2330
2331 namespace_lock();
2332 if (type == MS_SHARED) {
2333 err = invent_group_ids(mnt, recurse);
2334 if (err)
2335 goto out_unlock;
2336 }
2337
2338 lock_mount_hash();
2339 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2340 change_mnt_propagation(m, type);
2341 unlock_mount_hash();
2342
2343 out_unlock:
2344 namespace_unlock();
2345 return err;
2346 }
2347
__do_loopback(struct path * old_path,int recurse)2348 static struct mount *__do_loopback(struct path *old_path, int recurse)
2349 {
2350 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2351
2352 if (IS_MNT_UNBINDABLE(old))
2353 return mnt;
2354
2355 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2356 return mnt;
2357
2358 if (!recurse && has_locked_children(old, old_path->dentry))
2359 return mnt;
2360
2361 if (recurse)
2362 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2363 else
2364 mnt = clone_mnt(old, old_path->dentry, 0);
2365
2366 if (!IS_ERR(mnt))
2367 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2368
2369 return mnt;
2370 }
2371
2372 /*
2373 * do loopback mount.
2374 */
do_loopback(struct path * path,const char * old_name,int recurse)2375 static int do_loopback(struct path *path, const char *old_name,
2376 int recurse)
2377 {
2378 struct path old_path;
2379 struct mount *mnt = NULL, *parent;
2380 struct mountpoint *mp;
2381 int err;
2382 if (!old_name || !*old_name)
2383 return -EINVAL;
2384 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2385 if (err)
2386 return err;
2387
2388 err = -EINVAL;
2389 if (mnt_ns_loop(old_path.dentry))
2390 goto out;
2391
2392 mp = lock_mount(path);
2393 if (IS_ERR(mp)) {
2394 err = PTR_ERR(mp);
2395 goto out;
2396 }
2397
2398 parent = real_mount(path->mnt);
2399 if (!check_mnt(parent))
2400 goto out2;
2401
2402 mnt = __do_loopback(&old_path, recurse);
2403 if (IS_ERR(mnt)) {
2404 err = PTR_ERR(mnt);
2405 goto out2;
2406 }
2407
2408 err = graft_tree(mnt, parent, mp);
2409 if (err) {
2410 lock_mount_hash();
2411 umount_tree(mnt, UMOUNT_SYNC);
2412 unlock_mount_hash();
2413 }
2414 out2:
2415 unlock_mount(mp);
2416 out:
2417 path_put(&old_path);
2418 return err;
2419 }
2420
open_detached_copy(struct path * path,bool recursive)2421 static struct file *open_detached_copy(struct path *path, bool recursive)
2422 {
2423 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2424 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2425 struct mount *mnt, *p;
2426 struct file *file;
2427
2428 if (IS_ERR(ns))
2429 return ERR_CAST(ns);
2430
2431 namespace_lock();
2432 mnt = __do_loopback(path, recursive);
2433 if (IS_ERR(mnt)) {
2434 namespace_unlock();
2435 free_mnt_ns(ns);
2436 return ERR_CAST(mnt);
2437 }
2438
2439 lock_mount_hash();
2440 for (p = mnt; p; p = next_mnt(p, mnt)) {
2441 p->mnt_ns = ns;
2442 ns->mounts++;
2443 }
2444 ns->root = mnt;
2445 list_add_tail(&ns->list, &mnt->mnt_list);
2446 mntget(&mnt->mnt);
2447 unlock_mount_hash();
2448 namespace_unlock();
2449
2450 mntput(path->mnt);
2451 path->mnt = &mnt->mnt;
2452 file = dentry_open(path, O_PATH, current_cred());
2453 if (IS_ERR(file))
2454 dissolve_on_fput(path->mnt);
2455 else
2456 file->f_mode |= FMODE_NEED_UNMOUNT;
2457 return file;
2458 }
2459
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2460 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2461 {
2462 struct file *file;
2463 struct path path;
2464 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2465 bool detached = flags & OPEN_TREE_CLONE;
2466 int error;
2467 int fd;
2468
2469 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2470
2471 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2472 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2473 OPEN_TREE_CLOEXEC))
2474 return -EINVAL;
2475
2476 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2477 return -EINVAL;
2478
2479 if (flags & AT_NO_AUTOMOUNT)
2480 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2481 if (flags & AT_SYMLINK_NOFOLLOW)
2482 lookup_flags &= ~LOOKUP_FOLLOW;
2483 if (flags & AT_EMPTY_PATH)
2484 lookup_flags |= LOOKUP_EMPTY;
2485
2486 if (detached && !may_mount())
2487 return -EPERM;
2488
2489 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2490 if (fd < 0)
2491 return fd;
2492
2493 error = user_path_at(dfd, filename, lookup_flags, &path);
2494 if (unlikely(error)) {
2495 file = ERR_PTR(error);
2496 } else {
2497 if (detached)
2498 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2499 else
2500 file = dentry_open(&path, O_PATH, current_cred());
2501 path_put(&path);
2502 }
2503 if (IS_ERR(file)) {
2504 put_unused_fd(fd);
2505 return PTR_ERR(file);
2506 }
2507 fd_install(fd, file);
2508 return fd;
2509 }
2510
2511 /*
2512 * Don't allow locked mount flags to be cleared.
2513 *
2514 * No locks need to be held here while testing the various MNT_LOCK
2515 * flags because those flags can never be cleared once they are set.
2516 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2517 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2518 {
2519 unsigned int fl = mnt->mnt.mnt_flags;
2520
2521 if ((fl & MNT_LOCK_READONLY) &&
2522 !(mnt_flags & MNT_READONLY))
2523 return false;
2524
2525 if ((fl & MNT_LOCK_NODEV) &&
2526 !(mnt_flags & MNT_NODEV))
2527 return false;
2528
2529 if ((fl & MNT_LOCK_NOSUID) &&
2530 !(mnt_flags & MNT_NOSUID))
2531 return false;
2532
2533 if ((fl & MNT_LOCK_NOEXEC) &&
2534 !(mnt_flags & MNT_NOEXEC))
2535 return false;
2536
2537 if ((fl & MNT_LOCK_ATIME) &&
2538 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2539 return false;
2540
2541 return true;
2542 }
2543
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2544 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2545 {
2546 bool readonly_request = (mnt_flags & MNT_READONLY);
2547
2548 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2549 return 0;
2550
2551 if (readonly_request)
2552 return mnt_make_readonly(mnt);
2553
2554 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2555 return 0;
2556 }
2557
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2558 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2559 {
2560 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2561 mnt->mnt.mnt_flags = mnt_flags;
2562 touch_mnt_namespace(mnt->mnt_ns);
2563 }
2564
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2565 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2566 {
2567 struct super_block *sb = mnt->mnt_sb;
2568
2569 if (!__mnt_is_readonly(mnt) &&
2570 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2571 char *buf = (char *)__get_free_page(GFP_KERNEL);
2572 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2573 struct tm tm;
2574
2575 time64_to_tm(sb->s_time_max, 0, &tm);
2576
2577 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2578 sb->s_type->name,
2579 is_mounted(mnt) ? "remounted" : "mounted",
2580 mntpath,
2581 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2582
2583 free_page((unsigned long)buf);
2584 }
2585 }
2586
2587 /*
2588 * Handle reconfiguration of the mountpoint only without alteration of the
2589 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2590 * to mount(2).
2591 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2592 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2593 {
2594 struct super_block *sb = path->mnt->mnt_sb;
2595 struct mount *mnt = real_mount(path->mnt);
2596 int ret;
2597
2598 if (!check_mnt(mnt))
2599 return -EINVAL;
2600
2601 if (path->dentry != mnt->mnt.mnt_root)
2602 return -EINVAL;
2603
2604 if (!can_change_locked_flags(mnt, mnt_flags))
2605 return -EPERM;
2606
2607 /*
2608 * We're only checking whether the superblock is read-only not
2609 * changing it, so only take down_read(&sb->s_umount).
2610 */
2611 down_read(&sb->s_umount);
2612 lock_mount_hash();
2613 ret = change_mount_ro_state(mnt, mnt_flags);
2614 if (ret == 0)
2615 set_mount_attributes(mnt, mnt_flags);
2616 unlock_mount_hash();
2617 up_read(&sb->s_umount);
2618
2619 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620
2621 return ret;
2622 }
2623
2624 /*
2625 * change filesystem flags. dir should be a physical root of filesystem.
2626 * If you've mounted a non-root directory somewhere and want to do remount
2627 * on it - tough luck.
