• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/page_pinner.h>
67 #include <linux/kthread.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/lockdep.h>
71 #include <linux/nmi.h>
72 #include <linux/psi.h>
73 #include <linux/padata.h>
74 #include <linux/khugepaged.h>
75 #include <linux/buffer_head.h>
76 #include <trace/hooks/mm.h>
77 #include <trace/hooks/vmscan.h>
78 
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 
86 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_alloc);
87 
88 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
89 typedef int __bitwise fpi_t;
90 
pcp_to_pcpext(struct per_cpu_pages * pcp)91 static inline struct per_cpu_pages_ext *pcp_to_pcpext(struct per_cpu_pages *pcp)
92 {
93 	return container_of(pcp, struct per_cpu_pages_ext, pcp);
94 }
95 
96 static inline
zone_per_cpu_pageset(struct zone * zone)97 struct per_cpu_pages_ext __percpu *zone_per_cpu_pageset(struct zone *zone)
98 {
99 	return (struct per_cpu_pages_ext __percpu *)zone->per_cpu_pageset;
100 }
101 
102 /* No special request */
103 #define FPI_NONE		((__force fpi_t)0)
104 
105 /*
106  * Skip free page reporting notification for the (possibly merged) page.
107  * This does not hinder free page reporting from grabbing the page,
108  * reporting it and marking it "reported" -  it only skips notifying
109  * the free page reporting infrastructure about a newly freed page. For
110  * example, used when temporarily pulling a page from a freelist and
111  * putting it back unmodified.
112  */
113 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
114 
115 /*
116  * Place the (possibly merged) page to the tail of the freelist. Will ignore
117  * page shuffling (relevant code - e.g., memory onlining - is expected to
118  * shuffle the whole zone).
119  *
120  * Note: No code should rely on this flag for correctness - it's purely
121  *       to allow for optimizations when handing back either fresh pages
122  *       (memory onlining) or untouched pages (page isolation, free page
123  *       reporting).
124  */
125 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
126 
127 /*
128  * Don't poison memory with KASAN (only for the tag-based modes).
129  * During boot, all non-reserved memblock memory is exposed to page_alloc.
130  * Poisoning all that memory lengthens boot time, especially on systems with
131  * large amount of RAM. This flag is used to skip that poisoning.
132  * This is only done for the tag-based KASAN modes, as those are able to
133  * detect memory corruptions with the memory tags assigned by default.
134  * All memory allocated normally after boot gets poisoned as usual.
135  */
136 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
137 
138 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
139 static DEFINE_MUTEX(pcp_batch_high_lock);
140 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
141 
142 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
143 /*
144  * On SMP, spin_trylock is sufficient protection.
145  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
146  */
147 #define pcp_trylock_prepare(flags)	do { } while (0)
148 #define pcp_trylock_finish(flag)	do { } while (0)
149 #else
150 
151 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
152 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
153 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
154 #endif
155 
156 /*
157  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
158  * a migration causing the wrong PCP to be locked and remote memory being
159  * potentially allocated, pin the task to the CPU for the lookup+lock.
160  * preempt_disable is used on !RT because it is faster than migrate_disable.
161  * migrate_disable is used on RT because otherwise RT spinlock usage is
162  * interfered with and a high priority task cannot preempt the allocator.
163  */
164 #ifndef CONFIG_PREEMPT_RT
165 #define pcpu_task_pin()		preempt_disable()
166 #define pcpu_task_unpin()	preempt_enable()
167 #else
168 #define pcpu_task_pin()		migrate_disable()
169 #define pcpu_task_unpin()	migrate_enable()
170 #endif
171 
172 /*
173  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
174  * Return value should be used with equivalent unlock helper.
