• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 #include <trace/hooks/bl_hib.h>
48 
49 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
50 				 unsigned char);
51 static void free_swap_count_continuations(struct swap_info_struct *);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
swap_type_to_swap_info(int type)102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= MAX_SWAPFILES)
105 		return NULL;
106 
107 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
108 }
109 
swap_count(unsigned char ent)110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
first_se(struct swap_info_struct * sis)154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 	return rb_entry(rb, struct swap_extent, rb_node);
158 }
159 
next_se(struct swap_extent * se)160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 	struct rb_node *rb = rb_next(&se->rb_node);
163 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165 
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
discard_swap(struct swap_info_struct * si)170 static int discard_swap(struct swap_info_struct *si)
171 {
172 	struct swap_extent *se;
173 	sector_t start_block;
174 	sector_t nr_blocks;
175 	int err = 0;
176 
177 	/* Do not discard the swap header page! */
178 	se = first_se(si);
179 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 	if (nr_blocks) {
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL, 0);
184 		if (err)
185 			return err;
186 		cond_resched();
187 	}
188 
189 	for (se = next_se(se); se; se = next_se(se)) {
190 		start_block = se->start_block << (PAGE_SHIFT - 9);
191 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 
193 		err = blkdev_issue_discard(si->bdev, start_block,
194 				nr_blocks, GFP_KERNEL, 0);
195 		if (err)
196 			break;
197 
198 		cond_resched();
199 	}
200 	return err;		/* That will often be -EOPNOTSUPP */
201 }
202 
203 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 	struct swap_extent *se;
207 	struct rb_node *rb;
208 
209 	rb = sis->swap_extent_root.rb_node;
210 	while (rb) {
211 		se = rb_entry(rb, struct swap_extent, rb_node);
212 		if (offset < se->start_page)
213 			rb = rb->rb_left;
214 		else if (offset >= se->start_page + se->nr_pages)
215 			rb = rb->rb_right;
216 		else
217 			return se;
218 	}
219 	/* It *must* be present */
220 	BUG();
221 }
222 
swap_page_sector(struct page * page)223 sector_t swap_page_sector(struct page *page)
224 {
225 	struct swap_info_struct *sis = page_swap_info(page);
226 	struct swap_extent *se;
227 	sector_t sector;
228 	pgoff_t offset;
229 
230 	offset = __page_file_index(page);
231 	se = offset_to_swap_extent(sis, offset);
232 	sector = se->start_block + (offset - se->start_page);
233 	return sector << (PAGE_SHIFT - 9);
234 }
235 
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)240 static void discard_swap_cluster(struct swap_info_struct *si,
241 				 pgoff_t start_page, pgoff_t nr_pages)
242 {
243 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
244 
245 	while (nr_pages) {
246 		pgoff_t offset = start_page - se->start_page;
247 		sector_t start_block = se->start_block + offset;
248 		sector_t nr_blocks = se->nr_pages - offset;
249 
250 		if (nr_blocks > nr_pages)
251 			nr_blocks = nr_pages;
252 		start_page += nr_blocks;
253 		nr_pages -= nr_blocks;
254 
255 		start_block <<= PAGE_SHIFT - 9;
256 		nr_blocks <<= PAGE_SHIFT - 9;
257 		if (blkdev_issue_discard(si->bdev, start_block,
258 					nr_blocks, GFP_NOIO, 0))
259 			break;
260 
261 		se = next_se(se);
262 	}
263 }
264 
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
267 
268 #define swap_entry_size(size)	(size)
269 #else
270 #define SWAPFILE_CLUSTER	256
271 
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)	1
277 #endif
278 #define LATENCY_LIMIT		256
279 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281 	unsigned int flag)
282 {
283 	info->flags = flag;
284 }
285 
cluster_count(struct swap_cluster_info * info)286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288 	return info->data;
289 }
290 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)291 static inline void cluster_set_count(struct swap_cluster_info *info,
292 				     unsigned int c)
293 {
294 	info->data = c;
295 }
296 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298 					 unsigned int c, unsigned int f)
299 {
300 	info->flags = f;
301 	info->data = c;
302 }
303 
cluster_next(struct swap_cluster_info * info)304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306 	return info->data;
307 }
308 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)309 static inline void cluster_set_next(struct swap_cluster_info *info,
310 				    unsigned int n)
311 {
312 	info->data = n;
313 }
314 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316 					 unsigned int n, unsigned int f)
317 {
318 	info->flags = f;
319 	info->data = n;
320 }
321 
cluster_is_free(struct swap_cluster_info * info)322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324 	return info->flags & CLUSTER_FLAG_FREE;
325 }
326 
cluster_is_null(struct swap_cluster_info * info)327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331 
cluster_set_null(struct swap_cluster_info * info)332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334 	info->flags = CLUSTER_FLAG_NEXT_NULL;
335 	info->data = 0;
336 }
337 
cluster_is_huge(struct swap_cluster_info * info)338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340 	if (IS_ENABLED(CONFIG_THP_SWAP))
341 		return info->flags & CLUSTER_FLAG_HUGE;
342 	return false;
343 }
344 
cluster_clear_huge(struct swap_cluster_info * info)345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347 	info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349 
lock_cluster(struct swap_info_struct * si,unsigned long offset)350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351 						     unsigned long offset)
352 {
353 	struct swap_cluster_info *ci;
354 
355 	ci = si->cluster_info;
356 	if (ci) {
357 		ci += offset / SWAPFILE_CLUSTER;
358 		spin_lock(&ci->lock);
359 	}
360 	return ci;
361 }
362 
unlock_cluster(struct swap_cluster_info * ci)363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365 	if (ci)
366 		spin_unlock(&ci->lock);
367 }
368 
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374 		struct swap_info_struct *si, unsigned long offset)
375 {
376 	struct swap_cluster_info *ci;
377 
378 	/* Try to use fine-grained SSD-style locking if available: */
379 	ci = lock_cluster(si, offset);
380 	/* Otherwise, fall back to traditional, coarse locking: */
381 	if (!ci)
382 		spin_lock(&si->lock);
383 
384 	return ci;
385 }
386 
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388 					       struct swap_cluster_info *ci)
389 {
390 	if (ci)
391 		unlock_cluster(ci);
392 	else
393 		spin_unlock(&si->lock);
394 }
395 
cluster_list_empty(struct swap_cluster_list * list)396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398 	return cluster_is_null(&list->head);
399 }
400 
cluster_list_first(struct swap_cluster_list * list)401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403 	return cluster_next(&list->head);
404 }
405 
cluster_list_init(struct swap_cluster_list * list)406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408 	cluster_set_null(&list->head);
409 	cluster_set_null(&list->tail);
410 }
411 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413 				  struct swap_cluster_info *ci,
414 				  unsigned int idx)
415 {
416 	if (cluster_list_empty(list)) {
417 		cluster_set_next_flag(&list->head, idx, 0);
418 		cluster_set_next_flag(&list->tail, idx, 0);
419 	} else {
420 		struct swap_cluster_info *ci_tail;
421 		unsigned int tail = cluster_next(&list->tail);
422 
423 		/*
424 		 * Nested cluster lock, but both cluster locks are
425 		 * only acquired when we held swap_info_struct->lock
426 		 */
427 		ci_tail = ci + tail;
428 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429 		cluster_set_next(ci_tail, idx);
430 		spin_unlock(&ci_tail->lock);
431 		cluster_set_next_flag(&list->tail, idx, 0);
432 	}
433 }
434 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436 					   struct swap_cluster_info *ci)
437 {
438 	unsigned int idx;
439 
440 	idx = cluster_next(&list->head);
441 	if (cluster_next(&list->tail) == idx) {
442 		cluster_set_null(&list->head);
443 		cluster_set_null(&list->tail);
444 	} else
445 		cluster_set_next_flag(&list->head,
446 				      cluster_next(&ci[idx]), 0);
447 
448 	return idx;
449 }
450 
451 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453 		unsigned int idx)
454 {
455 	/*
456 	 * If scan_swap_map_slots() can't find a free cluster, it will check
457 	 * si->swap_map directly. To make sure the discarding cluster isn't
458 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
459 	 * It will be cleared after discard
460 	 */
461 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463 
464 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465 
466 	schedule_work(&si->discard_work);
467 }
468 
__free_cluster(struct swap_info_struct * si,unsigned long idx)469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471 	struct swap_cluster_info *ci = si->cluster_info;
472 
473 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474 	cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476 
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
swap_do_scheduled_discard(struct swap_info_struct * si)481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483 	struct swap_cluster_info *info, *ci;
484 	unsigned int idx;
485 
486 	info = si->cluster_info;
487 
488 	while (!cluster_list_empty(&si->discard_clusters)) {
489 		idx = cluster_list_del_first(&si->discard_clusters, info);
490 		spin_unlock(&si->lock);
491 
492 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493 				SWAPFILE_CLUSTER);
494 
495 		spin_lock(&si->lock);
496 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497 		__free_cluster(si, idx);
498 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499 				0, SWAPFILE_CLUSTER);
500 		unlock_cluster(ci);
501 	}
502 }
503 
swap_discard_work(struct work_struct * work)504 static void swap_discard_work(struct work_struct *work)
505 {
506 	struct swap_info_struct *si;
507 
508 	si = container_of(work, struct swap_info_struct, discard_work);
509 
510 	spin_lock(&si->lock);
511 	swap_do_scheduled_discard(si);
512 	spin_unlock(&si->lock);
513 }
514 
swap_users_ref_free(struct percpu_ref * ref)515 static void swap_users_ref_free(struct percpu_ref *ref)
516 {
517 	struct swap_info_struct *si;
518 
519 	si = container_of(ref, struct swap_info_struct, users);
520 	complete(&si->comp);
521 }
522 
alloc_cluster(struct swap_info_struct * si,unsigned long idx)523 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525 	struct swap_cluster_info *ci = si->cluster_info;
526 
527 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528 	cluster_list_del_first(&si->free_clusters, ci);
529 	cluster_set_count_flag(ci + idx, 0, 0);
530 }
531 
free_cluster(struct swap_info_struct * si,unsigned long idx)532 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 {
534 	struct swap_cluster_info *ci = si->cluster_info + idx;
535 
536 	VM_BUG_ON(cluster_count(ci) != 0);
537 	/*
538 	 * If the swap is discardable, prepare discard the cluster
539 	 * instead of free it immediately. The cluster will be freed
540 	 * after discard.
541 	 */
542 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544 		swap_cluster_schedule_discard(si, idx);
545 		return;
546 	}
547 
548 	__free_cluster(si, idx);
549 }
550 
551 /*
552  * The cluster corresponding to page_nr will be used. The cluster will be
553  * removed from free cluster list and its usage counter will be increased.
554  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)555 static void inc_cluster_info_page(struct swap_info_struct *p,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 
560 	if (!cluster_info)
561 		return;
562 	if (cluster_is_free(&cluster_info[idx]))
563 		alloc_cluster(p, idx);
564 
565 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566 	cluster_set_count(&cluster_info[idx],
567 		cluster_count(&cluster_info[idx]) + 1);
568 }
569 
570 /*
571  * The cluster corresponding to page_nr decreases one usage. If the usage
572  * counter becomes 0, which means no page in the cluster is in using, we can
573  * optionally discard the cluster and add it to free cluster list.
574  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)575 static void dec_cluster_info_page(struct swap_info_struct *p,
576 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 {
578 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579 
580 	if (!cluster_info)
581 		return;
582 
583 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584 	cluster_set_count(&cluster_info[idx],
585 		cluster_count(&cluster_info[idx]) - 1);
586 
587 	if (cluster_count(&cluster_info[idx]) == 0)
588 		free_cluster(p, idx);
589 }
590 
591 /*
592  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
593  * cluster list. Avoiding such abuse to avoid list corruption.
594  */
595 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)596 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
597 	unsigned long offset)
598 {
599 	struct percpu_cluster *percpu_cluster;
600 	bool conflict;
601 
602 	offset /= SWAPFILE_CLUSTER;
603 	conflict = !cluster_list_empty(&si->free_clusters) &&
604 		offset != cluster_list_first(&si->free_clusters) &&
605 		cluster_is_free(&si->cluster_info[offset]);
606 
607 	if (!conflict)
608 		return false;
609 
610 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611 	cluster_set_null(&percpu_cluster->index);
612 	return true;
613 }
614 
615 /*
616  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617  * might involve allocating a new cluster for current CPU too.