2628 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2629 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2630 int mnt_flags, void *data)
2631 {
2632 int err;
2633 struct super_block *sb = path->mnt->mnt_sb;
2634 struct mount *mnt = real_mount(path->mnt);
2635 struct fs_context *fc;
2636
2637 if (!check_mnt(mnt))
2638 return -EINVAL;
2639
2640 if (path->dentry != path->mnt->mnt_root)
2641 return -EINVAL;
2642
2643 if (!can_change_locked_flags(mnt, mnt_flags))
2644 return -EPERM;
2645
2646 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2647 if (IS_ERR(fc))
2648 return PTR_ERR(fc);
2649
2650 /*
2651 * Indicate to the filesystem that the remount request is coming
2652 * from the legacy mount system call.
2653 */
2654 fc->oldapi = true;
2655
2656 err = parse_monolithic_mount_data(fc, data);
2657 if (!err) {
2658 down_write(&sb->s_umount);
2659 err = -EPERM;
2660 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2661 err = reconfigure_super(fc);
2662 if (!err) {
2663 lock_mount_hash();
2664 set_mount_attributes(mnt, mnt_flags);
2665 unlock_mount_hash();
2666 }
2667 }
2668 up_write(&sb->s_umount);
2669 }
2670
2671 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2672
2673 put_fs_context(fc);
2674 return err;
2675 }
2676
tree_contains_unbindable(struct mount * mnt)2677 static inline int tree_contains_unbindable(struct mount *mnt)
2678 {
2679 struct mount *p;
2680 for (p = mnt; p; p = next_mnt(p, mnt)) {
2681 if (IS_MNT_UNBINDABLE(p))
2682 return 1;
2683 }
2684 return 0;
2685 }
2686
2687 /*
2688 * Check that there aren't references to earlier/same mount namespaces in the
2689 * specified subtree. Such references can act as pins for mount namespaces
2690 * that aren't checked by the mount-cycle checking code, thereby allowing
2691 * cycles to be made.
2692 */
check_for_nsfs_mounts(struct mount * subtree)2693 static bool check_for_nsfs_mounts(struct mount *subtree)
2694 {
2695 struct mount *p;
2696 bool ret = false;
2697
2698 lock_mount_hash();
2699 for (p = subtree; p; p = next_mnt(p, subtree))
2700 if (mnt_ns_loop(p->mnt.mnt_root))
2701 goto out;
2702
2703 ret = true;
2704 out:
2705 unlock_mount_hash();
2706 return ret;
2707 }
2708
do_set_group(struct path * from_path,struct path * to_path)2709 static int do_set_group(struct path *from_path, struct path *to_path)
2710 {
2711 struct mount *from, *to;
2712 int err;
2713
2714 from = real_mount(from_path->mnt);
2715 to = real_mount(to_path->mnt);
2716
2717 namespace_lock();
2718
2719 err = -EINVAL;
2720 /* To and From must be mounted */
2721 if (!is_mounted(&from->mnt))
2722 goto out;
2723 if (!is_mounted(&to->mnt))
2724 goto out;
2725
2726 err = -EPERM;
2727 /* We should be allowed to modify mount namespaces of both mounts */
2728 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2729 goto out;
2730 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2731 goto out;
2732
2733 err = -EINVAL;
2734 /* To and From paths should be mount roots */
2735 if (from_path->dentry != from_path->mnt->mnt_root)
2736 goto out;
2737 if (to_path->dentry != to_path->mnt->mnt_root)
2738 goto out;
2739
2740 /* Setting sharing groups is only allowed across same superblock */
2741 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2742 goto out;
2743
2744 /* From mount root should be wider than To mount root */
2745 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2746 goto out;
2747
2748 /* From mount should not have locked children in place of To's root */
2749 if (has_locked_children(from, to->mnt.mnt_root))
2750 goto out;
2751
2752 /* Setting sharing groups is only allowed on private mounts */
2753 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2754 goto out;
2755
2756 /* From should not be private */
2757 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2758 goto out;
2759
2760 if (IS_MNT_SLAVE(from)) {
2761 struct mount *m = from->mnt_master;
2762
2763 list_add(&to->mnt_slave, &m->mnt_slave_list);
2764 to->mnt_master = m;
2765 }
2766
2767 if (IS_MNT_SHARED(from)) {
2768 to->mnt_group_id = from->mnt_group_id;
2769 list_add(&to->mnt_share, &from->mnt_share);
2770 lock_mount_hash();
2771 set_mnt_shared(to);
2772 unlock_mount_hash();
2773 }
2774
2775 err = 0;
2776 out:
2777 namespace_unlock();
2778 return err;
2779 }
2780
do_move_mount(struct path * old_path,struct path * new_path)2781 static int do_move_mount(struct path *old_path, struct path *new_path)
2782 {
2783 struct mnt_namespace *ns;
2784 struct mount *p;
2785 struct mount *old;
2786 struct mount *parent;
2787 struct mountpoint *mp, *old_mp;
2788 int err;
2789 bool attached;
2790
2791 mp = lock_mount(new_path);
2792 if (IS_ERR(mp))
2793 return PTR_ERR(mp);
2794
2795 old = real_mount(old_path->mnt);
2796 p = real_mount(new_path->mnt);
2797 parent = old->mnt_parent;
2798 attached = mnt_has_parent(old);
2799 old_mp = old->mnt_mp;
2800 ns = old->mnt_ns;
2801
2802 err = -EINVAL;
2803 /* The mountpoint must be in our namespace. */
2804 if (!check_mnt(p))
2805 goto out;
2806
2807 /* The thing moved must be mounted... */
2808 if (!is_mounted(&old->mnt))
2809 goto out;
2810
2811 /* ... and either ours or the root of anon namespace */
2812 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2813 goto out;
2814
2815 if (old->mnt.mnt_flags & MNT_LOCKED)
2816 goto out;
2817
2818 if (old_path->dentry != old_path->mnt->mnt_root)
2819 goto out;
2820
2821 if (d_is_dir(new_path->dentry) !=
2822 d_is_dir(old_path->dentry))
2823 goto out;
2824 /*
2825 * Don't move a mount residing in a shared parent.
2826 */
2827 if (attached && IS_MNT_SHARED(parent))
2828 goto out;
2829 /*
2830 * Don't move a mount tree containing unbindable mounts to a destination
2831 * mount which is shared.
2832 */
2833 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2834 goto out;
2835 err = -ELOOP;
2836 if (!check_for_nsfs_mounts(old))
2837 goto out;
2838 for (; mnt_has_parent(p); p = p->mnt_parent)
2839 if (p == old)
2840 goto out;
2841
2842 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2843 attached);
2844 if (err)
2845 goto out;
2846
2847 /* if the mount is moved, it should no longer be expire
2848 * automatically */
2849 list_del_init(&old->mnt_expire);
2850 if (attached)
2851 put_mountpoint(old_mp);
2852 out:
2853 unlock_mount(mp);
2854 if (!err) {
2855 if (attached)
2856 mntput_no_expire(parent);
2857 else
2858 free_mnt_ns(ns);
2859 }
2860 return err;
2861 }
2862
do_move_mount_old(struct path * path,const char * old_name)2863 static int do_move_mount_old(struct path *path, const char *old_name)
2864 {
2865 struct path old_path;
2866 int err;
2867
2868 if (!old_name || !*old_name)
2869 return -EINVAL;
2870
2871 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2872 if (err)
2873 return err;
2874
2875 err = do_move_mount(&old_path, path);
2876 path_put(&old_path);
2877 return err;
2878 }
2879
2880 /*
2881 * add a mount into a namespace's mount tree
2882 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,struct path * path,int mnt_flags)2883 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2884 struct path *path, int mnt_flags)
2885 {
2886 struct mount *parent = real_mount(path->mnt);
2887
2888 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2889
2890 if (unlikely(!check_mnt(parent))) {
2891 /* that's acceptable only for automounts done in private ns */
2892 if (!(mnt_flags & MNT_SHRINKABLE))
2893 return -EINVAL;
2894 /* ... and for those we'd better have mountpoint still alive */
2895 if (!parent->mnt_ns)
2896 return -EINVAL;
2897 }
2898
2899 /* Refuse the same filesystem on the same mount point */
2900 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2901 path->mnt->mnt_root == path->dentry)
2902 return -EBUSY;
2903
2904 if (d_is_symlink(newmnt->mnt.mnt_root))
2905 return -EINVAL;
2906
2907 newmnt->mnt.mnt_flags = mnt_flags;
2908 return graft_tree(newmnt, parent, mp);
2909 }
2910
2911 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2912
2913 /*
2914 * Create a new mount using a superblock configuration and request it
2915 * be added to the namespace tree.
