• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Host communication command constants for ChromeOS EC
4  *
5  * Copyright (C) 2012 Google, Inc
6  *
7  * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8  * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9  */
10 
11 /* Host communication command constants for Chrome EC */
12 
13 #ifndef __CROS_EC_COMMANDS_H
14 #define __CROS_EC_COMMANDS_H
15 
16 
17 
18 
19 #define BUILD_ASSERT(_cond)
20 
21 /*
22  * Current version of this protocol
23  *
24  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25  * determined in other ways.  Remove this once the kernel code no longer
26  * depends on it.
27  */
28 #define EC_PROTO_VERSION          0x00000002
29 
30 /* Command version mask */
31 #define EC_VER_MASK(version) BIT(version)
32 
33 /* I/O addresses for ACPI commands */
34 #define EC_LPC_ADDR_ACPI_DATA  0x62
35 #define EC_LPC_ADDR_ACPI_CMD   0x66
36 
37 /* I/O addresses for host command */
38 #define EC_LPC_ADDR_HOST_DATA  0x200
39 #define EC_LPC_ADDR_HOST_CMD   0x204
40 
41 /* I/O addresses for host command args and params */
42 /* Protocol version 2 */
43 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
44 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
45 					 * EC_PROTO2_MAX_PARAM_SIZE
46 					 */
47 /* Protocol version 3 */
48 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
49 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
50 
51 /*
52  * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53  * and they tell the kernel that so we have to think of it as two parts.
54  */
55 #define EC_HOST_CMD_REGION0    0x800
56 #define EC_HOST_CMD_REGION1    0x880
57 #define EC_HOST_CMD_REGION_SIZE 0x80
58 
59 /* EC command register bit functions */
60 #define EC_LPC_CMDR_DATA	BIT(0)  /* Data ready for host to read */
61 #define EC_LPC_CMDR_PENDING	BIT(1)  /* Write pending to EC */
62 #define EC_LPC_CMDR_BUSY	BIT(2)  /* EC is busy processing a command */
63 #define EC_LPC_CMDR_CMD		BIT(3)  /* Last host write was a command */
64 #define EC_LPC_CMDR_ACPI_BRST	BIT(4)  /* Burst mode (not used) */
65 #define EC_LPC_CMDR_SCI		BIT(5)  /* SCI event is pending */
66 #define EC_LPC_CMDR_SMI		BIT(6)  /* SMI event is pending */
67 
68 #define EC_LPC_ADDR_MEMMAP       0x900
69 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
70 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
71 
72 /* The offset address of each type of data in mapped memory. */
73 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
74 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
75 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
76 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
77 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
78 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
79 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
80 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
81 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
82 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
83 /* Unused 0x28 - 0x2f */
84 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
85 /* Unused 0x31 - 0x33 */
86 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
87 /* Battery values are all 32 bits, unless otherwise noted. */
88 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
89 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
90 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
91 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
92 #define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
93 #define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
94 /* Unused 0x4f */
95 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
109 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
110 /* 0x94 - 0x99: 1st Accelerometer */
111 /* 0x9a - 0x9f: 2nd Accelerometer */
112 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
113 /* Unused 0xa6 - 0xdf */
114 
115 /*
116  * ACPI is unable to access memory mapped data at or above this offset due to
117  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
118  * which might be needed by ACPI.
119  */
120 #define EC_MEMMAP_NO_ACPI 0xe0
121 
122 /* Define the format of the accelerometer mapped memory status byte. */
123 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
124 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
125 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
126 
127 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
128 #define EC_TEMP_SENSOR_ENTRIES     16
129 /*
130  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
131  *
132  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
133  */
134 #define EC_TEMP_SENSOR_B_ENTRIES      8
135 
136 /* Special values for mapped temperature sensors */
137 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
138 #define EC_TEMP_SENSOR_ERROR          0xfe
139 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
140 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
141 /*
142  * The offset of temperature value stored in mapped memory.  This allows
143  * reporting a temperature range of 200K to 454K = -73C to 181C.
144  */
145 #define EC_TEMP_SENSOR_OFFSET      200
146 
147 /*
148  * Number of ALS readings at EC_MEMMAP_ALS
149  */
150 #define EC_ALS_ENTRIES             2
151 
152 /*
153  * The default value a temperature sensor will return when it is present but
154  * has not been read this boot.  This is a reasonable number to avoid
155  * triggering alarms on the host.
156  */
157 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
158 
159 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
160 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
161 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
162 
163 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
164 #define EC_BATT_FLAG_AC_PRESENT   0x01
165 #define EC_BATT_FLAG_BATT_PRESENT 0x02
166 #define EC_BATT_FLAG_DISCHARGING  0x04
167 #define EC_BATT_FLAG_CHARGING     0x08
168 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
169 /* Set if some of the static/dynamic data is invalid (or outdated). */
170 #define EC_BATT_FLAG_INVALID_DATA 0x20
171 
172 /* Switch flags at EC_MEMMAP_SWITCHES */
173 #define EC_SWITCH_LID_OPEN               0x01
174 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
175 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
176 /* Was recovery requested via keyboard; now unused. */
177 #define EC_SWITCH_IGNORE1		 0x08
178 /* Recovery requested via dedicated signal (from servo board) */
179 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
180 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
181 #define EC_SWITCH_IGNORE0                0x20
182 
183 /* Host command interface flags */
184 /* Host command interface supports LPC args (LPC interface only) */
185 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
186 /* Host command interface supports version 3 protocol */
187 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
188 
189 /* Wireless switch flags */
190 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
191 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
192 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
193 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
194 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
195 
196 /*****************************************************************************/
197 /*
198  * ACPI commands
199  *
200  * These are valid ONLY on the ACPI command/data port.
201  */
202 
203 /*
204  * ACPI Read Embedded Controller
205  *
206  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
207  *
208  * Use the following sequence:
209  *
210  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
211  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
212  *    - Write address to EC_LPC_ADDR_ACPI_DATA
213  *    - Wait for EC_LPC_CMDR_DATA bit to set
214  *    - Read value from EC_LPC_ADDR_ACPI_DATA
215  */
216 #define EC_CMD_ACPI_READ 0x0080
217 
218 /*
219  * ACPI Write Embedded Controller
220  *
221  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
222  *
223  * Use the following sequence:
224  *
225  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
226  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
227  *    - Write address to EC_LPC_ADDR_ACPI_DATA
228  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
229  *    - Write value to EC_LPC_ADDR_ACPI_DATA
230  */
231 #define EC_CMD_ACPI_WRITE 0x0081
232 
233 /*
234  * ACPI Burst Enable Embedded Controller
235  *
236  * This enables burst mode on the EC to allow the host to issue several
237  * commands back-to-back. While in this mode, writes to mapped multi-byte
238  * data are locked out to ensure data consistency.
239  */
240 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
241 
242 /*
243  * ACPI Burst Disable Embedded Controller
244  *
245  * This disables burst mode on the EC and stops preventing EC writes to mapped
246  * multi-byte data.
247  */
248 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
249 
250 /*
251  * ACPI Query Embedded Controller
252  *
253  * This clears the lowest-order bit in the currently pending host events, and
254  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
255  * event 0x80000000 = 32), or 0 if no event was pending.
256  */
257 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
258 
259 /* Valid addresses in ACPI memory space, for read/write commands */
260 
261 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
262 #define EC_ACPI_MEM_VERSION            0x00
263 /*
264  * Test location; writing value here updates test compliment byte to (0xff -
265  * value).
266  */
267 #define EC_ACPI_MEM_TEST               0x01
268 /* Test compliment; writes here are ignored. */
269 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
270 
271 /* Keyboard backlight brightness percent (0 - 100) */
272 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
273 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
274 #define EC_ACPI_MEM_FAN_DUTY           0x04
275 
276 /*
277  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
278  * independent thresholds attached to them. The current value of the ID
279  * register determines which sensor is affected by the THRESHOLD and COMMIT
280  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
281  * as the memory-mapped sensors. The COMMIT register applies those settings.
282  *
283  * The spec does not mandate any way to read back the threshold settings
284  * themselves, but when a threshold is crossed the AP needs a way to determine
285  * which sensor(s) are responsible. Each reading of the ID register clears and
286  * returns one sensor ID that has crossed one of its threshold (in either
287  * direction) since the last read. A value of 0xFF means "no new thresholds
288  * have tripped". Setting or enabling the thresholds for a sensor will clear
289  * the unread event count for that sensor.
290  */
291 #define EC_ACPI_MEM_TEMP_ID            0x05
292 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
293 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
294 /*
295  * Here are the bits for the COMMIT register:
296  *   bit 0 selects the threshold index for the chosen sensor (0/1)
297  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
298  * Each write to the commit register affects one threshold.
299  */
300 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
301 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
302 /*
303  * Example:
304  *
305  * Set the thresholds for sensor 2 to 50 C and 60 C:
306  *   write 2 to [0x05]      --  select temp sensor 2
307  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
308  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
309  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
310  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
311  *
312  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
313  *   write 2 to [0x05]      --  select temp sensor 2
314  *   write 0x1 to [0x07]    --  disable threshold 1
315  */
316 
317 /* DPTF battery charging current limit */
318 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
319 
320 /* Charging limit is specified in 64 mA steps */
321 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
322 /* Value to disable DPTF battery charging limit */
323 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
324 
325 /*
326  * Report device orientation
327  *  Bits       Definition
328  *  3:1        Device DPTF Profile Number (DDPN)
329  *               0   = Reserved for backward compatibility (indicates no valid
330  *                     profile number. Host should fall back to using TBMD).
331  *              1..7 = DPTF Profile number to indicate to host which table needs
332  *                     to be loaded.
333  *   0         Tablet Mode Device Indicator (TBMD)
334  */
335 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
336 #define EC_ACPI_MEM_TBMD_SHIFT         0
337 #define EC_ACPI_MEM_TBMD_MASK          0x1
338 #define EC_ACPI_MEM_DDPN_SHIFT         1
339 #define EC_ACPI_MEM_DDPN_MASK          0x7
340 
341 /*
342  * Report device features. Uses the same format as the host command, except:
343  *
344  * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
345  * of features", which is of limited interest when the system is already
346  * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
347  * these are supported, it defaults to 0.
348  * This allows detecting the presence of this field since older versions of
349  * the EC codebase would simply return 0xff to that unknown address. Check
350  * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
351  * are valid.
352  */
353 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
354 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
355 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
356 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
357 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
358 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
359 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
360 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
361 
362 #define EC_ACPI_MEM_BATTERY_INDEX    0x12
363 
364 /*
365  * USB Port Power. Each bit indicates whether the corresponding USB ports' power
366  * is enabled (1) or disabled (0).
367  *   bit 0 USB port ID 0
368  *   ...
369  *   bit 7 USB port ID 7
370  */
371 #define EC_ACPI_MEM_USB_PORT_POWER 0x13
372 
373 /*
374  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
375  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
376  */
377 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
378 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
379 
380 /* Current version of ACPI memory address space */
381 #define EC_ACPI_MEM_VERSION_CURRENT 2
382 
383 
384 /*
385  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
386  * is pre-processed to handle constants but the ASL compiler is unable to
387  * handle actual C code so keep it separate.
388  */
389 
390 
391 /*
392  * Attributes for EC request and response packets.  Just defining __packed
393  * results in inefficient assembly code on ARM, if the structure is actually
394  * 32-bit aligned, as it should be for all buffers.
395  *
396  * Be very careful when adding these to existing structures.  They will round
397  * up the structure size to the specified boundary.
398  *
399  * Also be very careful to make that if a structure is included in some other
400  * parent structure that the alignment will still be true given the packing of
401  * the parent structure.  This is particularly important if the sub-structure
402  * will be passed as a pointer to another function, since that function will
403  * not know about the misaligment caused by the parent structure's packing.
404  *
405  * Also be very careful using __packed - particularly when nesting non-packed
406  * structures inside packed ones.  In fact, DO NOT use __packed directly;
407  * always use one of these attributes.
408  *
409  * Once everything is annotated properly, the following search strings should
410  * not return ANY matches in this file other than right here:
411  *
412  * "__packed" - generates inefficient code; all sub-structs must also be packed
413  *
414  * "struct [^_]" - all structs should be annotated, except for structs that are
415  * members of other structs/unions (and their original declarations should be
416  * annotated).
417  */
418 
419 /*
420  * Packed structures make no assumption about alignment, so they do inefficient
421  * byte-wise reads.
422  */
423 #define __ec_align1 __packed
424 #define __ec_align2 __packed
425 #define __ec_align4 __packed
426 #define __ec_align_size1 __packed
427 #define __ec_align_offset1 __packed
428 #define __ec_align_offset2 __packed
429 #define __ec_todo_packed __packed
430 #define __ec_todo_unpacked
431 
432 
433 /* LPC command status byte masks */
434 /* EC has written a byte in the data register and host hasn't read it yet */
435 #define EC_LPC_STATUS_TO_HOST     0x01
436 /* Host has written a command/data byte and the EC hasn't read it yet */
437 #define EC_LPC_STATUS_FROM_HOST   0x02
438 /* EC is processing a command */
439 #define EC_LPC_STATUS_PROCESSING  0x04
440 /* Last write to EC was a command, not data */
441 #define EC_LPC_STATUS_LAST_CMD    0x08
442 /* EC is in burst mode */
443 #define EC_LPC_STATUS_BURST_MODE  0x10
444 /* SCI event is pending (requesting SCI query) */
445 #define EC_LPC_STATUS_SCI_PENDING 0x20
446 /* SMI event is pending (requesting SMI query) */
447 #define EC_LPC_STATUS_SMI_PENDING 0x40
448 /* (reserved) */
449 #define EC_LPC_STATUS_RESERVED    0x80
450 
451 /*
452  * EC is busy.  This covers both the EC processing a command, and the host has
453  * written a new command but the EC hasn't picked it up yet.
454  */
455 #define EC_LPC_STATUS_BUSY_MASK \
456 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
457 
458 /*
459  * Host command response codes (16-bit).  Note that response codes should be
460  * stored in a uint16_t rather than directly in a value of this type.
461  */
462 enum ec_status {
463 	EC_RES_SUCCESS = 0,
464 	EC_RES_INVALID_COMMAND = 1,
465 	EC_RES_ERROR = 2,
466 	EC_RES_INVALID_PARAM = 3,
467 	EC_RES_ACCESS_DENIED = 4,
468 	EC_RES_INVALID_RESPONSE = 5,
469 	EC_RES_INVALID_VERSION = 6,
470 	EC_RES_INVALID_CHECKSUM = 7,
471 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
472 	EC_RES_UNAVAILABLE = 9,		/* No response available */
473 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
474 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
475 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
476 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
477 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
478 	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
479 	EC_RES_BUSY = 16,		/* Up but too busy.  Should retry */
480 	EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
481 	EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
482 	EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
483 	EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
484 };
485 
486 /*
487  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
488  * EC command uses code 0 to mean "no event pending".  We explicitly specify
489  * each value in the enum listing so they won't change if we delete/insert an
490  * item or rearrange the list (it needs to be stable across platforms, not
491  * just within a single compiled instance).
492  */
493 enum host_event_code {
494 	EC_HOST_EVENT_LID_CLOSED = 1,
495 	EC_HOST_EVENT_LID_OPEN = 2,
496 	EC_HOST_EVENT_POWER_BUTTON = 3,
497 	EC_HOST_EVENT_AC_CONNECTED = 4,
498 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
499 	EC_HOST_EVENT_BATTERY_LOW = 6,
500 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
501 	EC_HOST_EVENT_BATTERY = 8,
502 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
503 	/* Event generated by a device attached to the EC */
504 	EC_HOST_EVENT_DEVICE = 10,
505 	EC_HOST_EVENT_THERMAL = 11,
506 	EC_HOST_EVENT_USB_CHARGER = 12,
507 	EC_HOST_EVENT_KEY_PRESSED = 13,
508 	/*
509 	 * EC has finished initializing the host interface.  The host can check
510 	 * for this event following sending a EC_CMD_REBOOT_EC command to
511 	 * determine when the EC is ready to accept subsequent commands.
512 	 */
513 	EC_HOST_EVENT_INTERFACE_READY = 14,
514 	/* Keyboard recovery combo has been pressed */
515 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
516 
517 	/* Shutdown due to thermal overload */
518 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
519 	/* Shutdown due to battery level too low */
520 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
521 
522 	/* Suggest that the AP throttle itself */
523 	EC_HOST_EVENT_THROTTLE_START = 18,
524 	/* Suggest that the AP resume normal speed */
525 	EC_HOST_EVENT_THROTTLE_STOP = 19,
526 
527 	/* Hang detect logic detected a hang and host event timeout expired */
528 	EC_HOST_EVENT_HANG_DETECT = 20,
529 	/* Hang detect logic detected a hang and warm rebooted the AP */
530 	EC_HOST_EVENT_HANG_REBOOT = 21,
531 
532 	/* PD MCU triggering host event */
533 	EC_HOST_EVENT_PD_MCU = 22,
534 
535 	/* Battery Status flags have changed */
536 	EC_HOST_EVENT_BATTERY_STATUS = 23,
537 
538 	/* EC encountered a panic, triggering a reset */
539 	EC_HOST_EVENT_PANIC = 24,
540 
541 	/* Keyboard fastboot combo has been pressed */
542 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
543 
544 	/* EC RTC event occurred */
545 	EC_HOST_EVENT_RTC = 26,
546 
547 	/* Emulate MKBP event */
548 	EC_HOST_EVENT_MKBP = 27,
549 
550 	/* EC desires to change state of host-controlled USB mux */
551 	EC_HOST_EVENT_USB_MUX = 28,
552 
553 	/* TABLET/LAPTOP mode or detachable base attach/detach event */
554 	EC_HOST_EVENT_MODE_CHANGE = 29,
555 
556 	/* Keyboard recovery combo with hardware reinitialization */
557 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
558 
559 	/* WoV */
560 	EC_HOST_EVENT_WOV = 31,
561 
562 	/*
563 	 * The high bit of the event mask is not used as a host event code.  If
564 	 * it reads back as set, then the entire event mask should be
565 	 * considered invalid by the host.  This can happen when reading the
566 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
567 	 * not initialized on the EC, or improperly configured on the host.
568 	 */
569 	EC_HOST_EVENT_INVALID = 32
570 };
571 /* Host event mask */
572 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
573 
574 /**
575  * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
576  * @flags: The host argument flags.
577  * @command_version: Command version.
578  * @data_size: The length of data.
579  * @checksum: Checksum; sum of command + flags + command_version + data_size +
580  *            all params/response data bytes.
581  */
582 struct ec_lpc_host_args {
583 	uint8_t flags;
584 	uint8_t command_version;
585 	uint8_t data_size;
586 	uint8_t checksum;
587 } __ec_align4;
588 
589 /* Flags for ec_lpc_host_args.flags */
590 /*
591  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
592  * params.
593  *
594  * If EC gets a command and this flag is not set, this is an old-style command.
595  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
596  * unknown length.  EC must respond with an old-style response (that is,
597  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
598  */
599 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
600 /*
601  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
602  *
603  * If EC responds to a command and this flag is not set, this is an old-style
604  * response.  Command version is 0 and response data from EC is at
605  * EC_LPC_ADDR_OLD_PARAM with unknown length.
606  */
607 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
608 
609 /*****************************************************************************/
610 /*
611  * Byte codes returned by EC over SPI interface.
612  *
613  * These can be used by the AP to debug the EC interface, and to determine
614  * when the EC is not in a state where it will ever get around to responding
615  * to the AP.
616  *
617  * Example of sequence of bytes read from EC for a current good transfer:
618  *   1. -                  - AP asserts chip select (CS#)
619  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
620  *   3. -                  - EC starts handling CS# interrupt
621  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
622  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
623  *                           bytes looking for EC_SPI_FRAME_START
624  *   6. -                  - EC finishes processing and sets up response
625  *   7. EC_SPI_FRAME_START - AP reads frame byte
626  *   8. (response packet)  - AP reads response packet
627  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
628  *   10 -                  - AP deasserts chip select
629  *   11 -                  - EC processes CS# interrupt and sets up DMA for
630  *                           next request
631  *
632  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
633  * the following byte values:
634  *   EC_SPI_OLD_READY
635  *   EC_SPI_RX_READY
636  *   EC_SPI_RECEIVING
637  *   EC_SPI_PROCESSING
638  *
639  * Then the EC found an error in the request, or was not ready for the request
640  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
641  * because the EC is unable to tell when the AP is done sending its request.
642  */
643 
644 /*
645  * Framing byte which precedes a response packet from the EC.  After sending a
646  * request, the AP will clock in bytes until it sees the framing byte, then
647  * clock in the response packet.
648  */
649 #define EC_SPI_FRAME_START    0xec
650 
651 /*
652  * Padding bytes which are clocked out after the end of a response packet.
653  */
654 #define EC_SPI_PAST_END       0xed
655 
656 /*
657  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
658  * that the AP will send a valid packet header (starting with
659  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
660  */
661 #define EC_SPI_RX_READY       0xf8
662 
663 /*
664  * EC has started receiving the request from the AP, but hasn't started
665  * processing it yet.
666  */
667 #define EC_SPI_RECEIVING      0xf9
668 
669 /* EC has received the entire request from the AP and is processing it. */
670 #define EC_SPI_PROCESSING     0xfa
671 
672 /*
673  * EC received bad data from the AP, such as a packet header with an invalid
674  * length.  EC will ignore all data until chip select deasserts.
675  */
676 #define EC_SPI_RX_BAD_DATA    0xfb
677 
678 /*
679  * EC received data from the AP before it was ready.  That is, the AP asserted
680  * chip select and started clocking data before the EC was ready to receive it.
681  * EC will ignore all data until chip select deasserts.
682  */
683 #define EC_SPI_NOT_READY      0xfc
684 
685 /*
686  * EC was ready to receive a request from the AP.  EC has treated the byte sent
687  * by the AP as part of a request packet, or (for old-style ECs) is processing
688  * a fully received packet but is not ready to respond yet.
689  */
690 #define EC_SPI_OLD_READY      0xfd
691 
692 /*****************************************************************************/
693 
694 /*
695  * Protocol version 2 for I2C and SPI send a request this way:
696  *
697  *	0	EC_CMD_VERSION0 + (command version)
698  *	1	Command number
699  *	2	Length of params = N
700  *	3..N+2	Params, if any
701  *	N+3	8-bit checksum of bytes 0..N+2
702  *
703  * The corresponding response is:
704  *
705  *	0	Result code (EC_RES_*)
706  *	1	Length of params = M
707  *	2..M+1	Params, if any
708  *	M+2	8-bit checksum of bytes 0..M+1
709  */
710 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
711 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
712 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
713 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
714 
715 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
716 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
717 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
718 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
719 
720 /* Parameter length was limited by the LPC interface */
721 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
722 
723 /* Maximum request and response packet sizes for protocol version 2 */
724 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
725 				    EC_PROTO2_MAX_PARAM_SIZE)
726 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
727 				     EC_PROTO2_MAX_PARAM_SIZE)
728 
729 /*****************************************************************************/
730 
731 /*
732  * Value written to legacy command port / prefix byte to indicate protocol
733  * 3+ structs are being used.  Usage is bus-dependent.
734  */
735 #define EC_COMMAND_PROTOCOL_3 0xda
736 
737 #define EC_HOST_REQUEST_VERSION 3
738 
739 /**
740  * struct ec_host_request - Version 3 request from host.
741  * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
742  *                  receives a header with a version it doesn't know how to
743  *                  parse.
744  * @checksum: Checksum of request and data; sum of all bytes including checksum
745  *            should total to 0.
746  * @command: Command to send (EC_CMD_...)
747  * @command_version: Command version.
748  * @reserved: Unused byte in current protocol version; set to 0.
749  * @data_len: Length of data which follows this header.
750  */
751 struct ec_host_request {
752 	uint8_t struct_version;
753 	uint8_t checksum;
754 	uint16_t command;
755 	uint8_t command_version;
756 	uint8_t reserved;
757 	uint16_t data_len;
758 } __ec_align4;
759 
760 #define EC_HOST_RESPONSE_VERSION 3
761 
762 /**
763  * struct ec_host_response - Version 3 response from EC.
764  * @struct_version: Struct version (=3).
765  * @checksum: Checksum of response and data; sum of all bytes including
766  *            checksum should total to 0.
767  * @result: EC's response to the command (separate from communication failure)
768  * @data_len: Length of data which follows this header.
769  * @reserved: Unused bytes in current protocol version; set to 0.
770  */
771 struct ec_host_response {
772 	uint8_t struct_version;
773 	uint8_t checksum;
774 	uint16_t result;
775 	uint16_t data_len;
776 	uint16_t reserved;
777 } __ec_align4;
778 
779 /*****************************************************************************/
780 
781 /*
782  * Host command protocol V4.
783  *
784  * Packets always start with a request or response header.  They are followed
785  * by data_len bytes of data.  If the data_crc_present flag is set, the data
786  * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1
787  * polynomial.
788  *
789  * Host algorithm when sending a request q:
790  *
791  * 101) tries_left=(some value, e.g. 3);
792  * 102) q.seq_num++
793  * 103) q.seq_dup=0
794  * 104) Calculate q.header_crc.
795  * 105) Send request q to EC.
796  * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
797  *
798  * 201) If r.struct_version != 4, go to 301.
799  * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
800  * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
801  * 204) If r.seq_num != q.seq_num, go to 301.
802  * 205) If r.seq_dup == q.seq_dup, return success.
803  * 207) If r.seq_dup == 1, go to 301.
804  * 208) Return error.
805  *
806  * 301) If --tries_left <= 0, return error.
807  * 302) If q.seq_dup == 1, go to 105.
808  * 303) q.seq_dup = 1
809  * 304) Go to 104.
810  *
811  * EC algorithm when receiving a request q.
812  * EC has response buffer r, error buffer e.
