1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 #undef CREATE_TRACE_POINTS
58 #include <trace/hooks/printk.h>
59 #include <trace/hooks/logbuf.h>
60
61 #include "printk_ringbuffer.h"
62 #include "console_cmdline.h"
63 #include "braille.h"
64 #include "internal.h"
65
66 int console_printk[4] = {
67 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
68 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
69 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
70 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
71 };
72 EXPORT_SYMBOL_GPL(console_printk);
73
74 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
75 EXPORT_SYMBOL(ignore_console_lock_warning);
76
77 /*
78 * Low level drivers may need that to know if they can schedule in
79 * their unblank() callback or not. So let's export it.
80 */
81 int oops_in_progress;
82 EXPORT_SYMBOL(oops_in_progress);
83
84 /*
85 * console_sem protects the console_drivers list, and also
86 * provides serialisation for access to the entire console
87 * driver system.
88 */
89 static DEFINE_SEMAPHORE(console_sem);
90 struct console *console_drivers;
91 EXPORT_SYMBOL_GPL(console_drivers);
92
93 /*
94 * System may need to suppress printk message under certain
95 * circumstances, like after kernel panic happens.
96 */
97 int __read_mostly suppress_printk;
98
99 #ifdef CONFIG_LOCKDEP
100 static struct lockdep_map console_lock_dep_map = {
101 .name = "console_lock"
102 };
103 #endif
104
105 enum devkmsg_log_bits {
106 __DEVKMSG_LOG_BIT_ON = 0,
107 __DEVKMSG_LOG_BIT_OFF,
108 __DEVKMSG_LOG_BIT_LOCK,
109 };
110
111 enum devkmsg_log_masks {
112 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
113 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
114 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
115 };
116
117 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
118 #define DEVKMSG_LOG_MASK_DEFAULT 0
119
120 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121
__control_devkmsg(char * str)122 static int __control_devkmsg(char *str)
123 {
124 size_t len;
125
126 if (!str)
127 return -EINVAL;
128
129 len = str_has_prefix(str, "on");
130 if (len) {
131 devkmsg_log = DEVKMSG_LOG_MASK_ON;
132 return len;
133 }
134
135 len = str_has_prefix(str, "off");
136 if (len) {
137 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
138 return len;
139 }
140
141 len = str_has_prefix(str, "ratelimit");
142 if (len) {
143 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
144 return len;
145 }
146
147 return -EINVAL;
148 }
149
control_devkmsg(char * str)150 static int __init control_devkmsg(char *str)
151 {
152 if (__control_devkmsg(str) < 0) {
153 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
154 return 1;
155 }
156
157 /*
158 * Set sysctl string accordingly:
159 */
160 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
161 strcpy(devkmsg_log_str, "on");
162 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
163 strcpy(devkmsg_log_str, "off");
164 /* else "ratelimit" which is set by default. */
165
166 /*
167 * Sysctl cannot change it anymore. The kernel command line setting of
168 * this parameter is to force the setting to be permanent throughout the
169 * runtime of the system. This is a precation measure against userspace
170 * trying to be a smarta** and attempting to change it up on us.
171 */
172 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
173
174 return 1;
175 }
176 __setup("printk.devkmsg=", control_devkmsg);
177
178 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
179
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)180 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
181 void *buffer, size_t *lenp, loff_t *ppos)
182 {
183 char old_str[DEVKMSG_STR_MAX_SIZE];
184 unsigned int old;
185 int err;
186
187 if (write) {
188 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
189 return -EINVAL;
190
191 old = devkmsg_log;
192 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
193 }
194
195 err = proc_dostring(table, write, buffer, lenp, ppos);
196 if (err)
197 return err;
198
199 if (write) {
200 err = __control_devkmsg(devkmsg_log_str);
201
202 /*
203 * Do not accept an unknown string OR a known string with
204 * trailing crap...
205 */
206 if (err < 0 || (err + 1 != *lenp)) {
207
208 /* ... and restore old setting. */
209 devkmsg_log = old;
210 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
211
212 return -EINVAL;
213 }
214 }
215
216 return 0;
217 }
218
219 /* Number of registered extended console drivers. */
220 static int nr_ext_console_drivers;
221
222 /*
223 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
224 * macros instead of functions so that _RET_IP_ contains useful information.
225 */
226 #define down_console_sem() do { \
227 down(&console_sem);\
228 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
229 } while (0)
230
__down_trylock_console_sem(unsigned long ip)231 static int __down_trylock_console_sem(unsigned long ip)
232 {
233 int lock_failed;
234 unsigned long flags;
235
236 /*
237 * Here and in __up_console_sem() we need to be in safe mode,
238 * because spindump/WARN/etc from under console ->lock will
239 * deadlock in printk()->down_trylock_console_sem() otherwise.
240 */
241 printk_safe_enter_irqsave(flags);
242 lock_failed = down_trylock(&console_sem);
243 printk_safe_exit_irqrestore(flags);
244
245 if (lock_failed)
246 return 1;
247 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
248 return 0;
249 }
250 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
251
__up_console_sem(unsigned long ip)252 static void __up_console_sem(unsigned long ip)
253 {
254 unsigned long flags;
255
256 mutex_release(&console_lock_dep_map, ip);
257
258 printk_safe_enter_irqsave(flags);
259 up(&console_sem);
260 printk_safe_exit_irqrestore(flags);
261 }
262 #define up_console_sem() __up_console_sem(_RET_IP_)
263
264 /*
265 * This is used for debugging the mess that is the VT code by
266 * keeping track if we have the console semaphore held. It's
267 * definitely not the perfect debug tool (we don't know if _WE_
268 * hold it and are racing, but it helps tracking those weird code
269 * paths in the console code where we end up in places I want
270 * locked without the console semaphore held).
271 */
272 static int console_locked, console_suspended;
273
274 /*
275 * If exclusive_console is non-NULL then only this console is to be printed to.
276 */
277 static struct console *exclusive_console;
278
279 /*
280 * Array of consoles built from command line options (console=)
281 */
282
283 #define MAX_CMDLINECONSOLES 8
284
285 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
286
287 static int preferred_console = -1;
288 static bool has_preferred_console;
289 int console_set_on_cmdline;
290 EXPORT_SYMBOL(console_set_on_cmdline);
291
292 /* Flag: console code may call schedule() */
293 static int console_may_schedule;
294
295 enum con_msg_format_flags {
296 MSG_FORMAT_DEFAULT = 0,
297 MSG_FORMAT_SYSLOG = (1 << 0),
298 };
299
300 static int console_msg_format = MSG_FORMAT_DEFAULT;
301
302 /*
303 * The printk log buffer consists of a sequenced collection of records, each
304 * containing variable length message text. Every record also contains its
305 * own meta-data (@info).
306 *
307 * Every record meta-data carries the timestamp in microseconds, as well as
308 * the standard userspace syslog level and syslog facility. The usual kernel
309 * messages use LOG_KERN; userspace-injected messages always carry a matching
310 * syslog facility, by default LOG_USER. The origin of every message can be
311 * reliably determined that way.
312 *
313 * The human readable log message of a record is available in @text, the
314 * length of the message text in @text_len. The stored message is not
315 * terminated.
316 *
317 * Optionally, a record can carry a dictionary of properties (key/value
318 * pairs), to provide userspace with a machine-readable message context.
319 *
320 * Examples for well-defined, commonly used property names are:
321 * DEVICE=b12:8 device identifier
322 * b12:8 block dev_t
323 * c127:3 char dev_t
324 * n8 netdev ifindex
325 * +sound:card0 subsystem:devname
326 * SUBSYSTEM=pci driver-core subsystem name
327 *
328 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
329 * and values are terminated by a '\0' character.
330 *
331 * Example of record values:
332 * record.text_buf = "it's a line" (unterminated)
333 * record.info.seq = 56
334 * record.info.ts_nsec = 36863
335 * record.info.text_len = 11
336 * record.info.facility = 0 (LOG_KERN)
337 * record.info.flags = 0
338 * record.info.level = 3 (LOG_ERR)
339 * record.info.caller_id = 299 (task 299)
340 * record.info.dev_info.subsystem = "pci" (terminated)
341 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
342 *
343 * The 'struct printk_info' buffer must never be directly exported to
344 * userspace, it is a kernel-private implementation detail that might
345 * need to be changed in the future, when the requirements change.
346 *
347 * /dev/kmsg exports the structured data in the following line format:
348 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
349 *
350 * Users of the export format should ignore possible additional values
351 * separated by ',', and find the message after the ';' character.
352 *
353 * The optional key/value pairs are attached as continuation lines starting
354 * with a space character and terminated by a newline. All possible
355 * non-prinatable characters are escaped in the "\xff" notation.
356 */
357
358 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
359 static DEFINE_MUTEX(syslog_lock);
360
361 #ifdef CONFIG_PRINTK
362 DECLARE_WAIT_QUEUE_HEAD(log_wait);
363 /* All 3 protected by @syslog_lock. */
364 /* the next printk record to read by syslog(READ) or /proc/kmsg */
365 static u64 syslog_seq;
366 static size_t syslog_partial;
367 static bool syslog_time;
368
369 /* All 3 protected by @console_sem. */
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u64 exclusive_console_stop_seq;
373 static unsigned long console_dropped;
374
375 struct latched_seq {
376 seqcount_latch_t latch;
377 u64 val[2];
378 };
379
380 /*
381 * The next printk record to read after the last 'clear' command. There are
382 * two copies (updated with seqcount_latch) so that reads can locklessly
383 * access a valid value. Writers are synchronized by @syslog_lock.
384 */
385 static struct latched_seq clear_seq = {
386 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
387 .val[0] = 0,
388 .val[1] = 0,
389 };
390
391 #ifdef CONFIG_PRINTK_CALLER
392 #define PREFIX_MAX 48
393 #else
394 #define PREFIX_MAX 32
395 #endif
396
397 /* the maximum size of a formatted record (i.e. with prefix added per line) */
398 #define CONSOLE_LOG_MAX 1024
399
400 /* the maximum size allowed to be reserved for a record */
401 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX)
402
403 #define LOG_LEVEL(v) ((v) & 0x07)
404 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
405
406 /* record buffer */
407 #define LOG_ALIGN __alignof__(unsigned long)
408 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
409 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
410 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
411 static char *log_buf = __log_buf;
412 static u32 log_buf_len = __LOG_BUF_LEN;
413
414 /*
415 * Define the average message size. This only affects the number of
416 * descriptors that will be available. Underestimating is better than
417 * overestimating (too many available descriptors is better than not enough).
418 */
419 #define PRB_AVGBITS 5 /* 32 character average length */
420
421 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
422 #error CONFIG_LOG_BUF_SHIFT value too small.
423 #endif
424 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
425 PRB_AVGBITS, &__log_buf[0]);
426
427 static struct printk_ringbuffer printk_rb_dynamic;
428
429 static struct printk_ringbuffer *prb = &printk_rb_static;
430
431 /*
432 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
433 * per_cpu_areas are initialised. This variable is set to true when
434 * it's safe to access per-CPU data.
435 */
436 static bool __printk_percpu_data_ready __read_mostly;
437
printk_percpu_data_ready(void)438 bool printk_percpu_data_ready(void)
439 {
440 return __printk_percpu_data_ready;
441 }
442
443 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)444 static void latched_seq_write(struct latched_seq *ls, u64 val)
445 {
446 raw_write_seqcount_latch(&ls->latch);
447 ls->val[0] = val;
448 raw_write_seqcount_latch(&ls->latch);
449 ls->val[1] = val;
450 }
451
452 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)453 static u64 latched_seq_read_nolock(struct latched_seq *ls)
454 {
455 unsigned int seq;
456 unsigned int idx;
457 u64 val;
458
459 do {
460 seq = raw_read_seqcount_latch(&ls->latch);
461 idx = seq & 0x1;
462 val = ls->val[idx];
463 } while (read_seqcount_latch_retry(&ls->latch, seq));
464
465 return val;
466 }
467
468 /* Return log buffer address */
log_buf_addr_get(void)469 char *log_buf_addr_get(void)
470 {
471 return log_buf;
472 }
473 EXPORT_SYMBOL_GPL(log_buf_addr_get);
474
475 /* Return log buffer size */
log_buf_len_get(void)476 u32 log_buf_len_get(void)
477 {
478 return log_buf_len;
479 }
480 EXPORT_SYMBOL_GPL(log_buf_len_get);
481
482 /*
483 * Define how much of the log buffer we could take at maximum. The value
484 * must be greater than two. Note that only half of the buffer is available
485 * when the index points to the middle.
486 */
487 #define MAX_LOG_TAKE_PART 4
488 static const char trunc_msg[] = "<truncated>";
489
truncate_msg(u16 * text_len,u16 * trunc_msg_len)490 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
491 {
492 /*
493 * The message should not take the whole buffer. Otherwise, it might
494 * get removed too soon.
495 */
496 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
497
498 if (*text_len > max_text_len)
499 *text_len = max_text_len;
500
501 /* enable the warning message (if there is room) */
502 *trunc_msg_len = strlen(trunc_msg);
503 if (*text_len >= *trunc_msg_len)
504 *text_len -= *trunc_msg_len;
505 else
506 *trunc_msg_len = 0;
507 }
508
509 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
510
syslog_action_restricted(int type)511 static int syslog_action_restricted(int type)
512 {
513 if (dmesg_restrict)
514 return 1;
515 /*
516 * Unless restricted, we allow "read all" and "get buffer size"
517 * for everybody.
518 */
519 return type != SYSLOG_ACTION_READ_ALL &&
520 type != SYSLOG_ACTION_SIZE_BUFFER;
521 }
522
check_syslog_permissions(int type,int source)523 static int check_syslog_permissions(int type, int source)
524 {
525 /*
526 * If this is from /proc/kmsg and we've already opened it, then we've
527 * already done the capabilities checks at open time.
528 */
529 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
530 goto ok;
531
532 if (syslog_action_restricted(type)) {
533 if (capable(CAP_SYSLOG))
534 goto ok;
535 /*
536 * For historical reasons, accept CAP_SYS_ADMIN too, with
537 * a warning.