2916 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2917 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2918 unsigned int mnt_flags)
2919 {
2920 struct vfsmount *mnt;
2921 struct mountpoint *mp;
2922 struct super_block *sb = fc->root->d_sb;
2923 int error;
2924
2925 error = security_sb_kern_mount(sb);
2926 if (!error && mount_too_revealing(sb, &mnt_flags))
2927 error = -EPERM;
2928
2929 if (unlikely(error)) {
2930 fc_drop_locked(fc);
2931 return error;
2932 }
2933
2934 up_write(&sb->s_umount);
2935
2936 mnt = vfs_create_mount(fc);
2937 if (IS_ERR(mnt))
2938 return PTR_ERR(mnt);
2939
2940 mnt_warn_timestamp_expiry(mountpoint, mnt);
2941
2942 mp = lock_mount(mountpoint);
2943 if (IS_ERR(mp)) {
2944 mntput(mnt);
2945 return PTR_ERR(mp);
2946 }
2947 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2948 unlock_mount(mp);
2949 if (error < 0)
2950 mntput(mnt);
2951 return error;
2952 }
2953
2954 /*
2955 * create a new mount for userspace and request it to be added into the
2956 * namespace's tree
2957 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2958 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2959 int mnt_flags, const char *name, void *data)
2960 {
2961 struct file_system_type *type;
2962 struct fs_context *fc;
2963 const char *subtype = NULL;
2964 int err = 0;
2965
2966 if (!fstype)
2967 return -EINVAL;
2968
2969 type = get_fs_type(fstype);
2970 if (!type)
2971 return -ENODEV;
2972
2973 if (type->fs_flags & FS_HAS_SUBTYPE) {
2974 subtype = strchr(fstype, '.');
2975 if (subtype) {
2976 subtype++;
2977 if (!*subtype) {
2978 put_filesystem(type);
2979 return -EINVAL;
2980 }
2981 }
2982 }
2983
2984 fc = fs_context_for_mount(type, sb_flags);
2985 put_filesystem(type);
2986 if (IS_ERR(fc))
2987 return PTR_ERR(fc);
2988
2989 /*
2990 * Indicate to the filesystem that the mount request is coming
2991 * from the legacy mount system call.
2992 */
2993 fc->oldapi = true;
2994
2995 if (subtype)
2996 err = vfs_parse_fs_string(fc, "subtype",
2997 subtype, strlen(subtype));
2998 if (!err && name)
2999 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3000 if (!err)
3001 err = parse_monolithic_mount_data(fc, data);
3002 if (!err && !mount_capable(fc))
3003 err = -EPERM;
3004 if (!err)
3005 err = vfs_get_tree(fc);
3006 if (!err)
3007 err = do_new_mount_fc(fc, path, mnt_flags);
3008
3009 put_fs_context(fc);
3010 return err;
3011 }
3012
finish_automount(struct vfsmount * m,struct path * path)3013 int finish_automount(struct vfsmount *m, struct path *path)
3014 {
3015 struct dentry *dentry = path->dentry;
3016 struct mountpoint *mp;
3017 struct mount *mnt;
3018 int err;
3019
3020 if (!m)
3021 return 0;
3022 if (IS_ERR(m))
3023 return PTR_ERR(m);
3024
3025 mnt = real_mount(m);
3026 /* The new mount record should have at least 2 refs to prevent it being
3027 * expired before we get a chance to add it
3028 */
3029 BUG_ON(mnt_get_count(mnt) < 2);
3030
3031 if (m->mnt_sb == path->mnt->mnt_sb &&
3032 m->mnt_root == dentry) {
3033 err = -ELOOP;
3034 goto discard;
3035 }
3036
3037 /*
3038 * we don't want to use lock_mount() - in this case finding something
3039 * that overmounts our mountpoint to be means "quitely drop what we've
3040 * got", not "try to mount it on top".
3041 */
3042 inode_lock(dentry->d_inode);
3043 namespace_lock();
3044 if (unlikely(cant_mount(dentry))) {
3045 err = -ENOENT;
3046 goto discard_locked;
3047 }
3048 rcu_read_lock();
3049 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3050 rcu_read_unlock();
3051 err = 0;
3052 goto discard_locked;
3053 }
3054 rcu_read_unlock();
3055 mp = get_mountpoint(dentry);
3056 if (IS_ERR(mp)) {
3057 err = PTR_ERR(mp);
3058 goto discard_locked;
3059 }
3060
3061 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3062 unlock_mount(mp);
3063 if (unlikely(err))
3064 goto discard;
3065 mntput(m);
3066 return 0;
3067
3068 discard_locked:
3069 namespace_unlock();
3070 inode_unlock(dentry->d_inode);
3071 discard:
3072 /* remove m from any expiration list it may be on */
3073 if (!list_empty(&mnt->mnt_expire)) {
3074 namespace_lock();
3075 list_del_init(&mnt->mnt_expire);
3076 namespace_unlock();
3077 }
3078 mntput(m);
3079 mntput(m);
3080 return err;
3081 }
3082
3083 /**
3084 * mnt_set_expiry - Put a mount on an expiration list
3085 * @mnt: The mount to list.
3086 * @expiry_list: The list to add the mount to.
3087 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3088 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3089 {
3090 namespace_lock();
3091
3092 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3093
3094 namespace_unlock();
3095 }
3096 EXPORT_SYMBOL(mnt_set_expiry);
3097
3098 /*
3099 * process a list of expirable mountpoints with the intent of discarding any
3100 * mountpoints that aren't in use and haven't been touched since last we came
3101 * here
3102 */
mark_mounts_for_expiry(struct list_head * mounts)3103 void mark_mounts_for_expiry(struct list_head *mounts)
3104 {
3105 struct mount *mnt, *next;
3106 LIST_HEAD(graveyard);
3107
3108 if (list_empty(mounts))
3109 return;
3110
3111 namespace_lock();
3112 lock_mount_hash();
3113
3114 /* extract from the expiration list every vfsmount that matches the
3115 * following criteria:
3116 * - only referenced by its parent vfsmount
3117 * - still marked for expiry (marked on the last call here; marks are
3118 * cleared by mntput())
3119 */
3120 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3121 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3122 propagate_mount_busy(mnt, 1))
3123 continue;
3124 list_move(&mnt->mnt_expire, &graveyard);
3125 }
3126 while (!list_empty(&graveyard)) {
3127 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3128 touch_mnt_namespace(mnt->mnt_ns);
3129 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3130 }
3131 unlock_mount_hash();
3132 namespace_unlock();
3133 }
3134
3135 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3136
3137 /*
3138 * Ripoff of 'select_parent()'
3139 *
3140 * search the list of submounts for a given mountpoint, and move any
3141 * shrinkable submounts to the 'graveyard' list.
3142 */
select_submounts(struct mount * parent,struct list_head * graveyard)3143 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3144 {
3145 struct mount *this_parent = parent;
3146 struct list_head *next;
3147 int found = 0;
3148
3149 repeat:
3150 next = this_parent->mnt_mounts.next;
3151 resume:
3152 while (next != &this_parent->mnt_mounts) {
3153 struct list_head *tmp = next;
3154 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3155
3156 next = tmp->next;
3157 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3158 continue;
3159 /*
3160 * Descend a level if the d_mounts list is non-empty.
3161 */
3162 if (!list_empty(&mnt->mnt_mounts)) {
3163 this_parent = mnt;
3164 goto repeat;
3165 }
3166
3167 if (!propagate_mount_busy(mnt, 1)) {
3168 list_move_tail(&mnt->mnt_expire, graveyard);
3169 found++;
3170 }
3171 }
3172 /*
3173 * All done at this level ... ascend and resume the search
3174 */
3175 if (this_parent != parent) {
3176 next = this_parent->mnt_child.next;
3177 this_parent = this_parent->mnt_parent;
3178 goto resume;
3179 }
3180 return found;
3181 }
3182
3183 /*
3184 * process a list of expirable mountpoints with the intent of discarding any
3185 * submounts of a specific parent mountpoint
3186 *
3187 * mount_lock must be held for write
3188 */
shrink_submounts(struct mount * mnt)3189 static void shrink_submounts(struct mount *mnt)
3190 {
3191 LIST_HEAD(graveyard);
3192 struct mount *m;
3193
3194 /* extract submounts of 'mountpoint' from the expiration list */
3195 while (select_submounts(mnt, &graveyard)) {
3196 while (!list_empty(&graveyard)) {
3197 m = list_first_entry(&graveyard, struct mount,
3198 mnt_expire);
3199 touch_mnt_namespace(m->mnt_ns);
3200 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3201 }
3202 }
3203 }
3204
copy_mount_options(const void __user * data)3205 static void *copy_mount_options(const void __user * data)
3206 {
3207 char *copy;
3208 unsigned left, offset;
3209
3210 if (!data)
3211 return NULL;
3212
3213 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3214 if (!copy)
3215 return ERR_PTR(-ENOMEM);
3216
3217 left = copy_from_user(copy, data, PAGE_SIZE);
3218
3219 /*
3220 * Not all architectures have an exact copy_from_user(). Resort to
3221 * byte at a time.