813  *
814  * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
815  *      and go to 301
816  * 102) If q.header_crc mismatches calculated CRC, set e.result =
817  *      EC_RES_INVALID_HEADER_CRC and go to 301
818  * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
819  *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
820  *      and go to 301.
821  * 104) If q.seq_dup == 0, go to 201.
822  * 105) If q.seq_num != r.seq_num, go to 201.
823  * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
824  *
825  * 201) Process request q into response r.
826  * 202) r.seq_num = q.seq_num
827  * 203) r.seq_dup = q.seq_dup
828  * 204) Calculate r.header_crc
829  * 205) If r.data_len > 0 and data is no longer available, set e.result =
830  *      EC_RES_DUP_UNAVAILABLE and go to 301.
831  * 206) Send response r.
832  *
833  * 301) e.seq_num = q.seq_num
834  * 302) e.seq_dup = q.seq_dup
835  * 303) Calculate e.header_crc.
836  * 304) Send error response e.
837  */
838 
839 /* Version 4 request from host */
840 struct ec_host_request4 {
841 	/*
842 	 * bits 0-3: struct_version: Structure version (=4)
843 	 * bit    4: is_response: Is response (=0)
844 	 * bits 5-6: seq_num: Sequence number
845 	 * bit    7: seq_dup: Sequence duplicate flag
846 	 */
847 	uint8_t fields0;
848 
849 	/*
850 	 * bits 0-4: command_version: Command version
851 	 * bits 5-6: Reserved (set 0, ignore on read)
852 	 * bit    7: data_crc_present: Is data CRC present after data
853 	 */
854 	uint8_t fields1;
855 
856 	/* Command code (EC_CMD_*) */
857 	uint16_t command;
858 
859 	/* Length of data which follows this header (not including data CRC) */
860 	uint16_t data_len;
861 
862 	/* Reserved (set 0, ignore on read) */
863 	uint8_t reserved;
864 
865 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
866 	uint8_t header_crc;
867 } __ec_align4;
868 
869 /* Version 4 response from EC */
870 struct ec_host_response4 {
871 	/*
872 	 * bits 0-3: struct_version: Structure version (=4)
873 	 * bit    4: is_response: Is response (=1)
874 	 * bits 5-6: seq_num: Sequence number
875 	 * bit    7: seq_dup: Sequence duplicate flag
876 	 */
877 	uint8_t fields0;
878 
879 	/*
880 	 * bits 0-6: Reserved (set 0, ignore on read)
881 	 * bit    7: data_crc_present: Is data CRC present after data
882 	 */
883 	uint8_t fields1;
884 
885 	/* Result code (EC_RES_*) */
886 	uint16_t result;
887 
888 	/* Length of data which follows this header (not including data CRC) */
889 	uint16_t data_len;
890 
891 	/* Reserved (set 0, ignore on read) */
892 	uint8_t reserved;
893 
894 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
895 	uint8_t header_crc;
896 } __ec_align4;
897 
898 /* Fields in fields0 byte */
899 #define EC_PACKET4_0_STRUCT_VERSION_MASK	0x0f
900 #define EC_PACKET4_0_IS_RESPONSE_MASK		0x10
901 #define EC_PACKET4_0_SEQ_NUM_SHIFT		5
902 #define EC_PACKET4_0_SEQ_NUM_MASK		0x60
903 #define EC_PACKET4_0_SEQ_DUP_MASK		0x80
904 
905 /* Fields in fields1 byte */
906 #define EC_PACKET4_1_COMMAND_VERSION_MASK	0x1f  /* (request only) */
907 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK	0x80
908 
909 /*****************************************************************************/
910 /*
911  * Notes on commands:
912  *
913  * Each command is an 16-bit command value.  Commands which take params or
914  * return response data specify structures for that data.  If no structure is
915  * specified, the command does not input or output data, respectively.
916  * Parameter/response length is implicit in the structs.  Some underlying
917  * communication protocols (I2C, SPI) may add length or checksum headers, but
918  * those are implementation-dependent and not defined here.
919  *
920  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
921  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
922  */
923 
924 /*****************************************************************************/
925 /* General / test commands */
926 
927 /*
928  * Get protocol version, used to deal with non-backward compatible protocol
929  * changes.
930  */
931 #define EC_CMD_PROTO_VERSION 0x0000
932 
933 /**
934  * struct ec_response_proto_version - Response to the proto version command.
935  * @version: The protocol version.
936  */
937 struct ec_response_proto_version {
938 	uint32_t version;
939 } __ec_align4;
940 
941 /*
942  * Hello.  This is a simple command to test the EC is responsive to
943  * commands.
944  */
945 #define EC_CMD_HELLO 0x0001
946 
947 /**
948  * struct ec_params_hello - Parameters to the hello command.
949  * @in_data: Pass anything here.
950  */
951 struct ec_params_hello {
952 	uint32_t in_data;
953 } __ec_align4;
954 
955 /**
956  * struct ec_response_hello - Response to the hello command.
957  * @out_data: Output will be in_data + 0x01020304.
958  */
959 struct ec_response_hello {
960 	uint32_t out_data;
961 } __ec_align4;
962 
963 /* Get version number */
964 #define EC_CMD_GET_VERSION 0x0002
965 
966 enum ec_current_image {
967 	EC_IMAGE_UNKNOWN = 0,
968 	EC_IMAGE_RO,
969 	EC_IMAGE_RW
970 };
971 
972 /**
973  * struct ec_response_get_version - Response to the get version command.
974  * @version_string_ro: Null-terminated RO firmware version string.
975  * @version_string_rw: Null-terminated RW firmware version string.
976  * @reserved: Unused bytes; was previously RW-B firmware version string.
977  * @current_image: One of ec_current_image.
978  */
979 struct ec_response_get_version {
980 	char version_string_ro[32];
981 	char version_string_rw[32];
982 	char reserved[32];
983 	uint32_t current_image;
984 } __ec_align4;
985 
986 /* Read test */
987 #define EC_CMD_READ_TEST 0x0003
988 
989 /**
990  * struct ec_params_read_test - Parameters for the read test command.
991  * @offset: Starting value for read buffer.
992  * @size: Size to read in bytes.
993  */
994 struct ec_params_read_test {
995 	uint32_t offset;
996 	uint32_t size;
997 } __ec_align4;
998 
999 /**
1000  * struct ec_response_read_test - Response to the read test command.
1001  * @data: Data returned by the read test command.
1002  */
1003 struct ec_response_read_test {
1004 	uint32_t data[32];
1005 } __ec_align4;
1006 
1007 /*
1008  * Get build information
1009  *
1010  * Response is null-terminated string.
1011  */
1012 #define EC_CMD_GET_BUILD_INFO 0x0004
1013 
1014 /* Get chip info */
1015 #define EC_CMD_GET_CHIP_INFO 0x0005
1016 
1017 /**
1018  * struct ec_response_get_chip_info - Response to the get chip info command.
1019  * @vendor: Null-terminated string for chip vendor.
1020  * @name: Null-terminated string for chip name.
1021  * @revision: Null-terminated string for chip mask version.
1022  */
1023 struct ec_response_get_chip_info {
1024 	char vendor[32];
1025 	char name[32];
1026 	char revision[32];
1027 } __ec_align4;
1028 
1029 /* Get board HW version */
1030 #define EC_CMD_GET_BOARD_VERSION 0x0006
1031 
1032 /**
1033  * struct ec_response_board_version - Response to the board version command.
1034  * @board_version: A monotonously incrementing number.
1035  */
1036 struct ec_response_board_version {
1037 	uint16_t board_version;
1038 } __ec_align2;
1039 
1040 /*
1041  * Read memory-mapped data.
1042  *
1043  * This is an alternate interface to memory-mapped data for bus protocols
1044  * which don't support direct-mapped memory - I2C, SPI, etc.
1045  *
1046  * Response is params.size bytes of data.
1047  */
1048 #define EC_CMD_READ_MEMMAP 0x0007
1049 
1050 /**
1051  * struct ec_params_read_memmap - Parameters for the read memory map command.
1052  * @offset: Offset in memmap (EC_MEMMAP_*).
1053  * @size: Size to read in bytes.
1054  */
1055 struct ec_params_read_memmap {
1056 	uint8_t offset;
1057 	uint8_t size;
1058 } __ec_align1;
1059 
1060 /* Read versions supported for a command */
1061 #define EC_CMD_GET_CMD_VERSIONS 0x0008
1062 
1063 /**
1064  * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1065  * @cmd: Command to check.
1066  */
1067 struct ec_params_get_cmd_versions {
1068 	uint8_t cmd;
1069 } __ec_align1;
1070 
1071 /**
1072  * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1073  *         versions (v1)
1074  * @cmd: Command to check.
1075  */
1076 struct ec_params_get_cmd_versions_v1 {
1077 	uint16_t cmd;
1078 } __ec_align2;
1079 
1080 /**
1081  * struct ec_response_get_cmd_version - Response to the get command versions.
1082  * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1083  *                a desired version.
1084  */
1085 struct ec_response_get_cmd_versions {
1086 	uint32_t version_mask;
1087 } __ec_align4;
1088 
1089 /*
1090  * Check EC communications status (busy). This is needed on i2c/spi but not
1091  * on lpc since it has its own out-of-band busy indicator.
1092  *
1093  * lpc must read the status from the command register. Attempting this on
1094  * lpc will overwrite the args/parameter space and corrupt its data.
1095  */
1096 #define EC_CMD_GET_COMMS_STATUS		0x0009
1097 
1098 /* Avoid using ec_status which is for return values */
1099 enum ec_comms_status {
1100 	EC_COMMS_STATUS_PROCESSING	= BIT(0),	/* Processing cmd */
1101 };
1102 
1103 /**
1104  * struct ec_response_get_comms_status - Response to the get comms status
1105  *         command.
1106  * @flags: Mask of enum ec_comms_status.
1107  */
1108 struct ec_response_get_comms_status {
1109 	uint32_t flags;		/* Mask of enum ec_comms_status */
1110 } __ec_align4;
1111 
1112 /* Fake a variety of responses, purely for testing purposes. */
1113 #define EC_CMD_TEST_PROTOCOL		0x000A
1114 
1115 /* Tell the EC what to send back to us. */
1116 struct ec_params_test_protocol {
1117 	uint32_t ec_result;
1118 	uint32_t ret_len;
1119 	uint8_t buf[32];
1120 } __ec_align4;
1121 
1122 /* Here it comes... */
1123 struct ec_response_test_protocol {
1124 	uint8_t buf[32];
1125 } __ec_align4;
1126 
1127 /* Get protocol information */
1128 #define EC_CMD_GET_PROTOCOL_INFO	0x000B
1129 
1130 /* Flags for ec_response_get_protocol_info.flags */
1131 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
1132 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1133 
1134 /**
1135  * struct ec_response_get_protocol_info - Response to the get protocol info.
1136  * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1137  *                     version n).
1138  * @max_request_packet_size: Maximum request packet size in bytes.
1139  * @max_response_packet_size: Maximum response packet size in bytes.
1140  * @flags: see EC_PROTOCOL_INFO_*
1141  */
1142 struct ec_response_get_protocol_info {
1143 	/* Fields which exist if at least protocol version 3 supported */
1144 	uint32_t protocol_versions;
1145 	uint16_t max_request_packet_size;
1146 	uint16_t max_response_packet_size;
1147 	uint32_t flags;
1148 } __ec_align4;
1149 
1150 
1151 /*****************************************************************************/
1152 /* Get/Set miscellaneous values */
1153 
1154 /* The upper byte of .flags tells what to do (nothing means "get") */
1155 #define EC_GSV_SET        0x80000000
1156 
1157 /*
1158  * The lower three bytes of .flags identifies the parameter, if that has
1159  * meaning for an individual command.
1160  */
1161 #define EC_GSV_PARAM_MASK 0x00ffffff
1162 
1163 struct ec_params_get_set_value {
1164 	uint32_t flags;
1165 	uint32_t value;
1166 } __ec_align4;
1167 
1168 struct ec_response_get_set_value {
1169 	uint32_t flags;
1170 	uint32_t value;
1171 } __ec_align4;
1172 
1173 /* More than one command can use these structs to get/set parameters. */
1174 #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1175 
1176 /*****************************************************************************/
1177 /* List the features supported by the firmware */
1178 #define EC_CMD_GET_FEATURES  0x000D
1179 
1180 /* Supported features */
1181 enum ec_feature_code {
1182 	/*
1183 	 * This image contains a limited set of features. Another image
1184 	 * in RW partition may support more features.
1185 	 */
1186 	EC_FEATURE_LIMITED = 0,
1187 	/*
1188 	 * Commands for probing/reading/writing/erasing the flash in the
1189 	 * EC are present.
1190 	 */
1191 	EC_FEATURE_FLASH = 1,
1192 	/*
1193 	 * Can control the fan speed directly.
1194 	 */
1195 	EC_FEATURE_PWM_FAN = 2,
1196 	/*
1197 	 * Can control the intensity of the keyboard backlight.
1198 	 */
1199 	EC_FEATURE_PWM_KEYB = 3,
1200 	/*
1201 	 * Support Google lightbar, introduced on Pixel.
1202 	 */
1203 	EC_FEATURE_LIGHTBAR = 4,
1204 	/* Control of LEDs  */
1205 	EC_FEATURE_LED = 5,
1206 	/* Exposes an interface to control gyro and sensors.
1207 	 * The host goes through the EC to access these sensors.
1208 	 * In addition, the EC may provide composite sensors, like lid angle.
1209 	 */
1210 	EC_FEATURE_MOTION_SENSE = 6,
1211 	/* The keyboard is controlled by the EC */
1212 	EC_FEATURE_KEYB = 7,
1213 	/* The AP can use part of the EC flash as persistent storage. */
1214 	EC_FEATURE_PSTORE = 8,
1215 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1216 	EC_FEATURE_PORT80 = 9,
1217 	/*
1218 	 * Thermal management: include TMP specific commands.
1219 	 * Higher level than direct fan control.
1220 	 */
1221 	EC_FEATURE_THERMAL = 10,
1222 	/* Can switch the screen backlight on/off */
1223 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1224 	/* Can switch the wifi module on/off */
1225 	EC_FEATURE_WIFI_SWITCH = 12,
1226 	/* Monitor host events, through for example SMI or SCI */
1227 	EC_FEATURE_HOST_EVENTS = 13,
1228 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1229 	EC_FEATURE_GPIO = 14,
1230 	/* The EC can send i2c messages to downstream devices. */
1231 	EC_FEATURE_I2C = 15,
1232 	/* Command to control charger are included */
1233 	EC_FEATURE_CHARGER = 16,
1234 	/* Simple battery support. */
1235 	EC_FEATURE_BATTERY = 17,
1236 	/*
1237 	 * Support Smart battery protocol
1238 	 * (Common Smart Battery System Interface Specification)
1239 	 */
1240 	EC_FEATURE_SMART_BATTERY = 18,
1241 	/* EC can detect when the host hangs. */
1242 	EC_FEATURE_HANG_DETECT = 19,
1243 	/* Report power information, for pit only */
1244 	EC_FEATURE_PMU = 20,
1245 	/* Another Cros EC device is present downstream of this one */
1246 	EC_FEATURE_SUB_MCU = 21,
1247 	/* Support USB Power delivery (PD) commands */
1248 	EC_FEATURE_USB_PD = 22,
1249 	/* Control USB multiplexer, for audio through USB port for instance. */
1250 	EC_FEATURE_USB_MUX = 23,
1251 	/* Motion Sensor code has an internal software FIFO */
1252 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1253 	/* Support temporary secure vstore */
1254 	EC_FEATURE_VSTORE = 25,
1255 	/* EC decides on USB-C SS mux state, muxes configured by host */
1256 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1257 	/* EC has RTC feature that can be controlled by host commands */
1258 	EC_FEATURE_RTC = 27,
1259 	/* The MCU exposes a Fingerprint sensor */
1260 	EC_FEATURE_FINGERPRINT = 28,
1261 	/* The MCU exposes a Touchpad */
1262 	EC_FEATURE_TOUCHPAD = 29,
1263 	/* The MCU has RWSIG task enabled */
1264 	EC_FEATURE_RWSIG = 30,
1265 	/* EC has device events support */
1266 	EC_FEATURE_DEVICE_EVENT = 31,
1267 	/* EC supports the unified wake masks for LPC/eSPI systems */
1268 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1269 	/* EC supports 64-bit host events */
1270 	EC_FEATURE_HOST_EVENT64 = 33,
1271 	/* EC runs code in RAM (not in place, a.k.a. XIP) */
1272 	EC_FEATURE_EXEC_IN_RAM = 34,
1273 	/* EC supports CEC commands */
1274 	EC_FEATURE_CEC = 35,
1275 	/* EC supports tight sensor timestamping. */
1276 	EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1277 	/*
1278 	 * EC supports tablet mode detection aligned to Chrome and allows
1279 	 * setting of threshold by host command using
1280 	 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1281 	 */
1282 	EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1283 	/* The MCU is a System Companion Processor (SCP). */
1284 	EC_FEATURE_SCP = 39,
1285 	/* The MCU is an Integrated Sensor Hub */
1286 	EC_FEATURE_ISH = 40,
1287 	/* New TCPMv2 TYPEC_ prefaced commands supported */
1288 	EC_FEATURE_TYPEC_CMD = 41,
1289 	/*
1290 	 * The EC will wait for direction from the AP to enter Type-C alternate
1291 	 * modes or USB4.
1292 	 */
1293 	EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1294 	/*
1295 	 * The EC will wait for an acknowledge from the AP after setting the
1296 	 * mux.
1297 	 */
1298 	EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1299 };
1300 
1301 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1302 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1303 
1304 struct ec_response_get_features {
1305 	uint32_t flags[2];
1306 } __ec_align4;
1307 
1308 /*****************************************************************************/
1309 /* Get the board's SKU ID from EC */
1310 #define EC_CMD_GET_SKU_ID 0x000E
1311 
1312 /* Set SKU ID from AP */
1313 #define EC_CMD_SET_SKU_ID 0x000F
1314 
1315 struct ec_sku_id_info {
1316 	uint32_t sku_id;
1317 } __ec_align4;
1318 
1319 /*****************************************************************************/
1320 /* Flash commands */
1321 
1322 /* Get flash info */
1323 #define EC_CMD_FLASH_INFO 0x0010
1324 #define EC_VER_FLASH_INFO 2
1325 
1326 /**
1327  * struct ec_response_flash_info - Response to the flash info command.
1328  * @flash_size: Usable flash size in bytes.
1329  * @write_block_size: Write block size. Write offset and size must be a
1330  *                    multiple of this.
1331  * @erase_block_size: Erase block size. Erase offset and size must be a
1332  *                    multiple of this.
1333  * @protect_block_size: Protection block size. Protection offset and size
1334  *                      must be a multiple of this.
1335  *
1336  * Version 0 returns these fields.
1337  */
1338 struct ec_response_flash_info {
1339 	uint32_t flash_size;
1340 	uint32_t write_block_size;
1341 	uint32_t erase_block_size;
1342 	uint32_t protect_block_size;
1343 } __ec_align4;
1344 
1345 /*
1346  * Flags for version 1+ flash info command
1347  * EC flash erases bits to 0 instead of 1.
1348  */
1349 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1350 
1351 /*
1352  * Flash must be selected for read/write/erase operations to succeed.  This may
1353  * be necessary on a chip where write/erase can be corrupted by other board
1354  * activity, or where the chip needs to enable some sort of programming voltage,
1355  * or where the read/write/erase operations require cleanly suspending other
1356  * chip functionality.
1357  */
1358 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1359 
1360 /**
1361  * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1362  * @flash_size: Usable flash size in bytes.
1363  * @write_block_size: Write block size. Write offset and size must be a
1364  *                    multiple of this.
1365  * @erase_block_size: Erase block size. Erase offset and size must be a
1366  *                    multiple of this.
1367  * @protect_block_size: Protection block size. Protection offset and size
1368  *                      must be a multiple of this.
1369  * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1370  *                    size is exactly this and offset is a multiple of this.
1371  *                    For example, an EC may have a write buffer which can do
1372  *                    half-page operations if data is aligned, and a slower
1373  *                    word-at-a-time write mode.
1374  * @flags: Flags; see EC_FLASH_INFO_*
1375  *
1376  * Version 1 returns the same initial fields as version 0, with additional
1377  * fields following.
1378  *
1379  * gcc anonymous structs don't seem to get along with the __packed directive;
1380  * if they did we'd define the version 0 structure as a sub-structure of this
1381  * one.
1382  *
1383  * Version 2 supports flash banks of different sizes:
1384  * The caller specified the number of banks it has preallocated
1385  * (num_banks_desc)
1386  * The EC returns the number of banks describing the flash memory.
1387  * It adds banks descriptions up to num_banks_desc.
1388  */
1389 struct ec_response_flash_info_1 {
1390 	/* Version 0 fields; see above for description */
1391 	uint32_t flash_size;
1392 	uint32_t write_block_size;
1393 	uint32_t erase_block_size;
1394 	uint32_t protect_block_size;
1395 
1396 	/* Version 1 adds these fields: */
1397 	uint32_t write_ideal_size;
1398 	uint32_t flags;
1399 } __ec_align4;
1400 
1401 struct ec_params_flash_info_2 {
1402 	/* Number of banks to describe */
1403 	uint16_t num_banks_desc;
1404 	/* Reserved; set 0; ignore on read */
1405 	uint8_t reserved[2];
1406 } __ec_align4;
1407 
1408 struct ec_flash_bank {
1409 	/* Number of sector is in this bank. */
1410 	uint16_t count;
1411 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1412 	uint8_t size_exp;
1413 	/* Minimal write size for the sectors in this bank */
1414 	uint8_t write_size_exp;
1415 	/* Erase size for the sectors in this bank */
1416 	uint8_t erase_size_exp;
1417 	/* Size for write protection, usually identical to erase size. */
1418 	uint8_t protect_size_exp;
1419 	/* Reserved; set 0; ignore on read */
1420 	uint8_t reserved[2];
1421 };
1422 
1423 struct ec_response_flash_info_2 {
1424 	/* Total flash in the EC. */
1425 	uint32_t flash_size;
1426 	/* Flags; see EC_FLASH_INFO_* */
1427 	uint32_t flags;
1428 	/* Maximum size to use to send data to write to the EC. */
1429 	uint32_t write_ideal_size;
1430 	/* Number of banks present in the EC. */
1431 	uint16_t num_banks_total;
1432 	/* Number of banks described in banks array. */
1433 	uint16_t num_banks_desc;
1434 	struct ec_flash_bank banks[];
1435 } __ec_align4;
1436 
1437 /*
1438  * Read flash
1439  *
1440  * Response is params.size bytes of data.
1441  */
1442 #define EC_CMD_FLASH_READ 0x0011
1443 
1444 /**
1445  * struct ec_params_flash_read - Parameters for the flash read command.
1446  * @offset: Byte offset to read.
1447  * @size: Size to read in bytes.
1448  */
1449 struct ec_params_flash_read {
1450 	uint32_t offset;
1451 	uint32_t size;
1452 } __ec_align4;
1453 
1454 /* Write flash */
1455 #define EC_CMD_FLASH_WRITE 0x0012
1456 #define EC_VER_FLASH_WRITE 1
1457 
1458 /* Version 0 of the flash command supported only 64 bytes of data */
1459 #define EC_FLASH_WRITE_VER0_SIZE 64
1460 
1461 /**
1462  * struct ec_params_flash_write - Parameters for the flash write command.
1463  * @offset: Byte offset to write.
1464  * @size: Size to write in bytes.
1465  */
1466 struct ec_params_flash_write {
1467 	uint32_t offset;
1468 	uint32_t size;
1469 	/* Followed by data to write */
1470 } __ec_align4;
1471 
1472 /* Erase flash */
1473 #define EC_CMD_FLASH_ERASE 0x0013
1474 
1475 /**
1476  * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1477  * @offset: Byte offset to erase.
1478  * @size: Size to erase in bytes.
1479  */
1480 struct ec_params_flash_erase {
1481 	uint32_t offset;
1482 	uint32_t size;
1483 } __ec_align4;
1484 
1485 /*
1486  * v1 add async erase:
1487  * subcommands can returns:
1488  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1489  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1490  * EC_RES_ERROR : other errors.
1491  * EC_RES_BUSY : an existing erase operation is in progress.
1492  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1493  *
1494  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1495  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1496  * the proper result.
1497  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1498  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1499  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1500  * permitted while erasing. (For instance, STM32F4).
1501  */
1502 enum ec_flash_erase_cmd {
1503 	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1504 	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1505 	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1506 };
1507 
1508 /**
1509  * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1510  * @cmd: One of ec_flash_erase_cmd.
1511  * @reserved: Pad byte; currently always contains 0.
1512  * @flag: No flags defined yet; set to 0.
1513  * @params: Same as v0 parameters.
1514  */
1515 struct ec_params_flash_erase_v1 {
1516 	uint8_t  cmd;
1517 	uint8_t  reserved;
1518 	uint16_t flag;
1519 	struct ec_params_flash_erase params;
1520 } __ec_align4;
1521 
1522 /*
1523  * Get/set flash protection.
1524  *
1525  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1526  * firmware write protect GPIO, not all flags will take effect immediately;
1527  * some flags require a subsequent hard reset to take effect.  Check the
1528  * returned flags bits to see what actually happened.
1529  *
1530  * If mask=0, simply returns the current flags state.
1531  */
1532 #define EC_CMD_FLASH_PROTECT 0x0015
1533 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1534 
1535 /* Flags for flash protection */
1536 /* RO flash code protected when the EC boots */
1537 #define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1538 /*
1539  * RO flash code protected now.  If this bit is set, at-boot status cannot
1540  * be changed.
1541  */
1542 #define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1543 /* Entire flash code protected now, until reboot. */
1544 #define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1545 /* Flash write protect GPIO is asserted now */
1546 #define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1547 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1548 #define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1549 /*
1550  * Error - flash protection is in inconsistent state.  At least one bank of
1551  * flash which should be protected is not protected.  Usually fixed by
1552  * re-requesting the desired flags, or by a hard reset if that fails.