538 */
539 if (capable(CAP_SYS_ADMIN)) {
540 pr_warn_once("%s (%d): Attempt to access syslog with "
541 "CAP_SYS_ADMIN but no CAP_SYSLOG "
542 "(deprecated).\n",
543 current->comm, task_pid_nr(current));
544 goto ok;
545 }
546 return -EPERM;
547 }
548 ok:
549 return security_syslog(type);
550 }
551
append_char(char ** pp,char * e,char c)552 static void append_char(char **pp, char *e, char c)
553 {
554 if (*pp < e)
555 *(*pp)++ = c;
556 }
557
info_print_ext_header(char * buf,size_t size,struct printk_info * info)558 static ssize_t info_print_ext_header(char *buf, size_t size,
559 struct printk_info *info)
560 {
561 u64 ts_usec = info->ts_nsec;
562 char caller[20];
563 #ifdef CONFIG_PRINTK_CALLER
564 int vh_ret = 0;
565 u32 id = info->caller_id;
566
567 trace_android_vh_printk_ext_header(caller, sizeof(caller), id, &vh_ret);
568
569 if (!vh_ret)
570 snprintf(caller, sizeof(caller), ",caller=%c%u",
571 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
572 #else
573 caller[0] = '\0';
574 #endif
575
576 do_div(ts_usec, 1000);
577
578 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
579 (info->facility << 3) | info->level, info->seq,
580 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
581 }
582
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)583 static ssize_t msg_add_ext_text(char *buf, size_t size,
584 const char *text, size_t text_len,
585 unsigned char endc)
586 {
587 char *p = buf, *e = buf + size;
588 size_t i;
589
590 /* escape non-printable characters */
591 for (i = 0; i < text_len; i++) {
592 unsigned char c = text[i];
593
594 if (c < ' ' || c >= 127 || c == '\\')
595 p += scnprintf(p, e - p, "\\x%02x", c);
596 else
597 append_char(&p, e, c);
598 }
599 append_char(&p, e, endc);
600
601 return p - buf;
602 }
603
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)604 static ssize_t msg_add_dict_text(char *buf, size_t size,
605 const char *key, const char *val)
606 {
607 size_t val_len = strlen(val);
608 ssize_t len;
609
610 if (!val_len)
611 return 0;
612
613 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
614 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
615 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
616
617 return len;
618 }
619
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)620 static ssize_t msg_print_ext_body(char *buf, size_t size,
621 char *text, size_t text_len,
622 struct dev_printk_info *dev_info)
623 {
624 ssize_t len;
625
626 len = msg_add_ext_text(buf, size, text, text_len, '\n');
627
628 if (!dev_info)
629 goto out;
630
631 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
632 dev_info->subsystem);
633 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
634 dev_info->device);
635 out:
636 return len;
637 }
638
639 /* /dev/kmsg - userspace message inject/listen interface */
640 struct devkmsg_user {
641 atomic64_t seq;
642 struct ratelimit_state rs;
643 struct mutex lock;
644 char buf[CONSOLE_EXT_LOG_MAX];
645
646 struct printk_info info;
647 char text_buf[CONSOLE_EXT_LOG_MAX];
648 struct printk_record record;
649 };
650
651 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)652 int devkmsg_emit(int facility, int level, const char *fmt, ...)
653 {
654 va_list args;
655 int r;
656
657 va_start(args, fmt);
658 r = vprintk_emit(facility, level, NULL, fmt, args);
659 va_end(args);
660
661 return r;
662 }
663
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)664 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
665 {
666 char *buf, *line;
667 int level = default_message_loglevel;
668 int facility = 1; /* LOG_USER */
669 struct file *file = iocb->ki_filp;
670 struct devkmsg_user *user = file->private_data;
671 size_t len = iov_iter_count(from);
672 ssize_t ret = len;
673
674 if (!user || len > LOG_LINE_MAX)
675 return -EINVAL;
676
677 /* Ignore when user logging is disabled. */
678 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
679 return len;
680
681 /* Ratelimit when not explicitly enabled. */
682 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
683 if (!___ratelimit(&user->rs, current->comm))
684 return ret;
685 }
686
687 buf = kmalloc(len+1, GFP_KERNEL);
688 if (buf == NULL)
689 return -ENOMEM;
690
691 buf[len] = '\0';
692 if (!copy_from_iter_full(buf, len, from)) {
693 kfree(buf);
694 return -EFAULT;
695 }
696
697 /*
698 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
699 * the decimal value represents 32bit, the lower 3 bit are the log
700 * level, the rest are the log facility.
701 *
702 * If no prefix or no userspace facility is specified, we
703 * enforce LOG_USER, to be able to reliably distinguish
704 * kernel-generated messages from userspace-injected ones.
705 */
706 line = buf;
707 if (line[0] == '<') {
708 char *endp = NULL;
709 unsigned int u;
710
711 u = simple_strtoul(line + 1, &endp, 10);
712 if (endp && endp[0] == '>') {
713 level = LOG_LEVEL(u);
714 if (LOG_FACILITY(u) != 0)
715 facility = LOG_FACILITY(u);
716 endp++;
717 line = endp;
718 }
719 }
720
721 devkmsg_emit(facility, level, "%s", line);
722 kfree(buf);
723 return ret;
724 }
725
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)726 static ssize_t devkmsg_read(struct file *file, char __user *buf,
727 size_t count, loff_t *ppos)
728 {
729 struct devkmsg_user *user = file->private_data;
730 struct printk_record *r = &user->record;
731 size_t len;
732 ssize_t ret;
733
734 if (!user)
735 return -EBADF;
736
737 ret = mutex_lock_interruptible(&user->lock);
738 if (ret)
739 return ret;
740
741 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
742 if (file->f_flags & O_NONBLOCK) {
743 ret = -EAGAIN;
744 goto out;
745 }
746
747 /*
748 * Guarantee this task is visible on the waitqueue before
749 * checking the wake condition.
750 *
751 * The full memory barrier within set_current_state() of
752 * prepare_to_wait_event() pairs with the full memory barrier
753 * within wq_has_sleeper().
754 *
755 * This pairs with __wake_up_klogd:A.
756 */
757 ret = wait_event_interruptible(log_wait,
758 prb_read_valid(prb,
759 atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */
760 if (ret)
761 goto out;
762 }
763
764 if (r->info->seq != atomic64_read(&user->seq)) {
765 /* our last seen message is gone, return error and reset */
766 atomic64_set(&user->seq, r->info->seq);
767 ret = -EPIPE;
768 goto out;
769 }
770
771 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
772 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
773 &r->text_buf[0], r->info->text_len,
774 &r->info->dev_info);
775
776 atomic64_set(&user->seq, r->info->seq + 1);
777
778 if (len > count) {
779 ret = -EINVAL;
780 goto out;
781 }
782
783 if (copy_to_user(buf, user->buf, len)) {
784 ret = -EFAULT;
785 goto out;
786 }
787 ret = len;
788 out:
789 mutex_unlock(&user->lock);
790 return ret;
791 }
792
793 /*
794 * Be careful when modifying this function!!!
795 *
796 * Only few operations are supported because the device works only with the
797 * entire variable length messages (records). Non-standard values are
798 * returned in the other cases and has been this way for quite some time.
799 * User space applications might depend on this behavior.
800 */
devkmsg_llseek(struct file * file,loff_t offset,int whence)801 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
802 {
803 struct devkmsg_user *user = file->private_data;
804 loff_t ret = 0;
805
806 if (!user)
807 return -EBADF;
808 if (offset)
809 return -ESPIPE;
810
811 switch (whence) {
812 case SEEK_SET:
813 /* the first record */
814 atomic64_set(&user->seq, prb_first_valid_seq(prb));
815 break;
816 case SEEK_DATA:
817 /*
818 * The first record after the last SYSLOG_ACTION_CLEAR,
819 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
820 * changes no global state, and does not clear anything.
821 */
822 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
823 break;
824 case SEEK_END:
825 /* after the last record */
826 atomic64_set(&user->seq, prb_next_seq(prb));
827 break;
828 default:
829 ret = -EINVAL;
830 }
831 return ret;
832 }
833
devkmsg_poll(struct file * file,poll_table * wait)834 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
835 {
836 struct devkmsg_user *user = file->private_data;
837 struct printk_info info;
838 __poll_t ret = 0;
839
840 if (!user)
841 return EPOLLERR|EPOLLNVAL;
842
843 poll_wait(file, &log_wait, wait);
844
845 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
846 /* return error when data has vanished underneath us */
847 if (info.seq != atomic64_read(&user->seq))
848 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
849 else
850 ret = EPOLLIN|EPOLLRDNORM;
851 }
852
853 return ret;
854 }
855
devkmsg_open(struct inode * inode,struct file * file)856 static int devkmsg_open(struct inode *inode, struct file *file)
857 {
858 struct devkmsg_user *user;
859 int err;
860
861 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
862 return -EPERM;
863
864 /* write-only does not need any file context */
865 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
866 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
867 SYSLOG_FROM_READER);
868 if (err)
869 return err;
870 }
871
872 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
873 if (!user)
874 return -ENOMEM;
875
876 ratelimit_default_init(&user->rs);
877 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
878
879 mutex_init(&user->lock);
880
881 prb_rec_init_rd(&user->record, &user->info,
882 &user->text_buf[0], sizeof(user->text_buf));
883
884 atomic64_set(&user->seq, prb_first_valid_seq(prb));
885
886 file->private_data = user;
887 return 0;
888 }
889
devkmsg_release(struct inode * inode,struct file * file)890 static int devkmsg_release(struct inode *inode, struct file *file)
891 {
892 struct devkmsg_user *user = file->private_data;
893
894 if (!user)
895 return 0;
896
897 ratelimit_state_exit(&user->rs);
898
899 mutex_destroy(&user->lock);
900 kfree(user);
901 return 0;
902 }
903
904 const struct file_operations kmsg_fops = {
905 .open = devkmsg_open,
906 .read = devkmsg_read,
907 .write_iter = devkmsg_write,
908 .llseek = devkmsg_llseek,
909 .poll = devkmsg_poll,
910 .release = devkmsg_release,
911 };
912
913 #ifdef CONFIG_CRASH_CORE
914 /*
915 * This appends the listed symbols to /proc/vmcore
916 *
917 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
918 * obtain access to symbols that are otherwise very difficult to locate. These
919 * symbols are specifically used so that utilities can access and extract the
920 * dmesg log from a vmcore file after a crash.
921 */
log_buf_vmcoreinfo_setup(void)922 void log_buf_vmcoreinfo_setup(void)
923 {
924 struct dev_printk_info *dev_info = NULL;
925
926 VMCOREINFO_SYMBOL(prb);
927 VMCOREINFO_SYMBOL(printk_rb_static);
928 VMCOREINFO_SYMBOL(clear_seq);
929
930 /*
931 * Export struct size and field offsets. User space tools can
932 * parse it and detect any changes to structure down the line.
933 */
934
935 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
936 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
937 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
938 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
939
940 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
941 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
942 VMCOREINFO_OFFSET(prb_desc_ring, descs);
943 VMCOREINFO_OFFSET(prb_desc_ring, infos);
944 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
945 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
946
947 VMCOREINFO_STRUCT_SIZE(prb_desc);
948 VMCOREINFO_OFFSET(prb_desc, state_var);
949 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
950
951 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
952 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
953 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
954
955 VMCOREINFO_STRUCT_SIZE(printk_info);
956 VMCOREINFO_OFFSET(printk_info, seq);
957 VMCOREINFO_OFFSET(printk_info, ts_nsec);
958 VMCOREINFO_OFFSET(printk_info, text_len);
959 VMCOREINFO_OFFSET(printk_info, caller_id);
960 VMCOREINFO_OFFSET(printk_info, dev_info);
961
962 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
963 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
964 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
965 VMCOREINFO_OFFSET(dev_printk_info, device);
966 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
967
968 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
969 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
970 VMCOREINFO_OFFSET(prb_data_ring, data);
971 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
972 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
973
974 VMCOREINFO_SIZE(atomic_long_t);
975 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
976
977 VMCOREINFO_STRUCT_SIZE(latched_seq);
978 VMCOREINFO_OFFSET(latched_seq, val);
979 }
980 #endif
981
982 /* requested log_buf_len from kernel cmdline */
983 static unsigned long __initdata new_log_buf_len;
984
985 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)986 static void __init log_buf_len_update(u64 size)
987 {
988 if (size > (u64)LOG_BUF_LEN_MAX) {
989 size = (u64)LOG_BUF_LEN_MAX;
990 pr_err("log_buf over 2G is not supported.\n");
991 }
992
993 if (size)
994 size = roundup_pow_of_two(size);
995 if (size > log_buf_len)
996 new_log_buf_len = (unsigned long)size;
997 }
998
999 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1000 static int __init log_buf_len_setup(char *str)
1001 {
1002 u64 size;
1003
1004 if (!str)
1005 return -EINVAL;
1006
1007 size = memparse(str, &str);
1008
1009 log_buf_len_update(size);
1010
1011 return 0;
1012 }
1013 early_param("log_buf_len", log_buf_len_setup);
1014
1015 #ifdef CONFIG_SMP
1016 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1017
log_buf_add_cpu(void)1018 static void __init log_buf_add_cpu(void)
1019 {
1020 unsigned int cpu_extra;
1021
1022 /*
1023 * archs should set up cpu_possible_bits properly with
1024 * set_cpu_possible() after setup_arch() but just in
1025 * case lets ensure this is valid.