3222 */
3223 offset = PAGE_SIZE - left;
3224 while (left) {
3225 char c;
3226 if (get_user(c, (const char __user *)data + offset))
3227 break;
3228 copy[offset] = c;
3229 left--;
3230 offset++;
3231 }
3232
3233 if (left == PAGE_SIZE) {
3234 kfree(copy);
3235 return ERR_PTR(-EFAULT);
3236 }
3237
3238 return copy;
3239 }
3240
copy_mount_string(const void __user * data)3241 static char *copy_mount_string(const void __user *data)
3242 {
3243 return data ? strndup_user(data, PATH_MAX) : NULL;
3244 }
3245
3246 /*
3247 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3248 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3249 *
3250 * data is a (void *) that can point to any structure up to
3251 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3252 * information (or be NULL).
3253 *
3254 * Pre-0.97 versions of mount() didn't have a flags word.
3255 * When the flags word was introduced its top half was required
3256 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3257 * Therefore, if this magic number is present, it carries no information
3258 * and must be discarded.
3259 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3260 int path_mount(const char *dev_name, struct path *path,
3261 const char *type_page, unsigned long flags, void *data_page)
3262 {
3263 unsigned int mnt_flags = 0, sb_flags;
3264 int ret;
3265
3266 /* Discard magic */
3267 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3268 flags &= ~MS_MGC_MSK;
3269
3270 /* Basic sanity checks */
3271 if (data_page)
3272 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3273
3274 if (flags & MS_NOUSER)
3275 return -EINVAL;
3276
3277 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3278 if (ret)
3279 return ret;
3280 if (!may_mount())
3281 return -EPERM;
3282 if (flags & SB_MANDLOCK)
3283 warn_mandlock();
3284
3285 /* Default to relatime unless overriden */
3286 if (!(flags & MS_NOATIME))
3287 mnt_flags |= MNT_RELATIME;
3288
3289 /* Separate the per-mountpoint flags */
3290 if (flags & MS_NOSUID)
3291 mnt_flags |= MNT_NOSUID;
3292 if (flags & MS_NODEV)
3293 mnt_flags |= MNT_NODEV;
3294 if (flags & MS_NOEXEC)
3295 mnt_flags |= MNT_NOEXEC;
3296 if (flags & MS_NOATIME)
3297 mnt_flags |= MNT_NOATIME;
3298 if (flags & MS_NODIRATIME)
3299 mnt_flags |= MNT_NODIRATIME;
3300 if (flags & MS_STRICTATIME)
3301 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3302 if (flags & MS_RDONLY)
3303 mnt_flags |= MNT_READONLY;
3304 if (flags & MS_NOSYMFOLLOW)
3305 mnt_flags |= MNT_NOSYMFOLLOW;
3306
3307 /* The default atime for remount is preservation */
3308 if ((flags & MS_REMOUNT) &&
3309 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3310 MS_STRICTATIME)) == 0)) {
3311 mnt_flags &= ~MNT_ATIME_MASK;
3312 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3313 }
3314
3315 sb_flags = flags & (SB_RDONLY |
3316 SB_SYNCHRONOUS |
3317 SB_MANDLOCK |
3318 SB_DIRSYNC |
3319 SB_SILENT |
3320 SB_POSIXACL |
3321 SB_LAZYTIME |
3322 SB_I_VERSION);
3323
3324 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3325 return do_reconfigure_mnt(path, mnt_flags);
3326 if (flags & MS_REMOUNT)
3327 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3328 if (flags & MS_BIND)
3329 return do_loopback(path, dev_name, flags & MS_REC);
3330 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3331 return do_change_type(path, flags);
3332 if (flags & MS_MOVE)
3333 return do_move_mount_old(path, dev_name);
3334
3335 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3336 data_page);
3337 }
3338
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3339 long do_mount(const char *dev_name, const char __user *dir_name,
3340 const char *type_page, unsigned long flags, void *data_page)
3341 {
3342 struct path path;
3343 int ret;
3344
3345 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3346 if (ret)
3347 return ret;
3348 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3349 path_put(&path);
3350 return ret;
3351 }
3352
inc_mnt_namespaces(struct user_namespace * ns)3353 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3354 {
3355 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3356 }
3357
dec_mnt_namespaces(struct ucounts * ucounts)3358 static void dec_mnt_namespaces(struct ucounts *ucounts)
3359 {
3360 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3361 }
3362
free_mnt_ns(struct mnt_namespace * ns)3363 static void free_mnt_ns(struct mnt_namespace *ns)
3364 {
3365 if (!is_anon_ns(ns))
3366 ns_free_inum(&ns->ns);
3367 dec_mnt_namespaces(ns->ucounts);
3368 put_user_ns(ns->user_ns);
3369 kfree(ns);
3370 }
3371
3372 /*
3373 * Assign a sequence number so we can detect when we attempt to bind
3374 * mount a reference to an older mount namespace into the current
3375 * mount namespace, preventing reference counting loops. A 64bit
3376 * number incrementing at 10Ghz will take 12,427 years to wrap which
3377 * is effectively never, so we can ignore the possibility.
3378 */
3379 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3380
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3381 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3382 {
3383 struct mnt_namespace *new_ns;
3384 struct ucounts *ucounts;
3385 int ret;
3386
3387 ucounts = inc_mnt_namespaces(user_ns);
3388 if (!ucounts)
3389 return ERR_PTR(-ENOSPC);
3390
3391 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3392 if (!new_ns) {
3393 dec_mnt_namespaces(ucounts);
3394 return ERR_PTR(-ENOMEM);
3395 }
3396 if (!anon) {
3397 ret = ns_alloc_inum(&new_ns->ns);
3398 if (ret) {
3399 kfree(new_ns);
3400 dec_mnt_namespaces(ucounts);
3401 return ERR_PTR(ret);
3402 }
3403 }
3404 new_ns->ns.ops = &mntns_operations;
3405 if (!anon)
3406 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3407 refcount_set(&new_ns->ns.count, 1);
3408 INIT_LIST_HEAD(&new_ns->list);
3409 init_waitqueue_head(&new_ns->poll);
3410 spin_lock_init(&new_ns->ns_lock);
3411 new_ns->user_ns = get_user_ns(user_ns);
3412 new_ns->ucounts = ucounts;
3413 return new_ns;
3414 }
3415
3416 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3417 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3418 struct user_namespace *user_ns, struct fs_struct *new_fs)
3419 {
3420 struct mnt_namespace *new_ns;
3421 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3422 struct mount *p, *q;
3423 struct mount *old;
3424 struct mount *new;
3425 int copy_flags;
3426
3427 BUG_ON(!ns);
3428
3429 if (likely(!(flags & CLONE_NEWNS))) {
3430 get_mnt_ns(ns);
3431 return ns;
3432 }
3433
3434 old = ns->root;
3435
3436 new_ns = alloc_mnt_ns(user_ns, false);
3437 if (IS_ERR(new_ns))
3438 return new_ns;
3439
3440 namespace_lock();
3441 /* First pass: copy the tree topology */
3442 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3443 if (user_ns != ns->user_ns)
3444 copy_flags |= CL_SHARED_TO_SLAVE;
3445 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3446 if (IS_ERR(new)) {
3447 namespace_unlock();
3448 free_mnt_ns(new_ns);
3449 return ERR_CAST(new);
3450 }
3451 if (user_ns != ns->user_ns) {
3452 lock_mount_hash();
3453 lock_mnt_tree(new);
3454 unlock_mount_hash();
3455 }
3456 new_ns->root = new;
3457 list_add_tail(&new_ns->list, &new->mnt_list);
3458
3459 /*
3460 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3461 * as belonging to new namespace. We have already acquired a private
3462 * fs_struct, so tsk->fs->lock is not needed.