175  */
176 #define pcpu_spin_lock(type, member, ptr)				\
177 ({									\
178 	type *_ret;							\
179 	pcpu_task_pin();						\
180 	_ret = this_cpu_ptr(ptr);					\
181 	spin_lock(&_ret->member);					\
182 	&_ret->pcp;							\
183 })
184 
185 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
186 ({									\
187 	type *_ret;							\
188 	pcpu_task_pin();						\
189 	_ret = this_cpu_ptr(ptr);					\
190 	spin_lock_irqsave(&_ret->member, flags);			\
191 	&_ret->pcp;							\
192 })
193 
194 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
195 ({									\
196 	type *_ret;							\
197 	pcpu_task_pin();						\
198 	_ret = this_cpu_ptr(ptr);					\
199 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
200 		pcpu_task_unpin();					\
201 		_ret = NULL;						\
202 	}								\
203 	_ret ? &_ret->pcp : NULL;					\
204 })
205 
206 #define pcpu_spin_unlock(member, ptr)					\
207 ({									\
208 	spin_unlock(&ptr->member);					\
209 	pcpu_task_unpin();						\
210 })
211 
212 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
213 ({									\
214 	spin_unlock_irqrestore(&ptr->member, flags);			\
215 	pcpu_task_unpin();						\
216 })
217 
218 /* struct per_cpu_pages_ext specific helpers. */
219 #define pcp_spin_lock(ptr)						\
220 	pcpu_spin_lock(struct per_cpu_pages_ext, lock, ptr)
221 
222 #define pcp_spin_lock_irqsave(ptr, flags)				\
223 	pcpu_spin_lock_irqsave(struct per_cpu_pages_ext, lock, ptr, flags)
224 
225 #define pcp_spin_trylock_irqsave(ptr, flags)				\
226 	pcpu_spin_trylock_irqsave(struct per_cpu_pages_ext, lock, ptr, flags)
227 
228 #define pcp_spin_unlock(ptr)						\
229 	pcpu_spin_unlock(lock, ptr)
230 
231 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
232 	pcpu_spin_unlock_irqrestore(lock, pcp_to_pcpext(ptr), flags)
233 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
234 DEFINE_PER_CPU(int, numa_node);
235 EXPORT_PER_CPU_SYMBOL(numa_node);
236 #endif
237 
238 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
239 
240 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
241 /*
242  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
243  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
244  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
245  * defined in <linux/topology.h>.
246  */
247 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
248 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
249 #endif
250 
251 static DEFINE_MUTEX(pcpu_drain_mutex);
252 
253 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
254 volatile unsigned long latent_entropy __latent_entropy;
255 EXPORT_SYMBOL(latent_entropy);
256 #endif
257 
258 /*
259  * Array of node states.
260  */
261 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
262 	[N_POSSIBLE] = NODE_MASK_ALL,
263 	[N_ONLINE] = { { [0] = 1UL } },
264 #ifndef CONFIG_NUMA
265 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
266 #ifdef CONFIG_HIGHMEM
267 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
268 #endif
269 	[N_MEMORY] = { { [0] = 1UL } },
270 	[N_CPU] = { { [0] = 1UL } },
271 #endif	/* NUMA */
272 };
273 EXPORT_SYMBOL(node_states);
274 
275 atomic_long_t _totalram_pages __read_mostly;
276 EXPORT_SYMBOL(_totalram_pages);
277 unsigned long totalreserve_pages __read_mostly;
278 unsigned long totalcma_pages __read_mostly;
279 
280 int percpu_pagelist_high_fraction;
281 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
282 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
283 EXPORT_SYMBOL(init_on_alloc);
284 
285 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
286 EXPORT_SYMBOL(init_on_free);
287 
288 static bool _init_on_alloc_enabled_early __read_mostly
289 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)290 static int __init early_init_on_alloc(char *buf)
291 {
292 
293 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
294 }
295 early_param("init_on_alloc", early_init_on_alloc);
296 
297 static bool _init_on_free_enabled_early __read_mostly
298 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)299 static int __init early_init_on_free(char *buf)
300 {
301 	return kstrtobool(buf, &_init_on_free_enabled_early);
302 }
303 early_param("init_on_free", early_init_on_free);
304 
305 /*
306  * A cached value of the page's pageblock's migratetype, used when the page is
307  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
308  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
309  * Also the migratetype set in the page does not necessarily match the pcplist
310  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
311  * other index - this ensures that it will be put on the correct CMA freelist.