1026 */
1027 if (num_possible_cpus() == 1)
1028 return;
1029
1030 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1031
1032 /* by default this will only continue through for large > 64 CPUs */
1033 if (cpu_extra <= __LOG_BUF_LEN / 2)
1034 return;
1035
1036 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1037 __LOG_CPU_MAX_BUF_LEN);
1038 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1039 cpu_extra);
1040 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1041
1042 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1043 }
1044 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1045 static inline void log_buf_add_cpu(void) {}
1046 #endif /* CONFIG_SMP */
1047
set_percpu_data_ready(void)1048 static void __init set_percpu_data_ready(void)
1049 {
1050 __printk_percpu_data_ready = true;
1051 }
1052
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1053 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1054 struct printk_record *r)
1055 {
1056 struct prb_reserved_entry e;
1057 struct printk_record dest_r;
1058
1059 prb_rec_init_wr(&dest_r, r->info->text_len);
1060
1061 if (!prb_reserve(&e, rb, &dest_r))
1062 return 0;
1063
1064 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1065 dest_r.info->text_len = r->info->text_len;
1066 dest_r.info->facility = r->info->facility;
1067 dest_r.info->level = r->info->level;
1068 dest_r.info->flags = r->info->flags;
1069 dest_r.info->ts_nsec = r->info->ts_nsec;
1070 dest_r.info->caller_id = r->info->caller_id;
1071 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1072
1073 prb_final_commit(&e);
1074
1075 return prb_record_text_space(&e);
1076 }
1077
1078 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1079
setup_log_buf(int early)1080 void __init setup_log_buf(int early)
1081 {
1082 struct printk_info *new_infos;
1083 unsigned int new_descs_count;
1084 struct prb_desc *new_descs;
1085 struct printk_info info;
1086 struct printk_record r;
1087 unsigned int text_size;
1088 size_t new_descs_size;
1089 size_t new_infos_size;
1090 unsigned long flags;
1091 char *new_log_buf;
1092 unsigned int free;
1093 u64 seq;
1094
1095 /*
1096 * Some archs call setup_log_buf() multiple times - first is very
1097 * early, e.g. from setup_arch(), and second - when percpu_areas
1098 * are initialised.
1099 */
1100 if (!early)
1101 set_percpu_data_ready();
1102
1103 if (log_buf != __log_buf)
1104 return;
1105
1106 if (!early && !new_log_buf_len)
1107 log_buf_add_cpu();
1108
1109 if (!new_log_buf_len)
1110 return;
1111
1112 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1113 if (new_descs_count == 0) {
1114 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1115 return;
1116 }
1117
1118 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1119 if (unlikely(!new_log_buf)) {
1120 pr_err("log_buf_len: %lu text bytes not available\n",
1121 new_log_buf_len);
1122 return;
1123 }
1124
1125 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1126 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1127 if (unlikely(!new_descs)) {
1128 pr_err("log_buf_len: %zu desc bytes not available\n",
1129 new_descs_size);
1130 goto err_free_log_buf;
1131 }
1132
1133 new_infos_size = new_descs_count * sizeof(struct printk_info);
1134 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1135 if (unlikely(!new_infos)) {
1136 pr_err("log_buf_len: %zu info bytes not available\n",
1137 new_infos_size);
1138 goto err_free_descs;
1139 }
1140
1141 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1142
1143 prb_init(&printk_rb_dynamic,
1144 new_log_buf, ilog2(new_log_buf_len),
1145 new_descs, ilog2(new_descs_count),
1146 new_infos);
1147
1148 local_irq_save(flags);
1149
1150 log_buf_len = new_log_buf_len;
1151 log_buf = new_log_buf;
1152 new_log_buf_len = 0;
1153
1154 free = __LOG_BUF_LEN;
1155 prb_for_each_record(0, &printk_rb_static, seq, &r) {
1156 text_size = add_to_rb(&printk_rb_dynamic, &r);
1157 if (text_size > free)
1158 free = 0;
1159 else
1160 free -= text_size;
1161 }
1162
1163 prb = &printk_rb_dynamic;
1164
1165 local_irq_restore(flags);
1166
1167 /*
1168 * Copy any remaining messages that might have appeared from
1169 * NMI context after copying but before switching to the
1170 * dynamic buffer.
1171 */
1172 prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1173 text_size = add_to_rb(&printk_rb_dynamic, &r);
1174 if (text_size > free)
1175 free = 0;
1176 else
1177 free -= text_size;
1178 }
1179
1180 if (seq != prb_next_seq(&printk_rb_static)) {
1181 pr_err("dropped %llu messages\n",
1182 prb_next_seq(&printk_rb_static) - seq);
1183 }
1184
1185 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1186 pr_info("early log buf free: %u(%u%%)\n",
1187 free, (free * 100) / __LOG_BUF_LEN);
1188 return;
1189
1190 err_free_descs:
1191 memblock_free_ptr(new_descs, new_descs_size);
1192 err_free_log_buf:
1193 memblock_free_ptr(new_log_buf, new_log_buf_len);
1194 }
1195
1196 static bool __read_mostly ignore_loglevel;
1197
ignore_loglevel_setup(char * str)1198 static int __init ignore_loglevel_setup(char *str)
1199 {
1200 ignore_loglevel = true;
1201 pr_info("debug: ignoring loglevel setting.\n");
1202
1203 return 0;
1204 }
1205
1206 early_param("ignore_loglevel", ignore_loglevel_setup);
1207 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1208 MODULE_PARM_DESC(ignore_loglevel,
1209 "ignore loglevel setting (prints all kernel messages to the console)");
1210
suppress_message_printing(int level)1211 static bool suppress_message_printing(int level)
1212 {
1213 return (level >= console_loglevel && !ignore_loglevel);
1214 }
1215
1216 #ifdef CONFIG_BOOT_PRINTK_DELAY
1217
1218 static int boot_delay; /* msecs delay after each printk during bootup */
1219 static unsigned long long loops_per_msec; /* based on boot_delay */
1220
boot_delay_setup(char * str)1221 static int __init boot_delay_setup(char *str)
1222 {
1223 unsigned long lpj;
1224
1225 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1226 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1227
1228 get_option(&str, &boot_delay);
1229 if (boot_delay > 10 * 1000)
1230 boot_delay = 0;
1231
1232 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1233 "HZ: %d, loops_per_msec: %llu\n",
1234 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1235 return 0;
1236 }
1237 early_param("boot_delay", boot_delay_setup);
1238
boot_delay_msec(int level)1239 static void boot_delay_msec(int level)
1240 {
1241 unsigned long long k;
1242 unsigned long timeout;
1243
1244 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1245 || suppress_message_printing(level)) {
1246 return;
1247 }
1248
1249 k = (unsigned long long)loops_per_msec * boot_delay;
1250
1251 timeout = jiffies + msecs_to_jiffies(boot_delay);
1252 while (k) {
1253 k--;
1254 cpu_relax();
1255 /*
1256 * use (volatile) jiffies to prevent
1257 * compiler reduction; loop termination via jiffies
1258 * is secondary and may or may not happen.
1259 */
1260 if (time_after(jiffies, timeout))
1261 break;
1262 touch_nmi_watchdog();
1263 }
1264 }
1265 #else
boot_delay_msec(int level)1266 static inline void boot_delay_msec(int level)
1267 {
1268 }
1269 #endif
1270
1271 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1272 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1273
print_syslog(unsigned int level,char * buf)1274 static size_t print_syslog(unsigned int level, char *buf)
1275 {
1276 return sprintf(buf, "<%u>", level);
1277 }
1278
print_time(u64 ts,char * buf)1279 static size_t print_time(u64 ts, char *buf)
1280 {
1281 unsigned long rem_nsec = do_div(ts, 1000000000);
1282
1283 return sprintf(buf, "[%5lu.%06lu]",
1284 (unsigned long)ts, rem_nsec / 1000);
1285 }
1286
1287 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1288 static size_t print_caller(u32 id, char *buf)
1289 {
1290 char caller[12];
1291 int vh_ret = 0;
1292
1293 trace_android_vh_printk_caller(caller, sizeof(caller), id, &vh_ret);
1294 if (!vh_ret)
1295 snprintf(caller, sizeof(caller), "%c%u",
1296 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1297 return sprintf(buf, "[%6s]", caller);
1298 }
1299 #else
1300 #define print_caller(id, buf) 0
1301 #endif
1302
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1303 static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1304 bool time, char *buf)
1305 {
1306 size_t len = 0;
1307
1308 if (syslog)
1309 len = print_syslog((info->facility << 3) | info->level, buf);
1310
1311 if (time)
1312 len += print_time(info->ts_nsec, buf + len);
1313
1314 len += print_caller(info->caller_id, buf + len);
1315
1316 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1317 buf[len++] = ' ';
1318 buf[len] = '\0';
1319 }
1320
1321 return len;
1322 }
1323
1324 /*
1325 * Prepare the record for printing. The text is shifted within the given
1326 * buffer to avoid a need for another one. The following operations are
1327 * done:
1328 *
1329 * - Add prefix for each line.
1330 * - Drop truncated lines that no longer fit into the buffer.
1331 * - Add the trailing newline that has been removed in vprintk_store().
1332 * - Add a string terminator.
1333 *
1334 * Since the produced string is always terminated, the maximum possible
1335 * return value is @r->text_buf_size - 1;
1336 *
1337 * Return: The length of the updated/prepared text, including the added
1338 * prefixes and the newline. The terminator is not counted. The dropped
1339 * line(s) are not counted.
1340 */
record_print_text(struct printk_record * r,bool syslog,bool time)1341 static size_t record_print_text(struct printk_record *r, bool syslog,
1342 bool time)
1343 {
1344 size_t text_len = r->info->text_len;
1345 size_t buf_size = r->text_buf_size;
1346 char *text = r->text_buf;
1347 char prefix[PREFIX_MAX];
1348 bool truncated = false;
1349 size_t prefix_len;
1350 size_t line_len;
1351 size_t len = 0;
1352 char *next;
1353
1354 /*
1355 * If the message was truncated because the buffer was not large
1356 * enough, treat the available text as if it were the full text.
1357 */
1358 if (text_len > buf_size)
1359 text_len = buf_size;
1360
1361 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1362
1363 /*
1364 * @text_len: bytes of unprocessed text
1365 * @line_len: bytes of current line _without_ newline
1366 * @text: pointer to beginning of current line
1367 * @len: number of bytes prepared in r->text_buf
1368 */
1369 for (;;) {
1370 next = memchr(text, '\n', text_len);
1371 if (next) {
1372 line_len = next - text;
1373 } else {
1374 /* Drop truncated line(s). */
1375 if (truncated)
1376 break;
1377 line_len = text_len;
1378 }
1379
1380 /*
1381 * Truncate the text if there is not enough space to add the
1382 * prefix and a trailing newline and a terminator.
1383 */
1384 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1385 /* Drop even the current line if no space. */
1386 if (len + prefix_len + line_len + 1 + 1 > buf_size)
1387 break;
1388
1389 text_len = buf_size - len - prefix_len - 1 - 1;
1390 truncated = true;
1391 }
1392
1393 memmove(text + prefix_len, text, text_len);
1394 memcpy(text, prefix, prefix_len);
1395
1396 /*
1397 * Increment the prepared length to include the text and
1398 * prefix that were just moved+copied. Also increment for the
1399 * newline at the end of this line. If this is the last line,
1400 * there is no newline, but it will be added immediately below.
1401 */
1402 len += prefix_len + line_len + 1;
1403 if (text_len == line_len) {
1404 /*
1405 * This is the last line. Add the trailing newline
1406 * removed in vprintk_store().
1407 */
1408 text[prefix_len + line_len] = '\n';
1409 break;
1410 }
1411
1412 /*
1413 * Advance beyond the added prefix and the related line with
1414 * its newline.
1415 */
1416 text += prefix_len + line_len + 1;
1417
1418 /*
1419 * The remaining text has only decreased by the line with its
1420 * newline.
1421 *
1422 * Note that @text_len can become zero. It happens when @text
1423 * ended with a newline (either due to truncation or the
1424 * original string ending with "\n\n"). The loop is correctly
1425 * repeated and (if not truncated) an empty line with a prefix
1426 * will be prepared.
1427 */
1428 text_len -= line_len + 1;
1429 }
1430
1431 /*
1432 * If a buffer was provided, it will be terminated. Space for the
1433 * string terminator is guaranteed to be available. The terminator is
1434 * not counted in the return value.
1435 */
1436 if (buf_size > 0)
1437 r->text_buf[len] = 0;
1438
1439 return len;
1440 }
1441
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1442 static size_t get_record_print_text_size(struct printk_info *info,
1443 unsigned int line_count,
1444 bool syslog, bool time)
1445 {
1446 char prefix[PREFIX_MAX];
1447 size_t prefix_len;
1448
1449 prefix_len = info_print_prefix(info, syslog, time, prefix);
1450
1451 /*
1452 * Each line will be preceded with a prefix. The intermediate
1453 * newlines are already within the text, but a final trailing
1454 * newline will be added.
1455 */
1456 return ((prefix_len * line_count) + info->text_len + 1);
1457 }
1458
1459 /*
1460 * Beginning with @start_seq, find the first record where it and all following
1461 * records up to (but not including) @max_seq fit into @size.
1462 *
1463 * @max_seq is simply an upper bound and does not need to exist. If the caller
1464 * does not require an upper bound, -1 can be used for @max_seq.
1465 */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1466 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1467 bool syslog, bool time)
1468 {
1469 struct printk_info info;
1470 unsigned int line_count;
1471 size_t len = 0;
1472 u64 seq;
1473
1474 /* Determine the size of the records up to @max_seq. */
1475 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1476 if (info.seq >= max_seq)
1477 break;
1478 len += get_record_print_text_size(&info, line_count, syslog, time);
1479 }
1480
1481 /*
1482 * Adjust the upper bound for the next loop to avoid subtracting
1483 * lengths that were never added.
1484 */
1485 if (seq < max_seq)
1486 max_seq = seq;
1487
1488 /*
1489 * Move first record forward until length fits into the buffer. Ignore
1490 * newest messages that were not counted in the above cycle. Messages
1491 * might appear and get lost in the meantime. This is a best effort
1492 * that prevents an infinite loop that could occur with a retry.
1493 */
1494 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1495 if (len <= size || info.seq >= max_seq)
1496 break;
1497 len -= get_record_print_text_size(&info, line_count, syslog, time);
1498 }
1499
1500 return seq;
1501 }
1502
1503 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1504 static int syslog_print(char __user *buf, int size)
1505 {
1506 struct printk_info info;
1507 struct printk_record r;
1508 char *text;
1509 int len = 0;
1510 u64 seq;
1511
1512 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1513 if (!text)
1514 return -ENOMEM;
1515
1516 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1517
1518 mutex_lock(&syslog_lock);
1519
1520 /*
1521 * Wait for the @syslog_seq record to be available. @syslog_seq may
1522 * change while waiting.
1523 */
1524 do {
1525 seq = syslog_seq;
1526
1527 mutex_unlock(&syslog_lock);
1528 /*
1529 * Guarantee this task is visible on the waitqueue before
1530 * checking the wake condition.
1531 *
1532 * The full memory barrier within set_current_state() of
1533 * prepare_to_wait_event() pairs with the full memory barrier
1534 * within wq_has_sleeper().