3463 */
3464 p = old;
3465 q = new;
3466 while (p) {
3467 q->mnt_ns = new_ns;
3468 new_ns->mounts++;
3469 if (new_fs) {
3470 if (&p->mnt == new_fs->root.mnt) {
3471 new_fs->root.mnt = mntget(&q->mnt);
3472 rootmnt = &p->mnt;
3473 }
3474 if (&p->mnt == new_fs->pwd.mnt) {
3475 new_fs->pwd.mnt = mntget(&q->mnt);
3476 pwdmnt = &p->mnt;
3477 }
3478 }
3479 p = next_mnt(p, old);
3480 q = next_mnt(q, new);
3481 if (!q)
3482 break;
3483 while (p->mnt.mnt_root != q->mnt.mnt_root)
3484 p = next_mnt(p, old);
3485 }
3486 namespace_unlock();
3487
3488 if (rootmnt)
3489 mntput(rootmnt);
3490 if (pwdmnt)
3491 mntput(pwdmnt);
3492
3493 return new_ns;
3494 }
3495
mount_subtree(struct vfsmount * m,const char * name)3496 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3497 {
3498 struct mount *mnt = real_mount(m);
3499 struct mnt_namespace *ns;
3500 struct super_block *s;
3501 struct path path;
3502 int err;
3503
3504 ns = alloc_mnt_ns(&init_user_ns, true);
3505 if (IS_ERR(ns)) {
3506 mntput(m);
3507 return ERR_CAST(ns);
3508 }
3509 mnt->mnt_ns = ns;
3510 ns->root = mnt;
3511 ns->mounts++;
3512 list_add(&mnt->mnt_list, &ns->list);
3513
3514 err = vfs_path_lookup(m->mnt_root, m,
3515 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3516
3517 put_mnt_ns(ns);
3518
3519 if (err)
3520 return ERR_PTR(err);
3521
3522 /* trade a vfsmount reference for active sb one */
3523 s = path.mnt->mnt_sb;
3524 atomic_inc(&s->s_active);
3525 mntput(path.mnt);
3526 /* lock the sucker */
3527 down_write(&s->s_umount);
3528 /* ... and return the root of (sub)tree on it */
3529 return path.dentry;
3530 }
3531 EXPORT_SYMBOL(mount_subtree);
3532
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3533 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3534 char __user *, type, unsigned long, flags, void __user *, data)
3535 {
3536 int ret;
3537 char *kernel_type;
3538 char *kernel_dev;
3539 void *options;
3540
3541 kernel_type = copy_mount_string(type);
3542 ret = PTR_ERR(kernel_type);
3543 if (IS_ERR(kernel_type))
3544 goto out_type;
3545
3546 kernel_dev = copy_mount_string(dev_name);
3547 ret = PTR_ERR(kernel_dev);
3548 if (IS_ERR(kernel_dev))
3549 goto out_dev;
3550
3551 options = copy_mount_options(data);
3552 ret = PTR_ERR(options);
3553 if (IS_ERR(options))
3554 goto out_data;
3555
3556 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3557
3558 kfree(options);
3559 out_data:
3560 kfree(kernel_dev);
3561 out_dev:
3562 kfree(kernel_type);
3563 out_type:
3564 return ret;
3565 }
3566
3567 #define FSMOUNT_VALID_FLAGS \
3568 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3569 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3570 MOUNT_ATTR_NOSYMFOLLOW)
3571
3572 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3573
3574 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3575 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3576
attr_flags_to_mnt_flags(u64 attr_flags)3577 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3578 {
3579 unsigned int mnt_flags = 0;
3580
3581 if (attr_flags & MOUNT_ATTR_RDONLY)
3582 mnt_flags |= MNT_READONLY;
3583 if (attr_flags & MOUNT_ATTR_NOSUID)
3584 mnt_flags |= MNT_NOSUID;
3585 if (attr_flags & MOUNT_ATTR_NODEV)
3586 mnt_flags |= MNT_NODEV;
3587 if (attr_flags & MOUNT_ATTR_NOEXEC)
3588 mnt_flags |= MNT_NOEXEC;
3589 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3590 mnt_flags |= MNT_NODIRATIME;
3591 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3592 mnt_flags |= MNT_NOSYMFOLLOW;
3593
3594 return mnt_flags;
3595 }
3596
3597 /*
3598 * Create a kernel mount representation for a new, prepared superblock
3599 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3600 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3601 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3602 unsigned int, attr_flags)
3603 {
3604 struct mnt_namespace *ns;
3605 struct fs_context *fc;
3606 struct file *file;
3607 struct path newmount;
3608 struct mount *mnt;
3609 struct fd f;
3610 unsigned int mnt_flags = 0;
3611 long ret;
3612
3613 if (!may_mount())
3614 return -EPERM;
3615
3616 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3617 return -EINVAL;
3618
3619 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3620 return -EINVAL;
3621
3622 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3623
3624 switch (attr_flags & MOUNT_ATTR__ATIME) {
3625 case MOUNT_ATTR_STRICTATIME:
3626 break;
3627 case MOUNT_ATTR_NOATIME:
3628 mnt_flags |= MNT_NOATIME;
3629 break;
3630 case MOUNT_ATTR_RELATIME:
3631 mnt_flags |= MNT_RELATIME;
3632 break;
3633 default:
3634 return -EINVAL;
3635 }
3636
3637 f = fdget(fs_fd);
3638 if (!f.file)
3639 return -EBADF;
3640
3641 ret = -EINVAL;
3642 if (f.file->f_op != &fscontext_fops)
3643 goto err_fsfd;
3644
3645 fc = f.file->private_data;
3646
3647 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3648 if (ret < 0)
3649 goto err_fsfd;
3650
3651 /* There must be a valid superblock or we can't mount it */
3652 ret = -EINVAL;
3653 if (!fc->root)
3654 goto err_unlock;
3655
3656 ret = -EPERM;
3657 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3658 pr_warn("VFS: Mount too revealing\n");
3659 goto err_unlock;
3660 }
3661
3662 ret = -EBUSY;
3663 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3664 goto err_unlock;
3665
3666 if (fc->sb_flags & SB_MANDLOCK)
3667 warn_mandlock();
3668
3669 newmount.mnt = vfs_create_mount(fc);
3670 if (IS_ERR(newmount.mnt)) {
3671 ret = PTR_ERR(newmount.mnt);
3672 goto err_unlock;
3673 }
3674 newmount.dentry = dget(fc->root);
3675 newmount.mnt->mnt_flags = mnt_flags;
3676
3677 /* We've done the mount bit - now move the file context into more or
3678 * less the same state as if we'd done an fspick(). We don't want to
3679 * do any memory allocation or anything like that at this point as we
3680 * don't want to have to handle any errors incurred.
3681 */
3682 vfs_clean_context(fc);
3683
3684 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3685 if (IS_ERR(ns)) {
3686 ret = PTR_ERR(ns);
3687 goto err_path;
3688 }
3689 mnt = real_mount(newmount.mnt);
3690 mnt->mnt_ns = ns;
3691 ns->root = mnt;
3692 ns->mounts = 1;
3693 list_add(&mnt->mnt_list, &ns->list);
3694 mntget(newmount.mnt);
3695
3696 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3697 * it, not just simply put it.
3698 */
3699 file = dentry_open(&newmount, O_PATH, fc->cred);
3700 if (IS_ERR(file)) {
3701 dissolve_on_fput(newmount.mnt);
3702 ret = PTR_ERR(file);
3703 goto err_path;
3704 }
3705 file->f_mode |= FMODE_NEED_UNMOUNT;
3706
3707 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3708 if (ret >= 0)
3709 fd_install(ret, file);
3710 else
3711 fput(file);
3712
3713 err_path:
3714 path_put(&newmount);
3715 err_unlock:
3716 mutex_unlock(&fc->uapi_mutex);
3717 err_fsfd:
3718 fdput(f);
3719 return ret;
3720 }
3721
3722 /*
3723 * Move a mount from one place to another. In combination with
3724 * fsopen()/fsmount() this is used to install a new mount and in combination
3725 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3726 * a mount subtree.
3727 *
3728 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3729 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)3730 SYSCALL_DEFINE5(move_mount,
3731 int, from_dfd, const char __user *, from_pathname,
3732 int, to_dfd, const char __user *, to_pathname,
3733 unsigned int, flags)
3734 {
3735 struct path from_path, to_path;
3736 unsigned int lflags;
3737 int ret = 0;
3738
3739 if (!may_mount())
3740 return -EPERM;
3741
3742 if (flags & ~MOVE_MOUNT__MASK)
3743 return -EINVAL;
3744
3745 /* If someone gives a pathname, they aren't permitted to move
3746 * from an fd that requires unmount as we can't get at the flag
3747 * to clear it afterwards.
3748 */
3749 lflags = 0;
3750 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3751 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3752 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3753
3754 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3755 if (ret < 0)
3756 return ret;
3757
3758 lflags = 0;
3759 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3760 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3761 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3762
3763 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3764 if (ret < 0)
3765 goto out_from;
3766
3767 ret = security_move_mount(&from_path, &to_path);
3768 if (ret < 0)
3769 goto out_to;
3770
3771 if (flags & MOVE_MOUNT_SET_GROUP)
3772 ret = do_set_group(&from_path, &to_path);
3773 else
3774 ret = do_move_mount(&from_path, &to_path);
3775
3776 out_to:
3777 path_put(&to_path);
3778 out_from:
3779 path_put(&from_path);
3780 return ret;
3781 }
3782
3783 /*
3784 * Return true if path is reachable from root
3785 *
3786 * namespace_sem or mount_lock is held
3787 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3788 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3789 const struct path *root)
3790 {
3791 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3792 dentry = mnt->mnt_mountpoint;
3793 mnt = mnt->mnt_parent;
3794 }
3795 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3796 }
3797
path_is_under(const struct path * path1,const struct path * path2)3798 bool path_is_under(const struct path *path1, const struct path *path2)
3799 {
3800 bool res;
3801 read_seqlock_excl(&mount_lock);
3802 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3803 read_sequnlock_excl(&mount_lock);
3804 return res;
3805 }
3806 EXPORT_SYMBOL(path_is_under);
3807
3808 /*
3809 * pivot_root Semantics:
3810 * Moves the root file system of the current process to the directory put_old,
3811 * makes new_root as the new root file system of the current process, and sets
3812 * root/cwd of all processes which had them on the current root to new_root.