618  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)619 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
620 	unsigned long *offset, unsigned long *scan_base)
621 {
622 	struct percpu_cluster *cluster;
623 	struct swap_cluster_info *ci;
624 	unsigned long tmp, max;
625 
626 new_cluster:
627 	cluster = this_cpu_ptr(si->percpu_cluster);
628 	if (cluster_is_null(&cluster->index)) {
629 		if (!cluster_list_empty(&si->free_clusters)) {
630 			cluster->index = si->free_clusters.head;
631 			cluster->next = cluster_next(&cluster->index) *
632 					SWAPFILE_CLUSTER;
633 		} else if (!cluster_list_empty(&si->discard_clusters)) {
634 			/*
635 			 * we don't have free cluster but have some clusters in
636 			 * discarding, do discard now and reclaim them, then
637 			 * reread cluster_next_cpu since we dropped si->lock
638 			 */
639 			swap_do_scheduled_discard(si);
640 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
641 			*offset = *scan_base;
642 			goto new_cluster;
643 		} else
644 			return false;
645 	}
646 
647 	/*
648 	 * Other CPUs can use our cluster if they can't find a free cluster,
649 	 * check if there is still free entry in the cluster
650 	 */
651 	tmp = cluster->next;
652 	max = min_t(unsigned long, si->max,
653 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654 	if (tmp < max) {
655 		ci = lock_cluster(si, tmp);
656 		while (tmp < max) {
657 			if (!si->swap_map[tmp])
658 				break;
659 			tmp++;
660 		}
661 		unlock_cluster(ci);
662 	}
663 	if (tmp >= max) {
664 		cluster_set_null(&cluster->index);
665 		goto new_cluster;
666 	}
667 	cluster->next = tmp + 1;
668 	*offset = tmp;
669 	*scan_base = tmp;
670 	return true;
671 }
672 
__del_from_avail_list(struct swap_info_struct * p)673 static void __del_from_avail_list(struct swap_info_struct *p)
674 {
675 	int nid;
676 
677 	assert_spin_locked(&p->lock);
678 	for_each_node(nid)
679 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
680 }
681 
del_from_avail_list(struct swap_info_struct * p)682 static void del_from_avail_list(struct swap_info_struct *p)
683 {
684 	spin_lock(&swap_avail_lock);
685 	__del_from_avail_list(p);
686 	spin_unlock(&swap_avail_lock);
687 }
688 
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
690 			     unsigned int nr_entries)
691 {
692 	unsigned int end = offset + nr_entries - 1;
693 
694 	if (offset == si->lowest_bit)
695 		si->lowest_bit += nr_entries;
696 	if (end == si->highest_bit)
697 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
698 	si->inuse_pages += nr_entries;
699 	if (si->inuse_pages == si->pages) {
700 		si->lowest_bit = si->max;
701 		si->highest_bit = 0;
702 		del_from_avail_list(si);
703 	}
704 }
705 
add_to_avail_list(struct swap_info_struct * p)706 static void add_to_avail_list(struct swap_info_struct *p)
707 {
708 	int nid;
709 
710 	spin_lock(&swap_avail_lock);
711 	for_each_node(nid) {
712 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
713 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
714 	}
715 	spin_unlock(&swap_avail_lock);
716 }
717 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)718 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
719 			    unsigned int nr_entries)
720 {
721 	unsigned long begin = offset;
722 	unsigned long end = offset + nr_entries - 1;
723 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
724 
725 	if (offset < si->lowest_bit)
726 		si->lowest_bit = offset;
727 	if (end > si->highest_bit) {
728 		bool was_full = !si->highest_bit;
729 
730 		WRITE_ONCE(si->highest_bit, end);
731 		if (was_full && (si->flags & SWP_WRITEOK))
732 			add_to_avail_list(si);
733 	}
734 	atomic_long_add(nr_entries, &nr_swap_pages);
735 	si->inuse_pages -= nr_entries;
736 	if (si->flags & SWP_BLKDEV)
737 		swap_slot_free_notify =
738 			si->bdev->bd_disk->fops->swap_slot_free_notify;
739 	else
740 		swap_slot_free_notify = NULL;
741 	while (offset <= end) {
742 		arch_swap_invalidate_page(si->type, offset);
743 		frontswap_invalidate_page(si->type, offset);
744 		if (swap_slot_free_notify)
745 			swap_slot_free_notify(si->bdev, offset);
746 		offset++;
747 	}
748 	clear_shadow_from_swap_cache(si->type, begin, end);
749 }
750 
set_cluster_next(struct swap_info_struct * si,unsigned long next)751 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
752 {
753 	unsigned long prev;
754 
755 	if (!(si->flags & SWP_SOLIDSTATE)) {
756 		si->cluster_next = next;
757 		return;
758 	}
759 
760 	prev = this_cpu_read(*si->cluster_next_cpu);
761 	/*
762 	 * Cross the swap address space size aligned trunk, choose
763 	 * another trunk randomly to avoid lock contention on swap
764 	 * address space if possible.
765 	 */
766 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
767 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
768 		/* No free swap slots available */
769 		if (si->highest_bit <= si->lowest_bit)
770 			return;
771 		next = si->lowest_bit +
772 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
773 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
774 		next = max_t(unsigned int, next, si->lowest_bit);
775 	}
776 	this_cpu_write(*si->cluster_next_cpu, next);
777 }
778 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])779 static int scan_swap_map_slots(struct swap_info_struct *si,
780 			       unsigned char usage, int nr,
781 			       swp_entry_t slots[])
782 {
783 	struct swap_cluster_info *ci;
784 	unsigned long offset;
785 	unsigned long scan_base;
786 	unsigned long last_in_cluster = 0;
787 	int latency_ration = LATENCY_LIMIT;
788 	int n_ret = 0;
789 	bool scanned_many = false;
790 
791 	/*
792 	 * We try to cluster swap pages by allocating them sequentially
793 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
794 	 * way, however, we resort to first-free allocation, starting
795 	 * a new cluster.  This prevents us from scattering swap pages
796 	 * all over the entire swap partition, so that we reduce
797 	 * overall disk seek times between swap pages.  -- sct
798 	 * But we do now try to find an empty cluster.  -Andrea
799 	 * And we let swap pages go all over an SSD partition.  Hugh
800 	 */
801 
802 	si->flags += SWP_SCANNING;
803 	/*
804 	 * Use percpu scan base for SSD to reduce lock contention on
805 	 * cluster and swap cache.  For HDD, sequential access is more
806 	 * important.
807 	 */
808 	if (si->flags & SWP_SOLIDSTATE)
809 		scan_base = this_cpu_read(*si->cluster_next_cpu);
810 	else
811 		scan_base = si->cluster_next;
812 	offset = scan_base;
813 
814 	/* SSD algorithm */
815 	if (si->cluster_info) {
816 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
817 			goto scan;
818 	} else if (unlikely(!si->cluster_nr--)) {
819 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
820 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
821 			goto checks;
822 		}
823 
824 		spin_unlock(&si->lock);
825 
826 		/*
827 		 * If seek is expensive, start searching for new cluster from
828 		 * start of partition, to minimize the span of allocated swap.
829 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
830 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
831 		 */
832 		scan_base = offset = si->lowest_bit;
833 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
834 
835 		/* Locate the first empty (unaligned) cluster */
836 		for (; last_in_cluster <= si->highest_bit; offset++) {
837 			if (si->swap_map[offset])
838 				last_in_cluster = offset + SWAPFILE_CLUSTER;
839 			else if (offset == last_in_cluster) {
840 				spin_lock(&si->lock);
841 				offset -= SWAPFILE_CLUSTER - 1;
842 				si->cluster_next = offset;
843 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
844 				goto checks;
845 			}
846 			if (unlikely(--latency_ration < 0)) {
847 				cond_resched();
848 				latency_ration = LATENCY_LIMIT;
849 			}
850 		}
851 
852 		offset = scan_base;
853 		spin_lock(&si->lock);
854 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
855 	}
856 
857 checks:
858 	if (si->cluster_info) {
859 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
860 		/* take a break if we already got some slots */
861 			if (n_ret)
862 				goto done;
863 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
864 							&scan_base))
865 				goto scan;
866 		}
867 	}
868 	if (!(si->flags & SWP_WRITEOK))
869 		goto no_page;
870 	if (!si->highest_bit)
871 		goto no_page;
872 	if (offset > si->highest_bit)
873 		scan_base = offset = si->lowest_bit;
874 
875 	ci = lock_cluster(si, offset);
876 	/* reuse swap entry of cache-only swap if not busy. */
877 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 		int swap_was_freed;
879 		unlock_cluster(ci);
880 		spin_unlock(&si->lock);
881 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
882 		spin_lock(&si->lock);
883 		/* entry was freed successfully, try to use this again */
884 		if (swap_was_freed)
885 			goto checks;
886 		goto scan; /* check next one */
887 	}
888 
889 	if (si->swap_map[offset]) {
890 		unlock_cluster(ci);
891 		if (!n_ret)
892 			goto scan;
893 		else
894 			goto done;
895 	}
896 	WRITE_ONCE(si->swap_map[offset], usage);
897 	inc_cluster_info_page(si, si->cluster_info, offset);
898 	unlock_cluster(ci);
899 
900 	swap_range_alloc(si, offset, 1);
901 	slots[n_ret++] = swp_entry(si->type, offset);
902 
903 	/* got enough slots or reach max slots? */
904 	if ((n_ret == nr) || (offset >= si->highest_bit))
905 		goto done;
906 
907 	/* search for next available slot */
908 
909 	/* time to take a break? */
910 	if (unlikely(--latency_ration < 0)) {
911 		if (n_ret)
912 			goto done;
913 		spin_unlock(&si->lock);
914 		cond_resched();
915 		spin_lock(&si->lock);
916 		latency_ration = LATENCY_LIMIT;
917 	}
918 
919 	/* try to get more slots in cluster */
920 	if (si->cluster_info) {
921 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
922 			goto checks;
923 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
924 		/* non-ssd case, still more slots in cluster? */
925 		--si->cluster_nr;
926 		goto checks;
927 	}
928 
929 	/*
930 	 * Even if there's no free clusters available (fragmented),
931 	 * try to scan a little more quickly with lock held unless we
932 	 * have scanned too many slots already.
933 	 */
934 	if (!scanned_many) {
935 		unsigned long scan_limit;
936 
937 		if (offset < scan_base)
938 			scan_limit = scan_base;
939 		else
940 			scan_limit = si->highest_bit;
941 		for (; offset <= scan_limit && --latency_ration > 0;
942 		     offset++) {
943 			if (!si->swap_map[offset])
944 				goto checks;
945 		}
946 	}
947 
948 done:
949 	set_cluster_next(si, offset + 1);
950 	si->flags -= SWP_SCANNING;
951 	return n_ret;
952 
953 scan:
954 	spin_unlock(&si->lock);
955 	while (++offset <= READ_ONCE(si->highest_bit)) {
956 		if (data_race(!si->swap_map[offset])) {
957 			spin_lock(&si->lock);
958 			goto checks;
959 		}
960 		if (vm_swap_full() &&
961 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
962 			spin_lock(&si->lock);
963 			goto checks;
964 		}
965 		if (unlikely(--latency_ration < 0)) {
966 			cond_resched();
967 			latency_ration = LATENCY_LIMIT;
968 			scanned_many = true;
969 		}
970 	}
971 	offset = si->lowest_bit;
972 	while (offset < scan_base) {
973 		if (data_race(!si->swap_map[offset])) {
974 			spin_lock(&si->lock);
975 			goto checks;
976 		}
977 		if (vm_swap_full() &&
978 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
979 			spin_lock(&si->lock);
980 			goto checks;
981 		}
982 		if (unlikely(--latency_ration < 0)) {
983 			cond_resched();
984 			latency_ration = LATENCY_LIMIT;
985 			scanned_many = true;
986 		}
987 		offset++;
988 	}
989 	spin_lock(&si->lock);
990 
991 no_page:
992 	si->flags -= SWP_SCANNING;
993 	return n_ret;
994 }
995 
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)996 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
997 {
998 	unsigned long idx;
999 	struct swap_cluster_info *ci;
1000 	unsigned long offset;
1001 
1002 	/*
1003 	 * Should not even be attempting cluster allocations when huge
1004 	 * page swap is disabled.  Warn and fail the allocation.
1005 	 */
1006 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1007 		VM_WARN_ON_ONCE(1);
1008 		return 0;
1009 	}
1010 
1011 	if (cluster_list_empty(&si->free_clusters))
1012 		return 0;
1013 
1014 	idx = cluster_list_first(&si->free_clusters);
1015 	offset = idx * SWAPFILE_CLUSTER;
1016 	ci = lock_cluster(si, offset);
1017 	alloc_cluster(si, idx);
1018 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1019 
1020 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1021 	unlock_cluster(ci);
1022 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1023 	*slot = swp_entry(si->type, offset);
1024 
1025 	return 1;
1026 }
1027 
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1028 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1029 {
1030 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1031 	struct swap_cluster_info *ci;
1032 
1033 	ci = lock_cluster(si, offset);
1034 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1035 	cluster_set_count_flag(ci, 0, 0);
1036 	free_cluster(si, idx);
1037 	unlock_cluster(ci);
1038 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1039 }
1040 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1041 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1042 {
1043 	unsigned long size = swap_entry_size(entry_size);
1044 	struct swap_info_struct *si, *next;
1045 	long avail_pgs;
1046 	int n_ret = 0;
1047 	int node;
1048 
1049 	/* Only single cluster request supported */
1050 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1051 
1052 	spin_lock(&swap_avail_lock);
1053 
1054 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1055 	if (avail_pgs <= 0) {
1056 		spin_unlock(&swap_avail_lock);
1057 		goto noswap;
1058 	}
1059 
1060 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1061 
1062 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1063 
1064 start_over:
1065 	node = numa_node_id();
1066 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1067 		/* requeue si to after same-priority siblings */
1068 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1069 		spin_unlock(&swap_avail_lock);
1070 		spin_lock(&si->lock);
1071 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1072 			spin_lock(&swap_avail_lock);
1073 			if (plist_node_empty(&si->avail_lists[node])) {
1074 				spin_unlock(&si->lock);
1075 				goto nextsi;
1076 			}
1077 			WARN(!si->highest_bit,
1078 			     "swap_info %d in list but !highest_bit\n",
1079 			     si->type);
1080 			WARN(!(si->flags & SWP_WRITEOK),
1081 			     "swap_info %d in list but !SWP_WRITEOK\n",
1082 			     si->type);
1083 			__del_from_avail_list(si);
1084 			spin_unlock(&si->lock);
1085 			goto nextsi;
1086 		}
1087 		if (size == SWAPFILE_CLUSTER) {
1088 			if (si->flags & SWP_BLKDEV)
1089 				n_ret = swap_alloc_cluster(si, swp_entries);
1090 		} else
1091 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1092 						    n_goal, swp_entries);
1093 		spin_unlock(&si->lock);
1094 		if (n_ret || size == SWAPFILE_CLUSTER)
1095 			goto check_out;
1096 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1097 			si->type);
1098 		cond_resched();
1099 
1100 		spin_lock(&swap_avail_lock);
1101 nextsi:
1102 		/*
1103 		 * if we got here, it's likely that si was almost full before,
1104 		 * and since scan_swap_map_slots() can drop the si->lock,
1105 		 * multiple callers probably all tried to get a page from the
1106 		 * same si and it filled up before we could get one; or, the si
1107 		 * filled up between us dropping swap_avail_lock and taking
1108 		 * si->lock. Since we dropped the swap_avail_lock, the
1109 		 * swap_avail_head list may have been modified; so if next is
1110 		 * still in the swap_avail_head list then try it, otherwise
1111 		 * start over if we have not gotten any slots.