1535 *
1536 * This pairs with __wake_up_klogd:A.
1537 */
1538 len = wait_event_interruptible(log_wait,
1539 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1540 mutex_lock(&syslog_lock);
1541
1542 if (len)
1543 goto out;
1544 } while (syslog_seq != seq);
1545
1546 /*
1547 * Copy records that fit into the buffer. The above cycle makes sure
1548 * that the first record is always available.
1549 */
1550 do {
1551 size_t n;
1552 size_t skip;
1553 int err;
1554
1555 if (!prb_read_valid(prb, syslog_seq, &r))
1556 break;
1557
1558 if (r.info->seq != syslog_seq) {
1559 /* message is gone, move to next valid one */
1560 syslog_seq = r.info->seq;
1561 syslog_partial = 0;
1562 }
1563
1564 /*
1565 * To keep reading/counting partial line consistent,
1566 * use printk_time value as of the beginning of a line.
1567 */
1568 if (!syslog_partial)
1569 syslog_time = printk_time;
1570
1571 skip = syslog_partial;
1572 n = record_print_text(&r, true, syslog_time);
1573 if (n - syslog_partial <= size) {
1574 /* message fits into buffer, move forward */
1575 syslog_seq = r.info->seq + 1;
1576 n -= syslog_partial;
1577 syslog_partial = 0;
1578 } else if (!len){
1579 /* partial read(), remember position */
1580 n = size;
1581 syslog_partial += n;
1582 } else
1583 n = 0;
1584
1585 if (!n)
1586 break;
1587
1588 mutex_unlock(&syslog_lock);
1589 err = copy_to_user(buf, text + skip, n);
1590 mutex_lock(&syslog_lock);
1591
1592 if (err) {
1593 if (!len)
1594 len = -EFAULT;
1595 break;
1596 }
1597
1598 len += n;
1599 size -= n;
1600 buf += n;
1601 } while (size);
1602 out:
1603 mutex_unlock(&syslog_lock);
1604 kfree(text);
1605 return len;
1606 }
1607
syslog_print_all(char __user * buf,int size,bool clear)1608 static int syslog_print_all(char __user *buf, int size, bool clear)
1609 {
1610 struct printk_info info;
1611 struct printk_record r;
1612 char *text;
1613 int len = 0;
1614 u64 seq;
1615 bool time;
1616
1617 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1618 if (!text)
1619 return -ENOMEM;
1620
1621 time = printk_time;
1622 /*
1623 * Find first record that fits, including all following records,
1624 * into the user-provided buffer for this dump.
1625 */
1626 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1627 size, true, time);
1628
1629 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1630
1631 len = 0;
1632 prb_for_each_record(seq, prb, seq, &r) {
1633 int textlen;
1634
1635 textlen = record_print_text(&r, true, time);
1636
1637 if (len + textlen > size) {
1638 seq--;
1639 break;
1640 }
1641
1642 if (copy_to_user(buf + len, text, textlen))
1643 len = -EFAULT;
1644 else
1645 len += textlen;
1646
1647 if (len < 0)
1648 break;
1649 }
1650
1651 if (clear) {
1652 mutex_lock(&syslog_lock);
1653 latched_seq_write(&clear_seq, seq);
1654 mutex_unlock(&syslog_lock);
1655 }
1656
1657 kfree(text);
1658 return len;
1659 }
1660
syslog_clear(void)1661 static void syslog_clear(void)
1662 {
1663 mutex_lock(&syslog_lock);
1664 latched_seq_write(&clear_seq, prb_next_seq(prb));
1665 mutex_unlock(&syslog_lock);
1666 }
1667
do_syslog(int type,char __user * buf,int len,int source)1668 int do_syslog(int type, char __user *buf, int len, int source)
1669 {
1670 struct printk_info info;
1671 bool clear = false;
1672 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1673 int error;
1674
1675 error = check_syslog_permissions(type, source);
1676 if (error)
1677 return error;
1678
1679 switch (type) {
1680 case SYSLOG_ACTION_CLOSE: /* Close log */
1681 break;
1682 case SYSLOG_ACTION_OPEN: /* Open log */
1683 break;
1684 case SYSLOG_ACTION_READ: /* Read from log */
1685 if (!buf || len < 0)
1686 return -EINVAL;
1687 if (!len)
1688 return 0;
1689 if (!access_ok(buf, len))
1690 return -EFAULT;
1691 error = syslog_print(buf, len);
1692 break;
1693 /* Read/clear last kernel messages */
1694 case SYSLOG_ACTION_READ_CLEAR:
1695 clear = true;
1696 fallthrough;
1697 /* Read last kernel messages */
1698 case SYSLOG_ACTION_READ_ALL:
1699 if (!buf || len < 0)
1700 return -EINVAL;
1701 if (!len)
1702 return 0;
1703 if (!access_ok(buf, len))
1704 return -EFAULT;
1705 error = syslog_print_all(buf, len, clear);
1706 break;
1707 /* Clear ring buffer */
1708 case SYSLOG_ACTION_CLEAR:
1709 syslog_clear();
1710 break;
1711 /* Disable logging to console */
1712 case SYSLOG_ACTION_CONSOLE_OFF:
1713 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1714 saved_console_loglevel = console_loglevel;
1715 console_loglevel = minimum_console_loglevel;
1716 break;
1717 /* Enable logging to console */
1718 case SYSLOG_ACTION_CONSOLE_ON:
1719 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1720 console_loglevel = saved_console_loglevel;
1721 saved_console_loglevel = LOGLEVEL_DEFAULT;
1722 }
1723 break;
1724 /* Set level of messages printed to console */
1725 case SYSLOG_ACTION_CONSOLE_LEVEL:
1726 if (len < 1 || len > 8)
1727 return -EINVAL;
1728 if (len < minimum_console_loglevel)
1729 len = minimum_console_loglevel;
1730 console_loglevel = len;
1731 /* Implicitly re-enable logging to console */
1732 saved_console_loglevel = LOGLEVEL_DEFAULT;
1733 break;
1734 /* Number of chars in the log buffer */
1735 case SYSLOG_ACTION_SIZE_UNREAD:
1736 mutex_lock(&syslog_lock);
1737 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1738 /* No unread messages. */
1739 mutex_unlock(&syslog_lock);
1740 return 0;
1741 }
1742 if (info.seq != syslog_seq) {
1743 /* messages are gone, move to first one */
1744 syslog_seq = info.seq;
1745 syslog_partial = 0;
1746 }
1747 if (source == SYSLOG_FROM_PROC) {
1748 /*
1749 * Short-cut for poll(/"proc/kmsg") which simply checks
1750 * for pending data, not the size; return the count of
1751 * records, not the length.
1752 */
1753 error = prb_next_seq(prb) - syslog_seq;
1754 } else {
1755 bool time = syslog_partial ? syslog_time : printk_time;
1756 unsigned int line_count;
1757 u64 seq;
1758
1759 prb_for_each_info(syslog_seq, prb, seq, &info,
1760 &line_count) {
1761 error += get_record_print_text_size(&info, line_count,
1762 true, time);
1763 time = printk_time;
1764 }
1765 error -= syslog_partial;
1766 }
1767 mutex_unlock(&syslog_lock);
1768 break;
1769 /* Size of the log buffer */
1770 case SYSLOG_ACTION_SIZE_BUFFER:
1771 error = log_buf_len;
1772 break;
1773 default:
1774 error = -EINVAL;
1775 break;
1776 }
1777
1778 return error;
1779 }
1780
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1781 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1782 {
1783 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1784 }
1785
1786 /*
1787 * Special console_lock variants that help to reduce the risk of soft-lockups.
1788 * They allow to pass console_lock to another printk() call using a busy wait.
1789 */
1790
1791 #ifdef CONFIG_LOCKDEP
1792 static struct lockdep_map console_owner_dep_map = {
1793 .name = "console_owner"
1794 };
1795 #endif
1796
1797 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1798 static struct task_struct *console_owner;
1799 static bool console_waiter;
1800
1801 /**
1802 * console_lock_spinning_enable - mark beginning of code where another
1803 * thread might safely busy wait
1804 *
1805 * This basically converts console_lock into a spinlock. This marks
1806 * the section where the console_lock owner can not sleep, because
1807 * there may be a waiter spinning (like a spinlock). Also it must be
1808 * ready to hand over the lock at the end of the section.
1809 */
console_lock_spinning_enable(void)1810 static void console_lock_spinning_enable(void)
1811 {
1812 raw_spin_lock(&console_owner_lock);
1813 console_owner = current;
1814 raw_spin_unlock(&console_owner_lock);
1815
1816 /* The waiter may spin on us after setting console_owner */
1817 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1818 }
1819
1820 /**
1821 * console_lock_spinning_disable_and_check - mark end of code where another
1822 * thread was able to busy wait and check if there is a waiter
1823 *
1824 * This is called at the end of the section where spinning is allowed.
1825 * It has two functions. First, it is a signal that it is no longer
1826 * safe to start busy waiting for the lock. Second, it checks if
1827 * there is a busy waiter and passes the lock rights to her.
1828 *
1829 * Important: Callers lose the lock if there was a busy waiter.
1830 * They must not touch items synchronized by console_lock
1831 * in this case.
1832 *
1833 * Return: 1 if the lock rights were passed, 0 otherwise.
1834 */
console_lock_spinning_disable_and_check(void)1835 static int console_lock_spinning_disable_and_check(void)
1836 {
1837 int waiter;
1838
1839 raw_spin_lock(&console_owner_lock);
1840 waiter = READ_ONCE(console_waiter);
1841 console_owner = NULL;
1842 raw_spin_unlock(&console_owner_lock);
1843
1844 if (!waiter) {
1845 spin_release(&console_owner_dep_map, _THIS_IP_);
1846 return 0;
1847 }
1848
1849 /* The waiter is now free to continue */
1850 WRITE_ONCE(console_waiter, false);
1851
1852 spin_release(&console_owner_dep_map, _THIS_IP_);
1853
1854 /*
1855 * Hand off console_lock to waiter. The waiter will perform
1856 * the up(). After this, the waiter is the console_lock owner.
1857 */
1858 mutex_release(&console_lock_dep_map, _THIS_IP_);
1859 return 1;
1860 }
1861
1862 /**
1863 * console_trylock_spinning - try to get console_lock by busy waiting
1864 *
1865 * This allows to busy wait for the console_lock when the current
1866 * owner is running in specially marked sections. It means that
1867 * the current owner is running and cannot reschedule until it
1868 * is ready to lose the lock.
1869 *
1870 * Return: 1 if we got the lock, 0 othrewise
1871 */
console_trylock_spinning(void)1872 static int console_trylock_spinning(void)
1873 {
1874 struct task_struct *owner = NULL;
1875 bool waiter;
1876 bool spin = false;
1877 unsigned long flags;
1878
1879 if (console_trylock())
1880 return 1;
1881
1882 printk_safe_enter_irqsave(flags);
1883
1884 raw_spin_lock(&console_owner_lock);
1885 owner = READ_ONCE(console_owner);
1886 waiter = READ_ONCE(console_waiter);
1887 if (!waiter && owner && owner != current) {
1888 WRITE_ONCE(console_waiter, true);
1889 spin = true;
1890 }
1891 raw_spin_unlock(&console_owner_lock);
1892
1893 /*
1894 * If there is an active printk() writing to the
1895 * consoles, instead of having it write our data too,
1896 * see if we can offload that load from the active
1897 * printer, and do some printing ourselves.
1898 * Go into a spin only if there isn't already a waiter
1899 * spinning, and there is an active printer, and
1900 * that active printer isn't us (recursive printk?).
1901 */
1902 if (!spin) {
1903 printk_safe_exit_irqrestore(flags);
1904 return 0;
1905 }
1906
1907 /* We spin waiting for the owner to release us */
1908 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1909 /* Owner will clear console_waiter on hand off */
1910 while (READ_ONCE(console_waiter))
1911 cpu_relax();
1912 spin_release(&console_owner_dep_map, _THIS_IP_);
1913
1914 printk_safe_exit_irqrestore(flags);
1915 /*
1916 * The owner passed the console lock to us.
1917 * Since we did not spin on console lock, annotate
1918 * this as a trylock. Otherwise lockdep will
1919 * complain.
1920 */
1921 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1922
1923 return 1;
1924 }
1925
1926 /*
1927 * Call the console drivers, asking them to write out
1928 * log_buf[start] to log_buf[end - 1].
1929 * The console_lock must be held.
1930 */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1931 static void call_console_drivers(const char *ext_text, size_t ext_len,
1932 const char *text, size_t len)
1933 {
1934 static char dropped_text[64];
1935 size_t dropped_len = 0;
1936 struct console *con;
1937
1938 trace_console_rcuidle(text, len);
1939
1940 if (!console_drivers)
1941 return;
1942
1943 if (console_dropped) {
1944 dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1945 "** %lu printk messages dropped **\n",
1946 console_dropped);
1947 console_dropped = 0;
1948 }
1949
1950 for_each_console(con) {
1951 if (exclusive_console && con != exclusive_console)
1952 continue;
1953 if (!(con->flags & CON_ENABLED))
1954 continue;
1955 if (!con->write)
1956 continue;
1957 if (!cpu_online(smp_processor_id()) &&
1958 !(con->flags & CON_ANYTIME))
1959 continue;
1960 if (con->flags & CON_EXTENDED)
1961 con->write(con, ext_text, ext_len);
1962 else {
1963 if (dropped_len)
1964 con->write(con, dropped_text, dropped_len);
1965 con->write(con, text, len);
1966 }
1967 }
1968 }
1969
1970 /*
1971 * Recursion is tracked separately on each CPU. If NMIs are supported, an
1972 * additional NMI context per CPU is also separately tracked. Until per-CPU
1973 * is available, a separate "early tracking" is performed.
1974 */
1975 static DEFINE_PER_CPU(u8, printk_count);
1976 static u8 printk_count_early;
1977 #ifdef CONFIG_HAVE_NMI
1978 static DEFINE_PER_CPU(u8, printk_count_nmi);
1979 static u8 printk_count_nmi_early;
1980 #endif
1981
1982 /*
1983 * Recursion is limited to keep the output sane. printk() should not require
1984 * more than 1 level of recursion (allowing, for example, printk() to trigger
1985 * a WARN), but a higher value is used in case some printk-internal errors
1986 * exist, such as the ringbuffer validation checks failing.