3813 *
3814 * Restrictions:
3815 * The new_root and put_old must be directories, and must not be on the
3816 * same file system as the current process root. The put_old must be
3817 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3818 * pointed to by put_old must yield the same directory as new_root. No other
3819 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3820 *
3821 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3822 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3823 * in this situation.
3824 *
3825 * Notes:
3826 * - we don't move root/cwd if they are not at the root (reason: if something
3827 * cared enough to change them, it's probably wrong to force them elsewhere)
3828 * - it's okay to pick a root that isn't the root of a file system, e.g.
3829 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3830 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3831 * first.
3832 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3833 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3834 const char __user *, put_old)
3835 {
3836 struct path new, old, root;
3837 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3838 struct mountpoint *old_mp, *root_mp;
3839 int error;
3840
3841 if (!may_mount())
3842 return -EPERM;
3843
3844 error = user_path_at(AT_FDCWD, new_root,
3845 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3846 if (error)
3847 goto out0;
3848
3849 error = user_path_at(AT_FDCWD, put_old,
3850 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3851 if (error)
3852 goto out1;
3853
3854 error = security_sb_pivotroot(&old, &new);
3855 if (error)
3856 goto out2;
3857
3858 get_fs_root(current->fs, &root);
3859 old_mp = lock_mount(&old);
3860 error = PTR_ERR(old_mp);
3861 if (IS_ERR(old_mp))
3862 goto out3;
3863
3864 error = -EINVAL;
3865 new_mnt = real_mount(new.mnt);
3866 root_mnt = real_mount(root.mnt);
3867 old_mnt = real_mount(old.mnt);
3868 ex_parent = new_mnt->mnt_parent;
3869 root_parent = root_mnt->mnt_parent;
3870 if (IS_MNT_SHARED(old_mnt) ||
3871 IS_MNT_SHARED(ex_parent) ||
3872 IS_MNT_SHARED(root_parent))
3873 goto out4;
3874 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3875 goto out4;
3876 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3877 goto out4;
3878 error = -ENOENT;
3879 if (d_unlinked(new.dentry))
3880 goto out4;
3881 error = -EBUSY;
3882 if (new_mnt == root_mnt || old_mnt == root_mnt)
3883 goto out4; /* loop, on the same file system */
3884 error = -EINVAL;
3885 if (root.mnt->mnt_root != root.dentry)
3886 goto out4; /* not a mountpoint */
3887 if (!mnt_has_parent(root_mnt))
3888 goto out4; /* not attached */
3889 if (new.mnt->mnt_root != new.dentry)
3890 goto out4; /* not a mountpoint */
3891 if (!mnt_has_parent(new_mnt))
3892 goto out4; /* not attached */
3893 /* make sure we can reach put_old from new_root */
3894 if (!is_path_reachable(old_mnt, old.dentry, &new))
3895 goto out4;
3896 /* make certain new is below the root */
3897 if (!is_path_reachable(new_mnt, new.dentry, &root))
3898 goto out4;
3899 lock_mount_hash();
3900 umount_mnt(new_mnt);
3901 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3902 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3903 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3904 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3905 }
3906 /* mount old root on put_old */
3907 attach_mnt(root_mnt, old_mnt, old_mp);
3908 /* mount new_root on / */
3909 attach_mnt(new_mnt, root_parent, root_mp);
3910 mnt_add_count(root_parent, -1);
3911 touch_mnt_namespace(current->nsproxy->mnt_ns);
3912 /* A moved mount should not expire automatically */
3913 list_del_init(&new_mnt->mnt_expire);
3914 put_mountpoint(root_mp);
3915 unlock_mount_hash();
3916 chroot_fs_refs(&root, &new);
3917 error = 0;
3918 out4:
3919 unlock_mount(old_mp);
3920 if (!error)
3921 mntput_no_expire(ex_parent);
3922 out3:
3923 path_put(&root);
3924 out2:
3925 path_put(&old);
3926 out1:
3927 path_put(&new);
3928 out0:
3929 return error;
3930 }
3931
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)3932 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3933 {
3934 unsigned int flags = mnt->mnt.mnt_flags;
3935
3936 /* flags to clear */
3937 flags &= ~kattr->attr_clr;
3938 /* flags to raise */
3939 flags |= kattr->attr_set;
3940
3941 return flags;
3942 }
3943
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)3944 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3945 {
3946 struct vfsmount *m = &mnt->mnt;
3947 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3948
3949 if (!kattr->mnt_userns)
3950 return 0;
3951
3952 /*
3953 * Creating an idmapped mount with the filesystem wide idmapping
3954 * doesn't make sense so block that. We don't allow mushy semantics.
3955 */
3956 if (kattr->mnt_userns == fs_userns)
3957 return -EINVAL;
3958
3959 /*
3960 * Once a mount has been idmapped we don't allow it to change its
3961 * mapping. It makes things simpler and callers can just create
3962 * another bind-mount they can idmap if they want to.
3963 */
3964 if (is_idmapped_mnt(m))
3965 return -EPERM;
3966
3967 /* The underlying filesystem doesn't support idmapped mounts yet. */
3968 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3969 return -EINVAL;
3970
3971 /* We're not controlling the superblock. */
3972 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
3973 return -EPERM;
3974
3975 /* Mount has already been visible in the filesystem hierarchy. */
3976 if (!is_anon_ns(mnt->mnt_ns))
3977 return -EINVAL;
3978
3979 return 0;
3980 }
3981
3982 /**
3983 * mnt_allow_writers() - check whether the attribute change allows writers
3984 * @kattr: the new mount attributes
3985 * @mnt: the mount to which @kattr will be applied
3986 *
3987 * Check whether thew new mount attributes in @kattr allow concurrent writers.
3988 *
3989 * Return: true if writers need to be held, false if not
3990 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)3991 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
3992 const struct mount *mnt)
3993 {
3994 return (!(kattr->attr_set & MNT_READONLY) ||
3995 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
3996 !kattr->mnt_userns;
3997 }
3998
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt,int * err)3999 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
4000 struct mount *mnt, int *err)
4001 {
4002 struct mount *m = mnt, *last = NULL;
4003
4004 if (!is_mounted(&m->mnt)) {
4005 *err = -EINVAL;
4006 goto out;
4007 }
4008
4009 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
4010 *err = -EINVAL;
4011 goto out;
4012 }
4013
4014 do {
4015 unsigned int flags;
4016
4017 flags = recalc_flags(kattr, m);
4018 if (!can_change_locked_flags(m, flags)) {
4019 *err = -EPERM;
4020 goto out;
4021 }
4022
4023 *err = can_idmap_mount(kattr, m);
4024 if (*err)
4025 goto out;
4026
4027 last = m;
4028
4029 if (!mnt_allow_writers(kattr, m)) {
4030 *err = mnt_hold_writers(m);
4031 if (*err)
4032 goto out;
4033 }
4034 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4035
4036 out:
4037 return last;
4038 }
4039
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4040 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4041 {
4042 struct user_namespace *mnt_userns, *old_mnt_userns;
4043
4044 if (!kattr->mnt_userns)
4045 return;
4046
4047 /*
4048 * We're the only ones able to change the mount's idmapping. So
4049 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4050 */
4051 old_mnt_userns = mnt->mnt.mnt_userns;
4052
4053 mnt_userns = get_user_ns(kattr->mnt_userns);
4054 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4055 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4056
4057 /*
4058 * If this is an idmapped filesystem drop the reference we've taken
4059 * in vfs_create_mount() before.
4060 */
4061 if (!initial_idmapping(old_mnt_userns))
4062 put_user_ns(old_mnt_userns);
4063 }
4064
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt,struct mount * last,int err)4065 static void mount_setattr_commit(struct mount_kattr *kattr,
4066 struct mount *mnt, struct mount *last,
4067 int err)
4068 {
4069 struct mount *m = mnt;
4070
4071 do {
4072 if (!err) {
4073 unsigned int flags;
4074
4075 do_idmap_mount(kattr, m);
4076 flags = recalc_flags(kattr, m);
4077 WRITE_ONCE(m->mnt.mnt_flags, flags);
4078 }
4079
4080 /* If we had to hold writers unblock them. */
4081 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4082 mnt_unhold_writers(m);
4083
4084 if (!err && kattr->propagation)
4085 change_mnt_propagation(m, kattr->propagation);
4086
4087 /*
4088 * On failure, only cleanup until we found the first mount
4089 * we failed to handle.