1112 		 */
1113 		if (plist_node_empty(&next->avail_lists[node]))
1114 			goto start_over;
1115 	}
1116 
1117 	spin_unlock(&swap_avail_lock);
1118 
1119 check_out:
1120 	if (n_ret < n_goal)
1121 		atomic_long_add((long)(n_goal - n_ret) * size,
1122 				&nr_swap_pages);
1123 noswap:
1124 	return n_ret;
1125 }
1126 
__swap_info_get(swp_entry_t entry)1127 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1128 {
1129 	struct swap_info_struct *p;
1130 	unsigned long offset;
1131 
1132 	if (!entry.val)
1133 		goto out;
1134 	p = swp_swap_info(entry);
1135 	if (!p)
1136 		goto bad_nofile;
1137 	if (data_race(!(p->flags & SWP_USED)))
1138 		goto bad_device;
1139 	offset = swp_offset(entry);
1140 	if (offset >= p->max)
1141 		goto bad_offset;
1142 	return p;
1143 
1144 bad_offset:
1145 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1146 	goto out;
1147 bad_device:
1148 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1149 	goto out;
1150 bad_nofile:
1151 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1152 out:
1153 	return NULL;
1154 }
1155 
_swap_info_get(swp_entry_t entry)1156 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1157 {
1158 	struct swap_info_struct *p;
1159 
1160 	p = __swap_info_get(entry);
1161 	if (!p)
1162 		goto out;
1163 	if (data_race(!p->swap_map[swp_offset(entry)]))
1164 		goto bad_free;
1165 	return p;
1166 
1167 bad_free:
1168 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1169 out:
1170 	return NULL;
1171 }
1172 
swap_info_get(swp_entry_t entry)1173 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1174 {
1175 	struct swap_info_struct *p;
1176 
1177 	p = _swap_info_get(entry);
1178 	if (p)
1179 		spin_lock(&p->lock);
1180 	return p;
1181 }
1182 
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184 					struct swap_info_struct *q)
1185 {
1186 	struct swap_info_struct *p;
1187 
1188 	p = _swap_info_get(entry);
1189 
1190 	if (p != q) {
1191 		if (q != NULL)
1192 			spin_unlock(&q->lock);
1193 		if (p != NULL)
1194 			spin_lock(&p->lock);
1195 	}
1196 	return p;
1197 }
1198 
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200 					      unsigned long offset,
1201 					      unsigned char usage)
1202 {
1203 	unsigned char count;
1204 	unsigned char has_cache;
1205 
1206 	count = p->swap_map[offset];
1207 
1208 	has_cache = count & SWAP_HAS_CACHE;
1209 	count &= ~SWAP_HAS_CACHE;
1210 
1211 	if (usage == SWAP_HAS_CACHE) {
1212 		VM_BUG_ON(!has_cache);
1213 		has_cache = 0;
1214 	} else if (count == SWAP_MAP_SHMEM) {
1215 		/*
1216 		 * Or we could insist on shmem.c using a special
1217 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1218 		 */
1219 		count = 0;
1220 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221 		if (count == COUNT_CONTINUED) {
1222 			if (swap_count_continued(p, offset, count))
1223 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1224 			else
1225 				count = SWAP_MAP_MAX;
1226 		} else
1227 			count--;
1228 	}
1229 
1230 	usage = count | has_cache;
1231 	if (usage)
1232 		WRITE_ONCE(p->swap_map[offset], usage);
1233 	else
1234 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1235 
1236 	return usage;
1237 }
1238 
1239 /*
1240  * Check whether swap entry is valid in the swap device.  If so,
1241  * return pointer to swap_info_struct, and keep the swap entry valid
1242  * via preventing the swap device from being swapoff, until
1243  * put_swap_device() is called.  Otherwise return NULL.
1244  *
1245  * Notice that swapoff or swapoff+swapon can still happen before the
1246  * percpu_ref_tryget_live() in get_swap_device() or after the
1247  * percpu_ref_put() in put_swap_device() if there isn't any other way
1248  * to prevent swapoff, such as page lock, page table lock, etc.  The
1249  * caller must be prepared for that.  For example, the following
1250  * situation is possible.
1251  *
1252  *   CPU1				CPU2
1253  *   do_swap_page()
1254  *     ...				swapoff+swapon
1255  *     __read_swap_cache_async()
1256  *       swapcache_prepare()
1257  *         __swap_duplicate()
1258  *           // check swap_map
1259  *     // verify PTE not changed
1260  *
1261  * In __swap_duplicate(), the swap_map need to be checked before
1262  * changing partly because the specified swap entry may be for another
1263  * swap device which has been swapoff.  And in do_swap_page(), after
1264  * the page is read from the swap device, the PTE is verified not
1265  * changed with the page table locked to check whether the swap device
1266  * has been swapoff or swapoff+swapon.
1267  */
get_swap_device(swp_entry_t entry)1268 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1269 {
1270 	struct swap_info_struct *si;
1271 	unsigned long offset;
1272 
1273 	if (!entry.val)
1274 		goto out;
1275 	si = swp_swap_info(entry);
1276 	if (!si)
1277 		goto bad_nofile;
1278 	if (!percpu_ref_tryget_live(&si->users))
1279 		goto out;
1280 	/*
1281 	 * Guarantee the si->users are checked before accessing other
1282 	 * fields of swap_info_struct.
1283 	 *
1284 	 * Paired with the spin_unlock() after setup_swap_info() in
1285 	 * enable_swap_info().
1286 	 */
1287 	smp_rmb();
1288 	offset = swp_offset(entry);
1289 	if (offset >= si->max)
1290 		goto put_out;
1291 
1292 	return si;
1293 bad_nofile:
1294 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1295 out:
1296 	return NULL;
1297 put_out:
1298 	percpu_ref_put(&si->users);
1299 	return NULL;
1300 }
1301 
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1302 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1303 				       swp_entry_t entry)
1304 {
1305 	struct swap_cluster_info *ci;
1306 	unsigned long offset = swp_offset(entry);
1307 	unsigned char usage;
1308 
1309 	ci = lock_cluster_or_swap_info(p, offset);
1310 	usage = __swap_entry_free_locked(p, offset, 1);
1311 	unlock_cluster_or_swap_info(p, ci);
1312 	if (!usage)
1313 		free_swap_slot(entry);
1314 
1315 	return usage;
1316 }
1317 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1318 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1319 {
1320 	struct swap_cluster_info *ci;
1321 	unsigned long offset = swp_offset(entry);
1322 	unsigned char count;
1323 
1324 	ci = lock_cluster(p, offset);
1325 	count = p->swap_map[offset];
1326 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1327 	p->swap_map[offset] = 0;
1328 	dec_cluster_info_page(p, p->cluster_info, offset);
1329 	unlock_cluster(ci);
1330 
1331 	mem_cgroup_uncharge_swap(entry, 1);
1332 	swap_range_free(p, offset, 1);
1333 }
1334 
1335 /*
1336  * Caller has made sure that the swap device corresponding to entry
1337  * is still around or has not been recycled.
1338  */
swap_free(swp_entry_t entry)1339 void swap_free(swp_entry_t entry)
1340 {
1341 	struct swap_info_struct *p;
1342 
1343 	p = _swap_info_get(entry);
1344 	if (p)
1345 		__swap_entry_free(p, entry);
1346 }
1347 
1348 /*
1349  * Called after dropping swapcache to decrease refcnt to swap entries.
1350  */
put_swap_page(struct page * page,swp_entry_t entry)1351 void put_swap_page(struct page *page, swp_entry_t entry)
1352 {
1353 	unsigned long offset = swp_offset(entry);
1354 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1355 	struct swap_cluster_info *ci;
1356 	struct swap_info_struct *si;
1357 	unsigned char *map;
1358 	unsigned int i, free_entries = 0;
1359 	unsigned char val;
1360 	int size = swap_entry_size(thp_nr_pages(page));
1361 
1362 	si = _swap_info_get(entry);
1363 	if (!si)
1364 		return;
1365 
1366 	ci = lock_cluster_or_swap_info(si, offset);
1367 	if (size == SWAPFILE_CLUSTER) {
1368 		VM_BUG_ON(!cluster_is_huge(ci));
1369 		map = si->swap_map + offset;
1370 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1371 			val = map[i];
1372 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1373 			if (val == SWAP_HAS_CACHE)
1374 				free_entries++;
1375 		}
1376 		cluster_clear_huge(ci);
1377 		if (free_entries == SWAPFILE_CLUSTER) {
1378 			unlock_cluster_or_swap_info(si, ci);
1379 			spin_lock(&si->lock);
1380 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1381 			swap_free_cluster(si, idx);
1382 			spin_unlock(&si->lock);
1383 			return;
1384 		}
1385 	}
1386 	for (i = 0; i < size; i++, entry.val++) {
1387 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1388 			unlock_cluster_or_swap_info(si, ci);
1389 			free_swap_slot(entry);
1390 			if (i == size - 1)
1391 				return;
1392 			lock_cluster_or_swap_info(si, offset);
1393 		}
1394 	}
1395 	unlock_cluster_or_swap_info(si, ci);
1396 }
1397 
1398 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1399 int split_swap_cluster(swp_entry_t entry)
1400 {
1401 	struct swap_info_struct *si;
1402 	struct swap_cluster_info *ci;
1403 	unsigned long offset = swp_offset(entry);
1404 
1405 	si = _swap_info_get(entry);
1406 	if (!si)
1407 		return -EBUSY;
1408 	ci = lock_cluster(si, offset);
1409 	cluster_clear_huge(ci);
1410 	unlock_cluster(ci);
1411 	return 0;
1412 }
1413 #endif
1414 
swp_entry_cmp(const void * ent1,const void * ent2)1415 static int swp_entry_cmp(const void *ent1, const void *ent2)
1416 {
1417 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1418 
1419 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1420 }
1421 
swapcache_free_entries(swp_entry_t * entries,int n)1422 void swapcache_free_entries(swp_entry_t *entries, int n)
1423 {
1424 	struct swap_info_struct *p, *prev;
1425 	int i;
1426 
1427 	if (n <= 0)
1428 		return;
1429 
1430 	prev = NULL;
1431 	p = NULL;
1432 
1433 	/*
1434 	 * Sort swap entries by swap device, so each lock is only taken once.
1435 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1436 	 * so low that it isn't necessary to optimize further.
1437 	 */
1438 	if (nr_swapfiles > 1)
1439 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1440 	for (i = 0; i < n; ++i) {
1441 		p = swap_info_get_cont(entries[i], prev);
1442 		if (p)
1443 			swap_entry_free(p, entries[i]);
1444 		prev = p;
1445 	}
1446 	if (p)
1447 		spin_unlock(&p->lock);
1448 }
1449 
1450 /*
1451  * How many references to page are currently swapped out?
1452  * This does not give an exact answer when swap count is continued,
1453  * but does include the high COUNT_CONTINUED flag to allow for that.
1454  */
page_swapcount(struct page * page)1455 int page_swapcount(struct page *page)
1456 {
1457 	int count = 0;
1458 	struct swap_info_struct *p;
1459 	struct swap_cluster_info *ci;
1460 	swp_entry_t entry;
1461 	unsigned long offset;
1462 
1463 	entry.val = page_private(page);
1464 	p = _swap_info_get(entry);
1465 	if (p) {
1466 		offset = swp_offset(entry);
1467 		ci = lock_cluster_or_swap_info(p, offset);
1468 		count = swap_count(p->swap_map[offset]);
1469 		unlock_cluster_or_swap_info(p, ci);
1470 	}
1471 	return count;
1472 }
1473 
__swap_count(swp_entry_t entry)1474 int __swap_count(swp_entry_t entry)
1475 {
1476 	struct swap_info_struct *si;
1477 	pgoff_t offset = swp_offset(entry);
1478 	int count = 0;
1479 
1480 	si = get_swap_device(entry);
1481 	if (si) {
1482 		count = swap_count(si->swap_map[offset]);
1483 		put_swap_device(si);
1484 	}
1485 	return count;
1486 }
1487 
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1488 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1489 {
1490 	int count = 0;
1491 	pgoff_t offset = swp_offset(entry);
1492 	struct swap_cluster_info *ci;
1493 
1494 	ci = lock_cluster_or_swap_info(si, offset);
1495 	count = swap_count(si->swap_map[offset]);
1496 	unlock_cluster_or_swap_info(si, ci);
1497 	return count;
1498 }
1499 
1500 /*
1501  * How many references to @entry are currently swapped out?
1502  * This does not give an exact answer when swap count is continued,
1503  * but does include the high COUNT_CONTINUED flag to allow for that.
1504  */
__swp_swapcount(swp_entry_t entry)1505 int __swp_swapcount(swp_entry_t entry)
1506 {
1507 	int count = 0;
1508 	struct swap_info_struct *si;
1509 
1510 	si = get_swap_device(entry);
1511 	if (si) {
1512 		count = swap_swapcount(si, entry);
1513 		put_swap_device(si);
1514 	}
1515 	return count;
1516 }
1517 
1518 /*
1519  * How many references to @entry are currently swapped out?
1520  * This considers COUNT_CONTINUED so it returns exact answer.