312  */
get_pcppage_migratetype(struct page * page)313 static inline int get_pcppage_migratetype(struct page *page)
314 {
315 	return page->index;
316 }
317 
set_pcppage_migratetype(struct page * page,int migratetype)318 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
319 {
320 	page->index = migratetype;
321 }
322 
323 #ifdef CONFIG_PM_SLEEP
324 /*
325  * The following functions are used by the suspend/hibernate code to temporarily
326  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
327  * while devices are suspended.  To avoid races with the suspend/hibernate code,
328  * they should always be called with system_transition_mutex held
329  * (gfp_allowed_mask also should only be modified with system_transition_mutex
330  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
331  * with that modification).
332  */
333 
334 static gfp_t saved_gfp_mask;
335 
pm_restore_gfp_mask(void)336 void pm_restore_gfp_mask(void)
337 {
338 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
339 	if (saved_gfp_mask) {
340 		gfp_allowed_mask = saved_gfp_mask;
341 		saved_gfp_mask = 0;
342 	}
343 }
344 
pm_restrict_gfp_mask(void)345 void pm_restrict_gfp_mask(void)
346 {
347 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
348 	WARN_ON(saved_gfp_mask);
349 	saved_gfp_mask = gfp_allowed_mask;
350 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
351 }
352 
pm_suspended_storage(void)353 bool pm_suspended_storage(void)
354 {
355 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
356 		return false;
357 	return true;
358 }
359 #endif /* CONFIG_PM_SLEEP */
360 
361 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
362 unsigned int pageblock_order __read_mostly;
363 #endif
364 
365 static void __free_pages_ok(struct page *page, unsigned int order,
366 			    fpi_t fpi_flags);
367 
368 /*
369  * results with 256, 32 in the lowmem_reserve sysctl:
370  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
371  *	1G machine -> (16M dma, 784M normal, 224M high)
372  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
373  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
374  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
375  *
376  * TBD: should special case ZONE_DMA32 machines here - in those we normally
377  * don't need any ZONE_NORMAL reservation
378  */
379 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
380 #ifdef CONFIG_ZONE_DMA
381 	[ZONE_DMA] = 256,
382 #endif
383 #ifdef CONFIG_ZONE_DMA32
384 	[ZONE_DMA32] = 256,
385 #endif
386 	[ZONE_NORMAL] = 32,
387 #ifdef CONFIG_HIGHMEM
388 	[ZONE_HIGHMEM] = 0,
389 #endif
390 	[ZONE_MOVABLE] = 0,
391 };
392 
393 static char * const zone_names[MAX_NR_ZONES] = {
394 #ifdef CONFIG_ZONE_DMA
395 	 "DMA",
396 #endif
397 #ifdef CONFIG_ZONE_DMA32
398 	 "DMA32",
399 #endif
400 	 "Normal",
401 #ifdef CONFIG_HIGHMEM
402 	 "HighMem",
403 #endif
404 	 "Movable",
405 #ifdef CONFIG_ZONE_DEVICE
406 	 "Device",
407 #endif
408 };
409 
410 const char * const migratetype_names[MIGRATE_TYPES] = {
411 	"Unmovable",
412 	"Movable",
413 	"Reclaimable",
414 #ifdef CONFIG_CMA
415 	"CMA",
416 #endif
417 	"HighAtomic",
418 #ifdef CONFIG_MEMORY_ISOLATION
419 	"Isolate",
420 #endif
421 };
422 
423 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
424 	[NULL_COMPOUND_DTOR] = NULL,
425 	[COMPOUND_PAGE_DTOR] = free_compound_page,
426 #ifdef CONFIG_HUGETLB_PAGE
427 	[HUGETLB_PAGE_DTOR] = free_huge_page,
428 #endif
429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
431 #endif
432 };
433 
434 int min_free_kbytes = 1024;
435 int user_min_free_kbytes = -1;
436 int watermark_boost_factor __read_mostly = 15000;
437 int watermark_scale_factor = 10;
438 
439 static unsigned long nr_kernel_pages __initdata;
440 static unsigned long nr_all_pages __initdata;
441 static unsigned long dma_reserve __initdata;
442 
443 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
444 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
445 static unsigned long required_kernelcore __initdata;
446 static unsigned long required_kernelcore_percent __initdata;
447 static unsigned long required_movablecore __initdata;
448 static unsigned long required_movablecore_percent __initdata;
449 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
450 static bool mirrored_kernelcore __meminitdata;
451 
452 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
453 int movable_zone;
454 EXPORT_SYMBOL(movable_zone);
455 
456 #if MAX_NUMNODES > 1
457 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
458 unsigned int nr_online_nodes __read_mostly = 1;
459 EXPORT_SYMBOL(nr_node_ids);
460 EXPORT_SYMBOL(nr_online_nodes);
461 #endif
462 
463 int page_group_by_mobility_disabled __read_mostly;
464 
465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
466 /*
467  * During boot we initialize deferred pages on-demand, as needed, but once
468  * page_alloc_init_late() has finished, the deferred pages are all initialized,
469  * and we can permanently disable that path.