1553  */
1554 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1555 /* Entire flash code protected when the EC boots */
1556 #define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1557 /* RW flash code protected when the EC boots */
1558 #define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1559 /* RW flash code protected now. */
1560 #define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1561 /* Rollback information flash region protected when the EC boots */
1562 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1563 /* Rollback information flash region protected now */
1564 #define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1565 
1566 
1567 /**
1568  * struct ec_params_flash_protect - Parameters for the flash protect command.
1569  * @mask: Bits in flags to apply.
1570  * @flags: New flags to apply.
1571  */
1572 struct ec_params_flash_protect {
1573 	uint32_t mask;
1574 	uint32_t flags;
1575 } __ec_align4;
1576 
1577 /**
1578  * struct ec_response_flash_protect - Response to the flash protect command.
1579  * @flags: Current value of flash protect flags.
1580  * @valid_flags: Flags which are valid on this platform. This allows the
1581  *               caller to distinguish between flags which aren't set vs. flags
1582  *               which can't be set on this platform.
1583  * @writable_flags: Flags which can be changed given the current protection
1584  *                  state.
1585  */
1586 struct ec_response_flash_protect {
1587 	uint32_t flags;
1588 	uint32_t valid_flags;
1589 	uint32_t writable_flags;
1590 } __ec_align4;
1591 
1592 /*
1593  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1594  * write protect.  These commands may be reused with version > 0.
1595  */
1596 
1597 /* Get the region offset/size */
1598 #define EC_CMD_FLASH_REGION_INFO 0x0016
1599 #define EC_VER_FLASH_REGION_INFO 1
1600 
1601 enum ec_flash_region {
1602 	/* Region which holds read-only EC image */
1603 	EC_FLASH_REGION_RO = 0,
1604 	/*
1605 	 * Region which holds active RW image. 'Active' is different from
1606 	 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1607 	 * scheduled to run, active/non-active applies only to RW images (for
1608 	 * the same reason 'update' applies only to RW images. It's a state of
1609 	 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1610 	 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1611 	 * doesn't enter 'running' state but it's still active on a flash.
1612 	 */
1613 	EC_FLASH_REGION_ACTIVE,
1614 	/*
1615 	 * Region which should be write-protected in the factory (a superset of
1616 	 * EC_FLASH_REGION_RO)
1617 	 */
1618 	EC_FLASH_REGION_WP_RO,
1619 	/* Region which holds updatable (non-active) RW image */
1620 	EC_FLASH_REGION_UPDATE,
1621 	/* Number of regions */
1622 	EC_FLASH_REGION_COUNT,
1623 };
1624 /*
1625  * 'RW' is vague if there are multiple RW images; we mean the active one,
1626  * so the old constant is deprecated.
1627  */
1628 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1629 
1630 /**
1631  * struct ec_params_flash_region_info - Parameters for the flash region info
1632  *         command.
1633  * @region: Flash region; see EC_FLASH_REGION_*
1634  */
1635 struct ec_params_flash_region_info {
1636 	uint32_t region;
1637 } __ec_align4;
1638 
1639 struct ec_response_flash_region_info {
1640 	uint32_t offset;
1641 	uint32_t size;
1642 } __ec_align4;
1643 
1644 /* Read/write VbNvContext */
1645 #define EC_CMD_VBNV_CONTEXT 0x0017
1646 #define EC_VER_VBNV_CONTEXT 1
1647 #define EC_VBNV_BLOCK_SIZE 16
1648 
1649 enum ec_vbnvcontext_op {
1650 	EC_VBNV_CONTEXT_OP_READ,
1651 	EC_VBNV_CONTEXT_OP_WRITE,
1652 };
1653 
1654 struct ec_params_vbnvcontext {
1655 	uint32_t op;
1656 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1657 } __ec_align4;
1658 
1659 struct ec_response_vbnvcontext {
1660 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1661 } __ec_align4;
1662 
1663 
1664 /* Get SPI flash information */
1665 #define EC_CMD_FLASH_SPI_INFO 0x0018
1666 
1667 struct ec_response_flash_spi_info {
1668 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1669 	uint8_t jedec[3];
1670 
1671 	/* Pad byte; currently always contains 0 */
1672 	uint8_t reserved0;
1673 
1674 	/* Manufacturer / device ID from command 0x90 */
1675 	uint8_t mfr_dev_id[2];
1676 
1677 	/* Status registers from command 0x05 and 0x35 */
1678 	uint8_t sr1, sr2;
1679 } __ec_align1;
1680 
1681 
1682 /* Select flash during flash operations */
1683 #define EC_CMD_FLASH_SELECT 0x0019
1684 
1685 /**
1686  * struct ec_params_flash_select - Parameters for the flash select command.
1687  * @select: 1 to select flash, 0 to deselect flash
1688  */
1689 struct ec_params_flash_select {
1690 	uint8_t select;
1691 } __ec_align4;
1692 
1693 
1694 /*****************************************************************************/
1695 /* PWM commands */
1696 
1697 /* Get fan target RPM */
1698 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1699 
1700 struct ec_response_pwm_get_fan_rpm {
1701 	uint32_t rpm;
1702 } __ec_align4;
1703 
1704 /* Set target fan RPM */
1705 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1706 
1707 /* Version 0 of input params */
1708 struct ec_params_pwm_set_fan_target_rpm_v0 {
1709 	uint32_t rpm;
1710 } __ec_align4;
1711 
1712 /* Version 1 of input params */
1713 struct ec_params_pwm_set_fan_target_rpm_v1 {
1714 	uint32_t rpm;
1715 	uint8_t fan_idx;
1716 } __ec_align_size1;
1717 
1718 /* Get keyboard backlight */
1719 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1720 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1721 
1722 struct ec_response_pwm_get_keyboard_backlight {
1723 	uint8_t percent;
1724 	uint8_t enabled;
1725 } __ec_align1;
1726 
1727 /* Set keyboard backlight */
1728 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1729 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1730 
1731 struct ec_params_pwm_set_keyboard_backlight {
1732 	uint8_t percent;
1733 } __ec_align1;
1734 
1735 /* Set target fan PWM duty cycle */
1736 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1737 
1738 /* Version 0 of input params */
1739 struct ec_params_pwm_set_fan_duty_v0 {
1740 	uint32_t percent;
1741 } __ec_align4;
1742 
1743 /* Version 1 of input params */
1744 struct ec_params_pwm_set_fan_duty_v1 {
1745 	uint32_t percent;
1746 	uint8_t fan_idx;
1747 } __ec_align_size1;
1748 
1749 #define EC_CMD_PWM_SET_DUTY 0x0025
1750 /* 16 bit duty cycle, 0xffff = 100% */
1751 #define EC_PWM_MAX_DUTY 0xffff
1752 
1753 enum ec_pwm_type {
1754 	/* All types, indexed by board-specific enum pwm_channel */
1755 	EC_PWM_TYPE_GENERIC = 0,
1756 	/* Keyboard backlight */
1757 	EC_PWM_TYPE_KB_LIGHT,
1758 	/* Display backlight */
1759 	EC_PWM_TYPE_DISPLAY_LIGHT,
1760 	EC_PWM_TYPE_COUNT,
1761 };
1762 
1763 struct ec_params_pwm_set_duty {
1764 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1765 	uint8_t pwm_type;  /* ec_pwm_type */
1766 	uint8_t index;     /* Type-specific index, or 0 if unique */
1767 } __ec_align4;
1768 
1769 #define EC_CMD_PWM_GET_DUTY 0x0026
1770 
1771 struct ec_params_pwm_get_duty {
1772 	uint8_t pwm_type;  /* ec_pwm_type */
1773 	uint8_t index;     /* Type-specific index, or 0 if unique */
1774 } __ec_align1;
1775 
1776 struct ec_response_pwm_get_duty {
1777 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1778 } __ec_align2;
1779 
1780 /*****************************************************************************/
1781 /*
1782  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1783  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1784  * into a subcommand. We'll make separate structs for subcommands with
1785  * different input args, so that we know how much to expect.
1786  */
1787 #define EC_CMD_LIGHTBAR_CMD 0x0028
1788 
1789 struct rgb_s {
1790 	uint8_t r, g, b;
1791 } __ec_todo_unpacked;
1792 
1793 #define LB_BATTERY_LEVELS 4
1794 
1795 /*
1796  * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1797  * host command, but the alignment is the same regardless. Keep it that way.
1798  */
1799 struct lightbar_params_v0 {
1800 	/* Timing */
1801 	int32_t google_ramp_up;
1802 	int32_t google_ramp_down;
1803 	int32_t s3s0_ramp_up;
1804 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1805 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1806 	int32_t s0s3_ramp_down;
1807 	int32_t s3_sleep_for;
1808 	int32_t s3_ramp_up;
1809 	int32_t s3_ramp_down;
1810 
1811 	/* Oscillation */
1812 	uint8_t new_s0;
1813 	uint8_t osc_min[2];			/* AC=0/1 */
1814 	uint8_t osc_max[2];			/* AC=0/1 */
1815 	uint8_t w_ofs[2];			/* AC=0/1 */
1816 
1817 	/* Brightness limits based on the backlight and AC. */
1818 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1819 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1820 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1821 
1822 	/* Battery level thresholds */
1823 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1824 
1825 	/* Map [AC][battery_level] to color index */
1826 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1827 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1828 
1829 	/* Color palette */
1830 	struct rgb_s color[8];			/* 0-3 are Google colors */
1831 } __ec_todo_packed;
1832 
1833 struct lightbar_params_v1 {
1834 	/* Timing */
1835 	int32_t google_ramp_up;
1836 	int32_t google_ramp_down;
1837 	int32_t s3s0_ramp_up;
1838 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1839 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1840 	int32_t s0s3_ramp_down;
1841 	int32_t s3_sleep_for;
1842 	int32_t s3_ramp_up;
1843 	int32_t s3_ramp_down;
1844 	int32_t s5_ramp_up;
1845 	int32_t s5_ramp_down;
1846 	int32_t tap_tick_delay;
1847 	int32_t tap_gate_delay;
1848 	int32_t tap_display_time;
1849 
1850 	/* Tap-for-battery params */
1851 	uint8_t tap_pct_red;
1852 	uint8_t tap_pct_green;
1853 	uint8_t tap_seg_min_on;
1854 	uint8_t tap_seg_max_on;
1855 	uint8_t tap_seg_osc;
1856 	uint8_t tap_idx[3];
1857 
1858 	/* Oscillation */
1859 	uint8_t osc_min[2];			/* AC=0/1 */
1860 	uint8_t osc_max[2];			/* AC=0/1 */
1861 	uint8_t w_ofs[2];			/* AC=0/1 */
1862 
1863 	/* Brightness limits based on the backlight and AC. */
1864 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1865 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1866 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1867 
1868 	/* Battery level thresholds */
1869 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1870 
1871 	/* Map [AC][battery_level] to color index */
1872 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1873 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1874 
1875 	/* s5: single color pulse on inhibited power-up */
1876 	uint8_t s5_idx;
1877 
1878 	/* Color palette */
1879 	struct rgb_s color[8];			/* 0-3 are Google colors */
1880 } __ec_todo_packed;
1881 
1882 /* Lightbar command params v2
1883  * crbug.com/467716
1884  *
1885  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1886  * logical groups to make it more manageable ( < 120 bytes).
1887  *
1888  * NOTE: Each of these groups must be less than 120 bytes.
1889  */
1890 
1891 struct lightbar_params_v2_timing {
1892 	/* Timing */
1893 	int32_t google_ramp_up;
1894 	int32_t google_ramp_down;
1895 	int32_t s3s0_ramp_up;
1896 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1897 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1898 	int32_t s0s3_ramp_down;
1899 	int32_t s3_sleep_for;
1900 	int32_t s3_ramp_up;
1901 	int32_t s3_ramp_down;
1902 	int32_t s5_ramp_up;
1903 	int32_t s5_ramp_down;
1904 	int32_t tap_tick_delay;
1905 	int32_t tap_gate_delay;
1906 	int32_t tap_display_time;
1907 } __ec_todo_packed;
1908 
1909 struct lightbar_params_v2_tap {
1910 	/* Tap-for-battery params */
1911 	uint8_t tap_pct_red;
1912 	uint8_t tap_pct_green;
1913 	uint8_t tap_seg_min_on;
1914 	uint8_t tap_seg_max_on;
1915 	uint8_t tap_seg_osc;
1916 	uint8_t tap_idx[3];
1917 } __ec_todo_packed;
1918 
1919 struct lightbar_params_v2_oscillation {
1920 	/* Oscillation */
1921 	uint8_t osc_min[2];			/* AC=0/1 */
1922 	uint8_t osc_max[2];			/* AC=0/1 */
1923 	uint8_t w_ofs[2];			/* AC=0/1 */
1924 } __ec_todo_packed;
1925 
1926 struct lightbar_params_v2_brightness {
1927 	/* Brightness limits based on the backlight and AC. */
1928 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1929 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1930 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1931 } __ec_todo_packed;
1932 
1933 struct lightbar_params_v2_thresholds {
1934 	/* Battery level thresholds */
1935 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1936 } __ec_todo_packed;
1937 
1938 struct lightbar_params_v2_colors {
1939 	/* Map [AC][battery_level] to color index */
1940 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1941 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1942 
1943 	/* s5: single color pulse on inhibited power-up */
1944 	uint8_t s5_idx;
1945 
1946 	/* Color palette */
1947 	struct rgb_s color[8];			/* 0-3 are Google colors */
1948 } __ec_todo_packed;
1949 
1950 /* Lightbar program. */
1951 #define EC_LB_PROG_LEN 192
1952 struct lightbar_program {
1953 	uint8_t size;
1954 	uint8_t data[EC_LB_PROG_LEN];
1955 } __ec_todo_unpacked;
1956 
1957 struct ec_params_lightbar {
1958 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1959 	union {
1960 		/*
1961 		 * The following commands have no args:
1962 		 *
1963 		 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1964 		 * version, get_brightness, get_demo, suspend, resume,
1965 		 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1966 		 * get_params_v2_bright, get_params_v2_thlds,
1967 		 * get_params_v2_colors
1968 		 *
1969 		 * Don't use an empty struct, because C++ hates that.
1970 		 */
1971 
1972 		struct __ec_todo_unpacked {
1973 			uint8_t num;
1974 		} set_brightness, seq, demo;
1975 
1976 		struct __ec_todo_unpacked {
1977 			uint8_t ctrl, reg, value;
1978 		} reg;
1979 
1980 		struct __ec_todo_unpacked {
1981 			uint8_t led, red, green, blue;
1982 		} set_rgb;
1983 
1984 		struct __ec_todo_unpacked {
1985 			uint8_t led;
1986 		} get_rgb;
1987 
1988 		struct __ec_todo_unpacked {
1989 			uint8_t enable;
1990 		} manual_suspend_ctrl;
1991 
1992 		struct lightbar_params_v0 set_params_v0;
1993 		struct lightbar_params_v1 set_params_v1;
1994 
1995 		struct lightbar_params_v2_timing set_v2par_timing;
1996 		struct lightbar_params_v2_tap set_v2par_tap;
1997 		struct lightbar_params_v2_oscillation set_v2par_osc;
1998 		struct lightbar_params_v2_brightness set_v2par_bright;
1999 		struct lightbar_params_v2_thresholds set_v2par_thlds;
2000 		struct lightbar_params_v2_colors set_v2par_colors;
2001 
2002 		struct lightbar_program set_program;
2003 	};
2004 } __ec_todo_packed;
2005 
2006 struct ec_response_lightbar {
2007 	union {
2008 		struct __ec_todo_unpacked {
2009 			struct __ec_todo_unpacked {
2010 				uint8_t reg;
2011 				uint8_t ic0;
2012 				uint8_t ic1;
2013 			} vals[23];
2014 		} dump;
2015 
2016 		struct __ec_todo_unpacked {
2017 			uint8_t num;
2018 		} get_seq, get_brightness, get_demo;
2019 
2020 		struct lightbar_params_v0 get_params_v0;
2021 		struct lightbar_params_v1 get_params_v1;
2022 
2023 
2024 		struct lightbar_params_v2_timing get_params_v2_timing;
2025 		struct lightbar_params_v2_tap get_params_v2_tap;
2026 		struct lightbar_params_v2_oscillation get_params_v2_osc;
2027 		struct lightbar_params_v2_brightness get_params_v2_bright;
2028 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
2029 		struct lightbar_params_v2_colors get_params_v2_colors;
2030 
2031 		struct __ec_todo_unpacked {
2032 			uint32_t num;
2033 			uint32_t flags;
2034 		} version;
2035 
2036 		struct __ec_todo_unpacked {
2037 			uint8_t red, green, blue;
2038 		} get_rgb;
2039 
2040 		/*
2041 		 * The following commands have no response:
2042 		 *
2043 		 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2044 		 * set_params_v0, set_params_v1, set_program,
2045 		 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2046 		 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2047 		 * set_v2par_thlds, set_v2par_colors
2048 		 */
2049 	};
2050 } __ec_todo_packed;
2051 
2052 /* Lightbar commands */
2053 enum lightbar_command {
2054 	LIGHTBAR_CMD_DUMP = 0,
2055 	LIGHTBAR_CMD_OFF = 1,
2056 	LIGHTBAR_CMD_ON = 2,
2057 	LIGHTBAR_CMD_INIT = 3,
2058 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2059 	LIGHTBAR_CMD_SEQ = 5,
2060 	LIGHTBAR_CMD_REG = 6,
2061 	LIGHTBAR_CMD_SET_RGB = 7,
2062 	LIGHTBAR_CMD_GET_SEQ = 8,
2063 	LIGHTBAR_CMD_DEMO = 9,
2064 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2065 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2066 	LIGHTBAR_CMD_VERSION = 12,
2067 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2068 	LIGHTBAR_CMD_GET_RGB = 14,
2069 	LIGHTBAR_CMD_GET_DEMO = 15,
2070 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2071 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2072 	LIGHTBAR_CMD_SET_PROGRAM = 18,
2073 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2074 	LIGHTBAR_CMD_SUSPEND = 20,
2075 	LIGHTBAR_CMD_RESUME = 21,
2076 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2077 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2078 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2079 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2080 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2081 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2082 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2083 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2084 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2085 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2086 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2087 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2088 	LIGHTBAR_NUM_CMDS
2089 };
2090 
2091 /*****************************************************************************/
2092 /* LED control commands */
2093 
2094 #define EC_CMD_LED_CONTROL 0x0029
2095 
2096 enum ec_led_id {
2097 	/* LED to indicate battery state of charge */
2098 	EC_LED_ID_BATTERY_LED = 0,
2099 	/*
2100 	 * LED to indicate system power state (on or in suspend).
2101 	 * May be on power button or on C-panel.
2102 	 */
2103 	EC_LED_ID_POWER_LED,
2104 	/* LED on power adapter or its plug */
2105 	EC_LED_ID_ADAPTER_LED,
2106 	/* LED to indicate left side */
2107 	EC_LED_ID_LEFT_LED,
2108 	/* LED to indicate right side */
2109 	EC_LED_ID_RIGHT_LED,
2110 	/* LED to indicate recovery mode with HW_REINIT */
2111 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
2112 	/* LED to indicate sysrq debug mode. */
2113 	EC_LED_ID_SYSRQ_DEBUG_LED,
2114 
2115 	EC_LED_ID_COUNT
2116 };
2117 
2118 /* LED control flags */
2119 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2120 #define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2121 
2122 enum ec_led_colors {
2123 	EC_LED_COLOR_RED = 0,
2124 	EC_LED_COLOR_GREEN,
2125 	EC_LED_COLOR_BLUE,
2126 	EC_LED_COLOR_YELLOW,
2127 	EC_LED_COLOR_WHITE,
2128 	EC_LED_COLOR_AMBER,
2129 
2130 	EC_LED_COLOR_COUNT
2131 };
2132 
2133 struct ec_params_led_control {
2134 	uint8_t led_id;     /* Which LED to control */
2135 	uint8_t flags;      /* Control flags */
2136 
2137 	uint8_t brightness[EC_LED_COLOR_COUNT];
2138 } __ec_align1;
2139 
2140 struct ec_response_led_control {
2141 	/*
2142 	 * Available brightness value range.
2143 	 *
2144 	 * Range 0 means color channel not present.
2145 	 * Range 1 means on/off control.
2146 	 * Other values means the LED is control by PWM.
2147 	 */
2148 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
2149 } __ec_align1;
2150 
2151 /*****************************************************************************/
2152 /* Verified boot commands */
2153 
2154 /*
2155  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2156  * reused for other purposes with version > 0.
2157  */
2158 
2159 /* Verified boot hash command */
2160 #define EC_CMD_VBOOT_HASH 0x002A
2161 
2162 struct ec_params_vboot_hash {
2163 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2164 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2165 	uint8_t nonce_size;      /* Nonce size; may be 0 */
2166 	uint8_t reserved0;       /* Reserved; set 0 */
2167 	uint32_t offset;         /* Offset in flash to hash */
2168 	uint32_t size;           /* Number of bytes to hash */
2169 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2170 } __ec_align4;
2171 
2172 struct ec_response_vboot_hash {
2173 	uint8_t status;          /* enum ec_vboot_hash_status */
2174 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2175 	uint8_t digest_size;     /* Size of hash digest in bytes */
2176 	uint8_t reserved0;       /* Ignore; will be 0 */
2177 	uint32_t offset;         /* Offset in flash which was hashed */
2178 	uint32_t size;           /* Number of bytes hashed */
2179 	uint8_t hash_digest[64]; /* Hash digest data */
2180 } __ec_align4;
2181 
2182 enum ec_vboot_hash_cmd {
2183 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2184 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2185 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2186 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2187 };
2188 
2189 enum ec_vboot_hash_type {
2190 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2191 };
2192 
2193 enum ec_vboot_hash_status {
2194 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2195 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2196 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2197 };
2198 
2199 /*
2200  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2201  * If one of these is specified, the EC will automatically update offset and
2202  * size to the correct values for the specified image (RO or RW).
2203  */
2204 #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
2205 #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
2206 #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
2207 
2208 /*
2209  * 'RW' is vague if there are multiple RW images; we mean the active one,
2210  * so the old constant is deprecated.
2211  */
2212 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2213 
2214 /*****************************************************************************/
2215 /*
2216  * Motion sense commands. We'll make separate structs for sub-commands with
2217  * different input args, so that we know how much to expect.
2218  */
2219 #define EC_CMD_MOTION_SENSE_CMD 0x002B
2220 
2221 /* Motion sense commands */
2222 enum motionsense_command {
2223 	/*
2224 	 * Dump command returns all motion sensor data including motion sense
2225 	 * module flags and individual sensor flags.
2226 	 */
2227 	MOTIONSENSE_CMD_DUMP = 0,
2228 
2229 	/*
2230 	 * Info command returns data describing the details of a given sensor,
2231 	 * including enum motionsensor_type, enum motionsensor_location, and
2232 	 * enum motionsensor_chip.
2233 	 */
2234 	MOTIONSENSE_CMD_INFO = 1,
2235 
2236 	/*
2237 	 * EC Rate command is a setter/getter command for the EC sampling rate
2238 	 * in milliseconds.
2239 	 * It is per sensor, the EC run sample task  at the minimum of all
2240 	 * sensors EC_RATE.
2241 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2242 	 * to collect all the sensor samples.
2243 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2244 	 * to process of all motion sensors in milliseconds.
2245 	 */
2246 	MOTIONSENSE_CMD_EC_RATE = 2,
2247 
2248 	/*
2249 	 * Sensor ODR command is a setter/getter command for the output data
2250 	 * rate of a specific motion sensor in millihertz.
2251 	 */
2252 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
2253 
2254 	/*
2255 	 * Sensor range command is a setter/getter command for the range of
2256 	 * a specified motion sensor in +/-G's or +/- deg/s.
2257 	 */
2258 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2259 
2260 	/*
2261 	 * Setter/getter command for the keyboard wake angle. When the lid
2262 	 * angle is greater than this value, keyboard wake is disabled in S3,
2263 	 * and when the lid angle goes less than this value, keyboard wake is
2264 	 * enabled. Note, the lid angle measurement is an approximate,
2265 	 * un-calibrated value, hence the wake angle isn't exact.
2266 	 */
2267 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2268 
2269 	/*
2270 	 * Returns a single sensor data.
2271 	 */
2272 	MOTIONSENSE_CMD_DATA = 6,
2273 
2274 	/*
2275 	 * Return sensor fifo info.
2276 	 */
2277 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2278 
2279 	/*
2280 	 * Insert a flush element in the fifo and return sensor fifo info.
2281 	 * The host can use that element to synchronize its operation.
2282 	 */
2283 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2284 
2285 	/*
2286 	 * Return a portion of the fifo.
2287 	 */
2288 	MOTIONSENSE_CMD_FIFO_READ = 9,
2289 
2290 	/*
2291 	 * Perform low level calibration.
2292 	 * On sensors that support it, ask to do offset calibration.
2293 	 */
2294 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2295 
2296 	/*
2297 	 * Sensor Offset command is a setter/getter command for the offset
2298 	 * used for calibration.
2299 	 * The offsets can be calculated by the host, or via
2300 	 * PERFORM_CALIB command.
2301 	 */
2302 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2303 
2304 	/*
2305 	 * List available activities for a MOTION sensor.
2306 	 * Indicates if they are enabled or disabled.
2307 	 */
2308 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2309 
2310 	/*
2311 	 * Activity management
2312 	 * Enable/Disable activity recognition.
2313 	 */
2314 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2315 
2316 	/*
2317 	 * Lid Angle
2318 	 */
2319 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2320 
2321 	/*
2322 	 * Allow the FIFO to trigger interrupt via MKBP events.
2323 	 * By default the FIFO does not send interrupt to process the FIFO
2324 	 * until the AP is ready or it is coming from a wakeup sensor.