1521  */
swp_swapcount(swp_entry_t entry)1522 int swp_swapcount(swp_entry_t entry)
1523 {
1524 	int count, tmp_count, n;
1525 	struct swap_info_struct *p;
1526 	struct swap_cluster_info *ci;
1527 	struct page *page;
1528 	pgoff_t offset;
1529 	unsigned char *map;
1530 
1531 	p = _swap_info_get(entry);
1532 	if (!p)
1533 		return 0;
1534 
1535 	offset = swp_offset(entry);
1536 
1537 	ci = lock_cluster_or_swap_info(p, offset);
1538 
1539 	count = swap_count(p->swap_map[offset]);
1540 	if (!(count & COUNT_CONTINUED))
1541 		goto out;
1542 
1543 	count &= ~COUNT_CONTINUED;
1544 	n = SWAP_MAP_MAX + 1;
1545 
1546 	page = vmalloc_to_page(p->swap_map + offset);
1547 	offset &= ~PAGE_MASK;
1548 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1549 
1550 	do {
1551 		page = list_next_entry(page, lru);
1552 		map = kmap_atomic(page);
1553 		tmp_count = map[offset];
1554 		kunmap_atomic(map);
1555 
1556 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1557 		n *= (SWAP_CONT_MAX + 1);
1558 	} while (tmp_count & COUNT_CONTINUED);
1559 out:
1560 	unlock_cluster_or_swap_info(p, ci);
1561 	return count;
1562 }
1563 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1564 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1565 					 swp_entry_t entry)
1566 {
1567 	struct swap_cluster_info *ci;
1568 	unsigned char *map = si->swap_map;
1569 	unsigned long roffset = swp_offset(entry);
1570 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1571 	int i;
1572 	bool ret = false;
1573 
1574 	ci = lock_cluster_or_swap_info(si, offset);
1575 	if (!ci || !cluster_is_huge(ci)) {
1576 		if (swap_count(map[roffset]))
1577 			ret = true;
1578 		goto unlock_out;
1579 	}
1580 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1581 		if (swap_count(map[offset + i])) {
1582 			ret = true;
1583 			break;
1584 		}
1585 	}
1586 unlock_out:
1587 	unlock_cluster_or_swap_info(si, ci);
1588 	return ret;
1589 }
1590 
page_swapped(struct page * page)1591 static bool page_swapped(struct page *page)
1592 {
1593 	swp_entry_t entry;
1594 	struct swap_info_struct *si;
1595 
1596 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1597 		return page_swapcount(page) != 0;
1598 
1599 	page = compound_head(page);
1600 	entry.val = page_private(page);
1601 	si = _swap_info_get(entry);
1602 	if (si)
1603 		return swap_page_trans_huge_swapped(si, entry);
1604 	return false;
1605 }
1606 
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1607 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1608 					 int *total_swapcount)
1609 {
1610 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1611 	unsigned long offset = 0;
1612 	struct swap_info_struct *si;
1613 	struct swap_cluster_info *ci = NULL;
1614 	unsigned char *map = NULL;
1615 	int mapcount, swapcount = 0;
1616 
1617 	/* hugetlbfs shouldn't call it */
1618 	VM_BUG_ON_PAGE(PageHuge(page), page);
1619 
1620 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1621 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1622 		if (PageSwapCache(page))
1623 			swapcount = page_swapcount(page);
1624 		if (total_swapcount)
1625 			*total_swapcount = swapcount;
1626 		return mapcount + swapcount;
1627 	}
1628 
1629 	page = compound_head(page);
1630 
1631 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1632 	if (PageSwapCache(page)) {
1633 		swp_entry_t entry;
1634 
1635 		entry.val = page_private(page);
1636 		si = _swap_info_get(entry);
1637 		if (si) {
1638 			map = si->swap_map;
1639 			offset = swp_offset(entry);
1640 		}
1641 	}
1642 	if (map)
1643 		ci = lock_cluster(si, offset);
1644 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1645 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1646 		_total_mapcount += mapcount;
1647 		if (map) {
1648 			swapcount = swap_count(map[offset + i]);
1649 			_total_swapcount += swapcount;
1650 		}
1651 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1652 	}
1653 	unlock_cluster(ci);
1654 	if (PageDoubleMap(page)) {
1655 		map_swapcount -= 1;
1656 		_total_mapcount -= HPAGE_PMD_NR;
1657 	}
1658 	mapcount = compound_mapcount(page);
1659 	map_swapcount += mapcount;
1660 	_total_mapcount += mapcount;
1661 	if (total_mapcount)
1662 		*total_mapcount = _total_mapcount;
1663 	if (total_swapcount)
1664 		*total_swapcount = _total_swapcount;
1665 
1666 	return map_swapcount;
1667 }
1668 
1669 /*
1670  * We can write to an anon page without COW if there are no other references
1671  * to it.  And as a side-effect, free up its swap: because the old content
1672  * on disk will never be read, and seeking back there to write new content
1673  * later would only waste time away from clustering.
1674  *
1675  * NOTE: total_map_swapcount should not be relied upon by the caller if
1676  * reuse_swap_page() returns false, but it may be always overwritten
1677  * (see the other implementation for CONFIG_SWAP=n).
1678  */
reuse_swap_page(struct page * page,int * total_map_swapcount)1679 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1680 {
1681 	int count, total_mapcount, total_swapcount;
1682 
1683 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1684 	if (unlikely(PageKsm(page)))
1685 		return false;
1686 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1687 					      &total_swapcount);
1688 	if (total_map_swapcount)
1689 		*total_map_swapcount = total_mapcount + total_swapcount;
1690 	if (count == 1 && PageSwapCache(page) &&
1691 	    (likely(!PageTransCompound(page)) ||
1692 	     /* The remaining swap count will be freed soon */
1693 	     total_swapcount == page_swapcount(page))) {
1694 		if (!PageWriteback(page)) {
1695 			page = compound_head(page);
1696 			delete_from_swap_cache(page);
1697 			SetPageDirty(page);
1698 		} else {
1699 			swp_entry_t entry;
1700 			struct swap_info_struct *p;
1701 
1702 			entry.val = page_private(page);
1703 			p = swap_info_get(entry);
1704 			if (p->flags & SWP_STABLE_WRITES) {
1705 				spin_unlock(&p->lock);
1706 				return false;
1707 			}
1708 			spin_unlock(&p->lock);
1709 		}
1710 	}
1711 
1712 	return count <= 1;
1713 }
1714 
1715 /*
1716  * If swap is getting full, or if there are no more mappings of this page,
1717  * then try_to_free_swap is called to free its swap space.
1718  */
try_to_free_swap(struct page * page)1719 int try_to_free_swap(struct page *page)
1720 {
1721 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1722 
1723 	if (!PageSwapCache(page))
1724 		return 0;
1725 	if (PageWriteback(page))
1726 		return 0;
1727 	if (page_swapped(page))
1728 		return 0;
1729 
1730 	/*
1731 	 * Once hibernation has begun to create its image of memory,
1732 	 * there's a danger that one of the calls to try_to_free_swap()
1733 	 * - most probably a call from __try_to_reclaim_swap() while
1734 	 * hibernation is allocating its own swap pages for the image,
1735 	 * but conceivably even a call from memory reclaim - will free
1736 	 * the swap from a page which has already been recorded in the
1737 	 * image as a clean swapcache page, and then reuse its swap for
1738 	 * another page of the image.  On waking from hibernation, the
1739 	 * original page might be freed under memory pressure, then
1740 	 * later read back in from swap, now with the wrong data.
1741 	 *
1742 	 * Hibernation suspends storage while it is writing the image
1743 	 * to disk so check that here.
1744 	 */
1745 	if (pm_suspended_storage())
1746 		return 0;
1747 
1748 	page = compound_head(page);
1749 	delete_from_swap_cache(page);
1750 	SetPageDirty(page);
1751 	return 1;
1752 }
1753 
1754 /*
1755  * Free the swap entry like above, but also try to
1756  * free the page cache entry if it is the last user.
1757  */
free_swap_and_cache(swp_entry_t entry)1758 int free_swap_and_cache(swp_entry_t entry)
1759 {
1760 	struct swap_info_struct *p;
1761 	unsigned char count;
1762 
1763 	if (non_swap_entry(entry))
1764 		return 1;
1765 
1766 	p = _swap_info_get(entry);
1767 	if (p) {
1768 		count = __swap_entry_free(p, entry);
1769 		if (count == SWAP_HAS_CACHE &&
1770 		    !swap_page_trans_huge_swapped(p, entry))
1771 			__try_to_reclaim_swap(p, swp_offset(entry),
1772 					      TTRS_UNMAPPED | TTRS_FULL);
1773 	}
1774 	return p != NULL;
1775 }
1776 
1777 #ifdef CONFIG_HIBERNATION
1778 
get_swap_page_of_type(int type)1779 swp_entry_t get_swap_page_of_type(int type)
1780 {
1781 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1782 	swp_entry_t entry = {0};
1783 
1784 	if (!si)
1785 		goto fail;
1786 
1787 	/* This is called for allocating swap entry, not cache */
1788 	spin_lock(&si->lock);
1789 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1790 		atomic_long_dec(&nr_swap_pages);
1791 	spin_unlock(&si->lock);
1792 fail:
1793 	return entry;
1794 }
1795 
1796 /*
1797  * Find the swap type that corresponds to given device (if any).
1798  *
1799  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1800  * from 0, in which the swap header is expected to be located.
1801  *
1802  * This is needed for the suspend to disk (aka swsusp).
1803  */
swap_type_of(dev_t device,sector_t offset)1804 int swap_type_of(dev_t device, sector_t offset)
1805 {
1806 	int type;
1807 
1808 	if (!device)
1809 		return -1;
1810 
1811 	spin_lock(&swap_lock);
1812 	for (type = 0; type < nr_swapfiles; type++) {
1813 		struct swap_info_struct *sis = swap_info[type];
1814 
1815 		if (!(sis->flags & SWP_WRITEOK))
1816 			continue;
1817 
1818 		if (device == sis->bdev->bd_dev) {
1819 			struct swap_extent *se = first_se(sis);
1820 
1821 			if (se->start_block == offset) {
1822 				spin_unlock(&swap_lock);
1823 				return type;
1824 			}
1825 		}
1826 	}
1827 	spin_unlock(&swap_lock);
1828 	return -ENODEV;
1829 }
1830 
find_first_swap(dev_t * device)1831 int find_first_swap(dev_t *device)
1832 {
1833 	int type;
1834 
1835 	spin_lock(&swap_lock);
1836 	for (type = 0; type < nr_swapfiles; type++) {
1837 		struct swap_info_struct *sis = swap_info[type];
1838 
1839 		if (!(sis->flags & SWP_WRITEOK))
1840 			continue;
1841 		*device = sis->bdev->bd_dev;
1842 		spin_unlock(&swap_lock);
1843 		return type;
1844 	}
1845 	spin_unlock(&swap_lock);
1846 	return -ENODEV;
1847 }
1848 
1849 /*
1850  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1851  * corresponding to given index in swap_info (swap type).
1852  */
swapdev_block(int type,pgoff_t offset)1853 sector_t swapdev_block(int type, pgoff_t offset)
1854 {
1855 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1856 	struct swap_extent *se;
1857 
1858 	if (!si || !(si->flags & SWP_WRITEOK))
1859 		return 0;
1860 	se = offset_to_swap_extent(si, offset);
1861 	return se->start_block + (offset - se->start_page);
1862 }
1863 
1864 /*
1865  * Return either the total number of swap pages of given type, or the number
1866  * of free pages of that type (depending on @free)
1867  *
1868  * This is needed for software suspend
1869  */
count_swap_pages(int type,int free)1870 unsigned int count_swap_pages(int type, int free)
1871 {
1872 	unsigned int n = 0;
1873 
1874 	spin_lock(&swap_lock);
1875 	if ((unsigned int)type < nr_swapfiles) {
1876 		struct swap_info_struct *sis = swap_info[type];
1877 
1878 		spin_lock(&sis->lock);
1879 		if (sis->flags & SWP_WRITEOK) {
1880 			n = sis->pages;
1881 			if (free)
1882 				n -= sis->inuse_pages;
1883 		}
1884 		spin_unlock(&sis->lock);
1885 	}
1886 	spin_unlock(&swap_lock);
1887 	return n;
1888 }
1889 #endif /* CONFIG_HIBERNATION */
1890 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1891 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1892 {
1893 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1894 }
1895 
1896 /*
1897  * No need to decide whether this PTE shares the swap entry with others,
1898  * just let do_wp_page work it out if a write is requested later - to
1899  * force COW, vm_page_prot omits write permission from any private vma.
1900  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1901 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1902 		unsigned long addr, swp_entry_t entry, struct page *page)
1903 {
1904 	struct page *swapcache;
1905 	spinlock_t *ptl;
1906 	pte_t *pte;
1907 	int ret = 1;
1908 
1909 	swapcache = page;
1910 	page = ksm_might_need_to_copy(page, vma, addr);
1911 	if (unlikely(!page))
1912 		return -ENOMEM;
1913 
1914 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1915 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1916 		ret = 0;
1917 		goto out;
1918 	}
1919 
1920 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1921 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1922 	get_page(page);
1923 	set_pte_at(vma->vm_mm, addr, pte,
1924 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1925 	if (page == swapcache) {
1926 		page_add_anon_rmap(page, vma, addr, false);
1927 	} else { /* ksm created a completely new copy */
1928 		page_add_new_anon_rmap(page, vma, addr, false);
1929 		lru_cache_add_inactive_or_unevictable(page, vma);
1930 	}
1931 	swap_free(entry);
1932 out:
1933 	pte_unmap_unlock(pte, ptl);
1934 	if (page != swapcache) {
1935 		unlock_page(page);
1936 		put_page(page);
1937 	}
1938 	return ret;
1939 }
1940 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1941 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1942 			unsigned long addr, unsigned long end,
1943 			unsigned int type, bool frontswap,
1944 			unsigned long *fs_pages_to_unuse)
1945 {
1946 	struct page *page;
1947 	swp_entry_t entry;
1948 	pte_t *pte;
1949 	struct swap_info_struct *si;
1950 	unsigned long offset;
1951 	int ret = 0;
1952 	volatile unsigned char *swap_map;
1953 
1954 	si = swap_info[type];
1955 	pte = pte_offset_map(pmd, addr);
1956 	do {
1957 		if (!is_swap_pte(*pte))
1958 			continue;
1959 
1960 		entry = pte_to_swp_entry(*pte);
1961 		if (swp_type(entry) != type)
1962 			continue;
1963 
1964 		offset = swp_offset(entry);
1965 		if (frontswap && !frontswap_test(si, offset))
1966 			continue;
1967 
1968 		pte_unmap(pte);
1969 		swap_map = &si->swap_map[offset];
1970 		page = lookup_swap_cache(entry, vma, addr);
1971 		if (!page) {
1972 			struct vm_fault vmf = {
1973 				.vma = vma,
1974 				.address = addr,
1975 				.pmd = pmd,
1976 			};
1977 
1978 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1979 						&vmf);
1980 		}
1981 		if (!page) {
1982 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1983 				goto try_next;
1984 			return -ENOMEM;
1985 		}
1986 
1987 		lock_page(page);
1988 		wait_on_page_writeback(page);
1989 		ret = unuse_pte(vma, pmd, addr, entry, page);
1990 		if (ret < 0) {
1991 			unlock_page(page);
1992 			put_page(page);
1993 			goto out;
1994 		}
1995 
1996 		try_to_free_swap(page);
1997 		unlock_page(page);
1998 		put_page(page);
1999 
2000 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2001 			ret = FRONTSWAP_PAGES_UNUSED;
2002 			goto out;
2003 		}
2004 try_next:
2005 		pte = pte_offset_map(pmd, addr);
2006 	} while (pte++, addr += PAGE_SIZE, addr != end);
2007 	pte_unmap(pte - 1);
2008 
2009 	ret = 0;
2010 out:
2011 	return ret;
2012 }
2013 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2014 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2015 				unsigned long addr, unsigned long end,
2016 				unsigned int type, bool frontswap,
2017 				unsigned long *fs_pages_to_unuse)
2018 {
2019 	pmd_t *pmd;
2020 	unsigned long next;
2021 	int ret;
2022 
2023 	pmd = pmd_offset(pud, addr);
2024 	do {
2025 		cond_resched();
2026 		next = pmd_addr_end(addr, end);
2027 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2028 			continue;
2029 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2030 				      frontswap, fs_pages_to_unuse);
2031 		if (ret)
2032 			return ret;
2033 	} while (pmd++, addr = next, addr != end);
2034 	return 0;
2035 }
2036 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2037 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2038 				unsigned long addr, unsigned long end,
2039 				unsigned int type, bool frontswap,
2040 				unsigned long *fs_pages_to_unuse)
2041 {
2042 	pud_t *pud;
2043 	unsigned long next;
2044 	int ret;
2045 
2046 	pud = pud_offset(p4d, addr);
2047 	do {
2048 		next = pud_addr_end(addr, end);
2049 		if (pud_none_or_clear_bad(pud))
2050 			continue;
2051 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2052 				      frontswap, fs_pages_to_unuse);
2053 		if (ret)
2054 			return ret;
2055 	} while (pud++, addr = next, addr != end);
2056 	return 0;
2057 }
2058 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2059 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2060 				unsigned long addr, unsigned long end,
2061 				unsigned int type, bool frontswap,
2062 				unsigned long *fs_pages_to_unuse)
2063 {
2064 	p4d_t *p4d;
2065 	unsigned long next;
2066 	int ret;
2067 
2068 	p4d = p4d_offset(pgd, addr);
2069 	do {
2070 		next = p4d_addr_end(addr, end);
2071 		if (p4d_none_or_clear_bad(p4d))
2072 			continue;
2073 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2074 				      frontswap, fs_pages_to_unuse);
2075 		if (ret)
2076 			return ret;
2077 	} while (p4d++, addr = next, addr != end);
2078 	return 0;
2079 }
2080 
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2081 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2082 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2083 {
2084 	pgd_t *pgd;
2085 	unsigned long addr, end, next;
2086 	int ret;
2087 
2088 	addr = vma->vm_start;
2089 	end = vma->vm_end;
2090 
2091 	pgd = pgd_offset(vma->vm_mm, addr);
2092 	do {
2093 		next = pgd_addr_end(addr, end);
2094 		if (pgd_none_or_clear_bad(pgd))
2095 			continue;
2096 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2097 				      frontswap, fs_pages_to_unuse);
2098 		if (ret)
2099 			return ret;
2100 	} while (pgd++, addr = next, addr != end);
2101 	return 0;
2102 }
2103 
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2104 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2105 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2106 {
2107 	struct vm_area_struct *vma;
2108 	int ret = 0;
2109 
2110 	mmap_read_lock(mm);
2111 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2112 		if (vma->anon_vma) {
2113 			ret = unuse_vma(vma, type, frontswap,
2114 					fs_pages_to_unuse);
2115 			if (ret)
2116 				break;
2117 		}
2118 		cond_resched();
2119 	}
2120 	mmap_read_unlock(mm);
2121 	return ret;
2122 }
2123 
2124 /*
2125  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2126  * from current position to next entry still in use. Return 0
2127  * if there are no inuse entries after prev till end of the map.