470  */
471 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
472 
deferred_pages_enabled(void)473 static inline bool deferred_pages_enabled(void)
474 {
475 	return static_branch_unlikely(&deferred_pages);
476 }
477 
478 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)479 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
480 {
481 	int nid = early_pfn_to_nid(pfn);
482 
483 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
484 		return true;
485 
486 	return false;
487 }
488 
489 /*
490  * Returns true when the remaining initialisation should be deferred until
491  * later in the boot cycle when it can be parallelised.
492  */
493 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)494 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
495 {
496 	static unsigned long prev_end_pfn, nr_initialised;
497 
498 	/*
499 	 * prev_end_pfn static that contains the end of previous zone
500 	 * No need to protect because called very early in boot before smp_init.
501 	 */
502 	if (prev_end_pfn != end_pfn) {
503 		prev_end_pfn = end_pfn;
504 		nr_initialised = 0;
505 	}
506 
507 	/* Always populate low zones for address-constrained allocations */
508 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
509 		return false;
510 
511 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
512 		return true;
513 	/*
514 	 * We start only with one section of pages, more pages are added as
515 	 * needed until the rest of deferred pages are initialized.
516 	 */
517 	nr_initialised++;
518 	if ((nr_initialised > PAGES_PER_SECTION) &&
519 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
520 		NODE_DATA(nid)->first_deferred_pfn = pfn;
521 		return true;
522 	}
523 	return false;
524 }
525 #else
deferred_pages_enabled(void)526 static inline bool deferred_pages_enabled(void)
527 {
528 	return false;
529 }
530 
early_page_uninitialised(unsigned long pfn)531 static inline bool early_page_uninitialised(unsigned long pfn)
532 {
533 	return false;
534 }
535 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)536 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
537 {
538 	return false;
539 }
540 #endif
541 
542 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)543 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
544 							unsigned long pfn)
545 {
546 #ifdef CONFIG_SPARSEMEM
547 	return section_to_usemap(__pfn_to_section(pfn));
548 #else
549 	return page_zone(page)->pageblock_flags;
550 #endif /* CONFIG_SPARSEMEM */
551 }
552 
pfn_to_bitidx(const struct page * page,unsigned long pfn)553 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
554 {
555 #ifdef CONFIG_SPARSEMEM
556 	pfn &= (PAGES_PER_SECTION-1);
557 #else
558 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
559 #endif /* CONFIG_SPARSEMEM */
560 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
561 }
562 
563 static __always_inline
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)564 unsigned long __get_pfnblock_flags_mask(const struct page *page,
565 					unsigned long pfn,
566 					unsigned long mask)
567 {
568 	unsigned long *bitmap;
569 	unsigned long bitidx, word_bitidx;
570 	unsigned long word;
571 
572 	bitmap = get_pageblock_bitmap(page, pfn);
573 	bitidx = pfn_to_bitidx(page, pfn);
574 	word_bitidx = bitidx / BITS_PER_LONG;
575 	bitidx &= (BITS_PER_LONG-1);
576 	/*
577 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
578 	 * a consistent read of the memory array, so that results, even though
579 	 * racy, are not corrupted.