2325 	 */
2326 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2327 
2328 	/*
2329 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2330 	 * to arbitrary values, or will lock to the last read actual values.
2331 	 */
2332 	MOTIONSENSE_CMD_SPOOF = 16,
2333 
2334 	/* Set lid angle for tablet mode detection. */
2335 	MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2336 
2337 	/*
2338 	 * Sensor Scale command is a setter/getter command for the calibration
2339 	 * scale.
2340 	 */
2341 	MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2342 
2343 	/* Number of motionsense sub-commands. */
2344 	MOTIONSENSE_NUM_CMDS
2345 };
2346 
2347 /* List of motion sensor types. */
2348 enum motionsensor_type {
2349 	MOTIONSENSE_TYPE_ACCEL = 0,
2350 	MOTIONSENSE_TYPE_GYRO = 1,
2351 	MOTIONSENSE_TYPE_MAG = 2,
2352 	MOTIONSENSE_TYPE_PROX = 3,
2353 	MOTIONSENSE_TYPE_LIGHT = 4,
2354 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2355 	MOTIONSENSE_TYPE_BARO = 6,
2356 	MOTIONSENSE_TYPE_SYNC = 7,
2357 	MOTIONSENSE_TYPE_MAX,
2358 };
2359 
2360 /* List of motion sensor locations. */
2361 enum motionsensor_location {
2362 	MOTIONSENSE_LOC_BASE = 0,
2363 	MOTIONSENSE_LOC_LID = 1,
2364 	MOTIONSENSE_LOC_CAMERA = 2,
2365 	MOTIONSENSE_LOC_MAX,
2366 };
2367 
2368 /* List of motion sensor chips. */
2369 enum motionsensor_chip {
2370 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2371 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2372 	MOTIONSENSE_CHIP_BMI160 = 2,
2373 	MOTIONSENSE_CHIP_SI1141 = 3,
2374 	MOTIONSENSE_CHIP_SI1142 = 4,
2375 	MOTIONSENSE_CHIP_SI1143 = 5,
2376 	MOTIONSENSE_CHIP_KX022 = 6,
2377 	MOTIONSENSE_CHIP_L3GD20H = 7,
2378 	MOTIONSENSE_CHIP_BMA255 = 8,
2379 	MOTIONSENSE_CHIP_BMP280 = 9,
2380 	MOTIONSENSE_CHIP_OPT3001 = 10,
2381 	MOTIONSENSE_CHIP_BH1730 = 11,
2382 	MOTIONSENSE_CHIP_GPIO = 12,
2383 	MOTIONSENSE_CHIP_LIS2DH = 13,
2384 	MOTIONSENSE_CHIP_LSM6DSM = 14,
2385 	MOTIONSENSE_CHIP_LIS2DE = 15,
2386 	MOTIONSENSE_CHIP_LIS2MDL = 16,
2387 	MOTIONSENSE_CHIP_LSM6DS3 = 17,
2388 	MOTIONSENSE_CHIP_LSM6DSO = 18,
2389 	MOTIONSENSE_CHIP_LNG2DM = 19,
2390 	MOTIONSENSE_CHIP_MAX,
2391 };
2392 
2393 /* List of orientation positions */
2394 enum motionsensor_orientation {
2395 	MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2396 	MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2397 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2398 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2399 	MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2400 };
2401 
2402 struct ec_response_motion_sensor_data {
2403 	/* Flags for each sensor. */
2404 	uint8_t flags;
2405 	/* Sensor number the data comes from. */
2406 	uint8_t sensor_num;
2407 	/* Each sensor is up to 3-axis. */
2408 	union {
2409 		int16_t             data[3];
2410 		struct __ec_todo_packed {
2411 			uint16_t    reserved;
2412 			uint32_t    timestamp;
2413 		};
2414 		struct __ec_todo_unpacked {
2415 			uint8_t     activity; /* motionsensor_activity */
2416 			uint8_t     state;
2417 			int16_t     add_info[2];
2418 		};
2419 	};
2420 } __ec_todo_packed;
2421 
2422 /* Note: used in ec_response_get_next_data */
2423 struct ec_response_motion_sense_fifo_info {
2424 	/* Size of the fifo */
2425 	uint16_t size;
2426 	/* Amount of space used in the fifo */
2427 	uint16_t count;
2428 	/* Timestamp recorded in us.
2429 	 * aka accurate timestamp when host event was triggered.
2430 	 */
2431 	uint32_t timestamp;
2432 	/* Total amount of vector lost */
2433 	uint16_t total_lost;
2434 	/* Lost events since the last fifo_info, per sensors */
2435 	uint16_t lost[];
2436 } __ec_todo_packed;
2437 
2438 struct ec_response_motion_sense_fifo_data {
2439 	uint32_t number_data;
2440 	struct ec_response_motion_sensor_data data[];
2441 } __ec_todo_packed;
2442 
2443 /* List supported activity recognition */
2444 enum motionsensor_activity {
2445 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2446 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2447 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2448 	MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2449 };
2450 
2451 struct ec_motion_sense_activity {
2452 	uint8_t sensor_num;
2453 	uint8_t activity; /* one of enum motionsensor_activity */
2454 	uint8_t enable;   /* 1: enable, 0: disable */
2455 	uint8_t reserved;
2456 	uint16_t parameters[3]; /* activity dependent parameters */
2457 } __ec_todo_unpacked;
2458 
2459 /* Module flag masks used for the dump sub-command. */
2460 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2461 
2462 /* Sensor flag masks used for the dump sub-command. */
2463 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2464 
2465 /*
2466  * Flush entry for synchronization.
2467  * data contains time stamp
2468  */
2469 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2470 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2471 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2472 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2473 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2474 
2475 /*
2476  * Send this value for the data element to only perform a read. If you
2477  * send any other value, the EC will interpret it as data to set and will
2478  * return the actual value set.
2479  */
2480 #define EC_MOTION_SENSE_NO_VALUE -1
2481 
2482 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2483 
2484 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2485 /* Set Calibration information */
2486 #define MOTION_SENSE_SET_OFFSET BIT(0)
2487 
2488 /* Default Scale value, factor 1. */
2489 #define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2490 
2491 #define LID_ANGLE_UNRELIABLE 500
2492 
2493 enum motionsense_spoof_mode {
2494 	/* Disable spoof mode. */
2495 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2496 
2497 	/* Enable spoof mode, but use provided component values. */
2498 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2499 
2500 	/* Enable spoof mode, but use the current sensor values. */
2501 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2502 
2503 	/* Query the current spoof mode status for the sensor. */
2504 	MOTIONSENSE_SPOOF_MODE_QUERY,
2505 };
2506 
2507 struct ec_params_motion_sense {
2508 	uint8_t cmd;
2509 	union {
2510 		/* Used for MOTIONSENSE_CMD_DUMP. */
2511 		struct __ec_todo_unpacked {
2512 			/*
2513 			 * Maximal number of sensor the host is expecting.
2514 			 * 0 means the host is only interested in the number
2515 			 * of sensors controlled by the EC.
2516 			 */
2517 			uint8_t max_sensor_count;
2518 		} dump;
2519 
2520 		/*
2521 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2522 		 */
2523 		struct __ec_todo_unpacked {
2524 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2525 			 * kb_wake_angle: angle to wakup AP.
2526 			 */
2527 			int16_t data;
2528 		} kb_wake_angle;
2529 
2530 		/*
2531 		 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2532 		 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2533 		 */
2534 		struct __ec_todo_unpacked {
2535 			uint8_t sensor_num;
2536 		} info, info_3, data, fifo_flush, perform_calib,
2537 				list_activities;
2538 
2539 		/*
2540 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2541 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2542 		 */
2543 		struct __ec_todo_unpacked {
2544 			uint8_t sensor_num;
2545 
2546 			/* Rounding flag, true for round-up, false for down. */
2547 			uint8_t roundup;
2548 
2549 			uint16_t reserved;
2550 
2551 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2552 			int32_t data;
2553 		} ec_rate, sensor_odr, sensor_range;
2554 
2555 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2556 		struct __ec_todo_packed {
2557 			uint8_t sensor_num;
2558 
2559 			/*
2560 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2561 			 * the calibration information in the EC.
2562 			 * If unset, just retrieve calibration information.
2563 			 */
2564 			uint16_t flags;
2565 
2566 			/*
2567 			 * Temperature at calibration, in units of 0.01 C
2568 			 * 0x8000: invalid / unknown.
2569 			 * 0x0: 0C
2570 			 * 0x7fff: +327.67C
2571 			 */
2572 			int16_t temp;
2573 
2574 			/*
2575 			 * Offset for calibration.
2576 			 * Unit:
2577 			 * Accelerometer: 1/1024 g
2578 			 * Gyro:          1/1024 deg/s
2579 			 * Compass:       1/16 uT
2580 			 */
2581 			int16_t offset[3];
2582 		} sensor_offset;
2583 
2584 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2585 		struct __ec_todo_packed {
2586 			uint8_t sensor_num;
2587 
2588 			/*
2589 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2590 			 * the calibration information in the EC.
2591 			 * If unset, just retrieve calibration information.
2592 			 */
2593 			uint16_t flags;
2594 
2595 			/*
2596 			 * Temperature at calibration, in units of 0.01 C
2597 			 * 0x8000: invalid / unknown.
2598 			 * 0x0: 0C
2599 			 * 0x7fff: +327.67C
2600 			 */
2601 			int16_t temp;
2602 
2603 			/*
2604 			 * Scale for calibration:
2605 			 * By default scale is 1, it is encoded on 16bits:
2606 			 * 1 = BIT(15)
2607 			 * ~2 = 0xFFFF
2608 			 * ~0 = 0.
2609 			 */
2610 			uint16_t scale[3];
2611 		} sensor_scale;
2612 
2613 
2614 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2615 		/* (no params) */
2616 
2617 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2618 		struct __ec_todo_unpacked {
2619 			/*
2620 			 * Number of expected vector to return.
2621 			 * EC may return less or 0 if none available.
2622 			 */
2623 			uint32_t max_data_vector;
2624 		} fifo_read;
2625 
2626 		struct ec_motion_sense_activity set_activity;
2627 
2628 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2629 		/* (no params) */
2630 
2631 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2632 		struct __ec_todo_unpacked {
2633 			/*
2634 			 * 1: enable, 0 disable fifo,
2635 			 * EC_MOTION_SENSE_NO_VALUE return value.
2636 			 */
2637 			int8_t enable;
2638 		} fifo_int_enable;
2639 
2640 		/* Used for MOTIONSENSE_CMD_SPOOF */
2641 		struct __ec_todo_packed {
2642 			uint8_t sensor_id;
2643 
2644 			/* See enum motionsense_spoof_mode. */
2645 			uint8_t spoof_enable;
2646 
2647 			/* Ignored, used for alignment. */
2648 			uint8_t reserved;
2649 
2650 			/* Individual component values to spoof. */
2651 			int16_t components[3];
2652 		} spoof;
2653 
2654 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2655 		struct __ec_todo_unpacked {
2656 			/*
2657 			 * Lid angle threshold for switching between tablet and
2658 			 * clamshell mode.
2659 			 */
2660 			int16_t lid_angle;
2661 
2662 			/*
2663 			 * Hysteresis degree to prevent fluctuations between
2664 			 * clamshell and tablet mode if lid angle keeps
2665 			 * changing around the threshold. Lid motion driver will
2666 			 * use lid_angle + hys_degree to trigger tablet mode and
2667 			 * lid_angle - hys_degree to trigger clamshell mode.
2668 			 */
2669 			int16_t hys_degree;
2670 		} tablet_mode_threshold;
2671 	};
2672 } __ec_todo_packed;
2673 
2674 struct ec_response_motion_sense {
2675 	union {
2676 		/* Used for MOTIONSENSE_CMD_DUMP */
2677 		struct __ec_todo_unpacked {
2678 			/* Flags representing the motion sensor module. */
2679 			uint8_t module_flags;
2680 
2681 			/* Number of sensors managed directly by the EC. */
2682 			uint8_t sensor_count;
2683 
2684 			/*
2685 			 * Sensor data is truncated if response_max is too small
2686 			 * for holding all the data.
2687 			 */
2688 			struct ec_response_motion_sensor_data sensor[0];
2689 		} dump;
2690 
2691 		/* Used for MOTIONSENSE_CMD_INFO. */
2692 		struct __ec_todo_unpacked {
2693 			/* Should be element of enum motionsensor_type. */
2694 			uint8_t type;
2695 
2696 			/* Should be element of enum motionsensor_location. */
2697 			uint8_t location;
2698 
2699 			/* Should be element of enum motionsensor_chip. */
2700 			uint8_t chip;
2701 		} info;
2702 
2703 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2704 		struct __ec_todo_unpacked {
2705 			/* Should be element of enum motionsensor_type. */
2706 			uint8_t type;
2707 
2708 			/* Should be element of enum motionsensor_location. */
2709 			uint8_t location;
2710 
2711 			/* Should be element of enum motionsensor_chip. */
2712 			uint8_t chip;
2713 
2714 			/* Minimum sensor sampling frequency */
2715 			uint32_t min_frequency;
2716 
2717 			/* Maximum sensor sampling frequency */
2718 			uint32_t max_frequency;
2719 
2720 			/* Max number of sensor events that could be in fifo */
2721 			uint32_t fifo_max_event_count;
2722 		} info_3;
2723 
2724 		/* Used for MOTIONSENSE_CMD_DATA */
2725 		struct ec_response_motion_sensor_data data;
2726 
2727 		/*
2728 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2729 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2730 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2731 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2732 		 * MOTIONSENSE_CMD_SPOOF.
2733 		 */
2734 		struct __ec_todo_unpacked {
2735 			/* Current value of the parameter queried. */
2736 			int32_t ret;
2737 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2738 		  fifo_int_enable, spoof;
2739 
2740 		/*
2741 		 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2742 		 * PERFORM_CALIB.
2743 		 */
2744 		struct __ec_todo_unpacked  {
2745 			int16_t temp;
2746 			int16_t offset[3];
2747 		} sensor_offset, perform_calib;
2748 
2749 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2750 		struct __ec_todo_unpacked  {
2751 			int16_t temp;
2752 			uint16_t scale[3];
2753 		} sensor_scale;
2754 
2755 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2756 
2757 		struct ec_response_motion_sense_fifo_data fifo_read;
2758 
2759 		struct __ec_todo_packed {
2760 			uint16_t reserved;
2761 			uint32_t enabled;
2762 			uint32_t disabled;
2763 		} list_activities;
2764 
2765 		/* No params for set activity */
2766 
2767 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2768 		struct __ec_todo_unpacked {
2769 			/*
2770 			 * Angle between 0 and 360 degree if available,
2771 			 * LID_ANGLE_UNRELIABLE otherwise.
2772 			 */
2773 			uint16_t value;
2774 		} lid_angle;
2775 
2776 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2777 		struct __ec_todo_unpacked {
2778 			/*
2779 			 * Lid angle threshold for switching between tablet and
2780 			 * clamshell mode.
2781 			 */
2782 			uint16_t lid_angle;
2783 
2784 			/* Hysteresis degree. */
2785 			uint16_t hys_degree;
2786 		} tablet_mode_threshold;
2787 
2788 	};
2789 } __ec_todo_packed;
2790 
2791 /*****************************************************************************/
2792 /* Force lid open command */
2793 
2794 /* Make lid event always open */
2795 #define EC_CMD_FORCE_LID_OPEN 0x002C
2796 
2797 struct ec_params_force_lid_open {
2798 	uint8_t enabled;
2799 } __ec_align1;
2800 
2801 /*****************************************************************************/
2802 /* Configure the behavior of the power button */
2803 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2804 
2805 enum ec_config_power_button_flags {
2806 	/* Enable/Disable power button pulses for x86 devices */
2807 	EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2808 };
2809 
2810 struct ec_params_config_power_button {
2811 	/* See enum ec_config_power_button_flags */
2812 	uint8_t flags;
2813 } __ec_align1;
2814 
2815 /*****************************************************************************/
2816 /* USB charging control commands */
2817 
2818 /* Set USB port charging mode */
2819 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2820 
2821 struct ec_params_usb_charge_set_mode {
2822 	uint8_t usb_port_id;
2823 	uint8_t mode:7;
2824 	uint8_t inhibit_charge:1;
2825 } __ec_align1;
2826 
2827 /*****************************************************************************/
2828 /* Persistent storage for host */
2829 
2830 /* Maximum bytes that can be read/written in a single command */
2831 #define EC_PSTORE_SIZE_MAX 64
2832 
2833 /* Get persistent storage info */
2834 #define EC_CMD_PSTORE_INFO 0x0040
2835 
2836 struct ec_response_pstore_info {
2837 	/* Persistent storage size, in bytes */
2838 	uint32_t pstore_size;
2839 	/* Access size; read/write offset and size must be a multiple of this */
2840 	uint32_t access_size;
2841 } __ec_align4;
2842 
2843 /*
2844  * Read persistent storage
2845  *
2846  * Response is params.size bytes of data.
2847  */
2848 #define EC_CMD_PSTORE_READ 0x0041
2849 
2850 struct ec_params_pstore_read {
2851 	uint32_t offset;   /* Byte offset to read */
2852 	uint32_t size;     /* Size to read in bytes */
2853 } __ec_align4;
2854 
2855 /* Write persistent storage */
2856 #define EC_CMD_PSTORE_WRITE 0x0042
2857 
2858 struct ec_params_pstore_write {
2859 	uint32_t offset;   /* Byte offset to write */
2860 	uint32_t size;     /* Size to write in bytes */
2861 	uint8_t data[EC_PSTORE_SIZE_MAX];
2862 } __ec_align4;
2863 
2864 /*****************************************************************************/
2865 /* Real-time clock */
2866 
2867 /* RTC params and response structures */
2868 struct ec_params_rtc {
2869 	uint32_t time;
2870 } __ec_align4;
2871 
2872 struct ec_response_rtc {
2873 	uint32_t time;
2874 } __ec_align4;
2875 
2876 /* These use ec_response_rtc */
2877 #define EC_CMD_RTC_GET_VALUE 0x0044
2878 #define EC_CMD_RTC_GET_ALARM 0x0045
2879 
2880 /* These all use ec_params_rtc */
2881 #define EC_CMD_RTC_SET_VALUE 0x0046
2882 #define EC_CMD_RTC_SET_ALARM 0x0047
2883 
2884 /* Pass as time param to SET_ALARM to clear the current alarm */
2885 #define EC_RTC_ALARM_CLEAR 0
2886 
2887 /*****************************************************************************/
2888 /* Port80 log access */
2889 
2890 /* Maximum entries that can be read/written in a single command */
2891 #define EC_PORT80_SIZE_MAX 32
2892 
2893 /* Get last port80 code from previous boot */
2894 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2895 #define EC_CMD_PORT80_READ 0x0048
2896 
2897 enum ec_port80_subcmd {
2898 	EC_PORT80_GET_INFO = 0,
2899 	EC_PORT80_READ_BUFFER,
2900 };
2901 
2902 struct ec_params_port80_read {
2903 	uint16_t subcmd;
2904 	union {
2905 		struct __ec_todo_unpacked {
2906 			uint32_t offset;
2907 			uint32_t num_entries;
2908 		} read_buffer;
2909 	};
2910 } __ec_todo_packed;
2911 
2912 struct ec_response_port80_read {
2913 	union {
2914 		struct __ec_todo_unpacked {
2915 			uint32_t writes;
2916 			uint32_t history_size;
2917 			uint32_t last_boot;
2918 		} get_info;
2919 		struct __ec_todo_unpacked {
2920 			uint16_t codes[EC_PORT80_SIZE_MAX];
2921 		} data;
2922 	};
2923 } __ec_todo_packed;
2924 
2925 struct ec_response_port80_last_boot {
2926 	uint16_t code;
2927 } __ec_align2;
2928 
2929 /*****************************************************************************/
2930 /* Temporary secure storage for host verified boot use */
2931 
2932 /* Number of bytes in a vstore slot */
2933 #define EC_VSTORE_SLOT_SIZE 64
2934 
2935 /* Maximum number of vstore slots */
2936 #define EC_VSTORE_SLOT_MAX 32
2937 
2938 /* Get persistent storage info */
2939 #define EC_CMD_VSTORE_INFO 0x0049
2940 struct ec_response_vstore_info {
2941 	/* Indicates which slots are locked */
2942 	uint32_t slot_locked;
2943 	/* Total number of slots available */
2944 	uint8_t slot_count;
2945 } __ec_align_size1;
2946 
2947 /*
2948  * Read temporary secure storage
2949  *
2950  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2951  */
2952 #define EC_CMD_VSTORE_READ 0x004A
2953 
2954 struct ec_params_vstore_read {
2955 	uint8_t slot; /* Slot to read from */
2956 } __ec_align1;
2957 
2958 struct ec_response_vstore_read {
2959 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2960 } __ec_align1;
2961 
2962 /*
2963  * Write temporary secure storage and lock it.
2964  */
2965 #define EC_CMD_VSTORE_WRITE 0x004B
2966 
2967 struct ec_params_vstore_write {
2968 	uint8_t slot; /* Slot to write to */
2969 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2970 } __ec_align1;
2971 
2972 /*****************************************************************************/
2973 /* Thermal engine commands. Note that there are two implementations. We'll
2974  * reuse the command number, but the data and behavior is incompatible.
2975  * Version 0 is what originally shipped on Link.
2976  * Version 1 separates the CPU thermal limits from the fan control.
2977  */
2978 
2979 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2980 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2981 
2982 /* The version 0 structs are opaque. You have to know what they are for
2983  * the get/set commands to make any sense.
2984  */
2985 
2986 /* Version 0 - set */
2987 struct ec_params_thermal_set_threshold {
2988 	uint8_t sensor_type;
2989 	uint8_t threshold_id;
2990 	uint16_t value;
2991 } __ec_align2;
2992 
2993 /* Version 0 - get */
2994 struct ec_params_thermal_get_threshold {
2995 	uint8_t sensor_type;
2996 	uint8_t threshold_id;
2997 } __ec_align1;
2998 
2999 struct ec_response_thermal_get_threshold {
3000 	uint16_t value;
3001 } __ec_align2;
3002 
3003 
3004 /* The version 1 structs are visible. */
3005 enum ec_temp_thresholds {
3006 	EC_TEMP_THRESH_WARN = 0,
3007 	EC_TEMP_THRESH_HIGH,
3008 	EC_TEMP_THRESH_HALT,
3009 
3010 	EC_TEMP_THRESH_COUNT
3011 };
3012 
3013 /*
3014  * Thermal configuration for one temperature sensor. Temps are in degrees K.
3015  * Zero values will be silently ignored by the thermal task.
3016  *
3017  * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3018  * hysteresis.
3019  * For example,
3020  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3021  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3022  * EC will throttle ap when temperature >= 301 K, and release throttling when
3023  * temperature <= 299 K.
3024  *
3025  * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3026  * For example,
3027  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3028  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3029  * EC will throttle ap when temperature >= 301 K, and release throttling when
3030  * temperature <= 294 K.
3031  *
3032  * Note that this structure is a sub-structure of
3033  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3034  */
3035 struct ec_thermal_config {
3036 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3037 	uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3038 	uint32_t temp_fan_off;		/* no active cooling needed */
3039 	uint32_t temp_fan_max;		/* max active cooling needed */
3040 } __ec_align4;
3041 
3042 /* Version 1 - get config for one sensor. */
3043 struct ec_params_thermal_get_threshold_v1 {
3044 	uint32_t sensor_num;
3045 } __ec_align4;
3046 /* This returns a struct ec_thermal_config */
3047 
3048 /*
3049  * Version 1 - set config for one sensor.
3050  * Use read-modify-write for best results!
3051  */
3052 struct ec_params_thermal_set_threshold_v1 {
3053 	uint32_t sensor_num;
3054 	struct ec_thermal_config cfg;
3055 } __ec_align4;
3056 /* This returns no data */
3057 
3058 /****************************************************************************/
3059 
3060 /* Toggle automatic fan control */
3061 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3062 
3063 /* Version 1 of input params */
3064 struct ec_params_auto_fan_ctrl_v1 {
3065 	uint8_t fan_idx;
3066 } __ec_align1;
3067 
3068 /* Get/Set TMP006 calibration data */
3069 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3070 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3071 
3072 /*
3073  * The original TMP006 calibration only needed four params, but now we need
3074  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3075  * the params opaque. The v1 "get" response will include the algorithm number
3076  * and how many params it requires. That way we can change the EC code without
3077  * needing to update this file. We can also use a different algorithm on each
3078  * sensor.
3079  */
3080 
3081 /* This is the same struct for both v0 and v1. */
3082 struct ec_params_tmp006_get_calibration {
3083 	uint8_t index;
3084 } __ec_align1;
3085 
3086 /* Version 0 */
3087 struct ec_response_tmp006_get_calibration_v0 {
3088 	float s0;
3089 	float b0;
3090 	float b1;
3091 	float b2;
3092 } __ec_align4;
3093 
3094 struct ec_params_tmp006_set_calibration_v0 {
3095 	uint8_t index;
3096 	uint8_t reserved[3];
3097 	float s0;
3098 	float b0;
3099 	float b1;
3100 	float b2;
3101 } __ec_align4;
3102 
3103 /* Version 1 */
3104 struct ec_response_tmp006_get_calibration_v1 {
3105 	uint8_t algorithm;
3106 	uint8_t num_params;
3107 	uint8_t reserved[2];
3108 	float val[];
3109 } __ec_align4;
3110 
3111 struct ec_params_tmp006_set_calibration_v1 {
3112 	uint8_t index;
3113 	uint8_t algorithm;
3114 	uint8_t num_params;
3115 	uint8_t reserved;
3116 	float val[];
3117 } __ec_align4;
3118 
3119 
3120 /* Read raw TMP006 data */
3121 #define EC_CMD_TMP006_GET_RAW 0x0055
3122 
3123 struct ec_params_tmp006_get_raw {
3124 	uint8_t index;
3125 } __ec_align1;
3126 
3127 struct ec_response_tmp006_get_raw {
3128 	int32_t t;  /* In 1/100 K */
3129 	int32_t v;  /* In nV */
3130 } __ec_align4;
3131 
3132 /*****************************************************************************/
3133 /* MKBP - Matrix KeyBoard Protocol */
3134 
3135 /*
3136  * Read key state
3137  *
3138  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3139  * expected response size.