1987 */
1988 #define PRINTK_MAX_RECURSION 3
1989
1990 /*
1991 * Return a pointer to the dedicated counter for the CPU+context of the
1992 * caller.
1993 */
__printk_recursion_counter(void)1994 static u8 *__printk_recursion_counter(void)
1995 {
1996 #ifdef CONFIG_HAVE_NMI
1997 if (in_nmi()) {
1998 if (printk_percpu_data_ready())
1999 return this_cpu_ptr(&printk_count_nmi);
2000 return &printk_count_nmi_early;
2001 }
2002 #endif
2003 if (printk_percpu_data_ready())
2004 return this_cpu_ptr(&printk_count);
2005 return &printk_count_early;
2006 }
2007
2008 /*
2009 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2010 * The caller must check the boolean return value to see if the recursion is
2011 * allowed. On failure, interrupts are not disabled.
2012 *
2013 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2014 * that is passed to printk_exit_irqrestore().
2015 */
2016 #define printk_enter_irqsave(recursion_ptr, flags) \
2017 ({ \
2018 bool success = true; \
2019 \
2020 typecheck(u8 *, recursion_ptr); \
2021 local_irq_save(flags); \
2022 (recursion_ptr) = __printk_recursion_counter(); \
2023 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
2024 local_irq_restore(flags); \
2025 success = false; \
2026 } else { \
2027 (*(recursion_ptr))++; \
2028 } \
2029 success; \
2030 })
2031
2032 /* Exit recursion tracking, restoring interrupts. */
2033 #define printk_exit_irqrestore(recursion_ptr, flags) \
2034 do { \
2035 typecheck(u8 *, recursion_ptr); \
2036 (*(recursion_ptr))--; \
2037 local_irq_restore(flags); \
2038 } while (0)
2039
2040 int printk_delay_msec __read_mostly;
2041
printk_delay(void)2042 static inline void printk_delay(void)
2043 {
2044 if (unlikely(printk_delay_msec)) {
2045 int m = printk_delay_msec;
2046
2047 while (m--) {
2048 mdelay(1);
2049 touch_nmi_watchdog();
2050 }
2051 }
2052 }
2053
printk_caller_id(void)2054 static inline u32 printk_caller_id(void)
2055 {
2056 u32 caller_id = 0;
2057
2058 trace_android_vh_printk_caller_id(&caller_id);
2059 if (caller_id)
2060 return caller_id;
2061
2062 return in_task() ? task_pid_nr(current) :
2063 0x80000000 + raw_smp_processor_id();
2064 }
2065
2066 /**
2067 * printk_parse_prefix - Parse level and control flags.
2068 *
2069 * @text: The terminated text message.
2070 * @level: A pointer to the current level value, will be updated.
2071 * @flags: A pointer to the current printk_info flags, will be updated.
2072 *
2073 * @level may be NULL if the caller is not interested in the parsed value.
2074 * Otherwise the variable pointed to by @level must be set to
2075 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2076 *
2077 * @flags may be NULL if the caller is not interested in the parsed value.
2078 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2079 * value.
2080 *
2081 * Return: The length of the parsed level and control flags.
2082 */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2083 u16 printk_parse_prefix(const char *text, int *level,
2084 enum printk_info_flags *flags)
2085 {
2086 u16 prefix_len = 0;
2087 int kern_level;
2088
2089 while (*text) {
2090 kern_level = printk_get_level(text);
2091 if (!kern_level)
2092 break;
2093
2094 switch (kern_level) {
2095 case '0' ... '7':
2096 if (level && *level == LOGLEVEL_DEFAULT)
2097 *level = kern_level - '0';
2098 break;
2099 case 'c': /* KERN_CONT */
2100 if (flags)
2101 *flags |= LOG_CONT;
2102 }
2103
2104 prefix_len += 2;
2105 text += 2;
2106 }
2107
2108 return prefix_len;
2109 }
2110
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2111 static u16 printk_sprint(char *text, u16 size, int facility,
2112 enum printk_info_flags *flags, const char *fmt,
2113 va_list args)
2114 {
2115 u16 text_len;
2116
2117 text_len = vscnprintf(text, size, fmt, args);
2118
2119 /* Mark and strip a trailing newline. */
2120 if (text_len && text[text_len - 1] == '\n') {
2121 text_len--;
2122 *flags |= LOG_NEWLINE;
2123 }
2124
2125 /* Strip log level and control flags. */
2126 if (facility == 0) {
2127 u16 prefix_len;
2128
2129 prefix_len = printk_parse_prefix(text, NULL, NULL);
2130 if (prefix_len) {
2131 text_len -= prefix_len;
2132 memmove(text, text + prefix_len, text_len);
2133 }
2134 }
2135
2136 return text_len;
2137 }
2138
2139 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2140 int vprintk_store(int facility, int level,
2141 const struct dev_printk_info *dev_info,
2142 const char *fmt, va_list args)
2143 {
2144 const u32 caller_id = printk_caller_id();
2145 struct prb_reserved_entry e;
2146 enum printk_info_flags flags = 0;
2147 struct printk_record r;
2148 unsigned long irqflags;
2149 u16 trunc_msg_len = 0;
2150 char prefix_buf[8];
2151 u8 *recursion_ptr;
2152 u16 reserve_size;
2153 va_list args2;
2154 u16 text_len;
2155 int ret = 0;
2156 u64 ts_nsec;
2157
2158 /*
2159 * Since the duration of printk() can vary depending on the message
2160 * and state of the ringbuffer, grab the timestamp now so that it is
2161 * close to the call of printk(). This provides a more deterministic
2162 * timestamp with respect to the caller.
2163 */
2164 ts_nsec = local_clock();
2165
2166 if (!printk_enter_irqsave(recursion_ptr, irqflags))
2167 return 0;
2168
2169 /*
2170 * The sprintf needs to come first since the syslog prefix might be
2171 * passed in as a parameter. An extra byte must be reserved so that
2172 * later the vscnprintf() into the reserved buffer has room for the
2173 * terminating '\0', which is not counted by vsnprintf().
2174 */
2175 va_copy(args2, args);
2176 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2177 va_end(args2);
2178
2179 if (reserve_size > LOG_LINE_MAX)
2180 reserve_size = LOG_LINE_MAX;
2181
2182 /* Extract log level or control flags. */
2183 if (facility == 0)
2184 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2185
2186 if (level == LOGLEVEL_DEFAULT)
2187 level = default_message_loglevel;
2188
2189 if (dev_info)
2190 flags |= LOG_NEWLINE;
2191
2192 if (flags & LOG_CONT) {
2193 prb_rec_init_wr(&r, reserve_size);
2194 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2195 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2196 facility, &flags, fmt, args);
2197 r.info->text_len += text_len;
2198
2199 if (flags & LOG_NEWLINE) {
2200 r.info->flags |= LOG_NEWLINE;
2201 prb_final_commit(&e);
2202 } else {
2203 prb_commit(&e);
2204 }
2205
2206 trace_android_vh_logbuf_pr_cont(&r, text_len);
2207 ret = text_len;
2208 goto out;
2209 }
2210 }
2211
2212 /*
2213 * Explicitly initialize the record before every prb_reserve() call.
2214 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2215 * structure when they fail.
2216 */
2217 prb_rec_init_wr(&r, reserve_size);
2218 if (!prb_reserve(&e, prb, &r)) {
2219 /* truncate the message if it is too long for empty buffer */
2220 truncate_msg(&reserve_size, &trunc_msg_len);
2221
2222 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2223 if (!prb_reserve(&e, prb, &r))
2224 goto out;
2225 }
2226
2227 /* fill message */
2228 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2229 if (trunc_msg_len)
2230 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2231 r.info->text_len = text_len + trunc_msg_len;
2232 r.info->facility = facility;
2233 r.info->level = level & 7;
2234 r.info->flags = flags & 0x1f;
2235 r.info->ts_nsec = ts_nsec;
2236 r.info->caller_id = caller_id;
2237 if (dev_info)
2238 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2239
2240 /* A message without a trailing newline can be continued. */
2241 if (!(flags & LOG_NEWLINE))
2242 prb_commit(&e);
2243 else
2244 prb_final_commit(&e);
2245
2246 trace_android_vh_logbuf(prb, &r);
2247 ret = text_len + trunc_msg_len;
2248 out:
2249 printk_exit_irqrestore(recursion_ptr, irqflags);
2250 return ret;
2251 }
2252
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2253 asmlinkage int vprintk_emit(int facility, int level,
2254 const struct dev_printk_info *dev_info,
2255 const char *fmt, va_list args)
2256 {
2257 int printed_len;
2258 bool in_sched = false;
2259
2260 /* Suppress unimportant messages after panic happens */
2261 if (unlikely(suppress_printk))
2262 return 0;
2263
2264 if (level == LOGLEVEL_SCHED) {
2265 level = LOGLEVEL_DEFAULT;
2266 in_sched = true;
2267 }
2268
2269 boot_delay_msec(level);
2270 printk_delay();
2271
2272 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2273
2274 /* If called from the scheduler, we can not call up(). */
2275 if (!in_sched) {
2276 /*
2277 * Disable preemption to avoid being preempted while holding
2278 * console_sem which would prevent anyone from printing to
2279 * console
2280 */
2281 preempt_disable();
2282 /*
2283 * Try to acquire and then immediately release the console
2284 * semaphore. The release will print out buffers and wake up
2285 * /dev/kmsg and syslog() users.
2286 */
2287 if (console_trylock_spinning())
2288 console_unlock();
2289 preempt_enable();
2290 }
2291
2292 if (in_sched)
2293 defer_console_output();
2294 else
2295 wake_up_klogd();
2296
2297 return printed_len;
2298 }
2299 EXPORT_SYMBOL(vprintk_emit);
2300
vprintk_default(const char * fmt,va_list args)2301 int vprintk_default(const char *fmt, va_list args)
2302 {
2303 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2304 }
2305 EXPORT_SYMBOL_GPL(vprintk_default);
2306
_printk(const char * fmt,...)2307 asmlinkage __visible int _printk(const char *fmt, ...)
2308 {
2309 va_list args;
2310 int r;
2311
2312 va_start(args, fmt);
2313 r = vprintk(fmt, args);
2314 va_end(args);
2315
2316 return r;
2317 }
2318 EXPORT_SYMBOL(_printk);
2319
2320 #else /* CONFIG_PRINTK */
2321
2322 #define CONSOLE_LOG_MAX 0
2323 #define printk_time false
2324
2325 #define prb_read_valid(rb, seq, r) false
2326 #define prb_first_valid_seq(rb) 0
2327
2328 static u64 syslog_seq;
2329 static u64 console_seq;
2330 static u64 exclusive_console_stop_seq;
2331 static unsigned long console_dropped;
2332
record_print_text(const struct printk_record * r,bool syslog,bool time)2333 static size_t record_print_text(const struct printk_record *r,
2334 bool syslog, bool time)
2335 {
2336 return 0;
2337 }
info_print_ext_header(char * buf,size_t size,struct printk_info * info)2338 static ssize_t info_print_ext_header(char *buf, size_t size,
2339 struct printk_info *info)
2340 {
2341 return 0;
2342 }
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)2343 static ssize_t msg_print_ext_body(char *buf, size_t size,
2344 char *text, size_t text_len,
2345 struct dev_printk_info *dev_info) { return 0; }
console_lock_spinning_enable(void)2346 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2347 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2348 static void call_console_drivers(const char *ext_text, size_t ext_len,
2349 const char *text, size_t len) {}
suppress_message_printing(int level)2350 static bool suppress_message_printing(int level) { return false; }
2351
2352 #endif /* CONFIG_PRINTK */
2353
2354 #ifdef CONFIG_EARLY_PRINTK
2355 struct console *early_console;
2356
early_printk(const char * fmt,...)2357 asmlinkage __visible void early_printk(const char *fmt, ...)
2358 {
2359 va_list ap;
2360 char buf[512];
2361 int n;
2362
2363 if (!early_console)
2364 return;
2365
2366 va_start(ap, fmt);
2367 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2368 va_end(ap);
2369
2370 early_console->write(early_console, buf, n);
2371 }
2372 #endif
2373
__add_preferred_console(char * name,int idx,char * options,char * brl_options,bool user_specified)2374 static int __add_preferred_console(char *name, int idx, char *options,
2375 char *brl_options, bool user_specified)
2376 {
2377 struct console_cmdline *c;
2378 int i;
2379
2380 /*
2381 * See if this tty is not yet registered, and
2382 * if we have a slot free.
2383 */
2384 for (i = 0, c = console_cmdline;
2385 i < MAX_CMDLINECONSOLES && c->name[0];
2386 i++, c++) {
2387 if (strcmp(c->name, name) == 0 && c->index == idx) {
2388 if (!brl_options)
2389 preferred_console = i;
2390 if (user_specified)
2391 c->user_specified = true;
2392 return 0;
2393 }
2394 }
2395 if (i == MAX_CMDLINECONSOLES)
2396 return -E2BIG;
2397 if (!brl_options)
2398 preferred_console = i;
2399 strlcpy(c->name, name, sizeof(c->name));
2400 c->options = options;
2401 c->user_specified = user_specified;
2402 braille_set_options(c, brl_options);
2403
2404 c->index = idx;
2405 return 0;
2406 }
2407
console_msg_format_setup(char * str)2408 static int __init console_msg_format_setup(char *str)
2409 {
2410 if (!strcmp(str, "syslog"))
2411 console_msg_format = MSG_FORMAT_SYSLOG;
2412 if (!strcmp(str, "default"))
2413 console_msg_format = MSG_FORMAT_DEFAULT;
2414 return 1;
2415 }
2416 __setup("console_msg_format=", console_msg_format_setup);
2417
2418 /*
2419 * Set up a console. Called via do_early_param() in init/main.c
2420 * for each "console=" parameter in the boot command line.
2421 */
console_setup(char * str)2422 static int __init console_setup(char *str)
2423 {
2424 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2425 char *s, *options, *brl_options = NULL;
2426 int idx;
2427
2428 /*
2429 * console="" or console=null have been suggested as a way to
2430 * disable console output. Use ttynull that has been created
2431 * for exactly this purpose.