580 	 */
581 	word = READ_ONCE(bitmap[word_bitidx]);
582 	return (word >> bitidx) & mask;
583 }
584 
585 /**
586  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
587  * @page: The page within the block of interest
588  * @pfn: The target page frame number
589  * @mask: mask of bits that the caller is interested in
590  *
591  * Return: pageblock_bits flags
592  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)593 unsigned long get_pfnblock_flags_mask(const struct page *page,
594 					unsigned long pfn, unsigned long mask)
595 {
596 	return __get_pfnblock_flags_mask(page, pfn, mask);
597 }
598 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
599 
isolate_anon_lru_page(struct page * page)600 int isolate_anon_lru_page(struct page *page)
601 {
602 	int ret;
603 
604 	if (!PageLRU(page) || !PageAnon(page))
605 		return -EINVAL;
606 
607 	if (!get_page_unless_zero(page))
608 		return -EINVAL;
609 
610 	ret = isolate_lru_page(page);
611 	put_page(page);
612 
613 	return ret;
614 }
615 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
616 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)617 static __always_inline int get_pfnblock_migratetype(const struct page *page,
618 					unsigned long pfn)
619 {
620 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
621 }
622 
623 /**
624  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
625  * @page: The page within the block of interest
626  * @flags: The flags to set
627  * @pfn: The target page frame number
628  * @mask: mask of bits that the caller is interested in
629  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)630 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
631 					unsigned long pfn,
632 					unsigned long mask)
633 {
634 	unsigned long *bitmap;
635 	unsigned long bitidx, word_bitidx;
636 	unsigned long old_word, word;
637 
638 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
639 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
640 
641 	bitmap = get_pageblock_bitmap(page, pfn);
642 	bitidx = pfn_to_bitidx(page, pfn);
643 	word_bitidx = bitidx / BITS_PER_LONG;
644 	bitidx &= (BITS_PER_LONG-1);
645 
646 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
647 
648 	mask <<= bitidx;
649 	flags <<= bitidx;
650 
651 	word = READ_ONCE(bitmap[word_bitidx]);
652 	for (;;) {
653 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
654 		if (word == old_word)
655 			break;
656 		word = old_word;
657 	}
658 }
659 
set_pageblock_migratetype(struct page * page,int migratetype)660 void set_pageblock_migratetype(struct page *page, int migratetype)
661 {
662 	if (unlikely(page_group_by_mobility_disabled &&
663 		     migratetype < MIGRATE_PCPTYPES))
664 		migratetype = MIGRATE_UNMOVABLE;
665 
666 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
667 				page_to_pfn(page), MIGRATETYPE_MASK);
668 }
669 
670 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)671 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
672 {
673 	int ret = 0;
674 	unsigned seq;
675 	unsigned long pfn = page_to_pfn(page);
676 	unsigned long sp, start_pfn;
677 
678 	do {
679 		seq = zone_span_seqbegin(zone);
680 		start_pfn = zone->zone_start_pfn;
681 		sp = zone->spanned_pages;
682 		if (!zone_spans_pfn(zone, pfn))
683 			ret = 1;
684 	} while (zone_span_seqretry(zone, seq));
685 
686 	if (ret)
687 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
688 			pfn, zone_to_nid(zone), zone->name,
689 			start_pfn, start_pfn + sp);
690 
691 	return ret;
692 }
693 
page_is_consistent(struct zone * zone,struct page * page)694 static int page_is_consistent(struct zone *zone, struct page *page)
695 {
696 	if (zone != page_zone(page))
697 		return 0;
698 
699 	return 1;
700 }
701 /*
702  * Temporary debugging check for pages not lying within a given zone.