3140  *
3141  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3142  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3143  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3144  */
3145 #define EC_CMD_MKBP_STATE 0x0060
3146 
3147 /*
3148  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3149  */
3150 #define EC_CMD_MKBP_INFO 0x0061
3151 
3152 struct ec_response_mkbp_info {
3153 	uint32_t rows;
3154 	uint32_t cols;
3155 	/* Formerly "switches", which was 0. */
3156 	uint8_t reserved;
3157 } __ec_align_size1;
3158 
3159 struct ec_params_mkbp_info {
3160 	uint8_t info_type;
3161 	uint8_t event_type;
3162 } __ec_align1;
3163 
3164 enum ec_mkbp_info_type {
3165 	/*
3166 	 * Info about the keyboard matrix: number of rows and columns.
3167 	 *
3168 	 * Returns struct ec_response_mkbp_info.
3169 	 */
3170 	EC_MKBP_INFO_KBD = 0,
3171 
3172 	/*
3173 	 * For buttons and switches, info about which specifically are
3174 	 * supported.  event_type must be set to one of the values in enum
3175 	 * ec_mkbp_event.
3176 	 *
3177 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3178 	 * bitmask indicating which buttons or switches are present.  See the
3179 	 * bit inidices below.
3180 	 */
3181 	EC_MKBP_INFO_SUPPORTED = 1,
3182 
3183 	/*
3184 	 * Instantaneous state of buttons and switches.
3185 	 *
3186 	 * event_type must be set to one of the values in enum ec_mkbp_event.
3187 	 *
3188 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3189 	 * indicating the current state of the keyboard matrix.
3190 	 *
3191 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3192 	 * event state.
3193 	 *
3194 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3195 	 * state of supported buttons.
3196 	 *
3197 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3198 	 * state of supported switches.
3199 	 */
3200 	EC_MKBP_INFO_CURRENT = 2,
3201 };
3202 
3203 /* Simulate key press */
3204 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3205 
3206 struct ec_params_mkbp_simulate_key {
3207 	uint8_t col;
3208 	uint8_t row;
3209 	uint8_t pressed;
3210 } __ec_align1;
3211 
3212 #define EC_CMD_GET_KEYBOARD_ID 0x0063
3213 
3214 struct ec_response_keyboard_id {
3215 	uint32_t keyboard_id;
3216 } __ec_align4;
3217 
3218 enum keyboard_id {
3219 	KEYBOARD_ID_UNSUPPORTED = 0,
3220 	KEYBOARD_ID_UNREADABLE = 0xffffffff,
3221 };
3222 
3223 /* Configure keyboard scanning */
3224 #define EC_CMD_MKBP_SET_CONFIG 0x0064
3225 #define EC_CMD_MKBP_GET_CONFIG 0x0065
3226 
3227 /* flags */
3228 enum mkbp_config_flags {
3229 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
3230 };
3231 
3232 enum mkbp_config_valid {
3233 	EC_MKBP_VALID_SCAN_PERIOD		= BIT(0),
3234 	EC_MKBP_VALID_POLL_TIMEOUT		= BIT(1),
3235 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= BIT(3),
3236 	EC_MKBP_VALID_OUTPUT_SETTLE		= BIT(4),
3237 	EC_MKBP_VALID_DEBOUNCE_DOWN		= BIT(5),
3238 	EC_MKBP_VALID_DEBOUNCE_UP		= BIT(6),
3239 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= BIT(7),
3240 };
3241 
3242 /*
3243  * Configuration for our key scanning algorithm.
3244  *
3245  * Note that this is used as a sub-structure of
3246  * ec_{params/response}_mkbp_get_config.
3247  */
3248 struct ec_mkbp_config {
3249 	uint32_t valid_mask;		/* valid fields */
3250 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
3251 	uint8_t valid_flags;		/* which flags are valid */
3252 	uint16_t scan_period_us;	/* period between start of scans */
3253 	/* revert to interrupt mode after no activity for this long */
3254 	uint32_t poll_timeout_us;
3255 	/*
3256 	 * minimum post-scan relax time. Once we finish a scan we check
3257 	 * the time until we are due to start the next one. If this time is
3258 	 * shorter this field, we use this instead.
3259 	 */
3260 	uint16_t min_post_scan_delay_us;
3261 	/* delay between setting up output and waiting for it to settle */
3262 	uint16_t output_settle_us;
3263 	uint16_t debounce_down_us;	/* time for debounce on key down */
3264 	uint16_t debounce_up_us;	/* time for debounce on key up */
3265 	/* maximum depth to allow for fifo (0 = no keyscan output) */
3266 	uint8_t fifo_max_depth;
3267 } __ec_align_size1;
3268 
3269 struct ec_params_mkbp_set_config {
3270 	struct ec_mkbp_config config;
3271 } __ec_align_size1;
3272 
3273 struct ec_response_mkbp_get_config {
3274 	struct ec_mkbp_config config;
3275 } __ec_align_size1;
3276 
3277 /* Run the key scan emulation */
3278 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3279 
3280 enum ec_keyscan_seq_cmd {
3281 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
3282 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
3283 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
3284 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
3285 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
3286 };
3287 
3288 enum ec_collect_flags {
3289 	/*
3290 	 * Indicates this scan was processed by the EC. Due to timing, some
3291 	 * scans may be skipped.
3292 	 */
3293 	EC_KEYSCAN_SEQ_FLAG_DONE	= BIT(0),
3294 };
3295 
3296 struct ec_collect_item {
3297 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
3298 } __ec_align1;
3299 
3300 struct ec_params_keyscan_seq_ctrl {
3301 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
3302 	union {
3303 		struct __ec_align1 {
3304 			uint8_t active;		/* still active */
3305 			uint8_t num_items;	/* number of items */
3306 			/* Current item being presented */
3307 			uint8_t cur_item;
3308 		} status;
3309 		struct __ec_todo_unpacked {
3310 			/*
3311 			 * Absolute time for this scan, measured from the
3312 			 * start of the sequence.
3313 			 */
3314 			uint32_t time_us;
3315 			uint8_t scan[0];	/* keyscan data */
3316 		} add;
3317 		struct __ec_align1 {
3318 			uint8_t start_item;	/* First item to return */
3319 			uint8_t num_items;	/* Number of items to return */
3320 		} collect;
3321 	};
3322 } __ec_todo_packed;
3323 
3324 struct ec_result_keyscan_seq_ctrl {
3325 	union {
3326 		struct __ec_todo_unpacked {
3327 			uint8_t num_items;	/* Number of items */
3328 			/* Data for each item */
3329 			struct ec_collect_item item[0];
3330 		} collect;
3331 	};
3332 } __ec_todo_packed;
3333 
3334 /*
3335  * Get the next pending MKBP event.
3336  *
3337  * Returns EC_RES_UNAVAILABLE if there is no event pending.
3338  */
3339 #define EC_CMD_GET_NEXT_EVENT 0x0067
3340 
3341 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3342 
3343 /*
3344  * We use the most significant bit of the event type to indicate to the host
3345  * that the EC has more MKBP events available to provide.
3346  */
3347 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3348 
3349 /* The mask to apply to get the raw event type */
3350 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3351 
3352 enum ec_mkbp_event {
3353 	/* Keyboard matrix changed. The event data is the new matrix state. */
3354 	EC_MKBP_EVENT_KEY_MATRIX = 0,
3355 
3356 	/* New host event. The event data is 4 bytes of host event flags. */
3357 	EC_MKBP_EVENT_HOST_EVENT = 1,
3358 
3359 	/* New Sensor FIFO data. The event data is fifo_info structure. */
3360 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
3361 
3362 	/* The state of the non-matrixed buttons have changed. */
3363 	EC_MKBP_EVENT_BUTTON = 3,
3364 
3365 	/* The state of the switches have changed. */
3366 	EC_MKBP_EVENT_SWITCH = 4,
3367 
3368 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
3369 	EC_MKBP_EVENT_FINGERPRINT = 5,
3370 
3371 	/*
3372 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
3373 	 * corresponding to the key to be pressed.
3374 	 */
3375 	EC_MKBP_EVENT_SYSRQ = 6,
3376 
3377 	/*
3378 	 * New 64-bit host event.
3379 	 * The event data is 8 bytes of host event flags.
3380 	 */
3381 	EC_MKBP_EVENT_HOST_EVENT64 = 7,
3382 
3383 	/* Notify the AP that something happened on CEC */
3384 	EC_MKBP_EVENT_CEC_EVENT = 8,
3385 
3386 	/* Send an incoming CEC message to the AP */
3387 	EC_MKBP_EVENT_CEC_MESSAGE = 9,
3388 
3389 	/* Number of MKBP events */
3390 	EC_MKBP_EVENT_COUNT,
3391 };
3392 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3393 
3394 union __ec_align_offset1 ec_response_get_next_data {
3395 	uint8_t key_matrix[13];
3396 
3397 	/* Unaligned */
3398 	uint32_t host_event;
3399 	uint64_t host_event64;
3400 
3401 	struct __ec_todo_unpacked {
3402 		/* For aligning the fifo_info */
3403 		uint8_t reserved[3];
3404 		struct ec_response_motion_sense_fifo_info info;
3405 	} sensor_fifo;
3406 
3407 	uint32_t buttons;
3408 
3409 	uint32_t switches;
3410 
3411 	uint32_t fp_events;
3412 
3413 	uint32_t sysrq;
3414 
3415 	/* CEC events from enum mkbp_cec_event */
3416 	uint32_t cec_events;
3417 };
3418 
3419 union __ec_align_offset1 ec_response_get_next_data_v1 {
3420 	uint8_t key_matrix[16];
3421 
3422 	/* Unaligned */
3423 	uint32_t host_event;
3424 	uint64_t host_event64;
3425 
3426 	struct __ec_todo_unpacked {
3427 		/* For aligning the fifo_info */
3428 		uint8_t reserved[3];
3429 		struct ec_response_motion_sense_fifo_info info;
3430 	} sensor_fifo;
3431 
3432 	uint32_t buttons;
3433 
3434 	uint32_t switches;
3435 
3436 	uint32_t fp_events;
3437 
3438 	uint32_t sysrq;
3439 
3440 	/* CEC events from enum mkbp_cec_event */
3441 	uint32_t cec_events;
3442 
3443 	uint8_t cec_message[16];
3444 };
3445 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3446 
3447 struct ec_response_get_next_event {
3448 	uint8_t event_type;
3449 	/* Followed by event data if any */
3450 	union ec_response_get_next_data data;
3451 } __ec_align1;
3452 
3453 struct ec_response_get_next_event_v1 {
3454 	uint8_t event_type;
3455 	/* Followed by event data if any */
3456 	union ec_response_get_next_data_v1 data;
3457 } __ec_align1;
3458 
3459 /* Bit indices for buttons and switches.*/
3460 /* Buttons */
3461 #define EC_MKBP_POWER_BUTTON	0
3462 #define EC_MKBP_VOL_UP		1
3463 #define EC_MKBP_VOL_DOWN	2
3464 #define EC_MKBP_RECOVERY	3
3465 
3466 /* Switches */
3467 #define EC_MKBP_LID_OPEN	0
3468 #define EC_MKBP_TABLET_MODE	1
3469 #define EC_MKBP_BASE_ATTACHED	2
3470 #define EC_MKBP_FRONT_PROXIMITY	3
3471 
3472 /* Run keyboard factory test scanning */
3473 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3474 
3475 struct ec_response_keyboard_factory_test {
3476 	uint16_t shorted;	/* Keyboard pins are shorted */
3477 } __ec_align2;
3478 
3479 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3480 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3481 #define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3482 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3483 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3484 					 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3485 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3486 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3487 #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3488 					 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3489 #define EC_MKBP_FP_ENROLL               BIT(27)
3490 #define EC_MKBP_FP_MATCH                BIT(28)
3491 #define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3492 #define EC_MKBP_FP_FINGER_UP            BIT(30)
3493 #define EC_MKBP_FP_IMAGE_READY          BIT(31)
3494 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3495 #define EC_MKBP_FP_ERR_ENROLL_OK               0
3496 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3497 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3498 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3499 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3500 /* Can be used to detect if image was usable for enrollment or not. */
3501 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3502 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3503 #define EC_MKBP_FP_ERR_MATCH_NO                0
3504 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3505 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3506 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3507 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3508 #define EC_MKBP_FP_ERR_MATCH_YES               1
3509 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3510 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3511 
3512 
3513 /*****************************************************************************/
3514 /* Temperature sensor commands */
3515 
3516 /* Read temperature sensor info */
3517 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3518 
3519 struct ec_params_temp_sensor_get_info {
3520 	uint8_t id;
3521 } __ec_align1;
3522 
3523 struct ec_response_temp_sensor_get_info {
3524 	char sensor_name[32];
3525 	uint8_t sensor_type;
3526 } __ec_align1;
3527 
3528 /*****************************************************************************/
3529 
3530 /*
3531  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3532  * commands accidentally sent to the wrong interface.  See the ACPI section
3533  * below.
3534  */
3535 
3536 /*****************************************************************************/
3537 /* Host event commands */
3538 
3539 
3540 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3541 /*
3542  * Host event mask params and response structures, shared by all of the host
3543  * event commands below.
3544  */
3545 struct ec_params_host_event_mask {
3546 	uint32_t mask;
3547 } __ec_align4;
3548 
3549 struct ec_response_host_event_mask {
3550 	uint32_t mask;
3551 } __ec_align4;
3552 
3553 /* These all use ec_response_host_event_mask */
3554 #define EC_CMD_HOST_EVENT_GET_B         0x0087
3555 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3556 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3557 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3558 
3559 /* These all use ec_params_host_event_mask */
3560 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3561 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3562 #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3563 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3564 #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3565 
3566 /*
3567  * Unified host event programming interface - Should be used by newer versions
3568  * of BIOS/OS to program host events and masks
3569  */
3570 
3571 struct ec_params_host_event {
3572 
3573 	/* Action requested by host - one of enum ec_host_event_action. */
3574 	uint8_t action;
3575 
3576 	/*
3577 	 * Mask type that the host requested the action on - one of
3578 	 * enum ec_host_event_mask_type.
3579 	 */
3580 	uint8_t mask_type;
3581 
3582 	/* Set to 0, ignore on read */
3583 	uint16_t reserved;
3584 
3585 	/* Value to be used in case of set operations. */
3586 	uint64_t value;
3587 } __ec_align4;
3588 
3589 /*
3590  * Response structure returned by EC_CMD_HOST_EVENT.
3591  * Update the value on a GET request. Set to 0 on GET/CLEAR
3592  */
3593 
3594 struct ec_response_host_event {
3595 
3596 	/* Mask value in case of get operation */
3597 	uint64_t value;
3598 } __ec_align4;
3599 
3600 enum ec_host_event_action {
3601 	/*
3602 	 * params.value is ignored. Value of mask_type populated
3603 	 * in response.value
3604 	 */
3605 	EC_HOST_EVENT_GET,
3606 
3607 	/* Bits in params.value are set */
3608 	EC_HOST_EVENT_SET,
3609 
3610 	/* Bits in params.value are cleared */
3611 	EC_HOST_EVENT_CLEAR,
3612 };
3613 
3614 enum ec_host_event_mask_type {
3615 
3616 	/* Main host event copy */
3617 	EC_HOST_EVENT_MAIN,
3618 
3619 	/* Copy B of host events */
3620 	EC_HOST_EVENT_B,
3621 
3622 	/* SCI Mask */
3623 	EC_HOST_EVENT_SCI_MASK,
3624 
3625 	/* SMI Mask */
3626 	EC_HOST_EVENT_SMI_MASK,
3627 
3628 	/* Mask of events that should be always reported in hostevents */
3629 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3630 
3631 	/* Active wake mask */
3632 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3633 
3634 	/* Lazy wake mask for S0ix */
3635 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3636 
3637 	/* Lazy wake mask for S3 */
3638 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3639 
3640 	/* Lazy wake mask for S5 */
3641 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3642 };
3643 
3644 #define EC_CMD_HOST_EVENT       0x00A4
3645 
3646 /*****************************************************************************/
3647 /* Switch commands */
3648 
3649 /* Enable/disable LCD backlight */
3650 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3651 
3652 struct ec_params_switch_enable_backlight {
3653 	uint8_t enabled;
3654 } __ec_align1;
3655 
3656 /* Enable/disable WLAN/Bluetooth */
3657 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3658 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3659 
3660 /* Version 0 params; no response */
3661 struct ec_params_switch_enable_wireless_v0 {
3662 	uint8_t enabled;
3663 } __ec_align1;
3664 
3665 /* Version 1 params */
3666 struct ec_params_switch_enable_wireless_v1 {
3667 	/* Flags to enable now */
3668 	uint8_t now_flags;
3669 
3670 	/* Which flags to copy from now_flags */
3671 	uint8_t now_mask;
3672 
3673 	/*
3674 	 * Flags to leave enabled in S3, if they're on at the S0->S3
3675 	 * transition.  (Other flags will be disabled by the S0->S3
3676 	 * transition.)
3677 	 */
3678 	uint8_t suspend_flags;
3679 
3680 	/* Which flags to copy from suspend_flags */
3681 	uint8_t suspend_mask;
3682 } __ec_align1;
3683 
3684 /* Version 1 response */
3685 struct ec_response_switch_enable_wireless_v1 {
3686 	/* Flags to enable now */
3687 	uint8_t now_flags;
3688 
3689 	/* Flags to leave enabled in S3 */
3690 	uint8_t suspend_flags;
3691 } __ec_align1;
3692 
3693 /*****************************************************************************/
3694 /* GPIO commands. Only available on EC if write protect has been disabled. */
3695 
3696 /* Set GPIO output value */
3697 #define EC_CMD_GPIO_SET 0x0092
3698 
3699 struct ec_params_gpio_set {
3700 	char name[32];
3701 	uint8_t val;
3702 } __ec_align1;
3703 
3704 /* Get GPIO value */
3705 #define EC_CMD_GPIO_GET 0x0093
3706 
3707 /* Version 0 of input params and response */
3708 struct ec_params_gpio_get {
3709 	char name[32];
3710 } __ec_align1;
3711 
3712 struct ec_response_gpio_get {
3713 	uint8_t val;
3714 } __ec_align1;
3715 
3716 /* Version 1 of input params and response */
3717 struct ec_params_gpio_get_v1 {
3718 	uint8_t subcmd;
3719 	union {
3720 		struct __ec_align1 {
3721 			char name[32];
3722 		} get_value_by_name;
3723 		struct __ec_align1 {
3724 			uint8_t index;
3725 		} get_info;
3726 	};
3727 } __ec_align1;
3728 
3729 struct ec_response_gpio_get_v1 {
3730 	union {
3731 		struct __ec_align1 {
3732 			uint8_t val;
3733 		} get_value_by_name, get_count;
3734 		struct __ec_todo_unpacked {
3735 			uint8_t val;
3736 			char name[32];
3737 			uint32_t flags;
3738 		} get_info;
3739 	};
3740 } __ec_todo_packed;
3741 
3742 enum gpio_get_subcmd {
3743 	EC_GPIO_GET_BY_NAME = 0,
3744 	EC_GPIO_GET_COUNT = 1,
3745 	EC_GPIO_GET_INFO = 2,
3746 };
3747 
3748 /*****************************************************************************/
3749 /* I2C commands. Only available when flash write protect is unlocked. */
3750 
3751 /*
3752  * CAUTION: These commands are deprecated, and are not supported anymore in EC
3753  * builds >= 8398.0.0 (see crosbug.com/p/23570).
3754  *
3755  * Use EC_CMD_I2C_PASSTHRU instead.
3756  */
3757 
3758 /* Read I2C bus */
3759 #define EC_CMD_I2C_READ 0x0094
3760 
3761 struct ec_params_i2c_read {
3762 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3763 	uint8_t read_size; /* Either 8 or 16. */
3764 	uint8_t port;
3765 	uint8_t offset;
3766 } __ec_align_size1;
3767 
3768 struct ec_response_i2c_read {
3769 	uint16_t data;
3770 } __ec_align2;
3771 
3772 /* Write I2C bus */
3773 #define EC_CMD_I2C_WRITE 0x0095
3774 
3775 struct ec_params_i2c_write {
3776 	uint16_t data;
3777 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3778 	uint8_t write_size; /* Either 8 or 16. */
3779 	uint8_t port;
3780 	uint8_t offset;
3781 } __ec_align_size1;
3782 
3783 /*****************************************************************************/
3784 /* Charge state commands. Only available when flash write protect unlocked. */
3785 
3786 /* Force charge state machine to stop charging the battery or force it to
3787  * discharge the battery.
3788  */
3789 #define EC_CMD_CHARGE_CONTROL 0x0096
3790 #define EC_VER_CHARGE_CONTROL 1
3791 
3792 enum ec_charge_control_mode {
3793 	CHARGE_CONTROL_NORMAL = 0,
3794 	CHARGE_CONTROL_IDLE,
3795 	CHARGE_CONTROL_DISCHARGE,
3796 };
3797 
3798 struct ec_params_charge_control {
3799 	uint32_t mode;  /* enum charge_control_mode */
3800 } __ec_align4;
3801 
3802 /*****************************************************************************/
3803 
3804 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3805 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3806 
3807 /*
3808  * Read data from the saved snapshot. If the subcmd parameter is
3809  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3810  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3811  * end of the previous snapshot.
3812  *
3813  * The params are only looked at in version >= 1 of this command. Prior
3814  * versions will just default to CONSOLE_READ_NEXT behavior.
3815  *
3816  * Response is null-terminated string.  Empty string, if there is no more
3817  * remaining output.
3818  */
3819 #define EC_CMD_CONSOLE_READ 0x0098
3820 
3821 enum ec_console_read_subcmd {
3822 	CONSOLE_READ_NEXT = 0,
3823 	CONSOLE_READ_RECENT
3824 };
3825 
3826 struct ec_params_console_read_v1 {
3827 	uint8_t subcmd; /* enum ec_console_read_subcmd */
3828 } __ec_align1;
3829 
3830 /*****************************************************************************/
3831 
3832 /*
3833  * Cut off battery power immediately or after the host has shut down.
3834  *
3835  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3836  *	  EC_RES_SUCCESS if the command was successful.
3837  *	  EC_RES_ERROR if the cut off command failed.
3838  */
3839 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3840 
3841 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	BIT(0)
3842 
3843 struct ec_params_battery_cutoff {
3844 	uint8_t flags;
3845 } __ec_align1;
3846 
3847 /*****************************************************************************/
3848 /* USB port mux control. */
3849 
3850 /*
3851  * Switch USB mux or return to automatic switching.
3852  */
3853 #define EC_CMD_USB_MUX 0x009A
3854 
3855 struct ec_params_usb_mux {
3856 	uint8_t mux;
3857 } __ec_align1;
3858 
3859 /*****************************************************************************/
3860 /* LDOs / FETs control. */
3861 
3862 enum ec_ldo_state {
3863 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3864 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3865 };
3866 
3867 /*
3868  * Switch on/off a LDO.
3869  */
3870 #define EC_CMD_LDO_SET 0x009B
3871 
3872 struct ec_params_ldo_set {
3873 	uint8_t index;
3874 	uint8_t state;
3875 } __ec_align1;
3876 
3877 /*
3878  * Get LDO state.
3879  */
3880 #define EC_CMD_LDO_GET 0x009C
3881 
3882 struct ec_params_ldo_get {
3883 	uint8_t index;
3884 } __ec_align1;
3885 
3886 struct ec_response_ldo_get {
3887 	uint8_t state;
3888 } __ec_align1;
3889 
3890 /*****************************************************************************/
3891 /* Power info. */
3892 
3893 /*
3894  * Get power info.
3895  */
3896 #define EC_CMD_POWER_INFO 0x009D
3897 
3898 struct ec_response_power_info {
3899 	uint32_t usb_dev_type;
3900 	uint16_t voltage_ac;
3901 	uint16_t voltage_system;
3902 	uint16_t current_system;
3903 	uint16_t usb_current_limit;
3904 } __ec_align4;
3905 
3906 /*****************************************************************************/
3907 /* I2C passthru command */
3908 
3909 #define EC_CMD_I2C_PASSTHRU 0x009E
3910 
3911 /* Read data; if not present, message is a write */
3912 #define EC_I2C_FLAG_READ	BIT(15)
3913 
3914 /* Mask for address */
3915 #define EC_I2C_ADDR_MASK	0x3ff
3916 
3917 #define EC_I2C_STATUS_NAK	BIT(0) /* Transfer was not acknowledged */
3918 #define EC_I2C_STATUS_TIMEOUT	BIT(1) /* Timeout during transfer */
3919 
3920 /* Any error */
3921 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3922 
3923 struct ec_params_i2c_passthru_msg {
3924 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3925 	uint16_t len;		/* Number of bytes to read or write */
3926 } __ec_align2;
3927 
3928 struct ec_params_i2c_passthru {
3929 	uint8_t port;		/* I2C port number */
3930 	uint8_t num_msgs;	/* Number of messages */
3931 	struct ec_params_i2c_passthru_msg msg[];
3932 	/* Data to write for all messages is concatenated here */
3933 } __ec_align2;
3934 
3935 struct ec_response_i2c_passthru {
3936 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3937 	uint8_t num_msgs;	/* Number of messages processed */
3938 	uint8_t data[];		/* Data read by messages concatenated here */
3939 } __ec_align1;
3940 
3941 /*****************************************************************************/
3942 /* Power button hang detect */
3943 
3944 #define EC_CMD_HANG_DETECT 0x009F
3945 
3946 /* Reasons to start hang detection timer */
3947 /* Power button pressed */
3948 #define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3949 
3950 /* Lid closed */
3951 #define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3952 
3953  /* Lid opened */
3954 #define EC_HANG_START_ON_LID_OPEN     BIT(2)
3955 
3956 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3957 #define EC_HANG_START_ON_RESUME       BIT(3)
3958 
3959 /* Reasons to cancel hang detection */
3960 
3961 /* Power button released */
3962 #define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3963 
3964 /* Any host command from AP received */
3965 #define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3966 
3967 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3968 #define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3969 
3970 /*
3971  * If this flag is set, all the other fields are ignored, and the hang detect
3972  * timer is started.  This provides the AP a way to start the hang timer
3973  * without reconfiguring any of the other hang detect settings.  Note that
3974  * you must previously have configured the timeouts.