4090 */
4091 if (err && m == last)
4092 break;
4093 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4094
4095 if (!err)
4096 touch_mnt_namespace(mnt->mnt_ns);
4097 }
4098
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4099 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4100 {
4101 struct mount *mnt = real_mount(path->mnt), *last = NULL;
4102 int err = 0;
4103
4104 if (path->dentry != mnt->mnt.mnt_root)
4105 return -EINVAL;
4106
4107 if (kattr->propagation) {
4108 /*
4109 * Only take namespace_lock() if we're actually changing
4110 * propagation.
4111 */
4112 namespace_lock();
4113 if (kattr->propagation == MS_SHARED) {
4114 err = invent_group_ids(mnt, kattr->recurse);
4115 if (err) {
4116 namespace_unlock();
4117 return err;
4118 }
4119 }
4120 }
4121
4122 lock_mount_hash();
4123
4124 /*
4125 * Get the mount tree in a shape where we can change mount
4126 * properties without failure.
4127 */
4128 last = mount_setattr_prepare(kattr, mnt, &err);
4129 if (last) /* Commit all changes or revert to the old state. */
4130 mount_setattr_commit(kattr, mnt, last, err);
4131
4132 unlock_mount_hash();
4133
4134 if (kattr->propagation) {
4135 if (err)
4136 cleanup_group_ids(mnt, NULL);
4137 namespace_unlock();
4138 }
4139
4140 return err;
4141 }
4142
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4143 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4144 struct mount_kattr *kattr, unsigned int flags)
4145 {
4146 int err = 0;
4147 struct ns_common *ns;
4148 struct user_namespace *mnt_userns;
4149 struct file *file;
4150
4151 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4152 return 0;
4153
4154 /*
4155 * We currently do not support clearing an idmapped mount. If this ever
4156 * is a use-case we can revisit this but for now let's keep it simple
4157 * and not allow it.
4158 */
4159 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4160 return -EINVAL;
4161
4162 if (attr->userns_fd > INT_MAX)
4163 return -EINVAL;
4164
4165 file = fget(attr->userns_fd);
4166 if (!file)
4167 return -EBADF;
4168
4169 if (!proc_ns_file(file)) {
4170 err = -EINVAL;
4171 goto out_fput;
4172 }
4173
4174 ns = get_proc_ns(file_inode(file));
4175 if (ns->ops->type != CLONE_NEWUSER) {
4176 err = -EINVAL;
4177 goto out_fput;
4178 }
4179
4180 /*
4181 * The initial idmapping cannot be used to create an idmapped
4182 * mount. We use the initial idmapping as an indicator of a mount
4183 * that is not idmapped. It can simply be passed into helpers that
4184 * are aware of idmapped mounts as a convenient shortcut. A user
4185 * can just create a dedicated identity mapping to achieve the same
4186 * result.
4187 */
4188 mnt_userns = container_of(ns, struct user_namespace, ns);
4189 if (initial_idmapping(mnt_userns)) {
4190 err = -EPERM;
4191 goto out_fput;
4192 }
4193
4194 /* We're not controlling the target namespace. */
4195 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4196 err = -EPERM;
4197 goto out_fput;
4198 }
4199
4200 kattr->mnt_userns = get_user_ns(mnt_userns);
4201
4202 out_fput:
4203 fput(file);
4204 return err;
4205 }
4206
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4207 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4208 struct mount_kattr *kattr, unsigned int flags)
4209 {
4210 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4211
4212 if (flags & AT_NO_AUTOMOUNT)
4213 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4214 if (flags & AT_SYMLINK_NOFOLLOW)
4215 lookup_flags &= ~LOOKUP_FOLLOW;
4216 if (flags & AT_EMPTY_PATH)
4217 lookup_flags |= LOOKUP_EMPTY;
4218
4219 *kattr = (struct mount_kattr) {
4220 .lookup_flags = lookup_flags,
4221 .recurse = !!(flags & AT_RECURSIVE),
4222 };
4223
4224 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4225 return -EINVAL;
4226 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4227 return -EINVAL;
4228 kattr->propagation = attr->propagation;
4229
4230 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4231 return -EINVAL;
4232
4233 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4234 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4235
4236 /*
4237 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4238 * users wanting to transition to a different atime setting cannot
4239 * simply specify the atime setting in @attr_set, but must also
4240 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4241 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4242 * @attr_clr and that @attr_set can't have any atime bits set if
4243 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4244 */
4245 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4246 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4247 return -EINVAL;
4248
4249 /*
4250 * Clear all previous time settings as they are mutually
4251 * exclusive.
4252 */
4253 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4254 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4255 case MOUNT_ATTR_RELATIME:
4256 kattr->attr_set |= MNT_RELATIME;
4257 break;
4258 case MOUNT_ATTR_NOATIME:
4259 kattr->attr_set |= MNT_NOATIME;
4260 break;
4261 case MOUNT_ATTR_STRICTATIME:
4262 break;
4263 default:
4264 return -EINVAL;
4265 }
4266 } else {
4267 if (attr->attr_set & MOUNT_ATTR__ATIME)
4268 return -EINVAL;
4269 }
4270
4271 return build_mount_idmapped(attr, usize, kattr, flags);
4272 }
4273
finish_mount_kattr(struct mount_kattr * kattr)4274 static void finish_mount_kattr(struct mount_kattr *kattr)
4275 {
4276 put_user_ns(kattr->mnt_userns);
4277 kattr->mnt_userns = NULL;
4278 }
4279
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4280 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4281 unsigned int, flags, struct mount_attr __user *, uattr,
4282 size_t, usize)
4283 {
4284 int err;
4285 struct path target;
4286 struct mount_attr attr;
4287 struct mount_kattr kattr;
4288
4289 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4290
4291 if (flags & ~(AT_EMPTY_PATH |
4292 AT_RECURSIVE |
4293 AT_SYMLINK_NOFOLLOW |
4294 AT_NO_AUTOMOUNT))
4295 return -EINVAL;
4296
4297 if (unlikely(usize > PAGE_SIZE))
4298 return -E2BIG;
4299 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4300 return -EINVAL;
4301
4302 if (!may_mount())
4303 return -EPERM;
4304
4305 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4306 if (err)
4307 return err;
4308
4309 /* Don't bother walking through the mounts if this is a nop. */
4310 if (attr.attr_set == 0 &&
4311 attr.attr_clr == 0 &&
4312 attr.propagation == 0)
4313 return 0;
4314
4315 err = build_mount_kattr(&attr, usize, &kattr, flags);
4316 if (err)
4317 return err;
4318
4319 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4320 if (!err) {
4321 err = do_mount_setattr(&target, &kattr);
4322 path_put(&target);
4323 }
4324 finish_mount_kattr(&kattr);
4325 return err;
4326 }
4327
init_mount_tree(void)4328 static void __init init_mount_tree(void)
4329 {
4330 struct vfsmount *mnt;
4331 struct mount *m;
4332 struct mnt_namespace *ns;
4333 struct path root;
4334
4335 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4336 if (IS_ERR(mnt))
4337 panic("Can't create rootfs");
4338
4339 ns = alloc_mnt_ns(&init_user_ns, false);
4340 if (IS_ERR(ns))
4341 panic("Can't allocate initial namespace");
4342 m = real_mount(mnt);
4343 m->mnt_ns = ns;
4344 ns->root = m;
4345 ns->mounts = 1;
4346 list_add(&m->mnt_list, &ns->list);
4347 init_task.nsproxy->mnt_ns = ns;
4348 get_mnt_ns(ns);
4349
4350 root.mnt = mnt;
4351 root.dentry = mnt->mnt_root;
4352 mnt->mnt_flags |= MNT_LOCKED;
4353
4354 set_fs_pwd(current->fs, &root);
4355 set_fs_root(current->fs, &root);
4356 }
4357
mnt_init(void)4358 void __init mnt_init(void)
4359 {
4360 int err;
4361
4362 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4363 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4364
4365 mount_hashtable = alloc_large_system_hash("Mount-cache",
4366 sizeof(struct hlist_head),
4367 mhash_entries, 19,
4368 HASH_ZERO,
4369 &m_hash_shift, &m_hash_mask, 0, 0);
4370 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4371 sizeof(struct hlist_head),
4372 mphash_entries, 19,