2128  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2129 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2130 					unsigned int prev, bool frontswap)
2131 {
2132 	unsigned int i;
2133 	unsigned char count;
2134 
2135 	/*
2136 	 * No need for swap_lock here: we're just looking
2137 	 * for whether an entry is in use, not modifying it; false
2138 	 * hits are okay, and sys_swapoff() has already prevented new
2139 	 * allocations from this area (while holding swap_lock).
2140 	 */
2141 	for (i = prev + 1; i < si->max; i++) {
2142 		count = READ_ONCE(si->swap_map[i]);
2143 		if (count && swap_count(count) != SWAP_MAP_BAD)
2144 			if (!frontswap || frontswap_test(si, i))
2145 				break;
2146 		if ((i % LATENCY_LIMIT) == 0)
2147 			cond_resched();
2148 	}
2149 
2150 	if (i == si->max)
2151 		i = 0;
2152 
2153 	return i;
2154 }
2155 
2156 /*
2157  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2158  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2159  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2160 int try_to_unuse(unsigned int type, bool frontswap,
2161 		 unsigned long pages_to_unuse)
2162 {
2163 	struct mm_struct *prev_mm;
2164 	struct mm_struct *mm;
2165 	struct list_head *p;
2166 	int retval = 0;
2167 	struct swap_info_struct *si = swap_info[type];
2168 	struct page *page;
2169 	swp_entry_t entry;
2170 	unsigned int i;
2171 
2172 	if (!READ_ONCE(si->inuse_pages))
2173 		return 0;
2174 
2175 	if (!frontswap)
2176 		pages_to_unuse = 0;
2177 
2178 retry:
2179 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2180 	if (retval)
2181 		goto out;
2182 
2183 	prev_mm = &init_mm;
2184 	mmget(prev_mm);
2185 
2186 	spin_lock(&mmlist_lock);
2187 	p = &init_mm.mmlist;
2188 	while (READ_ONCE(si->inuse_pages) &&
2189 	       !signal_pending(current) &&
2190 	       (p = p->next) != &init_mm.mmlist) {
2191 
2192 		mm = list_entry(p, struct mm_struct, mmlist);
2193 		if (!mmget_not_zero(mm))
2194 			continue;
2195 		spin_unlock(&mmlist_lock);
2196 		mmput(prev_mm);
2197 		prev_mm = mm;
2198 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2199 
2200 		if (retval) {
2201 			mmput(prev_mm);
2202 			goto out;
2203 		}
2204 
2205 		/*
2206 		 * Make sure that we aren't completely killing
2207 		 * interactive performance.
2208 		 */
2209 		cond_resched();
2210 		spin_lock(&mmlist_lock);
2211 	}
2212 	spin_unlock(&mmlist_lock);
2213 
2214 	mmput(prev_mm);
2215 
2216 	i = 0;
2217 	while (READ_ONCE(si->inuse_pages) &&
2218 	       !signal_pending(current) &&
2219 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2220 
2221 		entry = swp_entry(type, i);
2222 		page = find_get_page(swap_address_space(entry), i);
2223 		if (!page)
2224 			continue;
2225 
2226 		/*
2227 		 * It is conceivable that a racing task removed this page from
2228 		 * swap cache just before we acquired the page lock. The page
2229 		 * might even be back in swap cache on another swap area. But
2230 		 * that is okay, try_to_free_swap() only removes stale pages.
2231 		 */
2232 		lock_page(page);
2233 		wait_on_page_writeback(page);
2234 		try_to_free_swap(page);
2235 		unlock_page(page);
2236 		put_page(page);
2237 
2238 		/*
2239 		 * For frontswap, we just need to unuse pages_to_unuse, if
2240 		 * it was specified. Need not check frontswap again here as
2241 		 * we already zeroed out pages_to_unuse if not frontswap.
2242 		 */
2243 		if (pages_to_unuse && --pages_to_unuse == 0)
2244 			goto out;
2245 	}
2246 
2247 	/*
2248 	 * Lets check again to see if there are still swap entries in the map.
2249 	 * If yes, we would need to do retry the unuse logic again.
2250 	 * Under global memory pressure, swap entries can be reinserted back
2251 	 * into process space after the mmlist loop above passes over them.
2252 	 *
2253 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2254 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2255 	 * at its own independent pace; and even shmem_writepage() could have
2256 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2257 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2258 	 */
2259 	if (READ_ONCE(si->inuse_pages)) {
2260 		if (!signal_pending(current))
2261 			goto retry;
2262 		retval = -EINTR;
2263 	}
2264 out:
2265 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2266 }
2267 
2268 /*
2269  * After a successful try_to_unuse, if no swap is now in use, we know
2270  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2271  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2272  * added to the mmlist just after page_duplicate - before would be racy.
2273  */
drain_mmlist(void)2274 static void drain_mmlist(void)
2275 {
2276 	struct list_head *p, *next;
2277 	unsigned int type;
2278 
2279 	for (type = 0; type < nr_swapfiles; type++)
2280 		if (swap_info[type]->inuse_pages)
2281 			return;
2282 	spin_lock(&mmlist_lock);
2283 	list_for_each_safe(p, next, &init_mm.mmlist)
2284 		list_del_init(p);
2285 	spin_unlock(&mmlist_lock);
2286 }
2287 
2288 /*
2289  * Free all of a swapdev's extent information
2290  */
destroy_swap_extents(struct swap_info_struct * sis)2291 static void destroy_swap_extents(struct swap_info_struct *sis)
2292 {
2293 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2294 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2295 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2296 
2297 		rb_erase(rb, &sis->swap_extent_root);
2298 		kfree(se);
2299 	}
2300 
2301 	if (sis->flags & SWP_ACTIVATED) {
2302 		struct file *swap_file = sis->swap_file;
2303 		struct address_space *mapping = swap_file->f_mapping;
2304 
2305 		sis->flags &= ~SWP_ACTIVATED;
2306 		if (mapping->a_ops->swap_deactivate)
2307 			mapping->a_ops->swap_deactivate(swap_file);
2308 	}
2309 }
2310 
2311 /*
2312  * Add a block range (and the corresponding page range) into this swapdev's
2313  * extent tree.
2314  *
2315  * This function rather assumes that it is called in ascending page order.
2316  */
2317 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2318 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2319 		unsigned long nr_pages, sector_t start_block)
2320 {
2321 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2322 	struct swap_extent *se;
2323 	struct swap_extent *new_se;
2324 
2325 	/*
2326 	 * place the new node at the right most since the
2327 	 * function is called in ascending page order.
2328 	 */
2329 	while (*link) {
2330 		parent = *link;
2331 		link = &parent->rb_right;
2332 	}
2333 
2334 	if (parent) {
2335 		se = rb_entry(parent, struct swap_extent, rb_node);
2336 		BUG_ON(se->start_page + se->nr_pages != start_page);
2337 		if (se->start_block + se->nr_pages == start_block) {
2338 			/* Merge it */
2339 			se->nr_pages += nr_pages;
2340 			return 0;
2341 		}
2342 	}
2343 
2344 	/* No merge, insert a new extent. */
2345 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2346 	if (new_se == NULL)
2347 		return -ENOMEM;
2348 	new_se->start_page = start_page;
2349 	new_se->nr_pages = nr_pages;
2350 	new_se->start_block = start_block;
2351 
2352 	rb_link_node(&new_se->rb_node, parent, link);
2353 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2354 	return 1;
2355 }
2356 EXPORT_SYMBOL_GPL(add_swap_extent);
2357 
2358 /*
2359  * A `swap extent' is a simple thing which maps a contiguous range of pages
2360  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2361  * is built at swapon time and is then used at swap_writepage/swap_readpage
2362  * time for locating where on disk a page belongs.
2363  *
2364  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2365  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2366  * swap files identically.
2367  *
2368  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2369  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2370  * swapfiles are handled *identically* after swapon time.
2371  *
2372  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2373  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2374  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2375  * requirements, they are simply tossed out - we will never use those blocks
2376  * for swapping.
2377  *
2378  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2379  * prevents users from writing to the swap device, which will corrupt memory.
2380  *
2381  * The amount of disk space which a single swap extent represents varies.
2382  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2383  * extents in the list.  To avoid much list walking, we cache the previous
2384  * search location in `curr_swap_extent', and start new searches from there.
2385  * This is extremely effective.  The average number of iterations in
2386  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2387  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2388 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2389 {
2390 	struct file *swap_file = sis->swap_file;
2391 	struct address_space *mapping = swap_file->f_mapping;
2392 	struct inode *inode = mapping->host;
2393 	int ret;
2394 
2395 	if (S_ISBLK(inode->i_mode)) {
2396 		ret = add_swap_extent(sis, 0, sis->max, 0);
2397 		*span = sis->pages;
2398 		return ret;
2399 	}
2400 
2401 	if (mapping->a_ops->swap_activate) {
2402 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2403 		if (ret >= 0)
2404 			sis->flags |= SWP_ACTIVATED;
2405 		if (!ret) {
2406 			sis->flags |= SWP_FS_OPS;
2407 			ret = add_swap_extent(sis, 0, sis->max, 0);
2408 			*span = sis->pages;
2409 		}
2410 		return ret;
2411 	}
2412 
2413 	return generic_swapfile_activate(sis, swap_file, span);
2414 }
2415 
swap_node(struct swap_info_struct * p)2416 static int swap_node(struct swap_info_struct *p)
2417 {
2418 	struct block_device *bdev;
2419 
2420 	if (p->bdev)
2421 		bdev = p->bdev;
2422 	else
2423 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2424 
2425 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2426 }
2427 
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2428 static void setup_swap_info(struct swap_info_struct *p, int prio,
2429 			    unsigned char *swap_map,
2430 			    struct swap_cluster_info *cluster_info)
2431 {
2432 	int i;
2433 
2434 	if (prio >= 0)
2435 		p->prio = prio;
2436 	else
2437 		p->prio = --least_priority;
2438 	/*
2439 	 * the plist prio is negated because plist ordering is
2440 	 * low-to-high, while swap ordering is high-to-low
2441 	 */
2442 	p->list.prio = -p->prio;
2443 	for_each_node(i) {
2444 		if (p->prio >= 0)
2445 			p->avail_lists[i].prio = -p->prio;
2446 		else {
2447 			if (swap_node(p) == i)
2448 				p->avail_lists[i].prio = 1;
2449 			else
2450 				p->avail_lists[i].prio = -p->prio;
2451 		}
2452 	}
2453 	p->swap_map = swap_map;
2454 	p->cluster_info = cluster_info;
2455 }
2456 
_enable_swap_info(struct swap_info_struct * p)2457 static void _enable_swap_info(struct swap_info_struct *p)
2458 {
2459 	p->flags |= SWP_WRITEOK;
2460 	atomic_long_add(p->pages, &nr_swap_pages);
2461 	total_swap_pages += p->pages;
2462 
2463 	assert_spin_locked(&swap_lock);
2464 	/*
2465 	 * both lists are plists, and thus priority ordered.
2466 	 * swap_active_head needs to be priority ordered for swapoff(),
2467 	 * which on removal of any swap_info_struct with an auto-assigned
2468 	 * (i.e. negative) priority increments the auto-assigned priority
2469 	 * of any lower-priority swap_info_structs.
2470 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2471 	 * which allocates swap pages from the highest available priority
2472 	 * swap_info_struct.
2473 	 */
2474 	plist_add(&p->list, &swap_active_head);
2475 	add_to_avail_list(p);
2476 }
2477 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2478 static void enable_swap_info(struct swap_info_struct *p, int prio,
2479 				unsigned char *swap_map,
2480 				struct swap_cluster_info *cluster_info,
2481 				unsigned long *frontswap_map)
2482 {
2483 	frontswap_init(p->type, frontswap_map);
2484 	spin_lock(&swap_lock);
2485 	spin_lock(&p->lock);
2486 	setup_swap_info(p, prio, swap_map, cluster_info);
2487 	spin_unlock(&p->lock);
2488 	spin_unlock(&swap_lock);
2489 	/*
2490 	 * Finished initializing swap device, now it's safe to reference it.