3975  */
3976 #define EC_HANG_START_NOW             BIT(30)
3977 
3978 /*
3979  * If this flag is set, all the other fields are ignored (including
3980  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3981  * without reconfiguring any of the other hang detect settings.
3982  */
3983 #define EC_HANG_STOP_NOW              BIT(31)
3984 
3985 struct ec_params_hang_detect {
3986 	/* Flags; see EC_HANG_* */
3987 	uint32_t flags;
3988 
3989 	/* Timeout in msec before generating host event, if enabled */
3990 	uint16_t host_event_timeout_msec;
3991 
3992 	/* Timeout in msec before generating warm reboot, if enabled */
3993 	uint16_t warm_reboot_timeout_msec;
3994 } __ec_align4;
3995 
3996 /*****************************************************************************/
3997 /* Commands for battery charging */
3998 
3999 /*
4000  * This is the single catch-all host command to exchange data regarding the
4001  * charge state machine (v2 and up).
4002  */
4003 #define EC_CMD_CHARGE_STATE 0x00A0
4004 
4005 /* Subcommands for this host command */
4006 enum charge_state_command {
4007 	CHARGE_STATE_CMD_GET_STATE,
4008 	CHARGE_STATE_CMD_GET_PARAM,
4009 	CHARGE_STATE_CMD_SET_PARAM,
4010 	CHARGE_STATE_NUM_CMDS
4011 };
4012 
4013 /*
4014  * Known param numbers are defined here. Ranges are reserved for board-specific
4015  * params, which are handled by the particular implementations.
4016  */
4017 enum charge_state_params {
4018 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
4019 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
4020 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4021 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
4022 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
4023 	CS_PARAM_LIMIT_POWER,	      /*
4024 				       * Check if power is limited due to
4025 				       * low battery and / or a weak external
4026 				       * charger. READ ONLY.
4027 				       */
4028 	/* How many so far? */
4029 	CS_NUM_BASE_PARAMS,
4030 
4031 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4032 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4033 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4034 
4035 	/* Range for CONFIG_CHARGE_STATE_DEBUG params */
4036 	CS_PARAM_DEBUG_MIN = 0x20000,
4037 	CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4038 	CS_PARAM_DEBUG_MANUAL_MODE,
4039 	CS_PARAM_DEBUG_SEEMS_DEAD,
4040 	CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4041 	CS_PARAM_DEBUG_BATT_REMOVED,
4042 	CS_PARAM_DEBUG_MANUAL_CURRENT,
4043 	CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4044 	CS_PARAM_DEBUG_MAX = 0x2ffff,
4045 
4046 	/* Other custom param ranges go here... */
4047 };
4048 
4049 struct ec_params_charge_state {
4050 	uint8_t cmd;				/* enum charge_state_command */
4051 	union {
4052 		/* get_state has no args */
4053 
4054 		struct __ec_todo_unpacked {
4055 			uint32_t param;		/* enum charge_state_param */
4056 		} get_param;
4057 
4058 		struct __ec_todo_unpacked {
4059 			uint32_t param;		/* param to set */
4060 			uint32_t value;		/* value to set */
4061 		} set_param;
4062 	};
4063 } __ec_todo_packed;
4064 
4065 struct ec_response_charge_state {
4066 	union {
4067 		struct __ec_align4 {
4068 			int ac;
4069 			int chg_voltage;
4070 			int chg_current;
4071 			int chg_input_current;
4072 			int batt_state_of_charge;
4073 		} get_state;
4074 
4075 		struct __ec_align4 {
4076 			uint32_t value;
4077 		} get_param;
4078 
4079 		/* set_param returns no args */
4080 	};
4081 } __ec_align4;
4082 
4083 
4084 /*
4085  * Set maximum battery charging current.
4086  */
4087 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4088 
4089 struct ec_params_current_limit {
4090 	uint32_t limit; /* in mA */
4091 } __ec_align4;
4092 
4093 /*
4094  * Set maximum external voltage / current.
4095  */
4096 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4097 
4098 /* Command v0 is used only on Spring and is obsolete + unsupported */
4099 struct ec_params_external_power_limit_v1 {
4100 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4101 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4102 } __ec_align2;
4103 
4104 #define EC_POWER_LIMIT_NONE 0xffff
4105 
4106 /*
4107  * Set maximum voltage & current of a dedicated charge port
4108  */
4109 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4110 
4111 struct ec_params_dedicated_charger_limit {
4112 	uint16_t current_lim; /* in mA */
4113 	uint16_t voltage_lim; /* in mV */
4114 } __ec_align2;
4115 
4116 /*****************************************************************************/
4117 /* Hibernate/Deep Sleep Commands */
4118 
4119 /* Set the delay before going into hibernation. */
4120 #define EC_CMD_HIBERNATION_DELAY 0x00A8
4121 
4122 struct ec_params_hibernation_delay {
4123 	/*
4124 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4125 	 * current settings without changing them.
4126 	 */
4127 	uint32_t seconds;
4128 } __ec_align4;
4129 
4130 struct ec_response_hibernation_delay {
4131 	/*
4132 	 * The current time in seconds in which the system has been in the G3
4133 	 * state.  This value is reset if the EC transitions out of G3.
4134 	 */
4135 	uint32_t time_g3;
4136 
4137 	/*
4138 	 * The current time remaining in seconds until the EC should hibernate.
4139 	 * This value is also reset if the EC transitions out of G3.
4140 	 */
4141 	uint32_t time_remaining;
4142 
4143 	/*
4144 	 * The current time in seconds that the EC should wait in G3 before
4145 	 * hibernating.
4146 	 */
4147 	uint32_t hibernate_delay;
4148 } __ec_align4;
4149 
4150 /* Inform the EC when entering a sleep state */
4151 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4152 
4153 enum host_sleep_event {
4154 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4155 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
4156 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4157 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4158 	/* S3 suspend with additional enabled wake sources */
4159 	HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4160 };
4161 
4162 struct ec_params_host_sleep_event {
4163 	uint8_t sleep_event;
4164 } __ec_align1;
4165 
4166 /*
4167  * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4168  * transition failures
4169  */
4170 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4171 
4172 /* Disable timeout detection for this sleep transition */
4173 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4174 
4175 struct ec_params_host_sleep_event_v1 {
4176 	/* The type of sleep being entered or exited. */
4177 	uint8_t sleep_event;
4178 
4179 	/* Padding */
4180 	uint8_t reserved;
4181 	union {
4182 		/* Parameters that apply for suspend messages. */
4183 		struct {
4184 			/*
4185 			 * The timeout in milliseconds between when this message
4186 			 * is received and when the EC will declare sleep
4187 			 * transition failure if the sleep signal is not
4188 			 * asserted.
4189 			 */
4190 			uint16_t sleep_timeout_ms;
4191 		} suspend_params;
4192 
4193 		/* No parameters for non-suspend messages. */
4194 	};
4195 } __ec_align2;
4196 
4197 /* A timeout occurred when this bit is set */
4198 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4199 
4200 /*
4201  * The mask defining which bits correspond to the number of sleep transitions,
4202  * as well as the maximum number of suspend line transitions that will be
4203  * reported back to the host.
4204  */
4205 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4206 
4207 struct ec_response_host_sleep_event_v1 {
4208 	union {
4209 		/* Response fields that apply for resume messages. */
4210 		struct {
4211 			/*
4212 			 * The number of sleep power signal transitions that
4213 			 * occurred since the suspend message. The high bit
4214 			 * indicates a timeout occurred.
4215 			 */
4216 			uint32_t sleep_transitions;
4217 		} resume_response;
4218 
4219 		/* No response fields for non-resume messages. */
4220 	};
4221 } __ec_align4;
4222 
4223 /*****************************************************************************/
4224 /* Device events */
4225 #define EC_CMD_DEVICE_EVENT 0x00AA
4226 
4227 enum ec_device_event {
4228 	EC_DEVICE_EVENT_TRACKPAD,
4229 	EC_DEVICE_EVENT_DSP,
4230 	EC_DEVICE_EVENT_WIFI,
4231 	EC_DEVICE_EVENT_WLC,
4232 };
4233 
4234 enum ec_device_event_param {
4235 	/* Get and clear pending device events */
4236 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4237 	/* Get device event mask */
4238 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4239 	/* Set device event mask */
4240 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4241 };
4242 
4243 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4244 
4245 struct ec_params_device_event {
4246 	uint32_t event_mask;
4247 	uint8_t param;
4248 } __ec_align_size1;
4249 
4250 struct ec_response_device_event {
4251 	uint32_t event_mask;
4252 } __ec_align4;
4253 
4254 /*****************************************************************************/
4255 /* Smart battery pass-through */
4256 
4257 /* Get / Set 16-bit smart battery registers */
4258 #define EC_CMD_SB_READ_WORD   0x00B0
4259 #define EC_CMD_SB_WRITE_WORD  0x00B1
4260 
4261 /* Get / Set string smart battery parameters
4262  * formatted as SMBUS "block".
4263  */
4264 #define EC_CMD_SB_READ_BLOCK  0x00B2
4265 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
4266 
4267 struct ec_params_sb_rd {
4268 	uint8_t reg;
4269 } __ec_align1;
4270 
4271 struct ec_response_sb_rd_word {
4272 	uint16_t value;
4273 } __ec_align2;
4274 
4275 struct ec_params_sb_wr_word {
4276 	uint8_t reg;
4277 	uint16_t value;
4278 } __ec_align1;
4279 
4280 struct ec_response_sb_rd_block {
4281 	uint8_t data[32];
4282 } __ec_align1;
4283 
4284 struct ec_params_sb_wr_block {
4285 	uint8_t reg;
4286 	uint16_t data[32];
4287 } __ec_align1;
4288 
4289 /*****************************************************************************/
4290 /* Battery vendor parameters
4291  *
4292  * Get or set vendor-specific parameters in the battery. Implementations may
4293  * differ between boards or batteries. On a set operation, the response
4294  * contains the actual value set, which may be rounded or clipped from the
4295  * requested value.
4296  */
4297 
4298 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4299 
4300 enum ec_battery_vendor_param_mode {
4301 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
4302 	BATTERY_VENDOR_PARAM_MODE_SET,
4303 };
4304 
4305 struct ec_params_battery_vendor_param {
4306 	uint32_t param;
4307 	uint32_t value;
4308 	uint8_t mode;
4309 } __ec_align_size1;
4310 
4311 struct ec_response_battery_vendor_param {
4312 	uint32_t value;
4313 } __ec_align4;
4314 
4315 /*****************************************************************************/
4316 /*
4317  * Smart Battery Firmware Update Commands
4318  */
4319 #define EC_CMD_SB_FW_UPDATE 0x00B5
4320 
4321 enum ec_sb_fw_update_subcmd {
4322 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
4323 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4324 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4325 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4326 	EC_SB_FW_UPDATE_END      = 0x4,
4327 	EC_SB_FW_UPDATE_STATUS   = 0x5,
4328 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
4329 	EC_SB_FW_UPDATE_MAX      = 0x7,
4330 };
4331 
4332 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4333 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4334 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
4335 
4336 struct ec_sb_fw_update_header {
4337 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4338 	uint16_t fw_id;   /* firmware id */
4339 } __ec_align4;
4340 
4341 struct ec_params_sb_fw_update {
4342 	struct ec_sb_fw_update_header hdr;
4343 	union {
4344 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4345 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4346 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4347 		/* EC_SB_FW_UPDATE_END      = 0x4 */
4348 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4349 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4350 		/* Those have no args */
4351 
4352 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4353 		struct __ec_align4 {
4354 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4355 		} write;
4356 	};
4357 } __ec_align4;
4358 
4359 struct ec_response_sb_fw_update {
4360 	union {
4361 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4362 		struct __ec_align1 {
4363 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4364 		} info;
4365 
4366 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4367 		struct __ec_align1 {
4368 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4369 		} status;
4370 	};
4371 } __ec_align1;
4372 
4373 /*
4374  * Entering Verified Boot Mode Command
4375  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4376  * Valid Modes are: normal, developer, and recovery.
4377  */
4378 #define EC_CMD_ENTERING_MODE 0x00B6
4379 
4380 struct ec_params_entering_mode {
4381 	int vboot_mode;
4382 } __ec_align4;
4383 
4384 #define VBOOT_MODE_NORMAL    0
4385 #define VBOOT_MODE_DEVELOPER 1
4386 #define VBOOT_MODE_RECOVERY  2
4387 
4388 /*****************************************************************************/
4389 /*
4390  * I2C passthru protection command: Protects I2C tunnels against access on
4391  * certain addresses (board-specific).
4392  */
4393 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4394 
4395 enum ec_i2c_passthru_protect_subcmd {
4396 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4397 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4398 };
4399 
4400 struct ec_params_i2c_passthru_protect {
4401 	uint8_t subcmd;
4402 	uint8_t port;		/* I2C port number */
4403 } __ec_align1;
4404 
4405 struct ec_response_i2c_passthru_protect {
4406 	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
4407 } __ec_align1;
4408 
4409 
4410 /*****************************************************************************/
4411 /*
4412  * HDMI CEC commands
4413  *
4414  * These commands are for sending and receiving message via HDMI CEC
4415  */
4416 
4417 #define MAX_CEC_MSG_LEN 16
4418 
4419 /* CEC message from the AP to be written on the CEC bus */
4420 #define EC_CMD_CEC_WRITE_MSG 0x00B8
4421 
4422 /**
4423  * struct ec_params_cec_write - Message to write to the CEC bus
4424  * @msg: message content to write to the CEC bus
4425  */
4426 struct ec_params_cec_write {
4427 	uint8_t msg[MAX_CEC_MSG_LEN];
4428 } __ec_align1;
4429 
4430 /* Set various CEC parameters */
4431 #define EC_CMD_CEC_SET 0x00BA
4432 
4433 /**
4434  * struct ec_params_cec_set - CEC parameters set
4435  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4436  * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4437  *	or 1 to enable CEC functionality, in case cmd is
4438  *	CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4439  *	address between 0 and 15 or 0xff to unregister
4440  */
4441 struct ec_params_cec_set {
4442 	uint8_t cmd; /* enum cec_command */
4443 	uint8_t val;
4444 } __ec_align1;
4445 
4446 /* Read various CEC parameters */
4447 #define EC_CMD_CEC_GET 0x00BB
4448 
4449 /**
4450  * struct ec_params_cec_get - CEC parameters get
4451  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4452  */
4453 struct ec_params_cec_get {
4454 	uint8_t cmd; /* enum cec_command */
4455 } __ec_align1;
4456 
4457 /**
4458  * struct ec_response_cec_get - CEC parameters get response
4459  * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4460  *	disabled or 1 if CEC functionality is enabled,
4461  *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4462  *	configured logical address between 0 and 15 or 0xff if unregistered
4463  */
4464 struct ec_response_cec_get {
4465 	uint8_t val;
4466 } __ec_align1;
4467 
4468 /* CEC parameters command */
4469 enum cec_command {
4470 	/* CEC reading, writing and events enable */
4471 	CEC_CMD_ENABLE,
4472 	/* CEC logical address  */
4473 	CEC_CMD_LOGICAL_ADDRESS,
4474 };
4475 
4476 /* Events from CEC to AP */
4477 enum mkbp_cec_event {
4478 	/* Outgoing message was acknowledged by a follower */
4479 	EC_MKBP_CEC_SEND_OK			= BIT(0),
4480 	/* Outgoing message was not acknowledged */
4481 	EC_MKBP_CEC_SEND_FAILED			= BIT(1),
4482 };
4483 
4484 /*****************************************************************************/
4485 
4486 /* Commands for audio codec. */
4487 #define EC_CMD_EC_CODEC 0x00BC
4488 
4489 enum ec_codec_subcmd {
4490 	EC_CODEC_GET_CAPABILITIES = 0x0,
4491 	EC_CODEC_GET_SHM_ADDR = 0x1,
4492 	EC_CODEC_SET_SHM_ADDR = 0x2,
4493 	EC_CODEC_SUBCMD_COUNT,
4494 };
4495 
4496 enum ec_codec_cap {
4497 	EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4498 	EC_CODEC_CAP_WOV_LANG_SHM = 1,
4499 	EC_CODEC_CAP_LAST = 32,
4500 };
4501 
4502 enum ec_codec_shm_id {
4503 	EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4504 	EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4505 	EC_CODEC_SHM_ID_LAST,
4506 };
4507 
4508 enum ec_codec_shm_type {
4509 	EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4510 	EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4511 };
4512 
4513 struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4514 	uint8_t shm_id;
4515 	uint8_t reserved[3];
4516 };
4517 
4518 struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4519 	uint64_t phys_addr;
4520 	uint32_t len;
4521 	uint8_t shm_id;
4522 	uint8_t reserved[3];
4523 };
4524 
4525 struct __ec_align4 ec_param_ec_codec {
4526 	uint8_t cmd; /* enum ec_codec_subcmd */
4527 	uint8_t reserved[3];
4528 
4529 	union {
4530 		struct ec_param_ec_codec_get_shm_addr
4531 				get_shm_addr_param;
4532 		struct ec_param_ec_codec_set_shm_addr
4533 				set_shm_addr_param;
4534 	};
4535 };
4536 
4537 struct __ec_align4 ec_response_ec_codec_get_capabilities {
4538 	uint32_t capabilities;
4539 };
4540 
4541 struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4542 	uint64_t phys_addr;
4543 	uint32_t len;
4544 	uint8_t type;
4545 	uint8_t reserved[3];
4546 };
4547 
4548 /*****************************************************************************/
4549 
4550 /* Commands for DMIC on audio codec. */
4551 #define EC_CMD_EC_CODEC_DMIC 0x00BD
4552 
4553 enum ec_codec_dmic_subcmd {
4554 	EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4555 	EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4556 	EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4557 	EC_CODEC_DMIC_SUBCMD_COUNT,
4558 };
4559 
4560 enum ec_codec_dmic_channel {
4561 	EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4562 	EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4563 	EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4564 	EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4565 	EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4566 	EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4567 	EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4568 	EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4569 	EC_CODEC_DMIC_CHANNEL_COUNT,
4570 };
4571 
4572 struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4573 	uint8_t channel; /* enum ec_codec_dmic_channel */
4574 	uint8_t gain;
4575 	uint8_t reserved[2];
4576 };
4577 
4578 struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4579 	uint8_t channel; /* enum ec_codec_dmic_channel */
4580 	uint8_t reserved[3];
4581 };
4582 
4583 struct __ec_align4 ec_param_ec_codec_dmic {
4584 	uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4585 	uint8_t reserved[3];
4586 
4587 	union {
4588 		struct ec_param_ec_codec_dmic_set_gain_idx
4589 				set_gain_idx_param;
4590 		struct ec_param_ec_codec_dmic_get_gain_idx
4591 				get_gain_idx_param;
4592 	};
4593 };
4594 
4595 struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4596 	uint8_t max_gain;
4597 };
4598 
4599 struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4600 	uint8_t gain;
4601 };
4602 
4603 /*****************************************************************************/
4604 
4605 /* Commands for I2S RX on audio codec. */
4606 
4607 #define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4608 
4609 enum ec_codec_i2s_rx_subcmd {
4610 	EC_CODEC_I2S_RX_ENABLE = 0x0,
4611 	EC_CODEC_I2S_RX_DISABLE = 0x1,
4612 	EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4613 	EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4614 	EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4615 	EC_CODEC_I2S_RX_RESET = 0x5,
4616 	EC_CODEC_I2S_RX_SUBCMD_COUNT,
4617 };
4618 
4619 enum ec_codec_i2s_rx_sample_depth {
4620 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4621 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4622 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4623 };
4624 
4625 enum ec_codec_i2s_rx_daifmt {
4626 	EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4627 	EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4628 	EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4629 	EC_CODEC_I2S_RX_DAIFMT_COUNT,
4630 };
4631 
4632 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4633 	uint8_t depth;
4634 	uint8_t reserved[3];
4635 };
4636 
4637 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4638 	uint8_t left;
4639 	uint8_t right;
4640 	uint8_t reserved[2];
4641 };
4642 
4643 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4644 	uint8_t daifmt;
4645 	uint8_t reserved[3];
4646 };
4647 
4648 struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4649 	uint32_t bclk;
4650 };
4651 
4652 struct __ec_align4 ec_param_ec_codec_i2s_rx {
4653 	uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4654 	uint8_t reserved[3];
4655 
4656 	union {
4657 		struct ec_param_ec_codec_i2s_rx_set_sample_depth
4658 				set_sample_depth_param;
4659 		struct ec_param_ec_codec_i2s_rx_set_daifmt
4660 				set_daifmt_param;
4661 		struct ec_param_ec_codec_i2s_rx_set_bclk
4662 				set_bclk_param;
4663 	};
4664 };
4665 
4666 /*****************************************************************************/
4667 /* Commands for WoV on audio codec. */
4668 
4669 #define EC_CMD_EC_CODEC_WOV 0x00BF
4670 
4671 enum ec_codec_wov_subcmd {
4672 	EC_CODEC_WOV_SET_LANG = 0x0,
4673 	EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4674 	EC_CODEC_WOV_GET_LANG = 0x2,
4675 	EC_CODEC_WOV_ENABLE = 0x3,
4676 	EC_CODEC_WOV_DISABLE = 0x4,
4677 	EC_CODEC_WOV_READ_AUDIO = 0x5,
4678 	EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4679 	EC_CODEC_WOV_SUBCMD_COUNT,
4680 };
4681 
4682 /*
4683  * @hash is SHA256 of the whole language model.
4684  * @total_len indicates the length of whole language model.
4685  * @offset is the cursor from the beginning of the model.
4686  * @buf is the packet buffer.
4687  * @len denotes how many bytes in the buf.
4688  */
4689 struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4690 	uint8_t hash[32];
4691 	uint32_t total_len;
4692 	uint32_t offset;
4693 	uint8_t buf[128];
4694 	uint32_t len;
4695 };
4696 
4697 struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4698 	uint8_t hash[32];
4699 	uint32_t total_len;
4700 };
4701 
4702 struct __ec_align4 ec_param_ec_codec_wov {
4703 	uint8_t cmd; /* enum ec_codec_wov_subcmd */
4704 	uint8_t reserved[3];
4705 
4706 	union {
4707 		struct ec_param_ec_codec_wov_set_lang
4708 				set_lang_param;
4709 		struct ec_param_ec_codec_wov_set_lang_shm
4710 				set_lang_shm_param;
4711 	};
4712 };
4713 
4714 struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4715 	uint8_t hash[32];
4716 };
4717 
4718 struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4719 	uint8_t buf[128];
4720 	uint32_t len;
4721 };
4722 
4723 struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4724 	uint32_t offset;
4725 	uint32_t len;
4726 };
4727 
4728 /*****************************************************************************/
4729 /* System commands */
4730 
4731 /*
4732  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4733  * necessarily reboot the EC.  Rename to "image" or something similar?
4734  */
4735 #define EC_CMD_REBOOT_EC 0x00D2
4736 
4737 /* Command */
4738 enum ec_reboot_cmd {
4739 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4740 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4741 	EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4742 	/* (command 3 was jump to RW-B) */
4743 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
4744 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4745 	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4746 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4747 	EC_REBOOT_COLD_AP_OFF = 8,   /* Cold-reboot and don't boot AP */
4748 };
4749 
4750 /* Flags for ec_params_reboot_ec.reboot_flags */
4751 #define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4752 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4753 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4754 
4755 struct ec_params_reboot_ec {
4756 	uint8_t cmd;           /* enum ec_reboot_cmd */
4757 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4758 } __ec_align1;
4759 
4760 /*
4761  * Get information on last EC panic.
4762  *
4763  * Returns variable-length platform-dependent panic information.  See panic.h
4764  * for details.
4765  */
4766 #define EC_CMD_GET_PANIC_INFO 0x00D3
4767 
4768 /*****************************************************************************/
4769 /*
4770  * Special commands
4771  *
4772  * These do not follow the normal rules for commands.  See each command for
4773  * details.
4774  */
4775 
4776 /*
4777  * Reboot NOW
4778  *
4779  * This command will work even when the EC LPC interface is busy, because the
4780  * reboot command is processed at interrupt level.  Note that when the EC
4781  * reboots, the host will reboot too, so there is no response to this command.
4782  *
4783  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4784  */
4785 #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4786 
4787 /*
4788  * Resend last response (not supported on LPC).
4789  *
4790  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4791  * there was no previous command, or the previous command's response was too
4792  * big to save.
4793  */
4794 #define EC_CMD_RESEND_RESPONSE 0x00DB
4795 
4796 /*
4797  * This header byte on a command indicate version 0. Any header byte less
4798  * than this means that we are talking to an old EC which doesn't support
4799  * versioning. In that case, we assume version 0.
4800  *
4801  * Header bytes greater than this indicate a later version. For example,
4802  * EC_CMD_VERSION0 + 1 means we are using version 1.
4803  *
4804  * The old EC interface must not use commands 0xdc or higher.
4805  */
4806 #define EC_CMD_VERSION0 0x00DC
4807 
4808 /*****************************************************************************/
4809 /*
4810  * PD commands
4811  *
4812  * These commands are for PD MCU communication.