2432 */
2433 if (str[0] == 0 || strcmp(str, "null") == 0) {
2434 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2435 return 1;
2436 }
2437
2438 if (_braille_console_setup(&str, &brl_options))
2439 return 1;
2440
2441 /*
2442 * Decode str into name, index, options.
2443 */
2444 if (str[0] >= '0' && str[0] <= '9') {
2445 strcpy(buf, "ttyS");
2446 strncpy(buf + 4, str, sizeof(buf) - 5);
2447 } else {
2448 strncpy(buf, str, sizeof(buf) - 1);
2449 }
2450 buf[sizeof(buf) - 1] = 0;
2451 options = strchr(str, ',');
2452 if (options)
2453 *(options++) = 0;
2454 #ifdef __sparc__
2455 if (!strcmp(str, "ttya"))
2456 strcpy(buf, "ttyS0");
2457 if (!strcmp(str, "ttyb"))
2458 strcpy(buf, "ttyS1");
2459 #endif
2460 for (s = buf; *s; s++)
2461 if (isdigit(*s) || *s == ',')
2462 break;
2463 idx = simple_strtoul(s, NULL, 10);
2464 *s = 0;
2465
2466 __add_preferred_console(buf, idx, options, brl_options, true);
2467 console_set_on_cmdline = 1;
2468 return 1;
2469 }
2470 __setup("console=", console_setup);
2471
2472 /**
2473 * add_preferred_console - add a device to the list of preferred consoles.
2474 * @name: device name
2475 * @idx: device index
2476 * @options: options for this console
2477 *
2478 * The last preferred console added will be used for kernel messages
2479 * and stdin/out/err for init. Normally this is used by console_setup
2480 * above to handle user-supplied console arguments; however it can also
2481 * be used by arch-specific code either to override the user or more
2482 * commonly to provide a default console (ie from PROM variables) when
2483 * the user has not supplied one.
2484 */
add_preferred_console(char * name,int idx,char * options)2485 int add_preferred_console(char *name, int idx, char *options)
2486 {
2487 return __add_preferred_console(name, idx, options, NULL, false);
2488 }
2489
2490 bool console_suspend_enabled = true;
2491 EXPORT_SYMBOL(console_suspend_enabled);
2492
console_suspend_disable(char * str)2493 static int __init console_suspend_disable(char *str)
2494 {
2495 console_suspend_enabled = false;
2496 return 1;
2497 }
2498 __setup("no_console_suspend", console_suspend_disable);
2499 module_param_named(console_suspend, console_suspend_enabled,
2500 bool, S_IRUGO | S_IWUSR);
2501 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2502 " and hibernate operations");
2503
2504 static bool printk_console_no_auto_verbose;
2505
console_verbose(void)2506 void console_verbose(void)
2507 {
2508 if (console_loglevel && !printk_console_no_auto_verbose)
2509 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2510 }
2511 EXPORT_SYMBOL_GPL(console_verbose);
2512
2513 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2514 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2515
2516 /**
2517 * suspend_console - suspend the console subsystem
2518 *
2519 * This disables printk() while we go into suspend states
2520 */
suspend_console(void)2521 void suspend_console(void)
2522 {
2523 if (!console_suspend_enabled)
2524 return;
2525 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2526 console_lock();
2527 console_suspended = 1;
2528 up_console_sem();
2529 }
2530
resume_console(void)2531 void resume_console(void)
2532 {
2533 if (!console_suspend_enabled)
2534 return;
2535 down_console_sem();
2536 console_suspended = 0;
2537 console_unlock();
2538 }
2539
2540 /**
2541 * console_cpu_notify - print deferred console messages after CPU hotplug
2542 * @cpu: unused
2543 *
2544 * If printk() is called from a CPU that is not online yet, the messages
2545 * will be printed on the console only if there are CON_ANYTIME consoles.
2546 * This function is called when a new CPU comes online (or fails to come
2547 * up) or goes offline.
2548 */
console_cpu_notify(unsigned int cpu)2549 static int console_cpu_notify(unsigned int cpu)
2550 {
2551 int flag = 0;
2552
2553 trace_android_vh_printk_hotplug(&flag);
2554 if (flag)
2555 return 0;
2556
2557 if (!cpuhp_tasks_frozen) {
2558 /* If trylock fails, someone else is doing the printing */
2559 if (console_trylock())
2560 console_unlock();
2561 }
2562 return 0;
2563 }
2564
2565 /**
2566 * console_lock - lock the console system for exclusive use.
2567 *
2568 * Acquires a lock which guarantees that the caller has
2569 * exclusive access to the console system and the console_drivers list.
2570 *
2571 * Can sleep, returns nothing.
2572 */
console_lock(void)2573 void console_lock(void)
2574 {
2575 might_sleep();
2576
2577 down_console_sem();
2578 if (console_suspended)
2579 return;
2580 console_locked = 1;
2581 console_may_schedule = 1;
2582 }
2583 EXPORT_SYMBOL(console_lock);
2584
2585 /**
2586 * console_trylock - try to lock the console system for exclusive use.
2587 *
2588 * Try to acquire a lock which guarantees that the caller has exclusive
2589 * access to the console system and the console_drivers list.
2590 *
2591 * returns 1 on success, and 0 on failure to acquire the lock.
2592 */
console_trylock(void)2593 int console_trylock(void)
2594 {
2595 if (down_trylock_console_sem())
2596 return 0;
2597 if (console_suspended) {
2598 up_console_sem();
2599 return 0;
2600 }
2601 console_locked = 1;
2602 console_may_schedule = 0;
2603 return 1;
2604 }
2605 EXPORT_SYMBOL(console_trylock);
2606
is_console_locked(void)2607 int is_console_locked(void)
2608 {
2609 return console_locked;
2610 }
2611 EXPORT_SYMBOL(is_console_locked);
2612
2613 /*
2614 * Check if we have any console that is capable of printing while cpu is
2615 * booting or shutting down. Requires console_sem.
2616 */
have_callable_console(void)2617 static int have_callable_console(void)
2618 {
2619 struct console *con;
2620
2621 for_each_console(con)
2622 if ((con->flags & CON_ENABLED) &&
2623 (con->flags & CON_ANYTIME))
2624 return 1;
2625
2626 return 0;
2627 }
2628
2629 /*
2630 * Can we actually use the console at this time on this cpu?
2631 *
2632 * Console drivers may assume that per-cpu resources have been allocated. So
2633 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2634 * call them until this CPU is officially up.
2635 */
can_use_console(void)2636 static inline int can_use_console(void)
2637 {
2638 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2639 }
2640
2641 /**
2642 * console_unlock - unlock the console system
2643 *
2644 * Releases the console_lock which the caller holds on the console system
2645 * and the console driver list.
2646 *
2647 * While the console_lock was held, console output may have been buffered
2648 * by printk(). If this is the case, console_unlock(); emits
2649 * the output prior to releasing the lock.
2650 *
2651 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2652 *
2653 * console_unlock(); may be called from any context.
2654 */
console_unlock(void)2655 void console_unlock(void)
2656 {
2657 static char ext_text[CONSOLE_EXT_LOG_MAX];
2658 static char text[CONSOLE_LOG_MAX];
2659 unsigned long flags;
2660 bool do_cond_resched, retry;
2661 struct printk_info info;
2662 struct printk_record r;
2663 u64 __maybe_unused next_seq;
2664
2665 if (console_suspended) {
2666 up_console_sem();
2667 return;
2668 }
2669
2670 prb_rec_init_rd(&r, &info, text, sizeof(text));
2671
2672 /*
2673 * Console drivers are called with interrupts disabled, so
2674 * @console_may_schedule should be cleared before; however, we may
2675 * end up dumping a lot of lines, for example, if called from
2676 * console registration path, and should invoke cond_resched()
2677 * between lines if allowable. Not doing so can cause a very long
2678 * scheduling stall on a slow console leading to RCU stall and
2679 * softlockup warnings which exacerbate the issue with more
2680 * messages practically incapacitating the system.
2681 *
2682 * console_trylock() is not able to detect the preemptive
2683 * context reliably. Therefore the value must be stored before
2684 * and cleared after the "again" goto label.
2685 */
2686 do_cond_resched = console_may_schedule;
2687 again:
2688 console_may_schedule = 0;
2689
2690 /*
2691 * We released the console_sem lock, so we need to recheck if
2692 * cpu is online and (if not) is there at least one CON_ANYTIME
2693 * console.
2694 */
2695 if (!can_use_console()) {
2696 console_locked = 0;
2697 up_console_sem();
2698 return;
2699 }
2700
2701 for (;;) {
2702 size_t ext_len = 0;
2703 int handover;
2704 size_t len;
2705
2706 skip:
2707 if (!prb_read_valid(prb, console_seq, &r))
2708 break;
2709
2710 if (console_seq != r.info->seq) {
2711 console_dropped += r.info->seq - console_seq;
2712 console_seq = r.info->seq;
2713 }
2714
2715 if (suppress_message_printing(r.info->level)) {
2716 /*
2717 * Skip record we have buffered and already printed
2718 * directly to the console when we received it, and
2719 * record that has level above the console loglevel.
2720 */
2721 console_seq++;
2722 goto skip;
2723 }
2724
2725 /* Output to all consoles once old messages replayed. */
2726 if (unlikely(exclusive_console &&
2727 console_seq >= exclusive_console_stop_seq)) {
2728 exclusive_console = NULL;
2729 }
2730
2731 /*
2732 * Handle extended console text first because later
2733 * record_print_text() will modify the record buffer in-place.
2734 */
2735 if (nr_ext_console_drivers) {
2736 ext_len = info_print_ext_header(ext_text,
2737 sizeof(ext_text),
2738 r.info);
2739 ext_len += msg_print_ext_body(ext_text + ext_len,
2740 sizeof(ext_text) - ext_len,
2741 &r.text_buf[0],
2742 r.info->text_len,
2743 &r.info->dev_info);
2744 }
2745 len = record_print_text(&r,
2746 console_msg_format & MSG_FORMAT_SYSLOG,
2747 printk_time);
2748 console_seq++;
2749
2750 /*
2751 * While actively printing out messages, if another printk()
2752 * were to occur on another CPU, it may wait for this one to
2753 * finish. This task can not be preempted if there is a
2754 * waiter waiting to take over.
2755 *
2756 * Interrupts are disabled because the hand over to a waiter
2757 * must not be interrupted until the hand over is completed
2758 * (@console_waiter is cleared).
2759 */
2760 printk_safe_enter_irqsave(flags);
2761 console_lock_spinning_enable();
2762
2763 stop_critical_timings(); /* don't trace print latency */
2764 call_console_drivers(ext_text, ext_len, text, len);
2765 start_critical_timings();
2766
2767 handover = console_lock_spinning_disable_and_check();
2768 printk_safe_exit_irqrestore(flags);
2769 if (handover)
2770 return;
2771
2772 if (do_cond_resched)
2773 cond_resched();
2774 }
2775
2776 /* Get consistent value of the next-to-be-used sequence number. */
2777 next_seq = console_seq;
2778
2779 console_locked = 0;
2780 up_console_sem();
2781
2782 /*
2783 * Someone could have filled up the buffer again, so re-check if there's
2784 * something to flush. In case we cannot trylock the console_sem again,
2785 * there's a new owner and the console_unlock() from them will do the
2786 * flush, no worries.
2787 */
2788 retry = prb_read_valid(prb, next_seq, NULL);
2789 if (retry && console_trylock())
2790 goto again;
2791 }
2792 EXPORT_SYMBOL(console_unlock);
2793
2794 /**
2795 * console_conditional_schedule - yield the CPU if required
2796 *
2797 * If the console code is currently allowed to sleep, and
2798 * if this CPU should yield the CPU to another task, do
2799 * so here.
2800 *
2801 * Must be called within console_lock();.
2802 */
console_conditional_schedule(void)2803 void __sched console_conditional_schedule(void)
2804 {
2805 if (console_may_schedule)
2806 cond_resched();
2807 }
2808 EXPORT_SYMBOL(console_conditional_schedule);
2809
console_unblank(void)2810 void console_unblank(void)
2811 {
2812 struct console *c;
2813
2814 /*
2815 * console_unblank can no longer be called in interrupt context unless
2816 * oops_in_progress is set to 1..
2817 */
2818 if (oops_in_progress) {
2819 if (down_trylock_console_sem() != 0)
2820 return;
2821 } else
2822 console_lock();
2823
2824 console_locked = 1;
2825 console_may_schedule = 0;
2826 for_each_console(c)
2827 if ((c->flags & CON_ENABLED) && c->unblank)
2828 c->unblank();
2829 console_unlock();
2830 }
2831
2832 /**
2833 * console_flush_on_panic - flush console content on panic
2834 * @mode: flush all messages in buffer or just the pending ones
2835 *
2836 * Immediately output all pending messages no matter what.
2837 */
console_flush_on_panic(enum con_flush_mode mode)2838 void console_flush_on_panic(enum con_flush_mode mode)
2839 {
2840 /*
2841 * If someone else is holding the console lock, trylock will fail
2842 * and may_schedule may be set. Ignore and proceed to unlock so
2843 * that messages are flushed out. As this can be called from any
2844 * context and we don't want to get preempted while flushing,
2845 * ensure may_schedule is cleared.
2846 */
2847 console_trylock();
2848 console_may_schedule = 0;
2849
2850 if (mode == CONSOLE_REPLAY_ALL)
2851 console_seq = prb_first_valid_seq(prb);
2852 console_unlock();
2853 }
2854
2855 /*
2856 * Return the console tty driver structure and its associated index
2857 */
console_device(int * index)2858 struct tty_driver *console_device(int *index)
2859 {
2860 struct console *c;
2861 struct tty_driver *driver = NULL;
2862
2863 console_lock();
2864 for_each_console(c) {
2865 if (!c->device)
2866 continue;
2867 driver = c->device(c, index);
2868 if (driver)
2869 break;
2870 }
2871 console_unlock();
2872 return driver;
2873 }
2874
2875 /*
2876 * Prevent further output on the passed console device so that (for example)
2877 * serial drivers can disable console output before suspending a port, and can
2878 * re-enable output afterwards.