2491 	 */
2492 	percpu_ref_resurrect(&p->users);
2493 	spin_lock(&swap_lock);
2494 	spin_lock(&p->lock);
2495 	_enable_swap_info(p);
2496 	spin_unlock(&p->lock);
2497 	spin_unlock(&swap_lock);
2498 }
2499 
reinsert_swap_info(struct swap_info_struct * p)2500 static void reinsert_swap_info(struct swap_info_struct *p)
2501 {
2502 	spin_lock(&swap_lock);
2503 	spin_lock(&p->lock);
2504 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2505 	_enable_swap_info(p);
2506 	spin_unlock(&p->lock);
2507 	spin_unlock(&swap_lock);
2508 }
2509 
has_usable_swap(void)2510 bool has_usable_swap(void)
2511 {
2512 	bool ret = true;
2513 
2514 	spin_lock(&swap_lock);
2515 	if (plist_head_empty(&swap_active_head))
2516 		ret = false;
2517 	spin_unlock(&swap_lock);
2518 	return ret;
2519 }
2520 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2521 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2522 {
2523 	struct swap_info_struct *p = NULL;
2524 	unsigned char *swap_map;
2525 	struct swap_cluster_info *cluster_info;
2526 	unsigned long *frontswap_map;
2527 	struct file *swap_file, *victim;
2528 	struct address_space *mapping;
2529 	struct inode *inode;
2530 	struct filename *pathname;
2531 	int err, found = 0;
2532 	unsigned int old_block_size;
2533 	bool hibernation_swap = false;
2534 
2535 	if (!capable(CAP_SYS_ADMIN))
2536 		return -EPERM;
2537 
2538 	BUG_ON(!current->mm);
2539 
2540 	pathname = getname(specialfile);
2541 	if (IS_ERR(pathname))
2542 		return PTR_ERR(pathname);
2543 
2544 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2545 	err = PTR_ERR(victim);
2546 	if (IS_ERR(victim))
2547 		goto out;
2548 
2549 	mapping = victim->f_mapping;
2550 	spin_lock(&swap_lock);
2551 	plist_for_each_entry(p, &swap_active_head, list) {
2552 		if (p->flags & SWP_WRITEOK) {
2553 			if (p->swap_file->f_mapping == mapping) {
2554 				found = 1;
2555 				break;
2556 			}
2557 		}
2558 	}
2559 	if (!found) {
2560 		err = -EINVAL;
2561 		spin_unlock(&swap_lock);
2562 		goto out_dput;
2563 	}
2564 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2565 		vm_unacct_memory(p->pages);
2566 	else {
2567 		err = -ENOMEM;
2568 		spin_unlock(&swap_lock);
2569 		goto out_dput;
2570 	}
2571 	spin_lock(&p->lock);
2572 	del_from_avail_list(p);
2573 	if (p->prio < 0) {
2574 		struct swap_info_struct *si = p;
2575 		int nid;
2576 
2577 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2578 			si->prio++;
2579 			si->list.prio--;
2580 			for_each_node(nid) {
2581 				if (si->avail_lists[nid].prio != 1)
2582 					si->avail_lists[nid].prio--;
2583 			}
2584 		}
2585 		least_priority++;
2586 	}
2587 	plist_del(&p->list, &swap_active_head);
2588 	atomic_long_sub(p->pages, &nr_swap_pages);
2589 	total_swap_pages -= p->pages;
2590 	p->flags &= ~SWP_WRITEOK;
2591 	spin_unlock(&p->lock);
2592 	spin_unlock(&swap_lock);
2593 
2594 	disable_swap_slots_cache_lock();
2595 
2596 	set_current_oom_origin();
2597 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2598 	clear_current_oom_origin();
2599 
2600 	if (err) {
2601 		/* re-insert swap space back into swap_list */
2602 		reinsert_swap_info(p);
2603 		reenable_swap_slots_cache_unlock();
2604 		goto out_dput;
2605 	}
2606 
2607 	reenable_swap_slots_cache_unlock();
2608 
2609 	/*
2610 	 * Wait for swap operations protected by get/put_swap_device()
2611 	 * to complete.
2612 	 *
2613 	 * We need synchronize_rcu() here to protect the accessing to
2614 	 * the swap cache data structure.
2615 	 */
2616 	percpu_ref_kill(&p->users);
2617 	synchronize_rcu();
2618 	wait_for_completion(&p->comp);
2619 
2620 	flush_work(&p->discard_work);
2621 
2622 	destroy_swap_extents(p);
2623 
2624 	trace_android_vh_check_hibernation_swap(p->bdev, &hibernation_swap);
2625 
2626 	if (p->flags & SWP_CONTINUED)
2627 		free_swap_count_continuations(p);
2628 
2629 	if (!p->bdev || hibernation_swap ||
2630 			!blk_queue_nonrot(bdev_get_queue(p->bdev)))
2631 		atomic_dec(&nr_rotate_swap);
2632 
2633 	mutex_lock(&swapon_mutex);
2634 	spin_lock(&swap_lock);
2635 	spin_lock(&p->lock);
2636 	drain_mmlist();
2637 
2638 	/* wait for anyone still in scan_swap_map_slots */
2639 	p->highest_bit = 0;		/* cuts scans short */
2640 	while (p->flags >= SWP_SCANNING) {
2641 		spin_unlock(&p->lock);
2642 		spin_unlock(&swap_lock);
2643 		schedule_timeout_uninterruptible(1);
2644 		spin_lock(&swap_lock);
2645 		spin_lock(&p->lock);
2646 	}
2647 
2648 	swap_file = p->swap_file;
2649 	old_block_size = p->old_block_size;
2650 	p->swap_file = NULL;
2651 	p->max = 0;
2652 	swap_map = p->swap_map;
2653 	p->swap_map = NULL;
2654 	cluster_info = p->cluster_info;
2655 	p->cluster_info = NULL;
2656 	frontswap_map = frontswap_map_get(p);
2657 	spin_unlock(&p->lock);
2658 	spin_unlock(&swap_lock);
2659 	arch_swap_invalidate_area(p->type);
2660 	frontswap_invalidate_area(p->type);
2661 	frontswap_map_set(p, NULL);
2662 	mutex_unlock(&swapon_mutex);
2663 	free_percpu(p->percpu_cluster);
2664 	p->percpu_cluster = NULL;
2665 	free_percpu(p->cluster_next_cpu);
2666 	p->cluster_next_cpu = NULL;
2667 	vfree(swap_map);
2668 	kvfree(cluster_info);
2669 	kvfree(frontswap_map);
2670 	/* Destroy swap account information */
2671 	swap_cgroup_swapoff(p->type);
2672 	exit_swap_address_space(p->type);
2673 
2674 	inode = mapping->host;
2675 	if (S_ISBLK(inode->i_mode)) {
2676 		struct block_device *bdev = I_BDEV(inode);
2677 
2678 		set_blocksize(bdev, old_block_size);
2679 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2680 	}
2681 
2682 	inode_lock(inode);
2683 	inode->i_flags &= ~S_SWAPFILE;
2684 	inode_unlock(inode);
2685 	filp_close(swap_file, NULL);
2686 
2687 	/*
2688 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2689 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2690 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2691 	 */
2692 	spin_lock(&swap_lock);
2693 	p->flags = 0;
2694 	spin_unlock(&swap_lock);
2695 
2696 	err = 0;
2697 	atomic_inc(&proc_poll_event);
2698 	wake_up_interruptible(&proc_poll_wait);
2699 
2700 out_dput:
2701 	filp_close(victim, NULL);
2702 out:
2703 	putname(pathname);
2704 	return err;
2705 }
2706 
2707 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2708 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2709 {
2710 	struct seq_file *seq = file->private_data;
2711 
2712 	poll_wait(file, &proc_poll_wait, wait);
2713 
2714 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2715 		seq->poll_event = atomic_read(&proc_poll_event);
2716 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2717 	}
2718 
2719 	return EPOLLIN | EPOLLRDNORM;
2720 }
2721 
2722 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2723 static void *swap_start(struct seq_file *swap, loff_t *pos)
2724 {
2725 	struct swap_info_struct *si;
2726 	int type;
2727 	loff_t l = *pos;
2728 
2729 	mutex_lock(&swapon_mutex);
2730 
2731 	if (!l)
2732 		return SEQ_START_TOKEN;
2733 
2734 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2735 		if (!(si->flags & SWP_USED) || !si->swap_map)
2736 			continue;
2737 		if (!--l)
2738 			return si;
2739 	}
2740 
2741 	return NULL;
2742 }
2743 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2744 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2745 {
2746 	struct swap_info_struct *si = v;
2747 	int type;
2748 
2749 	if (v == SEQ_START_TOKEN)
2750 		type = 0;
2751 	else
2752 		type = si->type + 1;
2753 
2754 	++(*pos);
2755 	for (; (si = swap_type_to_swap_info(type)); type++) {
2756 		if (!(si->flags & SWP_USED) || !si->swap_map)
2757 			continue;
2758 		return si;
2759 	}
2760 
2761 	return NULL;
2762 }
2763 
swap_stop(struct seq_file * swap,void * v)2764 static void swap_stop(struct seq_file *swap, void *v)
2765 {
2766 	mutex_unlock(&swapon_mutex);
2767 }
2768 
swap_show(struct seq_file * swap,void * v)2769 static int swap_show(struct seq_file *swap, void *v)
2770 {
2771 	struct swap_info_struct *si = v;
2772 	struct file *file;
2773 	int len;
2774 	unsigned int bytes, inuse;
2775 
2776 	if (si == SEQ_START_TOKEN) {
2777 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2778 		return 0;
2779 	}
2780 
2781 	bytes = si->pages << (PAGE_SHIFT - 10);
2782 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2783 
2784 	file = si->swap_file;
2785 	len = seq_file_path(swap, file, " \t\n\\");
2786 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2787 			len < 40 ? 40 - len : 1, " ",
2788 			S_ISBLK(file_inode(file)->i_mode) ?
2789 				"partition" : "file\t",
2790 			bytes, bytes < 10000000 ? "\t" : "",
2791 			inuse, inuse < 10000000 ? "\t" : "",
2792 			si->prio);
2793 	return 0;
2794 }
2795 
2796 static const struct seq_operations swaps_op = {
2797 	.start =	swap_start,
2798 	.next =		swap_next,
2799 	.stop =		swap_stop,
2800 	.show =		swap_show
2801 };
2802 
swaps_open(struct inode * inode,struct file * file)2803 static int swaps_open(struct inode *inode, struct file *file)
2804 {
2805 	struct seq_file *seq;
2806 	int ret;
2807 
2808 	ret = seq_open(file, &swaps_op);
2809 	if (ret)
2810 		return ret;
2811 
2812 	seq = file->private_data;
2813 	seq->poll_event = atomic_read(&proc_poll_event);
2814 	return 0;
2815 }
2816 
2817 static const struct proc_ops swaps_proc_ops = {
2818 	.proc_flags	= PROC_ENTRY_PERMANENT,
2819 	.proc_open	= swaps_open,
2820 	.proc_read	= seq_read,
2821 	.proc_lseek	= seq_lseek,
2822 	.proc_release	= seq_release,
2823 	.proc_poll	= swaps_poll,
2824 };
2825 
procswaps_init(void)2826 static int __init procswaps_init(void)
2827 {
2828 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2829 	return 0;
2830 }
2831 __initcall(procswaps_init);
2832 #endif /* CONFIG_PROC_FS */
2833 
2834 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2835 static int __init max_swapfiles_check(void)
2836 {
2837 	MAX_SWAPFILES_CHECK();
2838 	return 0;
2839 }
2840 late_initcall(max_swapfiles_check);
2841 #endif
2842 
alloc_swap_info(void)2843 static struct swap_info_struct *alloc_swap_info(void)
2844 {
2845 	struct swap_info_struct *p;
2846 	struct swap_info_struct *defer = NULL;
2847 	unsigned int type;
2848 	int i;
2849 
2850 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2851 	if (!p)
2852 		return ERR_PTR(-ENOMEM);
2853 
2854 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2855 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2856 		kvfree(p);
2857 		return ERR_PTR(-ENOMEM);
2858 	}
2859 
2860 	spin_lock(&swap_lock);
2861 	for (type = 0; type < nr_swapfiles; type++) {
2862 		if (!(swap_info[type]->flags & SWP_USED))
2863 			break;
2864 	}
2865 	if (type >= MAX_SWAPFILES) {
2866 		spin_unlock(&swap_lock);
2867 		percpu_ref_exit(&p->users);
2868 		kvfree(p);
2869 		return ERR_PTR(-EPERM);
2870 	}
2871 	if (type >= nr_swapfiles) {
2872 		p->type = type;
2873 		/*
2874 		 * Publish the swap_info_struct after initializing it.
2875 		 * Note that kvzalloc() above zeroes all its fields.
2876 		 */
2877 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2878 		nr_swapfiles++;
2879 	} else {
2880 		defer = p;
2881 		p = swap_info[type];
2882 		/*
2883 		 * Do not memset this entry: a racing procfs swap_next()
2884 		 * would be relying on p->type to remain valid.
2885 		 */
2886 	}
2887 	p->swap_extent_root = RB_ROOT;
2888 	plist_node_init(&p->list, 0);
2889 	for_each_node(i)
2890 		plist_node_init(&p->avail_lists[i], 0);
2891 	p->flags = SWP_USED;
2892 	spin_unlock(&swap_lock);
2893 	if (defer) {
2894 		percpu_ref_exit(&defer->users);
2895 		kvfree(defer);
2896 	}
2897 	spin_lock_init(&p->lock);
2898 	spin_lock_init(&p->cont_lock);
2899 	init_completion(&p->comp);
2900 
2901 	return p;
2902 }
2903 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2904 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2905 {
2906 	int error;
2907 
2908 	if (S_ISBLK(inode->i_mode)) {
2909 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2910 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2911 		if (IS_ERR(p->bdev)) {
2912 			error = PTR_ERR(p->bdev);
2913 			p->bdev = NULL;
2914 			return error;
2915 		}
2916 		p->old_block_size = block_size(p->bdev);
2917 		error = set_blocksize(p->bdev, PAGE_SIZE);
2918 		if (error < 0)
2919 			return error;
2920 		/*
2921 		 * Zoned block devices contain zones that have a sequential
2922 		 * write only restriction.  Hence zoned block devices are not
2923 		 * suitable for swapping.  Disallow them here.