4373 HASH_ZERO,
4374 &mp_hash_shift, &mp_hash_mask, 0, 0);
4375
4376 if (!mount_hashtable || !mountpoint_hashtable)
4377 panic("Failed to allocate mount hash table\n");
4378
4379 kernfs_init();
4380
4381 err = sysfs_init();
4382 if (err)
4383 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4384 __func__, err);
4385 fs_kobj = kobject_create_and_add("fs", NULL);
4386 if (!fs_kobj)
4387 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4388 shmem_init();
4389 init_rootfs();
4390 init_mount_tree();
4391 }
4392
put_mnt_ns(struct mnt_namespace * ns)4393 void put_mnt_ns(struct mnt_namespace *ns)
4394 {
4395 if (!refcount_dec_and_test(&ns->ns.count))
4396 return;
4397 drop_collected_mounts(&ns->root->mnt);
4398 free_mnt_ns(ns);
4399 }
4400
kern_mount(struct file_system_type * type)4401 struct vfsmount *kern_mount(struct file_system_type *type)
4402 {
4403 struct vfsmount *mnt;
4404 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4405 if (!IS_ERR(mnt)) {
4406 /*
4407 * it is a longterm mount, don't release mnt until
4408 * we unmount before file sys is unregistered
4409 */
4410 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4411 }
4412 return mnt;
4413 }
4414 EXPORT_SYMBOL_GPL(kern_mount);
4415
kern_unmount(struct vfsmount * mnt)4416 void kern_unmount(struct vfsmount *mnt)
4417 {
4418 /* release long term mount so mount point can be released */
4419 if (!IS_ERR_OR_NULL(mnt)) {
4420 real_mount(mnt)->mnt_ns = NULL;
4421 synchronize_rcu(); /* yecchhh... */
4422 mntput(mnt);
4423 }
4424 }
4425 EXPORT_SYMBOL(kern_unmount);
4426
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)4427 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4428 {
4429 unsigned int i;
4430
4431 for (i = 0; i < num; i++)
4432 if (mnt[i])
4433 real_mount(mnt[i])->mnt_ns = NULL;
4434 synchronize_rcu_expedited();
4435 for (i = 0; i < num; i++)
4436 mntput(mnt[i]);
4437 }
4438 EXPORT_SYMBOL(kern_unmount_array);
4439
our_mnt(struct vfsmount * mnt)4440 bool our_mnt(struct vfsmount *mnt)
4441 {
4442 return check_mnt(real_mount(mnt));
4443 }
4444
current_chrooted(void)4445 bool current_chrooted(void)
4446 {
4447 /* Does the current process have a non-standard root */
4448 struct path ns_root;
4449 struct path fs_root;
4450 bool chrooted;
4451
4452 /* Find the namespace root */
4453 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4454 ns_root.dentry = ns_root.mnt->mnt_root;
4455 path_get(&ns_root);
4456 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4457 ;
4458
4459 get_fs_root(current->fs, &fs_root);
4460
4461 chrooted = !path_equal(&fs_root, &ns_root);
4462
4463 path_put(&fs_root);
4464 path_put(&ns_root);
4465
4466 return chrooted;
4467 }
4468
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)4469 static bool mnt_already_visible(struct mnt_namespace *ns,
4470 const struct super_block *sb,
4471 int *new_mnt_flags)
4472 {
4473 int new_flags = *new_mnt_flags;
4474 struct mount *mnt;
4475 bool visible = false;
4476
4477 down_read(&namespace_sem);
4478 lock_ns_list(ns);
4479 list_for_each_entry(mnt, &ns->list, mnt_list) {
4480 struct mount *child;
4481 int mnt_flags;
4482
4483 if (mnt_is_cursor(mnt))
4484 continue;
4485
4486 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4487 continue;
4488
4489 /* This mount is not fully visible if it's root directory
4490 * is not the root directory of the filesystem.
4491 */
4492 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4493 continue;
4494
4495 /* A local view of the mount flags */
4496 mnt_flags = mnt->mnt.mnt_flags;
4497
4498 /* Don't miss readonly hidden in the superblock flags */
4499 if (sb_rdonly(mnt->mnt.mnt_sb))
4500 mnt_flags |= MNT_LOCK_READONLY;
4501
4502 /* Verify the mount flags are equal to or more permissive
4503 * than the proposed new mount.
4504 */
4505 if ((mnt_flags & MNT_LOCK_READONLY) &&
4506 !(new_flags & MNT_READONLY))
4507 continue;
4508 if ((mnt_flags & MNT_LOCK_ATIME) &&
4509 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4510 continue;
4511
4512 /* This mount is not fully visible if there are any
4513 * locked child mounts that cover anything except for
4514 * empty directories.
4515 */
4516 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4517 struct inode *inode = child->mnt_mountpoint->d_inode;
4518 /* Only worry about locked mounts */
4519 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4520 continue;
4521 /* Is the directory permanetly empty? */
4522 if (!is_empty_dir_inode(inode))
4523 goto next;
4524 }
4525 /* Preserve the locked attributes */
4526 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4527 MNT_LOCK_ATIME);
4528 visible = true;
4529 goto found;
4530 next: ;
4531 }
4532 found:
4533 unlock_ns_list(ns);
4534 up_read(&namespace_sem);
4535 return visible;
4536 }
4537
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4538 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4539 {
4540 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4541 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4542 unsigned long s_iflags;
4543
4544 if (ns->user_ns == &init_user_ns)
4545 return false;
4546
4547 /* Can this filesystem be too revealing? */
4548 s_iflags = sb->s_iflags;
4549 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4550 return false;
4551
4552 if ((s_iflags & required_iflags) != required_iflags) {
4553 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4554 required_iflags);
4555 return true;
4556 }
4557
4558 return !mnt_already_visible(ns, sb, new_mnt_flags);
4559 }
4560
mnt_may_suid(struct vfsmount * mnt)4561 bool mnt_may_suid(struct vfsmount *mnt)
4562 {
4563 /*
4564 * Foreign mounts (accessed via fchdir or through /proc
4565 * symlinks) are always treated as if they are nosuid. This
4566 * prevents namespaces from trusting potentially unsafe
4567 * suid/sgid bits, file caps, or security labels that originate
4568 * in other namespaces.
4569 */
4570 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4571 current_in_userns(mnt->mnt_sb->s_user_ns);
4572 }
4573
mntns_get(struct task_struct * task)4574 static struct ns_common *mntns_get(struct task_struct *task)
4575 {
4576 struct ns_common *ns = NULL;
4577 struct nsproxy *nsproxy;
4578
4579 task_lock(task);
4580 nsproxy = task->nsproxy;
4581 if (nsproxy) {
4582 ns = &nsproxy->mnt_ns->ns;
4583 get_mnt_ns(to_mnt_ns(ns));
4584 }
4585 task_unlock(task);
4586
4587 return ns;
4588 }
4589
mntns_put(struct ns_common * ns)4590 static void mntns_put(struct ns_common *ns)
4591 {
4592 put_mnt_ns(to_mnt_ns(ns));
4593 }
4594
mntns_install(struct nsset * nsset,struct ns_common * ns)4595 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4596 {
4597 struct nsproxy *nsproxy = nsset->nsproxy;
4598 struct fs_struct *fs = nsset->fs;
4599 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4600 struct user_namespace *user_ns = nsset->cred->user_ns;
4601 struct path root;
4602 int err;
4603
4604 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4605 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4606 !ns_capable(user_ns, CAP_SYS_ADMIN))
4607 return -EPERM;
4608
4609 if (is_anon_ns(mnt_ns))
4610 return -EINVAL;
4611
4612 if (fs->users != 1)
4613 return -EINVAL;
4614
4615 get_mnt_ns(mnt_ns);
4616 old_mnt_ns = nsproxy->mnt_ns;
4617 nsproxy->mnt_ns = mnt_ns;
4618
4619 /* Find the root */
4620 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4621 "/", LOOKUP_DOWN, &root);
4622 if (err) {
4623 /* revert to old namespace */
4624 nsproxy->mnt_ns = old_mnt_ns;
4625 put_mnt_ns(mnt_ns);
4626 return err;
4627 }
4628
4629 put_mnt_ns(old_mnt_ns);
4630
4631 /* Update the pwd and root */
4632 set_fs_pwd(fs, &root);
4633 set_fs_root(fs, &root);
4634
4635 path_put(&root);
4636 return 0;
4637 }
4638
mntns_owner(struct ns_common * ns)4639 static struct user_namespace *mntns_owner(struct ns_common *ns)
4640 {
4641 return to_mnt_ns(ns)->user_ns;
4642 }
4643
4644 const struct proc_ns_operations mntns_operations = {
4645 .name = "mnt",
4646 .type = CLONE_NEWNS,
4647 .get = mntns_get,
4648 .put = mntns_put,
4649 .install = mntns_install,
4650 .owner = mntns_owner,
4651 };
4652