2879 */
console_stop(struct console * console)2880 void console_stop(struct console *console)
2881 {
2882 console_lock();
2883 console->flags &= ~CON_ENABLED;
2884 console_unlock();
2885 }
2886 EXPORT_SYMBOL(console_stop);
2887
console_start(struct console * console)2888 void console_start(struct console *console)
2889 {
2890 console_lock();
2891 console->flags |= CON_ENABLED;
2892 console_unlock();
2893 }
2894 EXPORT_SYMBOL(console_start);
2895
2896 static int __read_mostly keep_bootcon;
2897
keep_bootcon_setup(char * str)2898 static int __init keep_bootcon_setup(char *str)
2899 {
2900 keep_bootcon = 1;
2901 pr_info("debug: skip boot console de-registration.\n");
2902
2903 return 0;
2904 }
2905
2906 early_param("keep_bootcon", keep_bootcon_setup);
2907
2908 /*
2909 * This is called by register_console() to try to match
2910 * the newly registered console with any of the ones selected
2911 * by either the command line or add_preferred_console() and
2912 * setup/enable it.
2913 *
2914 * Care need to be taken with consoles that are statically
2915 * enabled such as netconsole
2916 */
try_enable_new_console(struct console * newcon,bool user_specified)2917 static int try_enable_new_console(struct console *newcon, bool user_specified)
2918 {
2919 struct console_cmdline *c;
2920 int i, err;
2921
2922 for (i = 0, c = console_cmdline;
2923 i < MAX_CMDLINECONSOLES && c->name[0];
2924 i++, c++) {
2925 if (c->user_specified != user_specified)
2926 continue;
2927 if (!newcon->match ||
2928 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2929 /* default matching */
2930 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2931 if (strcmp(c->name, newcon->name) != 0)
2932 continue;
2933 if (newcon->index >= 0 &&
2934 newcon->index != c->index)
2935 continue;
2936 if (newcon->index < 0)
2937 newcon->index = c->index;
2938
2939 if (_braille_register_console(newcon, c))
2940 return 0;
2941
2942 if (newcon->setup &&
2943 (err = newcon->setup(newcon, c->options)) != 0)
2944 return err;
2945 }
2946 newcon->flags |= CON_ENABLED;
2947 if (i == preferred_console) {
2948 newcon->flags |= CON_CONSDEV;
2949 has_preferred_console = true;
2950 }
2951 return 0;
2952 }
2953
2954 /*
2955 * Some consoles, such as pstore and netconsole, can be enabled even
2956 * without matching. Accept the pre-enabled consoles only when match()
2957 * and setup() had a chance to be called.
2958 */
2959 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
2960 return 0;
2961
2962 return -ENOENT;
2963 }
2964
2965 /*
2966 * The console driver calls this routine during kernel initialization
2967 * to register the console printing procedure with printk() and to
2968 * print any messages that were printed by the kernel before the
2969 * console driver was initialized.
2970 *
2971 * This can happen pretty early during the boot process (because of
2972 * early_printk) - sometimes before setup_arch() completes - be careful
2973 * of what kernel features are used - they may not be initialised yet.
2974 *
2975 * There are two types of consoles - bootconsoles (early_printk) and
2976 * "real" consoles (everything which is not a bootconsole) which are
2977 * handled differently.
2978 * - Any number of bootconsoles can be registered at any time.
2979 * - As soon as a "real" console is registered, all bootconsoles
2980 * will be unregistered automatically.
2981 * - Once a "real" console is registered, any attempt to register a
2982 * bootconsoles will be rejected
2983 */
register_console(struct console * newcon)2984 void register_console(struct console *newcon)
2985 {
2986 struct console *bcon = NULL;
2987 int err;
2988
2989 for_each_console(bcon) {
2990 if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2991 bcon->name, bcon->index))
2992 return;
2993 }
2994
2995 /*
2996 * before we register a new CON_BOOT console, make sure we don't
2997 * already have a valid console
2998 */
2999 if (newcon->flags & CON_BOOT) {
3000 for_each_console(bcon) {
3001 if (!(bcon->flags & CON_BOOT)) {
3002 pr_info("Too late to register bootconsole %s%d\n",
3003 newcon->name, newcon->index);
3004 return;
3005 }
3006 }
3007 }
3008
3009 if (console_drivers && console_drivers->flags & CON_BOOT)
3010 bcon = console_drivers;
3011
3012 if (!has_preferred_console || bcon || !console_drivers)
3013 has_preferred_console = preferred_console >= 0;
3014
3015 /*
3016 * See if we want to use this console driver. If we
3017 * didn't select a console we take the first one
3018 * that registers here.
3019 */
3020 if (!has_preferred_console) {
3021 if (newcon->index < 0)
3022 newcon->index = 0;
3023 if (newcon->setup == NULL ||
3024 newcon->setup(newcon, NULL) == 0) {
3025 newcon->flags |= CON_ENABLED;
3026 if (newcon->device) {
3027 newcon->flags |= CON_CONSDEV;
3028 has_preferred_console = true;
3029 }
3030 }
3031 }
3032
3033 /* See if this console matches one we selected on the command line */
3034 err = try_enable_new_console(newcon, true);
3035
3036 /* If not, try to match against the platform default(s) */
3037 if (err == -ENOENT)
3038 err = try_enable_new_console(newcon, false);
3039
3040 /* printk() messages are not printed to the Braille console. */
3041 if (err || newcon->flags & CON_BRL)
3042 return;
3043
3044 /*
3045 * If we have a bootconsole, and are switching to a real console,
3046 * don't print everything out again, since when the boot console, and
3047 * the real console are the same physical device, it's annoying to
3048 * see the beginning boot messages twice
3049 */
3050 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
3051 newcon->flags &= ~CON_PRINTBUFFER;
3052
3053 /*
3054 * Put this console in the list - keep the
3055 * preferred driver at the head of the list.
3056 */
3057 console_lock();
3058 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
3059 newcon->next = console_drivers;
3060 console_drivers = newcon;
3061 if (newcon->next)
3062 newcon->next->flags &= ~CON_CONSDEV;
3063 /* Ensure this flag is always set for the head of the list */
3064 newcon->flags |= CON_CONSDEV;
3065 } else {
3066 newcon->next = console_drivers->next;
3067 console_drivers->next = newcon;
3068 }
3069
3070 if (newcon->flags & CON_EXTENDED)
3071 nr_ext_console_drivers++;
3072
3073 if (newcon->flags & CON_PRINTBUFFER) {
3074 /*
3075 * console_unlock(); will print out the buffered messages
3076 * for us.
3077 *
3078 * We're about to replay the log buffer. Only do this to the
3079 * just-registered console to avoid excessive message spam to
3080 * the already-registered consoles.
3081 *
3082 * Set exclusive_console with disabled interrupts to reduce
3083 * race window with eventual console_flush_on_panic() that
3084 * ignores console_lock.
3085 */
3086 exclusive_console = newcon;
3087 exclusive_console_stop_seq = console_seq;
3088
3089 /* Get a consistent copy of @syslog_seq. */
3090 mutex_lock(&syslog_lock);
3091 console_seq = syslog_seq;
3092 mutex_unlock(&syslog_lock);
3093 }
3094 console_unlock();
3095 console_sysfs_notify();
3096
3097 /*
3098 * By unregistering the bootconsoles after we enable the real console
3099 * we get the "console xxx enabled" message on all the consoles -
3100 * boot consoles, real consoles, etc - this is to ensure that end
3101 * users know there might be something in the kernel's log buffer that
3102 * went to the bootconsole (that they do not see on the real console)
3103 */
3104 pr_info("%sconsole [%s%d] enabled\n",
3105 (newcon->flags & CON_BOOT) ? "boot" : "" ,
3106 newcon->name, newcon->index);
3107 if (bcon &&
3108 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3109 !keep_bootcon) {
3110 /* We need to iterate through all boot consoles, to make
3111 * sure we print everything out, before we unregister them.
3112 */
3113 for_each_console(bcon)
3114 if (bcon->flags & CON_BOOT)
3115 unregister_console(bcon);
3116 }
3117 }
3118 EXPORT_SYMBOL(register_console);
3119
unregister_console(struct console * console)3120 int unregister_console(struct console *console)
3121 {
3122 struct console *con;
3123 int res;
3124
3125 pr_info("%sconsole [%s%d] disabled\n",
3126 (console->flags & CON_BOOT) ? "boot" : "" ,
3127 console->name, console->index);
3128
3129 res = _braille_unregister_console(console);
3130 if (res < 0)
3131 return res;
3132 if (res > 0)
3133 return 0;
3134
3135 res = -ENODEV;
3136 console_lock();
3137 if (console_drivers == console) {
3138 console_drivers=console->next;
3139 res = 0;
3140 } else {
3141 for_each_console(con) {
3142 if (con->next == console) {
3143 con->next = console->next;
3144 res = 0;
3145 break;
3146 }
3147 }
3148 }
3149
3150 if (res)
3151 goto out_disable_unlock;
3152
3153 if (console->flags & CON_EXTENDED)
3154 nr_ext_console_drivers--;
3155
3156 /*
3157 * If this isn't the last console and it has CON_CONSDEV set, we
3158 * need to set it on the next preferred console.
3159 */
3160 if (console_drivers != NULL && console->flags & CON_CONSDEV)
3161 console_drivers->flags |= CON_CONSDEV;
3162
3163 console->flags &= ~CON_ENABLED;
3164 console_unlock();
3165 console_sysfs_notify();
3166
3167 if (console->exit)
3168 res = console->exit(console);
3169
3170 return res;
3171
3172 out_disable_unlock:
3173 console->flags &= ~CON_ENABLED;
3174 console_unlock();
3175
3176 return res;
3177 }
3178 EXPORT_SYMBOL(unregister_console);
3179
3180 /*
3181 * Initialize the console device. This is called *early*, so
3182 * we can't necessarily depend on lots of kernel help here.
3183 * Just do some early initializations, and do the complex setup
3184 * later.
3185 */
console_init(void)3186 void __init console_init(void)
3187 {
3188 int ret;
3189 initcall_t call;
3190 initcall_entry_t *ce;
3191
3192 /* Setup the default TTY line discipline. */
3193 n_tty_init();
3194
3195 /*
3196 * set up the console device so that later boot sequences can
3197 * inform about problems etc..
3198 */
3199 ce = __con_initcall_start;
3200 trace_initcall_level("console");
3201 while (ce < __con_initcall_end) {
3202 call = initcall_from_entry(ce);
3203 trace_initcall_start(call);
3204 ret = call();
3205 trace_initcall_finish(call, ret);
3206 ce++;
3207 }
3208 }
3209
3210 /*
3211 * Some boot consoles access data that is in the init section and which will
3212 * be discarded after the initcalls have been run. To make sure that no code
3213 * will access this data, unregister the boot consoles in a late initcall.
3214 *
3215 * If for some reason, such as deferred probe or the driver being a loadable
3216 * module, the real console hasn't registered yet at this point, there will
3217 * be a brief interval in which no messages are logged to the console, which
3218 * makes it difficult to diagnose problems that occur during this time.
3219 *
3220 * To mitigate this problem somewhat, only unregister consoles whose memory
3221 * intersects with the init section. Note that all other boot consoles will
3222 * get unregistered when the real preferred console is registered.
3223 */
printk_late_init(void)3224 static int __init printk_late_init(void)
3225 {
3226 struct console *con;
3227 int ret;
3228
3229 for_each_console(con) {
3230 if (!(con->flags & CON_BOOT))
3231 continue;
3232
3233 /* Check addresses that might be used for enabled consoles. */
3234 if (init_section_intersects(con, sizeof(*con)) ||
3235 init_section_contains(con->write, 0) ||
3236 init_section_contains(con->read, 0) ||
3237 init_section_contains(con->device, 0) ||
3238 init_section_contains(con->unblank, 0) ||
3239 init_section_contains(con->data, 0)) {
3240 /*
3241 * Please, consider moving the reported consoles out
3242 * of the init section.
3243 */
3244 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3245 con->name, con->index);
3246 unregister_console(con);
3247 }
3248 }
3249 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3250 console_cpu_notify);
3251 WARN_ON(ret < 0);
3252 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3253 console_cpu_notify, NULL);
3254 WARN_ON(ret < 0);
3255 return 0;
3256 }
3257 late_initcall(printk_late_init);
3258
3259 #if defined CONFIG_PRINTK
3260 /*
3261 * Delayed printk version, for scheduler-internal messages:
3262 */
3263 #define PRINTK_PENDING_WAKEUP 0x01
3264 #define PRINTK_PENDING_OUTPUT 0x02
3265
3266 static DEFINE_PER_CPU(int, printk_pending);
3267
wake_up_klogd_work_func(struct irq_work * irq_work)3268 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3269 {
3270 int pending = this_cpu_xchg(printk_pending, 0);
3271
3272 if (pending & PRINTK_PENDING_OUTPUT) {
3273 /* If trylock fails, someone else is doing the printing */
3274 if (console_trylock())
3275 console_unlock();
3276 }
3277
3278 if (pending & PRINTK_PENDING_WAKEUP)
3279 wake_up_interruptible(&log_wait);
3280 }
3281
3282 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3283 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3284
__wake_up_klogd(int val)3285 static void __wake_up_klogd(int val)
3286 {
3287 if (!printk_percpu_data_ready())
3288 return;
3289
3290 preempt_disable();
3291 /*
3292 * Guarantee any new records can be seen by tasks preparing to wait
3293 * before this context checks if the wait queue is empty.
3294 *
3295 * The full memory barrier within wq_has_sleeper() pairs with the full
3296 * memory barrier within set_current_state() of
3297 * prepare_to_wait_event(), which is called after ___wait_event() adds
3298 * the waiter but before it has checked the wait condition.
3299 *
3300 * This pairs with devkmsg_read:A and syslog_print:A.
3301 */
3302 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3303 (val & PRINTK_PENDING_OUTPUT)) {
3304 this_cpu_or(printk_pending, val);
3305 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3306 }
3307 preempt_enable();
3308 }
3309
3310 /**
3311 * wake_up_klogd - Wake kernel logging daemon
3312 *
3313 * Use this function when new records have been added to the ringbuffer
3314 * and the console printing of those records has already occurred or is
3315 * known to be handled by some other context. This function will only
3316 * wake the logging daemon.
3317 *
3318 * Context: Any context.