2924 		 */
2925 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2926 			return -EINVAL;
2927 		p->flags |= SWP_BLKDEV;
2928 	} else if (S_ISREG(inode->i_mode)) {
2929 		p->bdev = inode->i_sb->s_bdev;
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 
2936 /*
2937  * Find out how many pages are allowed for a single swap device. There
2938  * are two limiting factors:
2939  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2940  * 2) the number of bits in the swap pte, as defined by the different
2941  * architectures.
2942  *
2943  * In order to find the largest possible bit mask, a swap entry with
2944  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2945  * decoded to a swp_entry_t again, and finally the swap offset is
2946  * extracted.
2947  *
2948  * This will mask all the bits from the initial ~0UL mask that can't
2949  * be encoded in either the swp_entry_t or the architecture definition
2950  * of a swap pte.
2951  */
generic_max_swapfile_size(void)2952 unsigned long generic_max_swapfile_size(void)
2953 {
2954 	return swp_offset(pte_to_swp_entry(
2955 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2956 }
2957 
2958 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2959 __weak unsigned long max_swapfile_size(void)
2960 {
2961 	return generic_max_swapfile_size();
2962 }
2963 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2964 static unsigned long read_swap_header(struct swap_info_struct *p,
2965 					union swap_header *swap_header,
2966 					struct inode *inode)
2967 {
2968 	int i;
2969 	unsigned long maxpages;
2970 	unsigned long swapfilepages;
2971 	unsigned long last_page;
2972 
2973 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2974 		pr_err("Unable to find swap-space signature\n");
2975 		return 0;
2976 	}
2977 
2978 	/* swap partition endianness hack... */
2979 	if (swab32(swap_header->info.version) == 1) {
2980 		swab32s(&swap_header->info.version);
2981 		swab32s(&swap_header->info.last_page);
2982 		swab32s(&swap_header->info.nr_badpages);
2983 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2984 			return 0;
2985 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2986 			swab32s(&swap_header->info.badpages[i]);
2987 	}
2988 	/* Check the swap header's sub-version */
2989 	if (swap_header->info.version != 1) {
2990 		pr_warn("Unable to handle swap header version %d\n",
2991 			swap_header->info.version);
2992 		return 0;
2993 	}
2994 
2995 	p->lowest_bit  = 1;
2996 	p->cluster_next = 1;
2997 	p->cluster_nr = 0;
2998 
2999 	maxpages = max_swapfile_size();
3000 	last_page = swap_header->info.last_page;
3001 	if (!last_page) {
3002 		pr_warn("Empty swap-file\n");
3003 		return 0;
3004 	}
3005 	if (last_page > maxpages) {
3006 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3007 			maxpages << (PAGE_SHIFT - 10),
3008 			last_page << (PAGE_SHIFT - 10));
3009 	}
3010 	if (maxpages > last_page) {
3011 		maxpages = last_page + 1;
3012 		/* p->max is an unsigned int: don't overflow it */
3013 		if ((unsigned int)maxpages == 0)
3014 			maxpages = UINT_MAX;
3015 	}
3016 	p->highest_bit = maxpages - 1;
3017 
3018 	if (!maxpages)
3019 		return 0;
3020 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3021 	if (swapfilepages && maxpages > swapfilepages) {
3022 		pr_warn("Swap area shorter than signature indicates\n");
3023 		return 0;
3024 	}
3025 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3026 		return 0;
3027 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3028 		return 0;
3029 
3030 	return maxpages;
3031 }
3032 
3033 #define SWAP_CLUSTER_INFO_COLS						\
3034 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3035 #define SWAP_CLUSTER_SPACE_COLS						\
3036 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3037 #define SWAP_CLUSTER_COLS						\
3038 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3039 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3040 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3041 					union swap_header *swap_header,
3042 					unsigned char *swap_map,
3043 					struct swap_cluster_info *cluster_info,
3044 					unsigned long maxpages,
3045 					sector_t *span)
3046 {
3047 	unsigned int j, k;
3048 	unsigned int nr_good_pages;
3049 	int nr_extents;
3050 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3051 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3052 	unsigned long i, idx;
3053 
3054 	nr_good_pages = maxpages - 1;	/* omit header page */
3055 
3056 	cluster_list_init(&p->free_clusters);
3057 	cluster_list_init(&p->discard_clusters);
3058 
3059 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3060 		unsigned int page_nr = swap_header->info.badpages[i];
3061 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3062 			return -EINVAL;
3063 		if (page_nr < maxpages) {
3064 			swap_map[page_nr] = SWAP_MAP_BAD;
3065 			nr_good_pages--;
3066 			/*
3067 			 * Haven't marked the cluster free yet, no list
3068 			 * operation involved
3069 			 */
3070 			inc_cluster_info_page(p, cluster_info, page_nr);
3071 		}
3072 	}
3073 
3074 	/* Haven't marked the cluster free yet, no list operation involved */
3075 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3076 		inc_cluster_info_page(p, cluster_info, i);
3077 
3078 	if (nr_good_pages) {
3079 		swap_map[0] = SWAP_MAP_BAD;
3080 		/*
3081 		 * Not mark the cluster free yet, no list
3082 		 * operation involved
3083 		 */
3084 		inc_cluster_info_page(p, cluster_info, 0);
3085 		p->max = maxpages;
3086 		p->pages = nr_good_pages;
3087 		nr_extents = setup_swap_extents(p, span);
3088 		if (nr_extents < 0)
3089 			return nr_extents;
3090 		nr_good_pages = p->pages;
3091 	}
3092 	if (!nr_good_pages) {
3093 		pr_warn("Empty swap-file\n");
3094 		return -EINVAL;
3095 	}
3096 
3097 	if (!cluster_info)
3098 		return nr_extents;
3099 
3100 
3101 	/*
3102 	 * Reduce false cache line sharing between cluster_info and
3103 	 * sharing same address space.
3104 	 */
3105 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3106 		j = (k + col) % SWAP_CLUSTER_COLS;
3107 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3108 			idx = i * SWAP_CLUSTER_COLS + j;
3109 			if (idx >= nr_clusters)
3110 				continue;
3111 			if (cluster_count(&cluster_info[idx]))
3112 				continue;
3113 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3114 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3115 					      idx);
3116 		}
3117 	}
3118 	return nr_extents;
3119 }
3120 
3121 /*
3122  * Helper to sys_swapon determining if a given swap
3123  * backing device queue supports DISCARD operations.
3124  */
swap_discardable(struct swap_info_struct * si)3125 static bool swap_discardable(struct swap_info_struct *si)
3126 {
3127 	struct request_queue *q = bdev_get_queue(si->bdev);
3128 
3129 	if (!q || !blk_queue_discard(q))
3130 		return false;
3131 
3132 	return true;
3133 }
3134 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3135 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3136 {
3137 	struct swap_info_struct *p;
3138 	struct filename *name;
3139 	struct file *swap_file = NULL;
3140 	struct address_space *mapping;
3141 	struct dentry *dentry;
3142 	int prio;
3143 	int error;
3144 	union swap_header *swap_header;
3145 	int nr_extents;
3146 	sector_t span;
3147 	unsigned long maxpages;
3148 	unsigned char *swap_map = NULL;
3149 	struct swap_cluster_info *cluster_info = NULL;
3150 	unsigned long *frontswap_map = NULL;
3151 	struct page *page = NULL;
3152 	struct inode *inode = NULL;
3153 	bool inced_nr_rotate_swap = false;
3154 	bool hibernation_swap = false;
3155 
3156 	if (swap_flags & ~SWAP_FLAGS_VALID)
3157 		return -EINVAL;
3158 
3159 	if (!capable(CAP_SYS_ADMIN))
3160 		return -EPERM;
3161 
3162 	if (!swap_avail_heads)
3163 		return -ENOMEM;
3164 
3165 	p = alloc_swap_info();
3166 	if (IS_ERR(p))
3167 		return PTR_ERR(p);
3168 
3169 	INIT_WORK(&p->discard_work, swap_discard_work);
3170 
3171 	name = getname(specialfile);
3172 	if (IS_ERR(name)) {
3173 		error = PTR_ERR(name);
3174 		name = NULL;
3175 		goto bad_swap;
3176 	}
3177 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3178 	if (IS_ERR(swap_file)) {
3179 		error = PTR_ERR(swap_file);
3180 		swap_file = NULL;
3181 		goto bad_swap;
3182 	}
3183 
3184 	p->swap_file = swap_file;
3185 	mapping = swap_file->f_mapping;
3186 	dentry = swap_file->f_path.dentry;
3187 	inode = mapping->host;
3188 
3189 	error = claim_swapfile(p, inode);
3190 	if (unlikely(error))
3191 		goto bad_swap;
3192 
3193 	inode_lock(inode);
3194 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3195 		error = -ENOENT;
3196 		goto bad_swap_unlock_inode;
3197 	}
3198 	if (IS_SWAPFILE(inode)) {
3199 		error = -EBUSY;
3200 		goto bad_swap_unlock_inode;
3201 	}
3202 
3203 	/*
3204 	 * Read the swap header.
3205 	 */
3206 	if (!mapping->a_ops->readpage) {
3207 		error = -EINVAL;
3208 		goto bad_swap_unlock_inode;
3209 	}
3210 	page = read_mapping_page(mapping, 0, swap_file);
3211 	if (IS_ERR(page)) {
3212 		error = PTR_ERR(page);
3213 		goto bad_swap_unlock_inode;
3214 	}
3215 	swap_header = kmap(page);
3216 
3217 	maxpages = read_swap_header(p, swap_header, inode);
3218 	if (unlikely(!maxpages)) {
3219 		error = -EINVAL;
3220 		goto bad_swap_unlock_inode;
3221 	}
3222 
3223 	/* OK, set up the swap map and apply the bad block list */
3224 	swap_map = vzalloc(maxpages);
3225 	if (!swap_map) {
3226 		error = -ENOMEM;
3227 		goto bad_swap_unlock_inode;
3228 	}
3229 
3230 	trace_android_vh_check_hibernation_swap(p->bdev, &hibernation_swap);
3231 
3232 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3233 		p->flags |= SWP_STABLE_WRITES;
3234 
3235 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3236 		p->flags |= SWP_SYNCHRONOUS_IO;
3237 
3238 	if (p->bdev && !hibernation_swap &&
3239 				blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3240 		int cpu;
3241 		unsigned long ci, nr_cluster;
3242 
3243 		p->flags |= SWP_SOLIDSTATE;
3244 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3245 		if (!p->cluster_next_cpu) {
3246 			error = -ENOMEM;
3247 			goto bad_swap_unlock_inode;
3248 		}
3249 		/*
3250 		 * select a random position to start with to help wear leveling
3251 		 * SSD
3252 		 */
3253 		for_each_possible_cpu(cpu) {
3254 			per_cpu(*p->cluster_next_cpu, cpu) =
3255 				1 + prandom_u32_max(p->highest_bit);
3256 		}
3257 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3258 
3259 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3260 					GFP_KERNEL);
3261 		if (!cluster_info) {
3262 			error = -ENOMEM;
3263 			goto bad_swap_unlock_inode;
3264 		}
3265 
3266 		for (ci = 0; ci < nr_cluster; ci++)
3267 			spin_lock_init(&((cluster_info + ci)->lock));
3268 
3269 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3270 		if (!p->percpu_cluster) {
3271 			error = -ENOMEM;
3272 			goto bad_swap_unlock_inode;
3273 		}
3274 		for_each_possible_cpu(cpu) {
3275 			struct percpu_cluster *cluster;
3276 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3277 			cluster_set_null(&cluster->index);
3278 		}
3279 	} else {
3280 		atomic_inc(&nr_rotate_swap);
3281 		inced_nr_rotate_swap = true;
3282 	}
3283 
3284 	error = swap_cgroup_swapon(p->type, maxpages);
3285 	if (error)
3286 		goto bad_swap_unlock_inode;
3287 
3288 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3289 		cluster_info, maxpages, &span);
3290 	if (unlikely(nr_extents < 0)) {
3291 		error = nr_extents;
3292 		goto bad_swap_unlock_inode;
3293 	}
3294 	/* frontswap enabled? set up bit-per-page map for frontswap */
3295 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3296 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3297 					 sizeof(long),
3298 					 GFP_KERNEL);
3299 
3300 	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3301 		/*
3302 		 * When discard is enabled for swap with no particular
3303 		 * policy flagged, we set all swap discard flags here in
3304 		 * order to sustain backward compatibility with older
3305 		 * swapon(8) releases.
3306 		 */
3307 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3308 			     SWP_PAGE_DISCARD);
3309 
3310 		/*
3311 		 * By flagging sys_swapon, a sysadmin can tell us to
3312 		 * either do single-time area discards only, or to just
3313 		 * perform discards for released swap page-clusters.
3314 		 * Now it's time to adjust the p->flags accordingly.
3315 		 */
3316 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3317 			p->flags &= ~SWP_PAGE_DISCARD;
3318 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3319 			p->flags &= ~SWP_AREA_DISCARD;
3320 
3321 		/* issue a swapon-time discard if it's still required */
3322 		if (p->flags & SWP_AREA_DISCARD) {
3323 			int err = discard_swap(p);
3324 			if (unlikely(err))
3325 				pr_err("swapon: discard_swap(%p): %d\n",
3326 					p, err);
3327 		}
3328 	}
3329 
3330 	error = init_swap_address_space(p->type, maxpages);
3331 	if (error)
3332 		goto bad_swap_unlock_inode;
3333 
3334 	/*
3335 	 * Flush any pending IO and dirty mappings before we start using this
3336 	 * swap device.