4813  */
4814 
4815 /* EC to PD MCU exchange status command */
4816 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4817 #define EC_VER_PD_EXCHANGE_STATUS 2
4818 
4819 enum pd_charge_state {
4820 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4821 	PD_CHARGE_NONE,          /* No charging allowed */
4822 	PD_CHARGE_5V,            /* 5V charging only */
4823 	PD_CHARGE_MAX            /* Charge at max voltage */
4824 };
4825 
4826 /* Status of EC being sent to PD */
4827 #define EC_STATUS_HIBERNATING	BIT(0)
4828 
4829 struct ec_params_pd_status {
4830 	uint8_t status;       /* EC status */
4831 	int8_t batt_soc;      /* battery state of charge */
4832 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4833 } __ec_align1;
4834 
4835 /* Status of PD being sent back to EC */
4836 #define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4837 #define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4838 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4839 #define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4840 #define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4841 #define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4842 #define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4843 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4844 				      PD_STATUS_TCPC_ALERT_1 | \
4845 				      PD_STATUS_HOST_EVENT)
4846 struct ec_response_pd_status {
4847 	uint32_t curr_lim_ma;       /* input current limit */
4848 	uint16_t status;            /* PD MCU status */
4849 	int8_t active_charge_port;  /* active charging port */
4850 } __ec_align_size1;
4851 
4852 /* AP to PD MCU host event status command, cleared on read */
4853 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4854 
4855 /* PD MCU host event status bits */
4856 #define PD_EVENT_UPDATE_DEVICE     BIT(0)
4857 #define PD_EVENT_POWER_CHANGE      BIT(1)
4858 #define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4859 #define PD_EVENT_DATA_SWAP         BIT(3)
4860 struct ec_response_host_event_status {
4861 	uint32_t status;      /* PD MCU host event status */
4862 } __ec_align4;
4863 
4864 /* Set USB type-C port role and muxes */
4865 #define EC_CMD_USB_PD_CONTROL 0x0101
4866 
4867 enum usb_pd_control_role {
4868 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4869 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4870 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4871 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4872 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4873 	USB_PD_CTRL_ROLE_FREEZE = 5,
4874 	USB_PD_CTRL_ROLE_COUNT
4875 };
4876 
4877 enum usb_pd_control_mux {
4878 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
4879 	USB_PD_CTRL_MUX_NONE = 1,
4880 	USB_PD_CTRL_MUX_USB = 2,
4881 	USB_PD_CTRL_MUX_DP = 3,
4882 	USB_PD_CTRL_MUX_DOCK = 4,
4883 	USB_PD_CTRL_MUX_AUTO = 5,
4884 	USB_PD_CTRL_MUX_COUNT
4885 };
4886 
4887 enum usb_pd_control_swap {
4888 	USB_PD_CTRL_SWAP_NONE = 0,
4889 	USB_PD_CTRL_SWAP_DATA = 1,
4890 	USB_PD_CTRL_SWAP_POWER = 2,
4891 	USB_PD_CTRL_SWAP_VCONN = 3,
4892 	USB_PD_CTRL_SWAP_COUNT
4893 };
4894 
4895 struct ec_params_usb_pd_control {
4896 	uint8_t port;
4897 	uint8_t role;
4898 	uint8_t mux;
4899 	uint8_t swap;
4900 } __ec_align1;
4901 
4902 #define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4903 #define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4904 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4905 
4906 #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4907 #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4908 #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4909 #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4910 #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4911 #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4912 #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4913 
4914 struct ec_response_usb_pd_control {
4915 	uint8_t enabled;
4916 	uint8_t role;
4917 	uint8_t polarity;
4918 	uint8_t state;
4919 } __ec_align1;
4920 
4921 struct ec_response_usb_pd_control_v1 {
4922 	uint8_t enabled;
4923 	uint8_t role;
4924 	uint8_t polarity;
4925 	char state[32];
4926 } __ec_align1;
4927 
4928 /* Values representing usbc PD CC state */
4929 #define USBC_PD_CC_NONE		0 /* No accessory connected */
4930 #define USBC_PD_CC_NO_UFP	1 /* No UFP accessory connected */
4931 #define USBC_PD_CC_AUDIO_ACC	2 /* Audio accessory connected */
4932 #define USBC_PD_CC_DEBUG_ACC	3 /* Debug accessory connected */
4933 #define USBC_PD_CC_UFP_ATTACHED	4 /* UFP attached to usbc */
4934 #define USBC_PD_CC_DFP_ATTACHED	5 /* DPF attached to usbc */
4935 
4936 /* Active/Passive Cable */
4937 #define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4938 /* Optical/Non-optical cable */
4939 #define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4940 /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4941 #define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4942 /* Active Link Uni-Direction */
4943 #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4944 
4945 struct ec_response_usb_pd_control_v2 {
4946 	uint8_t enabled;
4947 	uint8_t role;
4948 	uint8_t polarity;
4949 	char state[32];
4950 	uint8_t cc_state;	/* enum pd_cc_states representing cc state */
4951 	uint8_t dp_mode;	/* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4952 	uint8_t reserved;	/* Reserved for future use */
4953 	uint8_t control_flags;	/* USB_PD_CTRL_*flags */
4954 	uint8_t cable_speed;	/* TBT_SS_* cable speed */
4955 	uint8_t cable_gen;	/* TBT_GEN3_* cable rounded support */
4956 } __ec_align1;
4957 
4958 #define EC_CMD_USB_PD_PORTS 0x0102
4959 
4960 /* Maximum number of PD ports on a device, num_ports will be <= this */
4961 #define EC_USB_PD_MAX_PORTS 8
4962 
4963 struct ec_response_usb_pd_ports {
4964 	uint8_t num_ports;
4965 } __ec_align1;
4966 
4967 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4968 
4969 #define PD_POWER_CHARGING_PORT 0xff
4970 struct ec_params_usb_pd_power_info {
4971 	uint8_t port;
4972 } __ec_align1;
4973 
4974 enum usb_chg_type {
4975 	USB_CHG_TYPE_NONE,
4976 	USB_CHG_TYPE_PD,
4977 	USB_CHG_TYPE_C,
4978 	USB_CHG_TYPE_PROPRIETARY,
4979 	USB_CHG_TYPE_BC12_DCP,
4980 	USB_CHG_TYPE_BC12_CDP,
4981 	USB_CHG_TYPE_BC12_SDP,
4982 	USB_CHG_TYPE_OTHER,
4983 	USB_CHG_TYPE_VBUS,
4984 	USB_CHG_TYPE_UNKNOWN,
4985 	USB_CHG_TYPE_DEDICATED,
4986 };
4987 enum usb_power_roles {
4988 	USB_PD_PORT_POWER_DISCONNECTED,
4989 	USB_PD_PORT_POWER_SOURCE,
4990 	USB_PD_PORT_POWER_SINK,
4991 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4992 };
4993 
4994 struct usb_chg_measures {
4995 	uint16_t voltage_max;
4996 	uint16_t voltage_now;
4997 	uint16_t current_max;
4998 	uint16_t current_lim;
4999 } __ec_align2;
5000 
5001 struct ec_response_usb_pd_power_info {
5002 	uint8_t role;
5003 	uint8_t type;
5004 	uint8_t dualrole;
5005 	uint8_t reserved1;
5006 	struct usb_chg_measures meas;
5007 	uint32_t max_power;
5008 } __ec_align4;
5009 
5010 
5011 /*
5012  * This command will return the number of USB PD charge port + the number
5013  * of dedicated port present.
5014  * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5015  */
5016 #define EC_CMD_CHARGE_PORT_COUNT 0x0105
5017 struct ec_response_charge_port_count {
5018 	uint8_t port_count;
5019 } __ec_align1;
5020 
5021 /* Write USB-PD device FW */
5022 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
5023 
5024 enum usb_pd_fw_update_cmds {
5025 	USB_PD_FW_REBOOT,
5026 	USB_PD_FW_FLASH_ERASE,
5027 	USB_PD_FW_FLASH_WRITE,
5028 	USB_PD_FW_ERASE_SIG,
5029 };
5030 
5031 struct ec_params_usb_pd_fw_update {
5032 	uint16_t dev_id;
5033 	uint8_t cmd;
5034 	uint8_t port;
5035 	uint32_t size;     /* Size to write in bytes */
5036 	/* Followed by data to write */
5037 } __ec_align4;
5038 
5039 /* Write USB-PD Accessory RW_HASH table entry */
5040 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5041 /* RW hash is first 20 bytes of SHA-256 of RW section */
5042 #define PD_RW_HASH_SIZE 20
5043 struct ec_params_usb_pd_rw_hash_entry {
5044 	uint16_t dev_id;
5045 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5046 	uint8_t reserved;        /*
5047 				  * For alignment of current_image
5048 				  * TODO(rspangler) but it's not aligned!
5049 				  * Should have been reserved[2].
5050 				  */
5051 	uint32_t current_image;  /* One of ec_current_image */
5052 } __ec_align1;
5053 
5054 /* Read USB-PD Accessory info */
5055 #define EC_CMD_USB_PD_DEV_INFO 0x0112
5056 
5057 struct ec_params_usb_pd_info_request {
5058 	uint8_t port;
5059 } __ec_align1;
5060 
5061 /* Read USB-PD Device discovery info */
5062 #define EC_CMD_USB_PD_DISCOVERY 0x0113
5063 struct ec_params_usb_pd_discovery_entry {
5064 	uint16_t vid;  /* USB-IF VID */
5065 	uint16_t pid;  /* USB-IF PID */
5066 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
5067 } __ec_align_size1;
5068 
5069 /* Override default charge behavior */
5070 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5071 
5072 /* Negative port parameters have special meaning */
5073 enum usb_pd_override_ports {
5074 	OVERRIDE_DONT_CHARGE = -2,
5075 	OVERRIDE_OFF = -1,
5076 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5077 };
5078 
5079 struct ec_params_charge_port_override {
5080 	int16_t override_port; /* Override port# */
5081 } __ec_align2;
5082 
5083 /*
5084  * Read (and delete) one entry of PD event log.
5085  * TODO(crbug.com/751742): Make this host command more generic to accommodate
5086  * future non-PD logs that use the same internal EC event_log.
5087  */
5088 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5089 
5090 struct ec_response_pd_log {
5091 	uint32_t timestamp; /* relative timestamp in milliseconds */
5092 	uint8_t type;       /* event type : see PD_EVENT_xx below */
5093 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5094 	uint16_t data;      /* type-defined data payload */
5095 	uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5096 } __ec_align4;
5097 
5098 /* The timestamp is the microsecond counter shifted to get about a ms. */
5099 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5100 
5101 #define PD_LOG_SIZE_MASK  0x1f
5102 #define PD_LOG_PORT_MASK  0xe0
5103 #define PD_LOG_PORT_SHIFT    5
5104 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5105 				      ((size) & PD_LOG_SIZE_MASK))
5106 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5107 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5108 
5109 /* PD event log : entry types */
5110 /* PD MCU events */
5111 #define PD_EVENT_MCU_BASE       0x00
5112 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5113 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5114 /* Reserved for custom board event */
5115 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5116 /* PD generic accessory events */
5117 #define PD_EVENT_ACC_BASE       0x20
5118 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5119 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5120 /* PD power supply events */
5121 #define PD_EVENT_PS_BASE        0x40
5122 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5123 /* PD video dongles events */
5124 #define PD_EVENT_VIDEO_BASE     0x60
5125 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5126 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5127 /* Returned in the "type" field, when there is no entry available */
5128 #define PD_EVENT_NO_ENTRY       0xff
5129 
5130 /*
5131  * PD_EVENT_MCU_CHARGE event definition :
5132  * the payload is "struct usb_chg_measures"
5133  * the data field contains the port state flags as defined below :
5134  */
5135 /* Port partner is a dual role device */
5136 #define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5137 /* Port is the pending override port */
5138 #define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5139 /* Port is the override port */
5140 #define CHARGE_FLAGS_OVERRIDE          BIT(13)
5141 /* Charger type */
5142 #define CHARGE_FLAGS_TYPE_SHIFT               3
5143 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5144 /* Power delivery role */
5145 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5146 
5147 /*
5148  * PD_EVENT_PS_FAULT data field flags definition :
5149  */
5150 #define PS_FAULT_OCP                          1
5151 #define PS_FAULT_FAST_OCP                     2
5152 #define PS_FAULT_OVP                          3
5153 #define PS_FAULT_DISCH                        4
5154 
5155 /*
5156  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5157  */
5158 struct mcdp_version {
5159 	uint8_t major;
5160 	uint8_t minor;
5161 	uint16_t build;
5162 } __ec_align4;
5163 
5164 struct mcdp_info {
5165 	uint8_t family[2];
5166 	uint8_t chipid[2];
5167 	struct mcdp_version irom;
5168 	struct mcdp_version fw;
5169 } __ec_align4;
5170 
5171 /* struct mcdp_info field decoding */
5172 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5173 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5174 
5175 /* Get/Set USB-PD Alternate mode info */
5176 #define EC_CMD_USB_PD_GET_AMODE 0x0116
5177 struct ec_params_usb_pd_get_mode_request {
5178 	uint16_t svid_idx; /* SVID index to get */
5179 	uint8_t port;      /* port */
5180 } __ec_align_size1;
5181 
5182 struct ec_params_usb_pd_get_mode_response {
5183 	uint16_t svid;   /* SVID */
5184 	uint16_t opos;    /* Object Position */
5185 	uint32_t vdo[6]; /* Mode VDOs */
5186 } __ec_align4;
5187 
5188 #define EC_CMD_USB_PD_SET_AMODE 0x0117
5189 
5190 enum pd_mode_cmd {
5191 	PD_EXIT_MODE = 0,
5192 	PD_ENTER_MODE = 1,
5193 	/* Not a command.  Do NOT remove. */
5194 	PD_MODE_CMD_COUNT,
5195 };
5196 
5197 struct ec_params_usb_pd_set_mode_request {
5198 	uint32_t cmd;  /* enum pd_mode_cmd */
5199 	uint16_t svid; /* SVID to set */
5200 	uint8_t opos;  /* Object Position */
5201 	uint8_t port;  /* port */
5202 } __ec_align4;
5203 
5204 /* Ask the PD MCU to record a log of a requested type */
5205 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5206 
5207 struct ec_params_pd_write_log_entry {
5208 	uint8_t type; /* event type : see PD_EVENT_xx above */
5209 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
5210 } __ec_align1;
5211 
5212 
5213 /* Control USB-PD chip */
5214 #define EC_CMD_PD_CONTROL 0x0119
5215 
5216 enum ec_pd_control_cmd {
5217 	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5218 	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5219 	PD_RESET,            /* Force reset the PD chip */
5220 	PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5221 	PD_CHIP_ON,          /* Power on the PD chip */
5222 };
5223 
5224 struct ec_params_pd_control {
5225 	uint8_t chip;         /* chip id */
5226 	uint8_t subcmd;
5227 } __ec_align1;
5228 
5229 /* Get info about USB-C SS muxes */
5230 #define EC_CMD_USB_PD_MUX_INFO 0x011A
5231 
5232 struct ec_params_usb_pd_mux_info {
5233 	uint8_t port; /* USB-C port number */
5234 } __ec_align1;
5235 
5236 /* Flags representing mux state */
5237 #define USB_PD_MUX_NONE               0      /* Open switch */
5238 #define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5239 #define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5240 #define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5241 #define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5242 #define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5243 #define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5244 #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5245 #define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5246 
5247 struct ec_response_usb_pd_mux_info {
5248 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5249 } __ec_align1;
5250 
5251 #define EC_CMD_PD_CHIP_INFO		0x011B
5252 
5253 struct ec_params_pd_chip_info {
5254 	uint8_t port;	/* USB-C port number */
5255 	uint8_t renew;	/* Force renewal */
5256 } __ec_align1;
5257 
5258 struct ec_response_pd_chip_info {
5259 	uint16_t vendor_id;
5260 	uint16_t product_id;
5261 	uint16_t device_id;
5262 	union {
5263 		uint8_t fw_version_string[8];
5264 		uint64_t fw_version_number;
5265 	};
5266 } __ec_align2;
5267 
5268 struct ec_response_pd_chip_info_v1 {
5269 	uint16_t vendor_id;
5270 	uint16_t product_id;
5271 	uint16_t device_id;
5272 	union {
5273 		uint8_t fw_version_string[8];
5274 		uint64_t fw_version_number;
5275 	};
5276 	union {
5277 		uint8_t min_req_fw_version_string[8];
5278 		uint64_t min_req_fw_version_number;
5279 	};
5280 } __ec_align2;
5281 
5282 /* Run RW signature verification and get status */
5283 #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
5284 
5285 struct ec_response_rwsig_check_status {
5286 	uint32_t status;
5287 } __ec_align4;
5288 
5289 /* For controlling RWSIG task */
5290 #define EC_CMD_RWSIG_ACTION	0x011D
5291 
5292 enum rwsig_action {
5293 	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
5294 	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
5295 };
5296 
5297 struct ec_params_rwsig_action {
5298 	uint32_t action;
5299 } __ec_align4;
5300 
5301 /* Run verification on a slot */
5302 #define EC_CMD_EFS_VERIFY	0x011E
5303 
5304 struct ec_params_efs_verify {
5305 	uint8_t region;		/* enum ec_flash_region */
5306 } __ec_align1;
5307 
5308 /*
5309  * Retrieve info from Cros Board Info store. Response is based on the data
5310  * type. Integers return a uint32. Strings return a string, using the response
5311  * size to determine how big it is.
5312  */
5313 #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
5314 /*
5315  * Write info into Cros Board Info on EEPROM. Write fails if the board has
5316  * hardware write-protect enabled.
5317  */
5318 #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
5319 
5320 enum cbi_data_tag {
5321 	CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5322 	CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5323 	CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5324 	CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5325 	CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5326 	CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5327 	CBI_TAG_COUNT,
5328 };
5329 
5330 /*
5331  * Flags to control read operation
5332  *
5333  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5334  *          write was successful without reboot.
5335  */
5336 #define CBI_GET_RELOAD		BIT(0)
5337 
5338 struct ec_params_get_cbi {
5339 	uint32_t tag;		/* enum cbi_data_tag */
5340 	uint32_t flag;		/* CBI_GET_* */
5341 } __ec_align4;
5342 
5343 /*
5344  * Flags to control write behavior.
5345  *
5346  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5347  *          useful when writing multiple fields in a row.
5348  * INIT:    Need to be set when creating a new CBI from scratch. All fields
5349  *          will be initialized to zero first.
5350  */
5351 #define CBI_SET_NO_SYNC		BIT(0)
5352 #define CBI_SET_INIT		BIT(1)
5353 
5354 struct ec_params_set_cbi {
5355 	uint32_t tag;		/* enum cbi_data_tag */
5356 	uint32_t flag;		/* CBI_SET_* */
5357 	uint32_t size;		/* Data size */
5358 	uint8_t data[];		/* For string and raw data */
5359 } __ec_align1;
5360 
5361 /*
5362  * Information about resets of the AP by the EC and the EC's own uptime.
5363  */
5364 #define EC_CMD_GET_UPTIME_INFO 0x0121
5365 
5366 struct ec_response_uptime_info {
5367 	/*
5368 	 * Number of milliseconds since the last EC boot. Sysjump resets
5369 	 * typically do not restart the EC's time_since_boot epoch.
5370 	 *
5371 	 * WARNING: The EC's sense of time is much less accurate than the AP's
5372 	 * sense of time, in both phase and frequency.  This timebase is similar
5373 	 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5374 	 */
5375 	uint32_t time_since_ec_boot_ms;
5376 
5377 	/*
5378 	 * Number of times the AP was reset by the EC since the last EC boot.
5379 	 * Note that the AP may be held in reset by the EC during the initial
5380 	 * boot sequence, such that the very first AP boot may count as more
5381 	 * than one here.
5382 	 */
5383 	uint32_t ap_resets_since_ec_boot;
5384 
5385 	/*
5386 	 * The set of flags which describe the EC's most recent reset.  See
5387 	 * include/system.h RESET_FLAG_* for details.
5388 	 */
5389 	uint32_t ec_reset_flags;
5390 
5391 	/* Empty log entries have both the cause and timestamp set to zero. */
5392 	struct ap_reset_log_entry {
5393 		/*
5394 		 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5395 		 * for details.
5396 		 */
5397 		uint16_t reset_cause;
5398 
5399 		/* Reserved for protocol growth. */
5400 		uint16_t reserved;
5401 
5402 		/*
5403 		 * The time of the reset's assertion, in milliseconds since the
5404 		 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5405 		 * Set to zero if the log entry is empty.
5406 		 */
5407 		uint32_t reset_time_ms;
5408 	} recent_ap_reset[4];
5409 } __ec_align4;
5410 
5411 /*
5412  * Add entropy to the device secret (stored in the rollback region).
5413  *
5414  * Depending on the chip, the operation may take a long time (e.g. to erase
5415  * flash), so the commands are asynchronous.
5416  */
5417 #define EC_CMD_ADD_ENTROPY	0x0122
5418 
5419 enum add_entropy_action {
5420 	/* Add entropy to the current secret. */
5421 	ADD_ENTROPY_ASYNC = 0,
5422 	/*
5423 	 * Add entropy, and also make sure that the previous secret is erased.
5424 	 * (this can be implemented by adding entropy multiple times until
5425 	 * all rolback blocks have been overwritten).
5426 	 */
5427 	ADD_ENTROPY_RESET_ASYNC = 1,
5428 	/* Read back result from the previous operation. */
5429 	ADD_ENTROPY_GET_RESULT = 2,
5430 };
5431 
5432 struct ec_params_rollback_add_entropy {
5433 	uint8_t action;
5434 } __ec_align1;
5435 
5436 /*
5437  * Perform a single read of a given ADC channel.
5438  */
5439 #define EC_CMD_ADC_READ		0x0123
5440 
5441 struct ec_params_adc_read {
5442 	uint8_t adc_channel;
5443 } __ec_align1;
5444 
5445 struct ec_response_adc_read {
5446 	int32_t adc_value;
5447 } __ec_align4;
5448 
5449 /*
5450  * Read back rollback info
5451  */
5452 #define EC_CMD_ROLLBACK_INFO		0x0124
5453 
5454 struct ec_response_rollback_info {
5455 	int32_t id; /* Incrementing number to indicate which region to use. */
5456 	int32_t rollback_min_version;
5457 	int32_t rw_rollback_version;
5458 } __ec_align4;
5459 
5460 
5461 /* Issue AP reset */
5462 #define EC_CMD_AP_RESET 0x0125
5463 
5464 /**
5465  * Get the number of peripheral charge ports
5466  */
5467 #define EC_CMD_PCHG_COUNT 0x0134
5468 
5469 #define EC_PCHG_MAX_PORTS 8
5470 
5471 struct ec_response_pchg_count {
5472 	uint8_t port_count;
5473 } __ec_align1;
5474 
5475 /**
5476  * Get the status of a peripheral charge port
5477  */
5478 #define EC_CMD_PCHG 0x0135
5479 
5480 struct ec_params_pchg {
5481 	uint8_t port;
5482 } __ec_align1;
5483 
5484 struct ec_response_pchg {
5485 	uint32_t error;			/* enum pchg_error */
5486 	uint8_t state;			/* enum pchg_state state */
5487 	uint8_t battery_percentage;
5488 	uint8_t unused0;
5489 	uint8_t unused1;
5490 	/* Fields added in version 1 */
5491 	uint32_t fw_version;
5492 	uint32_t dropped_event_count;
5493 } __ec_align2;
5494 
5495 enum pchg_state {
5496 	/* Charger is reset and not initialized. */
5497 	PCHG_STATE_RESET = 0,
5498 	/* Charger is initialized or disabled. */
5499 	PCHG_STATE_INITIALIZED,
5500 	/* Charger is enabled and ready to detect a device. */
5501 	PCHG_STATE_ENABLED,
5502 	/* Device is in proximity. */
5503 	PCHG_STATE_DETECTED,
5504 	/* Device is being charged. */
5505 	PCHG_STATE_CHARGING,
5506 	/* Device is fully charged. It implies DETECTED (& not charging). */
5507 	PCHG_STATE_FULL,
5508 	/* In download (a.k.a. firmware update) mode */
5509 	PCHG_STATE_DOWNLOAD,
5510 	/* In download mode. Ready for receiving data. */
5511 	PCHG_STATE_DOWNLOADING,
5512 	/* Device is ready for data communication. */
5513 	PCHG_STATE_CONNECTED,
5514 	/* Put no more entry below */
5515 	PCHG_STATE_COUNT,
5516 };
5517 
5518 #define EC_PCHG_STATE_TEXT { \
5519 	[PCHG_STATE_RESET] = "RESET", \
5520 	[PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5521 	[PCHG_STATE_ENABLED] = "ENABLED", \
5522 	[PCHG_STATE_DETECTED] = "DETECTED", \
5523 	[PCHG_STATE_CHARGING] = "CHARGING", \
5524 	[PCHG_STATE_FULL] = "FULL", \
5525 	[PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5526 	[PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5527 	[PCHG_STATE_CONNECTED] = "CONNECTED", \
5528 	}
5529 
5530 /*****************************************************************************/
5531 /* Voltage regulator controls */
5532 
5533 /*
5534  * Get basic info of voltage regulator for given index.
5535  *
5536  * Returns the regulator name and supported voltage list in mV.
5537  */
5538 #define EC_CMD_REGULATOR_GET_INFO 0x012C
5539 
5540 /* Maximum length of regulator name */
5541 #define EC_REGULATOR_NAME_MAX_LEN 16
5542 
5543 /* Maximum length of the supported voltage list. */
5544 #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5545 
5546 struct ec_params_regulator_get_info {
5547 	uint32_t index;
5548 } __ec_align4;
5549 
5550 struct ec_response_regulator_get_info {
5551 	char name[EC_REGULATOR_NAME_MAX_LEN];
5552 	uint16_t num_voltages;
5553 	uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5554 } __ec_align2;
5555 
5556 /*
5557  * Configure the regulator as enabled / disabled.