703  */
bad_range(struct zone * zone,struct page * page)704 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
705 {
706 	if (page_outside_zone_boundaries(zone, page))
707 		return 1;
708 	if (!page_is_consistent(zone, page))
709 		return 1;
710 
711 	return 0;
712 }
713 #else
bad_range(struct zone * zone,struct page * page)714 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
715 {
716 	return 0;
717 }
718 #endif
719 
bad_page(struct page * page,const char * reason)720 static void bad_page(struct page *page, const char *reason)
721 {
722 	static unsigned long resume;
723 	static unsigned long nr_shown;
724 	static unsigned long nr_unshown;
725 
726 	/*
727 	 * Allow a burst of 60 reports, then keep quiet for that minute;
728 	 * or allow a steady drip of one report per second.
729 	 */
730 	if (nr_shown == 60) {
731 		if (time_before(jiffies, resume)) {
732 			nr_unshown++;
733 			goto out;
734 		}
735 		if (nr_unshown) {
736 			pr_alert(
737 			      "BUG: Bad page state: %lu messages suppressed\n",
738 				nr_unshown);
739 			nr_unshown = 0;
740 		}
741 		nr_shown = 0;
742 	}
743 	if (nr_shown++ == 0)
744 		resume = jiffies + 60 * HZ;
745 
746 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
747 		current->comm, page_to_pfn(page));
748 	dump_page(page, reason);
749 
750 	print_modules();
751 	dump_stack();
752 out:
753 	/* Leave bad fields for debug, except PageBuddy could make trouble */
754 	page_mapcount_reset(page); /* remove PageBuddy */
755 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
756 }
757 
order_to_pindex(int migratetype,int order)758 static inline unsigned int order_to_pindex(int migratetype, int order)
759 {
760 	int base = order;
761 
762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
763 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
764 		VM_BUG_ON(order != pageblock_order);
765 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
766 	}
767 #else
768 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
769 #endif
770 
771 	return (MIGRATE_PCPTYPES * base) + migratetype;
772 }
773 
pindex_to_order(unsigned int pindex)774 static inline int pindex_to_order(unsigned int pindex)
775 {
776 	int order = pindex / MIGRATE_PCPTYPES;
777 
778 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
779 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
780 		order = pageblock_order;
781 		VM_BUG_ON(order != pageblock_order);
782 	}
783 #else
784 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
785 #endif
786 
787 	return order;
788 }
789 
pcp_allowed_order(unsigned int order)790 static inline bool pcp_allowed_order(unsigned int order)
791 {
792 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
793 		return true;
794 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
795 	if (order == pageblock_order)
796 		return true;
797 #endif
798 	return false;
799 }
800 
free_the_page(struct page * page,unsigned int order)801 static inline void free_the_page(struct page *page, unsigned int order)
802 {
803 	if (pcp_allowed_order(order))		/* Via pcp? */
804 		free_unref_page(page, order);
805 	else
806 		__free_pages_ok(page, order, FPI_NONE);
807 }
808 
809 /*
810  * Higher-order pages are called "compound pages".  They are structured thusly:
811  *
812  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
813  *
814  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
815  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
816  *
817  * The first tail page's ->compound_dtor holds the offset in array of compound
818  * page destructors. See compound_page_dtors.
819  *
820  * The first tail page's ->compound_order holds the order of allocation.
821  * This usage means that zero-order pages may not be compound.