3319 */
wake_up_klogd(void)3320 void wake_up_klogd(void)
3321 {
3322 __wake_up_klogd(PRINTK_PENDING_WAKEUP);
3323 }
3324
3325 /**
3326 * defer_console_output - Wake kernel logging daemon and trigger
3327 * console printing in a deferred context
3328 *
3329 * Use this function when new records have been added to the ringbuffer,
3330 * this context is responsible for console printing those records, but
3331 * the current context is not allowed to perform the console printing.
3332 * Trigger an irq_work context to perform the console printing. This
3333 * function also wakes the logging daemon.
3334 *
3335 * Context: Any context.
3336 */
defer_console_output(void)3337 void defer_console_output(void)
3338 {
3339 /*
3340 * New messages may have been added directly to the ringbuffer
3341 * using vprintk_store(), so wake any waiters as well.
3342 */
3343 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3344 }
3345
printk_trigger_flush(void)3346 void printk_trigger_flush(void)
3347 {
3348 defer_console_output();
3349 }
3350
vprintk_deferred(const char * fmt,va_list args)3351 int vprintk_deferred(const char *fmt, va_list args)
3352 {
3353 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3354 }
3355
_printk_deferred(const char * fmt,...)3356 int _printk_deferred(const char *fmt, ...)
3357 {
3358 va_list args;
3359 int r;
3360
3361 va_start(args, fmt);
3362 r = vprintk_deferred(fmt, args);
3363 va_end(args);
3364
3365 return r;
3366 }
3367 EXPORT_SYMBOL_GPL(_printk_deferred);
3368
3369 /*
3370 * printk rate limiting, lifted from the networking subsystem.
3371 *
3372 * This enforces a rate limit: not more than 10 kernel messages
3373 * every 5s to make a denial-of-service attack impossible.
3374 */
3375 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3376
__printk_ratelimit(const char * func)3377 int __printk_ratelimit(const char *func)
3378 {
3379 return ___ratelimit(&printk_ratelimit_state, func);
3380 }
3381 EXPORT_SYMBOL(__printk_ratelimit);
3382
3383 /**
3384 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3385 * @caller_jiffies: pointer to caller's state
3386 * @interval_msecs: minimum interval between prints
3387 *
3388 * printk_timed_ratelimit() returns true if more than @interval_msecs
3389 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3390 * returned true.
3391 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)3392 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3393 unsigned int interval_msecs)
3394 {
3395 unsigned long elapsed = jiffies - *caller_jiffies;
3396
3397 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3398 return false;
3399
3400 *caller_jiffies = jiffies;
3401 return true;
3402 }
3403 EXPORT_SYMBOL(printk_timed_ratelimit);
3404
3405 static DEFINE_SPINLOCK(dump_list_lock);
3406 static LIST_HEAD(dump_list);
3407
3408 /**
3409 * kmsg_dump_register - register a kernel log dumper.
3410 * @dumper: pointer to the kmsg_dumper structure
3411 *
3412 * Adds a kernel log dumper to the system. The dump callback in the
3413 * structure will be called when the kernel oopses or panics and must be
3414 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3415 */
kmsg_dump_register(struct kmsg_dumper * dumper)3416 int kmsg_dump_register(struct kmsg_dumper *dumper)
3417 {
3418 unsigned long flags;
3419 int err = -EBUSY;
3420
3421 /* The dump callback needs to be set */
3422 if (!dumper->dump)
3423 return -EINVAL;
3424
3425 spin_lock_irqsave(&dump_list_lock, flags);
3426 /* Don't allow registering multiple times */
3427 if (!dumper->registered) {
3428 dumper->registered = 1;
3429 list_add_tail_rcu(&dumper->list, &dump_list);
3430 err = 0;
3431 }
3432 spin_unlock_irqrestore(&dump_list_lock, flags);
3433
3434 return err;
3435 }
3436 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3437
3438 /**
3439 * kmsg_dump_unregister - unregister a kmsg dumper.
3440 * @dumper: pointer to the kmsg_dumper structure
3441 *
3442 * Removes a dump device from the system. Returns zero on success and
3443 * %-EINVAL otherwise.
3444 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3445 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3446 {
3447 unsigned long flags;
3448 int err = -EINVAL;
3449
3450 spin_lock_irqsave(&dump_list_lock, flags);
3451 if (dumper->registered) {
3452 dumper->registered = 0;
3453 list_del_rcu(&dumper->list);
3454 err = 0;
3455 }
3456 spin_unlock_irqrestore(&dump_list_lock, flags);
3457 synchronize_rcu();
3458
3459 return err;
3460 }
3461 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3462
3463 static bool always_kmsg_dump;
3464 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3465
kmsg_dump_reason_str(enum kmsg_dump_reason reason)3466 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3467 {
3468 switch (reason) {
3469 case KMSG_DUMP_PANIC:
3470 return "Panic";
3471 case KMSG_DUMP_OOPS:
3472 return "Oops";
3473 case KMSG_DUMP_EMERG:
3474 return "Emergency";
3475 case KMSG_DUMP_SHUTDOWN:
3476 return "Shutdown";
3477 default:
3478 return "Unknown";
3479 }
3480 }
3481 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3482
3483 /**
3484 * kmsg_dump - dump kernel log to kernel message dumpers.
3485 * @reason: the reason (oops, panic etc) for dumping
3486 *
3487 * Call each of the registered dumper's dump() callback, which can
3488 * retrieve the kmsg records with kmsg_dump_get_line() or
3489 * kmsg_dump_get_buffer().
3490 */
kmsg_dump(enum kmsg_dump_reason reason)3491 void kmsg_dump(enum kmsg_dump_reason reason)
3492 {
3493 struct kmsg_dumper *dumper;
3494
3495 rcu_read_lock();
3496 list_for_each_entry_rcu(dumper, &dump_list, list) {
3497 enum kmsg_dump_reason max_reason = dumper->max_reason;
3498
3499 /*
3500 * If client has not provided a specific max_reason, default
3501 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3502 */
3503 if (max_reason == KMSG_DUMP_UNDEF) {
3504 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3505 KMSG_DUMP_OOPS;
3506 }
3507 if (reason > max_reason)
3508 continue;
3509
3510 /* invoke dumper which will iterate over records */
3511 dumper->dump(dumper, reason);
3512 }
3513 rcu_read_unlock();
3514 }
3515
3516 /**
3517 * kmsg_dump_get_line - retrieve one kmsg log line
3518 * @iter: kmsg dump iterator
3519 * @syslog: include the "<4>" prefixes
3520 * @line: buffer to copy the line to
3521 * @size: maximum size of the buffer
3522 * @len: length of line placed into buffer
3523 *
3524 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3525 * record, and copy one record into the provided buffer.
3526 *
3527 * Consecutive calls will return the next available record moving
3528 * towards the end of the buffer with the youngest messages.
3529 *
3530 * A return value of FALSE indicates that there are no more records to
3531 * read.
3532 */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)3533 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3534 char *line, size_t size, size_t *len)
3535 {
3536 u64 min_seq = latched_seq_read_nolock(&clear_seq);
3537 struct printk_info info;
3538 unsigned int line_count;
3539 struct printk_record r;
3540 size_t l = 0;
3541 bool ret = false;
3542
3543 if (iter->cur_seq < min_seq)
3544 iter->cur_seq = min_seq;
3545
3546 prb_rec_init_rd(&r, &info, line, size);
3547
3548 /* Read text or count text lines? */
3549 if (line) {
3550 if (!prb_read_valid(prb, iter->cur_seq, &r))
3551 goto out;
3552 l = record_print_text(&r, syslog, printk_time);
3553 } else {
3554 if (!prb_read_valid_info(prb, iter->cur_seq,
3555 &info, &line_count)) {
3556 goto out;
3557 }
3558 l = get_record_print_text_size(&info, line_count, syslog,
3559 printk_time);
3560
3561 }
3562
3563 iter->cur_seq = r.info->seq + 1;
3564 ret = true;
3565 out:
3566 if (len)
3567 *len = l;
3568 return ret;
3569 }
3570 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3571
3572 /**
3573 * kmsg_dump_get_buffer - copy kmsg log lines
3574 * @iter: kmsg dump iterator
3575 * @syslog: include the "<4>" prefixes
3576 * @buf: buffer to copy the line to
3577 * @size: maximum size of the buffer
3578 * @len_out: length of line placed into buffer
3579 *
3580 * Start at the end of the kmsg buffer and fill the provided buffer
3581 * with as many of the *youngest* kmsg records that fit into it.
3582 * If the buffer is large enough, all available kmsg records will be
3583 * copied with a single call.
3584 *
3585 * Consecutive calls will fill the buffer with the next block of
3586 * available older records, not including the earlier retrieved ones.
3587 *
3588 * A return value of FALSE indicates that there are no more records to
3589 * read.
3590 */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)3591 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3592 char *buf, size_t size, size_t *len_out)
3593 {
3594 u64 min_seq = latched_seq_read_nolock(&clear_seq);
3595 struct printk_info info;
3596 struct printk_record r;
3597 u64 seq;
3598 u64 next_seq;
3599 size_t len = 0;
3600 bool ret = false;
3601 bool time = printk_time;
3602
3603 if (!buf || !size)
3604 goto out;
3605
3606 if (iter->cur_seq < min_seq)
3607 iter->cur_seq = min_seq;
3608
3609 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3610 if (info.seq != iter->cur_seq) {
3611 /* messages are gone, move to first available one */
3612 iter->cur_seq = info.seq;
3613 }
3614 }
3615
3616 /* last entry */
3617 if (iter->cur_seq >= iter->next_seq)
3618 goto out;
3619
3620 /*
3621 * Find first record that fits, including all following records,
3622 * into the user-provided buffer for this dump. Pass in size-1
3623 * because this function (by way of record_print_text()) will
3624 * not write more than size-1 bytes of text into @buf.
3625 */
3626 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3627 size - 1, syslog, time);
3628
3629 /*
3630 * Next kmsg_dump_get_buffer() invocation will dump block of
3631 * older records stored right before this one.
3632 */
3633 next_seq = seq;
3634
3635 prb_rec_init_rd(&r, &info, buf, size);
3636
3637 len = 0;
3638 prb_for_each_record(seq, prb, seq, &r) {
3639 if (r.info->seq >= iter->next_seq)
3640 break;
3641
3642 len += record_print_text(&r, syslog, time);
3643
3644 /* Adjust record to store to remaining buffer space. */
3645 prb_rec_init_rd(&r, &info, buf + len, size - len);
3646 }
3647
3648 iter->next_seq = next_seq;
3649 ret = true;
3650 out:
3651 if (len_out)
3652 *len_out = len;
3653 return ret;
3654 }
3655 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3656
3657 /**
3658 * kmsg_dump_rewind - reset the iterator
3659 * @iter: kmsg dump iterator
3660 *
3661 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3662 * kmsg_dump_get_buffer() can be called again and used multiple
3663 * times within the same dumper.dump() callback.
3664 */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)3665 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3666 {
3667 iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3668 iter->next_seq = prb_next_seq(prb);
3669 }
3670 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3671
3672 #endif
3673
3674 #ifdef CONFIG_SMP
3675 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3676 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3677
3678 /**
3679 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3680 * spinning lock is not owned by any CPU.
3681 *
3682 * Context: Any context.
3683 */
__printk_wait_on_cpu_lock(void)3684 void __printk_wait_on_cpu_lock(void)
3685 {
3686 do {
3687 cpu_relax();
3688 } while (atomic_read(&printk_cpulock_owner) != -1);
3689 }
3690 EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3691
3692 /**
3693 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3694 * spinning lock.
3695 *
3696 * If no processor has the lock, the calling processor takes the lock and
3697 * becomes the owner. If the calling processor is already the owner of the
3698 * lock, this function succeeds immediately.
3699 *
3700 * Context: Any context. Expects interrupts to be disabled.
3701 * Return: 1 on success, otherwise 0.
3702 */
__printk_cpu_trylock(void)3703 int __printk_cpu_trylock(void)
3704 {
3705 int cpu;
3706 int old;
3707
3708 cpu = smp_processor_id();
3709
3710 /*
3711 * Guarantee loads and stores from this CPU when it is the lock owner
3712 * are _not_ visible to the previous lock owner. This pairs with
3713 * __printk_cpu_unlock:B.
3714 *
3715 * Memory barrier involvement:
3716 *
3717 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3718 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3719 *
3720 * Relies on:
3721 *
3722 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3723 * of the previous CPU
3724 * matching
3725 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3726 * of this CPU
3727 */
3728 old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3729 cpu); /* LMM(__printk_cpu_trylock:A) */
3730 if (old == -1) {
3731 /*
3732 * This CPU is now the owner and begins loading/storing
3733 * data: LMM(__printk_cpu_trylock:B)
3734 */
3735 return 1;
3736
3737 } else if (old == cpu) {
3738 /* This CPU is already the owner. */
3739 atomic_inc(&printk_cpulock_nested);
3740 return 1;
3741 }
3742
3743 return 0;
3744 }
3745 EXPORT_SYMBOL(__printk_cpu_trylock);
3746
3747 /**
3748 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3749 *
3750 * The calling processor must be the owner of the lock.
3751 *
3752 * Context: Any context. Expects interrupts to be disabled.
3753 */
__printk_cpu_unlock(void)3754 void __printk_cpu_unlock(void)
3755 {
3756 if (atomic_read(&printk_cpulock_nested)) {
3757 atomic_dec(&printk_cpulock_nested);
3758 return;
3759 }
3760
3761 /*
3762 * This CPU is finished loading/storing data:
3763 * LMM(__printk_cpu_unlock:A)
3764 */
3765
3766 /*
3767 * Guarantee loads and stores from this CPU when it was the
3768 * lock owner are visible to the next lock owner. This pairs
3769 * with __printk_cpu_trylock:A.
3770 *
3771 * Memory barrier involvement:
3772 *
3773 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3774 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3775 *
3776 * Relies on:
3777 *
3778 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3779 * of this CPU
3780 * matching
3781 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3782 * of the next CPU
3783 */
3784 atomic_set_release(&printk_cpulock_owner,
3785 -1); /* LMM(__printk_cpu_unlock:B) */
3786 }
3787 EXPORT_SYMBOL(__printk_cpu_unlock);
3788 #endif /* CONFIG_SMP */
3789