5558  */
5559 #define EC_CMD_REGULATOR_ENABLE 0x012D
5560 
5561 struct ec_params_regulator_enable {
5562 	uint32_t index;
5563 	uint8_t enable;
5564 } __ec_align4;
5565 
5566 /*
5567  * Query if the regulator is enabled.
5568  *
5569  * Returns 1 if the regulator is enabled, 0 if not.
5570  */
5571 #define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5572 
5573 struct ec_params_regulator_is_enabled {
5574 	uint32_t index;
5575 } __ec_align4;
5576 
5577 struct ec_response_regulator_is_enabled {
5578 	uint8_t enabled;
5579 } __ec_align1;
5580 
5581 /*
5582  * Set voltage for the voltage regulator within the range specified.
5583  *
5584  * The driver should select the voltage in range closest to min_mv.
5585  *
5586  * Also note that this might be called before the regulator is enabled, and the
5587  * setting should be in effect after the regulator is enabled.
5588  */
5589 #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5590 
5591 struct ec_params_regulator_set_voltage {
5592 	uint32_t index;
5593 	uint32_t min_mv;
5594 	uint32_t max_mv;
5595 } __ec_align4;
5596 
5597 /*
5598  * Get the currently configured voltage for the voltage regulator.
5599  *
5600  * Note that this might be called before the regulator is enabled, and this
5601  * should return the configured output voltage if the regulator is enabled.
5602  */
5603 #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5604 
5605 struct ec_params_regulator_get_voltage {
5606 	uint32_t index;
5607 } __ec_align4;
5608 
5609 struct ec_response_regulator_get_voltage {
5610 	uint32_t voltage_mv;
5611 } __ec_align4;
5612 
5613 /*
5614  * Gather all discovery information for the given port and partner type.
5615  *
5616  * Note that if discovery has not yet completed, only the currently completed
5617  * responses will be filled in.   If the discovery data structures are changed
5618  * in the process of the command running, BUSY will be returned.
5619  *
5620  * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5621  * contain, while the number of SVIDs here is selected to fit within the PROTO2
5622  * maximum parameter size.
5623  */
5624 #define EC_CMD_TYPEC_DISCOVERY 0x0131
5625 
5626 enum typec_partner_type {
5627 	TYPEC_PARTNER_SOP = 0,
5628 	TYPEC_PARTNER_SOP_PRIME = 1,
5629 };
5630 
5631 struct ec_params_typec_discovery {
5632 	uint8_t port;
5633 	uint8_t partner_type; /* enum typec_partner_type */
5634 } __ec_align1;
5635 
5636 struct svid_mode_info {
5637 	uint16_t svid;
5638 	uint16_t mode_count;  /* Number of modes partner sent */
5639 	uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5640 };
5641 
5642 struct ec_response_typec_discovery {
5643 	uint8_t identity_count;    /* Number of identity VDOs partner sent */
5644 	uint8_t svid_count;	   /* Number of SVIDs partner sent */
5645 	uint16_t reserved;
5646 	uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5647 	struct svid_mode_info svids[0];
5648 } __ec_align1;
5649 
5650 /* USB Type-C commands for AP-controlled device policy. */
5651 #define EC_CMD_TYPEC_CONTROL 0x0132
5652 
5653 enum typec_control_command {
5654 	TYPEC_CONTROL_COMMAND_EXIT_MODES,
5655 	TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5656 	TYPEC_CONTROL_COMMAND_ENTER_MODE,
5657 };
5658 
5659 struct ec_params_typec_control {
5660 	uint8_t port;
5661 	uint8_t command;	/* enum typec_control_command */
5662 	uint16_t reserved;
5663 
5664 	/*
5665 	 * This section will be interpreted based on |command|. Define a
5666 	 * placeholder structure to avoid having to increase the size and bump
5667 	 * the command version when adding new sub-commands.
5668 	 */
5669 	union {
5670 		uint32_t clear_events_mask;
5671 		uint8_t mode_to_enter;      /* enum typec_mode */
5672 		uint8_t placeholder[128];
5673 	};
5674 } __ec_align1;
5675 
5676 /*
5677  * Gather all status information for a port.
5678  *
5679  * Note: this covers many of the return fields from the deprecated
5680  * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
5681  * discovery data.  The "enum pd_cc_states" is defined with the deprecated
5682  * EC_CMD_USB_PD_CONTROL command.
5683  *
5684  * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
5685  */
5686 #define EC_CMD_TYPEC_STATUS 0x0133
5687 
5688 /*
5689  * Power role.
5690  *
5691  * Note this is also used for PD header creation, and values align to those in
5692  * the Power Delivery Specification Revision 3.0 (See
5693  * 6.2.1.1.4 Port Power Role).
5694  */
5695 enum pd_power_role {
5696 	PD_ROLE_SINK = 0,
5697 	PD_ROLE_SOURCE = 1
5698 };
5699 
5700 /*
5701  * Data role.
5702  *
5703  * Note this is also used for PD header creation, and the first two values
5704  * align to those in the Power Delivery Specification Revision 3.0 (See
5705  * 6.2.1.1.6 Port Data Role).
5706  */
5707 enum pd_data_role {
5708 	PD_ROLE_UFP = 0,
5709 	PD_ROLE_DFP = 1,
5710 	PD_ROLE_DISCONNECTED = 2,
5711 };
5712 
5713 enum pd_vconn_role {
5714 	PD_ROLE_VCONN_OFF = 0,
5715 	PD_ROLE_VCONN_SRC = 1,
5716 };
5717 
5718 /*
5719  * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
5720  * regardless of whether a debug accessory is connected.
5721  */
5722 enum tcpc_cc_polarity {
5723 	/*
5724 	 * _CCx: is used to indicate the polarity while not connected to
5725 	 * a Debug Accessory.  Only one CC line will assert a resistor and
5726 	 * the other will be open.
5727 	 */
5728 	POLARITY_CC1 = 0,
5729 	POLARITY_CC2 = 1,
5730 
5731 	/*
5732 	 * _CCx_DTS is used to indicate the polarity while connected to a
5733 	 * SRC Debug Accessory.  Assert resistors on both lines.
5734 	 */
5735 	POLARITY_CC1_DTS = 2,
5736 	POLARITY_CC2_DTS = 3,
5737 
5738 	/*
5739 	 * The current TCPC code relies on these specific POLARITY values.
5740 	 * Adding in a check to verify if the list grows for any reason
5741 	 * that this will give a hint that other places need to be
5742 	 * adjusted.
5743 	 */
5744 	POLARITY_COUNT
5745 };
5746 
5747 #define PD_STATUS_EVENT_SOP_DISC_DONE		BIT(0)
5748 #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE	BIT(1)
5749 #define PD_STATUS_EVENT_HARD_RESET		BIT(2)
5750 
5751 struct ec_params_typec_status {
5752 	uint8_t port;
5753 } __ec_align1;
5754 
5755 struct ec_response_typec_status {
5756 	uint8_t pd_enabled;		/* PD communication enabled - bool */
5757 	uint8_t dev_connected;		/* Device connected - bool */
5758 	uint8_t sop_connected;		/* Device is SOP PD capable - bool */
5759 	uint8_t source_cap_count;	/* Number of Source Cap PDOs */
5760 
5761 	uint8_t power_role;		/* enum pd_power_role */
5762 	uint8_t data_role;		/* enum pd_data_role */
5763 	uint8_t vconn_role;		/* enum pd_vconn_role */
5764 	uint8_t sink_cap_count;		/* Number of Sink Cap PDOs */
5765 
5766 	uint8_t polarity;		/* enum tcpc_cc_polarity */
5767 	uint8_t cc_state;		/* enum pd_cc_states */
5768 	uint8_t dp_pin;			/* DP pin mode (MODE_DP_IN_[A-E]) */
5769 	uint8_t mux_state;		/* USB_PD_MUX* - encoded mux state */
5770 
5771 	char tc_state[32];		/* TC state name */
5772 
5773 	uint32_t events;		/* PD_STATUS_EVENT bitmask */
5774 
5775 	/*
5776 	 * BCD PD revisions for partners
5777 	 *
5778 	 * The format has the PD major reversion in the upper nibble, and PD
5779 	 * minor version in the next nibble.  Following two nibbles are
5780 	 * currently 0.
5781 	 * ex. PD 3.2 would map to 0x3200
5782 	 *
5783 	 * PD major/minor will be 0 if no PD device is connected.
5784 	 */
5785 	uint16_t sop_revision;
5786 	uint16_t sop_prime_revision;
5787 
5788 	uint32_t source_cap_pdos[7];	/* Max 7 PDOs can be present */
5789 
5790 	uint32_t sink_cap_pdos[7];	/* Max 7 PDOs can be present */
5791 } __ec_align1;
5792 
5793 /*****************************************************************************/
5794 /* The command range 0x200-0x2FF is reserved for Rotor. */
5795 
5796 /*****************************************************************************/
5797 /*
5798  * Reserve a range of host commands for the CR51 firmware.
5799  */
5800 #define EC_CMD_CR51_BASE 0x0300
5801 #define EC_CMD_CR51_LAST 0x03FF
5802 
5803 /*****************************************************************************/
5804 /* Fingerprint MCU commands: range 0x0400-0x040x */
5805 
5806 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
5807 #define EC_CMD_FP_PASSTHRU 0x0400
5808 
5809 #define EC_FP_FLAG_NOT_COMPLETE 0x1
5810 
5811 struct ec_params_fp_passthru {
5812 	uint16_t len;		/* Number of bytes to write then read */
5813 	uint16_t flags;		/* EC_FP_FLAG_xxx */
5814 	uint8_t data[];		/* Data to send */
5815 } __ec_align2;
5816 
5817 /* Configure the Fingerprint MCU behavior */
5818 #define EC_CMD_FP_MODE 0x0402
5819 
5820 /* Put the sensor in its lowest power mode */
5821 #define FP_MODE_DEEPSLEEP      BIT(0)
5822 /* Wait to see a finger on the sensor */
5823 #define FP_MODE_FINGER_DOWN    BIT(1)
5824 /* Poll until the finger has left the sensor */
5825 #define FP_MODE_FINGER_UP      BIT(2)
5826 /* Capture the current finger image */
5827 #define FP_MODE_CAPTURE        BIT(3)
5828 /* Finger enrollment session on-going */
5829 #define FP_MODE_ENROLL_SESSION BIT(4)
5830 /* Enroll the current finger image */
5831 #define FP_MODE_ENROLL_IMAGE   BIT(5)
5832 /* Try to match the current finger image */
5833 #define FP_MODE_MATCH          BIT(6)
5834 /* Reset and re-initialize the sensor. */
5835 #define FP_MODE_RESET_SENSOR   BIT(7)
5836 /* special value: don't change anything just read back current mode */
5837 #define FP_MODE_DONT_CHANGE    BIT(31)
5838 
5839 #define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5840 			FP_MODE_FINGER_DOWN    | \
5841 			FP_MODE_FINGER_UP      | \
5842 			FP_MODE_CAPTURE        | \
5843 			FP_MODE_ENROLL_SESSION | \
5844 			FP_MODE_ENROLL_IMAGE   | \
5845 			FP_MODE_MATCH          | \
5846 			FP_MODE_RESET_SENSOR   | \
5847 			FP_MODE_DONT_CHANGE)
5848 
5849 /* Capture types defined in bits [30..28] */
5850 #define FP_MODE_CAPTURE_TYPE_SHIFT 28
5851 #define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5852 /*
5853  * This enum must remain ordered, if you add new values you must ensure that
5854  * FP_CAPTURE_TYPE_MAX is still the last one.
5855  */
5856 enum fp_capture_type {
5857 	/* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5858 	FP_CAPTURE_VENDOR_FORMAT = 0,
5859 	/* Simple raw image capture (produces width x height x bpp bits) */
5860 	FP_CAPTURE_SIMPLE_IMAGE = 1,
5861 	/* Self test pattern (e.g. checkerboard) */
5862 	FP_CAPTURE_PATTERN0 = 2,
5863 	/* Self test pattern (e.g. inverted checkerboard) */
5864 	FP_CAPTURE_PATTERN1 = 3,
5865 	/* Capture for Quality test with fixed contrast */
5866 	FP_CAPTURE_QUALITY_TEST = 4,
5867 	/* Capture for pixel reset value test */
5868 	FP_CAPTURE_RESET_TEST = 5,
5869 	FP_CAPTURE_TYPE_MAX,
5870 };
5871 /* Extracts the capture type from the sensor 'mode' word */
5872 #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5873 				       >> FP_MODE_CAPTURE_TYPE_SHIFT)
5874 
5875 struct ec_params_fp_mode {
5876 	uint32_t mode; /* as defined by FP_MODE_ constants */
5877 } __ec_align4;
5878 
5879 struct ec_response_fp_mode {
5880 	uint32_t mode; /* as defined by FP_MODE_ constants */
5881 } __ec_align4;
5882 
5883 /* Retrieve Fingerprint sensor information */
5884 #define EC_CMD_FP_INFO 0x0403
5885 
5886 /* Number of dead pixels detected on the last maintenance */
5887 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5888 /* Unknown number of dead pixels detected on the last maintenance */
5889 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5890 /* No interrupt from the sensor */
5891 #define FP_ERROR_NO_IRQ    BIT(12)
5892 /* SPI communication error */
5893 #define FP_ERROR_SPI_COMM  BIT(13)
5894 /* Invalid sensor Hardware ID */
5895 #define FP_ERROR_BAD_HWID  BIT(14)
5896 /* Sensor initialization failed */
5897 #define FP_ERROR_INIT_FAIL BIT(15)
5898 
5899 struct ec_response_fp_info_v0 {
5900 	/* Sensor identification */
5901 	uint32_t vendor_id;
5902 	uint32_t product_id;
5903 	uint32_t model_id;
5904 	uint32_t version;
5905 	/* Image frame characteristics */
5906 	uint32_t frame_size;
5907 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5908 	uint16_t width;
5909 	uint16_t height;
5910 	uint16_t bpp;
5911 	uint16_t errors; /* see FP_ERROR_ flags above */
5912 } __ec_align4;
5913 
5914 struct ec_response_fp_info {
5915 	/* Sensor identification */
5916 	uint32_t vendor_id;
5917 	uint32_t product_id;
5918 	uint32_t model_id;
5919 	uint32_t version;
5920 	/* Image frame characteristics */
5921 	uint32_t frame_size;
5922 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5923 	uint16_t width;
5924 	uint16_t height;
5925 	uint16_t bpp;
5926 	uint16_t errors; /* see FP_ERROR_ flags above */
5927 	/* Template/finger current information */
5928 	uint32_t template_size;  /* max template size in bytes */
5929 	uint16_t template_max;   /* maximum number of fingers/templates */
5930 	uint16_t template_valid; /* number of valid fingers/templates */
5931 	uint32_t template_dirty; /* bitmap of templates with MCU side changes */
5932 	uint32_t template_version; /* version of the template format */
5933 } __ec_align4;
5934 
5935 /* Get the last captured finger frame or a template content */
5936 #define EC_CMD_FP_FRAME 0x0404
5937 
5938 /* constants defining the 'offset' field which also contains the frame index */
5939 #define FP_FRAME_INDEX_SHIFT       28
5940 /* Frame buffer where the captured image is stored */
5941 #define FP_FRAME_INDEX_RAW_IMAGE    0
5942 /* First frame buffer holding a template */
5943 #define FP_FRAME_INDEX_TEMPLATE     1
5944 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
5945 #define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
5946 
5947 /* Version of the format of the encrypted templates. */
5948 #define FP_TEMPLATE_FORMAT_VERSION 3
5949 
5950 /* Constants for encryption parameters */
5951 #define FP_CONTEXT_NONCE_BYTES 12
5952 #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
5953 #define FP_CONTEXT_TAG_BYTES 16
5954 #define FP_CONTEXT_SALT_BYTES 16
5955 #define FP_CONTEXT_TPM_BYTES 32
5956 
5957 struct ec_fp_template_encryption_metadata {
5958 	/*
5959 	 * Version of the structure format (N=3).
5960 	 */
5961 	uint16_t struct_version;
5962 	/* Reserved bytes, set to 0. */
5963 	uint16_t reserved;
5964 	/*
5965 	 * The salt is *only* ever used for key derivation. The nonce is unique,
5966 	 * a different one is used for every message.
5967 	 */
5968 	uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
5969 	uint8_t salt[FP_CONTEXT_SALT_BYTES];
5970 	uint8_t tag[FP_CONTEXT_TAG_BYTES];
5971 };
5972 
5973 struct ec_params_fp_frame {
5974 	/*
5975 	 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
5976 	 * in the high nibble, and the real offset within the frame in
5977 	 * FP_FRAME_OFFSET_MASK.
5978 	 */
5979 	uint32_t offset;
5980 	uint32_t size;
5981 } __ec_align4;
5982 
5983 /* Load a template into the MCU */
5984 #define EC_CMD_FP_TEMPLATE 0x0405
5985 
5986 /* Flag in the 'size' field indicating that the full template has been sent */
5987 #define FP_TEMPLATE_COMMIT 0x80000000
5988 
5989 struct ec_params_fp_template {
5990 	uint32_t offset;
5991 	uint32_t size;
5992 	uint8_t data[];
5993 } __ec_align4;
5994 
5995 /* Clear the current fingerprint user context and set a new one */
5996 #define EC_CMD_FP_CONTEXT 0x0406
5997 
5998 struct ec_params_fp_context {
5999 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
6000 } __ec_align4;
6001 
6002 #define EC_CMD_FP_STATS 0x0407
6003 
6004 #define FPSTATS_CAPTURE_INV  BIT(0)
6005 #define FPSTATS_MATCHING_INV BIT(1)
6006 
6007 struct ec_response_fp_stats {
6008 	uint32_t capture_time_us;
6009 	uint32_t matching_time_us;
6010 	uint32_t overall_time_us;
6011 	struct {
6012 		uint32_t lo;
6013 		uint32_t hi;
6014 	} overall_t0;
6015 	uint8_t timestamps_invalid;
6016 	int8_t template_matched;
6017 } __ec_align2;
6018 
6019 #define EC_CMD_FP_SEED 0x0408
6020 struct ec_params_fp_seed {
6021 	/*
6022 	 * Version of the structure format (N=3).
6023 	 */
6024 	uint16_t struct_version;
6025 	/* Reserved bytes, set to 0. */
6026 	uint16_t reserved;
6027 	/* Seed from the TPM. */
6028 	uint8_t seed[FP_CONTEXT_TPM_BYTES];
6029 } __ec_align4;
6030 
6031 #define EC_CMD_FP_ENC_STATUS 0x0409
6032 
6033 /* FP TPM seed has been set or not */
6034 #define FP_ENC_STATUS_SEED_SET BIT(0)
6035 
6036 struct ec_response_fp_encryption_status {
6037 	/* Used bits in encryption engine status */
6038 	uint32_t valid_flags;
6039 	/* Encryption engine status */
6040 	uint32_t status;
6041 } __ec_align4;
6042 
6043 /*****************************************************************************/
6044 /* Touchpad MCU commands: range 0x0500-0x05FF */
6045 
6046 /* Perform touchpad self test */
6047 #define EC_CMD_TP_SELF_TEST 0x0500
6048 
6049 /* Get number of frame types, and the size of each type */
6050 #define EC_CMD_TP_FRAME_INFO 0x0501
6051 
6052 struct ec_response_tp_frame_info {
6053 	uint32_t n_frames;
6054 	uint32_t frame_sizes[];
6055 } __ec_align4;
6056 
6057 /* Create a snapshot of current frame readings */
6058 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6059 
6060 /* Read the frame */
6061 #define EC_CMD_TP_FRAME_GET 0x0503
6062 
6063 struct ec_params_tp_frame_get {
6064 	uint32_t frame_index;
6065 	uint32_t offset;
6066 	uint32_t size;
6067 } __ec_align4;
6068 
6069 /*****************************************************************************/
6070 /* EC-EC communication commands: range 0x0600-0x06FF */
6071 
6072 #define EC_COMM_TEXT_MAX 8
6073 
6074 /*
6075  * Get battery static information, i.e. information that never changes, or
6076  * very infrequently.
6077  */
6078 #define EC_CMD_BATTERY_GET_STATIC 0x0600
6079 
6080 /**
6081  * struct ec_params_battery_static_info - Battery static info parameters
6082  * @index: Battery index.
6083  */
6084 struct ec_params_battery_static_info {
6085 	uint8_t index;
6086 } __ec_align_size1;
6087 
6088 /**
6089  * struct ec_response_battery_static_info - Battery static info response
6090  * @design_capacity: Battery Design Capacity (mAh)
6091  * @design_voltage: Battery Design Voltage (mV)
6092  * @manufacturer: Battery Manufacturer String
6093  * @model: Battery Model Number String
6094  * @serial: Battery Serial Number String
6095  * @type: Battery Type String
6096  * @cycle_count: Battery Cycle Count
6097  */
6098 struct ec_response_battery_static_info {
6099 	uint16_t design_capacity;
6100 	uint16_t design_voltage;
6101 	char manufacturer[EC_COMM_TEXT_MAX];
6102 	char model[EC_COMM_TEXT_MAX];
6103 	char serial[EC_COMM_TEXT_MAX];
6104 	char type[EC_COMM_TEXT_MAX];
6105 	/* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6106 	uint32_t cycle_count;
6107 } __ec_align4;
6108 
6109 /*
6110  * Get battery dynamic information, i.e. information that is likely to change
6111  * every time it is read.
6112  */
6113 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6114 
6115 /**
6116  * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6117  * @index: Battery index.
6118  */
6119 struct ec_params_battery_dynamic_info {
6120 	uint8_t index;
6121 } __ec_align_size1;
6122 
6123 /**
6124  * struct ec_response_battery_dynamic_info - Battery dynamic info response
6125  * @actual_voltage: Battery voltage (mV)
6126  * @actual_current: Battery current (mA); negative=discharging
6127  * @remaining_capacity: Remaining capacity (mAh)
6128  * @full_capacity: Capacity (mAh, might change occasionally)
6129  * @flags: Flags, see EC_BATT_FLAG_*
6130  * @desired_voltage: Charging voltage desired by battery (mV)
6131  * @desired_current: Charging current desired by battery (mA)
6132  */
6133 struct ec_response_battery_dynamic_info {
6134 	int16_t actual_voltage;
6135 	int16_t actual_current;
6136 	int16_t remaining_capacity;
6137 	int16_t full_capacity;
6138 	int16_t flags;
6139 	int16_t desired_voltage;
6140 	int16_t desired_current;
6141 } __ec_align2;
6142 
6143 /*
6144  * Control charger chip. Used to control charger chip on the slave.
6145  */
6146 #define EC_CMD_CHARGER_CONTROL 0x0602
6147 
6148 /**
6149  * struct ec_params_charger_control - Charger control parameters
6150  * @max_current: Charger current (mA). Positive to allow base to draw up to
6151  *     max_current and (possibly) charge battery, negative to request current
6152  *     from base (OTG).
6153  * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6154  *     >= 0.
6155  * @allow_charging: Allow base battery charging (only makes sense if
6156  *     max_current > 0).
6157  */
6158 struct ec_params_charger_control {
6159 	int16_t max_current;
6160 	uint16_t otg_voltage;
6161 	uint8_t allow_charging;
6162 } __ec_align_size1;
6163 
6164 /* Get ACK from the USB-C SS muxes */
6165 #define EC_CMD_USB_PD_MUX_ACK 0x0603
6166 
6167 struct ec_params_usb_pd_mux_ack {
6168 	uint8_t port; /* USB-C port number */
6169 } __ec_align1;
6170 
6171 /*****************************************************************************/
6172 /*
6173  * Reserve a range of host commands for board-specific, experimental, or
6174  * special purpose features. These can be (re)used without updating this file.
6175  *
6176  * CAUTION: Don't go nuts with this. Shipping products should document ALL
6177  * their EC commands for easier development, testing, debugging, and support.
6178  *
6179  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6180  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6181  *
6182  * In your experimental code, you may want to do something like this:
6183  *
6184  *   #define EC_CMD_MAGIC_FOO 0x0000
6185  *   #define EC_CMD_MAGIC_BAR 0x0001
6186  *   #define EC_CMD_MAGIC_HEY 0x0002
6187  *
6188  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6189  *      EC_VER_MASK(0);
6190  *
6191  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6192  *      EC_VER_MASK(0);
6193  *
6194  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6195  *      EC_VER_MASK(0);
6196  */
6197 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6198 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6199 
6200 /*
6201  * Given the private host command offset, calculate the true private host
6202  * command value.
6203  */
6204 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6205 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
6206 
6207 /*****************************************************************************/
6208 /*
6209  * Passthru commands
6210  *
6211  * Some platforms have sub-processors chained to each other.  For example.
6212  *
6213  *     AP <--> EC <--> PD MCU
6214  *
6215  * The top 2 bits of the command number are used to indicate which device the
6216  * command is intended for.  Device 0 is always the device receiving the
6217  * command; other device mapping is board-specific.
6218  *
6219  * When a device receives a command to be passed to a sub-processor, it passes
6220  * it on with the device number set back to 0.  This allows the sub-processor
6221  * to remain blissfully unaware of whether the command originated on the next
6222  * device up the chain, or was passed through from the AP.
6223  *
6224  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6225  *     AP sends command 0x4002 to the EC
6226  *     EC sends command 0x0002 to the PD MCU
6227  *     EC forwards PD MCU response back to the AP
6228  */
6229 
6230 /* Offset and max command number for sub-device n */
6231 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6232 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6233 
6234 /*****************************************************************************/
6235 /*
6236  * Deprecated constants. These constants have been renamed for clarity. The
6237  * meaning and size has not changed. Programs that use the old names should
6238  * switch to the new names soon, as the old names may not be carried forward
6239  * forever.
6240  */
6241 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
6242 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
6243 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
6244 
6245 
6246 
6247 #endif  /* __CROS_EC_COMMANDS_H */
6248