3337 	 */
3338 	inode->i_flags |= S_SWAPFILE;
3339 	error = inode_drain_writes(inode);
3340 	if (error) {
3341 		inode->i_flags &= ~S_SWAPFILE;
3342 		goto free_swap_address_space;
3343 	}
3344 
3345 	mutex_lock(&swapon_mutex);
3346 	prio = -1;
3347 	if (swap_flags & SWAP_FLAG_PREFER)
3348 		prio =
3349 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3350 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3351 
3352 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3353 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3354 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3355 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3356 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3357 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3358 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3359 		(frontswap_map) ? "FS" : "");
3360 
3361 	mutex_unlock(&swapon_mutex);
3362 	atomic_inc(&proc_poll_event);
3363 	wake_up_interruptible(&proc_poll_wait);
3364 
3365 	error = 0;
3366 	goto out;
3367 free_swap_address_space:
3368 	exit_swap_address_space(p->type);
3369 bad_swap_unlock_inode:
3370 	inode_unlock(inode);
3371 bad_swap:
3372 	free_percpu(p->percpu_cluster);
3373 	p->percpu_cluster = NULL;
3374 	free_percpu(p->cluster_next_cpu);
3375 	p->cluster_next_cpu = NULL;
3376 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3377 		set_blocksize(p->bdev, p->old_block_size);
3378 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3379 	}
3380 	inode = NULL;
3381 	destroy_swap_extents(p);
3382 	swap_cgroup_swapoff(p->type);
3383 	spin_lock(&swap_lock);
3384 	p->swap_file = NULL;
3385 	p->flags = 0;
3386 	spin_unlock(&swap_lock);
3387 	vfree(swap_map);
3388 	kvfree(cluster_info);
3389 	kvfree(frontswap_map);
3390 	if (inced_nr_rotate_swap)
3391 		atomic_dec(&nr_rotate_swap);
3392 	if (swap_file)
3393 		filp_close(swap_file, NULL);
3394 out:
3395 	if (page && !IS_ERR(page)) {
3396 		kunmap(page);
3397 		put_page(page);
3398 	}
3399 	if (name)
3400 		putname(name);
3401 	if (inode)
3402 		inode_unlock(inode);
3403 	if (!error)
3404 		enable_swap_slots_cache();
3405 	return error;
3406 }
3407 
si_swapinfo(struct sysinfo * val)3408 void si_swapinfo(struct sysinfo *val)
3409 {
3410 	unsigned int type;
3411 	unsigned long nr_to_be_unused = 0;
3412 
3413 	spin_lock(&swap_lock);
3414 	for (type = 0; type < nr_swapfiles; type++) {
3415 		struct swap_info_struct *si = swap_info[type];
3416 
3417 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3418 			nr_to_be_unused += si->inuse_pages;
3419 	}
3420 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3421 	val->totalswap = total_swap_pages + nr_to_be_unused;
3422 	spin_unlock(&swap_lock);
3423 }
3424 EXPORT_SYMBOL_NS_GPL(si_swapinfo, MINIDUMP);
3425 
3426 /*
3427  * Verify that a swap entry is valid and increment its swap map count.
3428  *
3429  * Returns error code in following case.
3430  * - success -> 0
3431  * - swp_entry is invalid -> EINVAL
3432  * - swp_entry is migration entry -> EINVAL
3433  * - swap-cache reference is requested but there is already one. -> EEXIST
3434  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3435  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3436  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3437 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3438 {
3439 	struct swap_info_struct *p;
3440 	struct swap_cluster_info *ci;
3441 	unsigned long offset;
3442 	unsigned char count;
3443 	unsigned char has_cache;
3444 	int err;
3445 
3446 	p = get_swap_device(entry);
3447 	if (!p)
3448 		return -EINVAL;
3449 
3450 	offset = swp_offset(entry);
3451 	ci = lock_cluster_or_swap_info(p, offset);
3452 
3453 	count = p->swap_map[offset];
3454 
3455 	/*
3456 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3457 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3458 	 */
3459 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3460 		err = -ENOENT;
3461 		goto unlock_out;
3462 	}
3463 
3464 	has_cache = count & SWAP_HAS_CACHE;
3465 	count &= ~SWAP_HAS_CACHE;
3466 	err = 0;
3467 
3468 	if (usage == SWAP_HAS_CACHE) {
3469 
3470 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3471 		if (!has_cache && count)
3472 			has_cache = SWAP_HAS_CACHE;
3473 		else if (has_cache)		/* someone else added cache */
3474 			err = -EEXIST;
3475 		else				/* no users remaining */
3476 			err = -ENOENT;
3477 
3478 	} else if (count || has_cache) {
3479 
3480 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3481 			count += usage;
3482 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3483 			err = -EINVAL;
3484 		else if (swap_count_continued(p, offset, count))
3485 			count = COUNT_CONTINUED;
3486 		else
3487 			err = -ENOMEM;
3488 	} else
3489 		err = -ENOENT;			/* unused swap entry */
3490 
3491 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3492 
3493 unlock_out:
3494 	unlock_cluster_or_swap_info(p, ci);
3495 	if (p)
3496 		put_swap_device(p);
3497 	return err;
3498 }
3499 
3500 /*
3501  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3502  * (in which case its reference count is never incremented).
3503  */
swap_shmem_alloc(swp_entry_t entry)3504 void swap_shmem_alloc(swp_entry_t entry)
3505 {
3506 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3507 }
3508 
3509 /*
3510  * Increase reference count of swap entry by 1.
3511  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3512  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3513  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3514  * might occur if a page table entry has got corrupted.
3515  */
swap_duplicate(swp_entry_t entry)3516 int swap_duplicate(swp_entry_t entry)
3517 {
3518 	int err = 0;
3519 
3520 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3521 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3522 	return err;
3523 }
3524 
3525 /*
3526  * @entry: swap entry for which we allocate swap cache.
3527  *
3528  * Called when allocating swap cache for existing swap entry,
3529  * This can return error codes. Returns 0 at success.
3530  * -EEXIST means there is a swap cache.
3531  * Note: return code is different from swap_duplicate().
3532  */
swapcache_prepare(swp_entry_t entry)3533 int swapcache_prepare(swp_entry_t entry)
3534 {
3535 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3536 }
3537 
swp_swap_info(swp_entry_t entry)3538 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3539 {
3540 	return swap_type_to_swap_info(swp_type(entry));
3541 }
3542 
page_swap_info(struct page * page)3543 struct swap_info_struct *page_swap_info(struct page *page)
3544 {
3545 	swp_entry_t entry = { .val = page_private(page) };
3546 	return swp_swap_info(entry);
3547 }
3548 
3549 /*
3550  * out-of-line __page_file_ methods to avoid include hell.
3551  */
__page_file_mapping(struct page * page)3552 struct address_space *__page_file_mapping(struct page *page)
3553 {
3554 	return page_swap_info(page)->swap_file->f_mapping;
3555 }
3556 EXPORT_SYMBOL_GPL(__page_file_mapping);
3557 
__page_file_index(struct page * page)3558 pgoff_t __page_file_index(struct page *page)
3559 {
3560 	swp_entry_t swap = { .val = page_private(page) };
3561 	return swp_offset(swap);
3562 }
3563 EXPORT_SYMBOL_GPL(__page_file_index);
3564 
3565 /*
3566  * add_swap_count_continuation - called when a swap count is duplicated
3567  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3568  * page of the original vmalloc'ed swap_map, to hold the continuation count
3569  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3570  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3571  *
3572  * These continuation pages are seldom referenced: the common paths all work
3573  * on the original swap_map, only referring to a continuation page when the
3574  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3575  *
3576  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3577  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3578  * can be called after dropping locks.
3579  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3580 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3581 {
3582 	struct swap_info_struct *si;
3583 	struct swap_cluster_info *ci;
3584 	struct page *head;
3585 	struct page *page;
3586 	struct page *list_page;
3587 	pgoff_t offset;
3588 	unsigned char count;
3589 	int ret = 0;
3590 
3591 	/*
3592 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3593 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3594 	 */
3595 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3596 
3597 	si = get_swap_device(entry);
3598 	if (!si) {
3599 		/*
3600 		 * An acceptable race has occurred since the failing
3601 		 * __swap_duplicate(): the swap device may be swapoff
3602 		 */
3603 		goto outer;
3604 	}
3605 	spin_lock(&si->lock);
3606 
3607 	offset = swp_offset(entry);
3608 
3609 	ci = lock_cluster(si, offset);
3610 
3611 	count = swap_count(si->swap_map[offset]);
3612 
3613 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3614 		/*
3615 		 * The higher the swap count, the more likely it is that tasks
3616 		 * will race to add swap count continuation: we need to avoid
3617 		 * over-provisioning.
3618 		 */
3619 		goto out;
3620 	}
3621 
3622 	if (!page) {
3623 		ret = -ENOMEM;
3624 		goto out;
3625 	}
3626 
3627 	/*
3628 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3629 	 * no architecture is using highmem pages for kernel page tables: so it
3630 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3631 	 */
3632 	head = vmalloc_to_page(si->swap_map + offset);
3633 	offset &= ~PAGE_MASK;
3634 
3635 	spin_lock(&si->cont_lock);
3636 	/*
3637 	 * Page allocation does not initialize the page's lru field,
3638 	 * but it does always reset its private field.
3639 	 */
3640 	if (!page_private(head)) {
3641 		BUG_ON(count & COUNT_CONTINUED);
3642 		INIT_LIST_HEAD(&head->lru);
3643 		set_page_private(head, SWP_CONTINUED);
3644 		si->flags |= SWP_CONTINUED;
3645 	}
3646 
3647 	list_for_each_entry(list_page, &head->lru, lru) {
3648 		unsigned char *map;
3649 
3650 		/*
3651 		 * If the previous map said no continuation, but we've found
3652 		 * a continuation page, free our allocation and use this one.
3653 		 */
3654 		if (!(count & COUNT_CONTINUED))
3655 			goto out_unlock_cont;
3656 
3657 		map = kmap_atomic(list_page) + offset;
3658 		count = *map;
3659 		kunmap_atomic(map);
3660 
3661 		/*
3662 		 * If this continuation count now has some space in it,
3663 		 * free our allocation and use this one.
3664 		 */
3665 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3666 			goto out_unlock_cont;
3667 	}
3668 
3669 	list_add_tail(&page->lru, &head->lru);
3670 	page = NULL;			/* now it's attached, don't free it */
3671 out_unlock_cont:
3672 	spin_unlock(&si->cont_lock);
3673 out:
3674 	unlock_cluster(ci);
3675 	spin_unlock(&si->lock);
3676 	put_swap_device(si);
3677 outer:
3678 	if (page)
3679 		__free_page(page);
3680 	return ret;
3681 }
3682 
3683 /*
3684  * swap_count_continued - when the original swap_map count is incremented
3685  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3686  * into, carry if so, or else fail until a new continuation page is allocated;
3687  * when the original swap_map count is decremented from 0 with continuation,
3688  * borrow from the continuation and report whether it still holds more.
3689  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3690  * lock.
3691  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3692 static bool swap_count_continued(struct swap_info_struct *si,
3693 				 pgoff_t offset, unsigned char count)
3694 {
3695 	struct page *head;
3696 	struct page *page;
3697 	unsigned char *map;
3698 	bool ret;
3699 
3700 	head = vmalloc_to_page(si->swap_map + offset);
3701 	if (page_private(head) != SWP_CONTINUED) {
3702 		BUG_ON(count & COUNT_CONTINUED);
3703 		return false;		/* need to add count continuation */
3704 	}
3705 
3706 	spin_lock(&si->cont_lock);
3707 	offset &= ~PAGE_MASK;
3708 	page = list_next_entry(head, lru);
3709 	map = kmap_atomic(page) + offset;
3710 
3711 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3712 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3713 
3714 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3715 		/*
3716 		 * Think of how you add 1 to 999
3717 		 */
3718 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3719 			kunmap_atomic(map);
3720 			page = list_next_entry(page, lru);
3721 			BUG_ON(page == head);
3722 			map = kmap_atomic(page) + offset;
3723 		}
3724 		if (*map == SWAP_CONT_MAX) {
3725 			kunmap_atomic(map);
3726 			page = list_next_entry(page, lru);
3727 			if (page == head) {
3728 				ret = false;	/* add count continuation */
3729 				goto out;
3730 			}
3731 			map = kmap_atomic(page) + offset;
3732 init_map:		*map = 0;		/* we didn't zero the page */
3733 		}
3734 		*map += 1;
3735 		kunmap_atomic(map);
3736 		while ((page = list_prev_entry(page, lru)) != head) {
3737 			map = kmap_atomic(page) + offset;
3738 			*map = COUNT_CONTINUED;
3739 			kunmap_atomic(map);
3740 		}
3741 		ret = true;			/* incremented */
3742 
3743 	} else {				/* decrementing */
3744 		/*
3745 		 * Think of how you subtract 1 from 1000
3746 		 */
3747 		BUG_ON(count != COUNT_CONTINUED);
3748 		while (*map == COUNT_CONTINUED) {
3749 			kunmap_atomic(map);
3750 			page = list_next_entry(page, lru);
3751 			BUG_ON(page == head);
3752 			map = kmap_atomic(page) + offset;
3753 		}
3754 		BUG_ON(*map == 0);
3755 		*map -= 1;
3756 		if (*map == 0)
3757 			count = 0;
3758 		kunmap_atomic(map);
3759 		while ((page = list_prev_entry(page, lru)) != head) {
3760 			map = kmap_atomic(page) + offset;
3761 			*map = SWAP_CONT_MAX | count;
3762 			count = COUNT_CONTINUED;
3763 			kunmap_atomic(map);
3764 		}
3765 		ret = count == COUNT_CONTINUED;
3766 	}
3767 out:
3768 	spin_unlock(&si->cont_lock);
3769 	return ret;
3770 }
3771 
3772 /*
3773  * free_swap_count_continuations - swapoff free all the continuation pages
3774  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3775  */
free_swap_count_continuations(struct swap_info_struct * si)3776 static void free_swap_count_continuations(struct swap_info_struct *si)
3777 {
3778 	pgoff_t offset;
3779 
3780 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3781 		struct page *head;
3782 		head = vmalloc_to_page(si->swap_map + offset);
3783 		if (page_private(head)) {
3784 			struct page *page, *next;
3785 
3786 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3787 				list_del(&page->lru);
3788 				__free_page(page);
3789 			}
3790 		}
3791 	}
3792 }
3793 
3794 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3795 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3796 {
3797 	struct swap_info_struct *si, *next;
3798 	int nid = page_to_nid(page);
3799 
3800 	if (!(gfp_mask & __GFP_IO))
3801 		return;
3802 
3803 	if (!blk_cgroup_congested())
3804 		return;
3805 
3806 	/*
3807 	 * We've already scheduled a throttle, avoid taking the global swap
3808 	 * lock.
3809 	 */
3810 	if (current->throttle_queue)
3811 		return;
3812 
3813 	spin_lock(&swap_avail_lock);
3814 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3815 				  avail_lists[nid]) {
3816 		if (si->bdev) {
3817 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3818 			break;
3819 		}
3820 	}
3821 	spin_unlock(&swap_avail_lock);
3822 }
3823 #endif
3824 
swapfile_init(void)3825 static int __init swapfile_init(void)
3826 {
3827 	int nid;
3828 
3829 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3830 					 GFP_KERNEL);
3831 	if (!swap_avail_heads) {
3832 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3833 		return -ENOMEM;
3834 	}
3835 
3836 	for_each_node(nid)
3837 		plist_head_init(&swap_avail_heads[nid]);
3838 
3839 	return 0;
3840 }
3841 subsys_initcall(swapfile_init);
3842