822  */
823 
free_compound_page(struct page * page)824 void free_compound_page(struct page *page)
825 {
826 	mem_cgroup_uncharge(page);
827 	free_the_page(page, compound_order(page));
828 }
829 
prep_compound_page(struct page * page,unsigned int order)830 void prep_compound_page(struct page *page, unsigned int order)
831 {
832 	int i;
833 	int nr_pages = 1 << order;
834 
835 	__SetPageHead(page);
836 	for (i = 1; i < nr_pages; i++) {
837 		struct page *p = page + i;
838 		p->mapping = TAIL_MAPPING;
839 		set_compound_head(p, page);
840 	}
841 
842 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
843 	set_compound_order(page, order);
844 	atomic_set(compound_mapcount_ptr(page), -1);
845 	if (hpage_pincount_available(page))
846 		atomic_set(compound_pincount_ptr(page), 0);
847 }
848 
849 #ifdef CONFIG_DEBUG_PAGEALLOC
850 unsigned int _debug_guardpage_minorder;
851 
852 bool _debug_pagealloc_enabled_early __read_mostly
853 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
854 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
855 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
856 EXPORT_SYMBOL(_debug_pagealloc_enabled);
857 
858 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
859 
early_debug_pagealloc(char * buf)860 static int __init early_debug_pagealloc(char *buf)
861 {
862 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
863 }
864 early_param("debug_pagealloc", early_debug_pagealloc);
865 
debug_guardpage_minorder_setup(char * buf)866 static int __init debug_guardpage_minorder_setup(char *buf)
867 {
868 	unsigned long res;
869 
870 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
871 		pr_err("Bad debug_guardpage_minorder value\n");
872 		return 0;
873 	}
874 	_debug_guardpage_minorder = res;
875 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
876 	return 0;
877 }
878 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
879 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)880 static inline bool set_page_guard(struct zone *zone, struct page *page,
881 				unsigned int order, int migratetype)
882 {
883 	if (!debug_guardpage_enabled())
884 		return false;
885 
886 	if (order >= debug_guardpage_minorder())
887 		return false;
888 
889 	__SetPageGuard(page);
890 	INIT_LIST_HEAD(&page->lru);
891 	set_page_private(page, order);
892 	/* Guard pages are not available for any usage */
893 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
894 
895 	return true;
896 }
897 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)898 static inline void clear_page_guard(struct zone *zone, struct page *page,
899 				unsigned int order, int migratetype)
900 {
901 	if (!debug_guardpage_enabled())
902 		return;
903 
904 	__ClearPageGuard(page);
905 
906 	set_page_private(page, 0);
907 	if (!is_migrate_isolate(migratetype))
908 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
909 }
910 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)911 static inline bool set_page_guard(struct zone *zone, struct page *page,
912 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)913 static inline void clear_page_guard(struct zone *zone, struct page *page,
914 				unsigned int order, int migratetype) {}
915 #endif
916 
917 /*
918  * Enable static keys related to various memory debugging and hardening options.
919  * Some override others, and depend on early params that are evaluated in the
920  * order of appearance. So we need to first gather the full picture of what was
921  * enabled, and then make decisions.
922  */
init_mem_debugging_and_hardening(void)923 void init_mem_debugging_and_hardening(void)
924 {
925 	bool page_poisoning_requested = false;
926 
927 #ifdef CONFIG_PAGE_POISONING
928 	/*
929 	 * Page poisoning is debug page alloc for some arches. If
930 	 * either of those options are enabled, enable poisoning.
931 	 */
932 	if (page_poisoning_enabled() ||
933 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
934 	      debug_pagealloc_enabled())) {
935 		static_branch_enable(&_page_poisoning_enabled);
936 		page_poisoning_requested = true;
937 	}
938 #endif
939 
940 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
941 	    page_poisoning_requested) {
942 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
943 			"will take precedence over init_on_alloc and init_on_free\n");
944 		_init_on_alloc_enabled_early = false;
945 		_init_on_free_enabled_early = false;
946 	}
947 
948 	if (_init_on_alloc_enabled_early)
949 		static_branch_enable(&init_on_alloc);
950 	else
951 		static_branch_disable(&init_on_alloc);
952 
953 	if (_init_on_free_enabled_early)
954 		static_branch_enable(&init_on_free);
955 	else
956 		static_branch_disable(&init_on_free);
957 
958 #ifdef CONFIG_DEBUG_PAGEALLOC
959 	if (!debug_pagealloc_enabled())
960 		return;
961 
962 	static_branch_enable(&_debug_pagealloc_enabled);
963 
964 	if (!debug_guardpage_minorder())
965 		return;
966 
967 	static_branch_enable(&_debug_guardpage_enabled);
968 #endif
969 }
970 
set_buddy_order(struct page * page,unsigned int order)971 static inline void set_buddy_order(struct page *page, unsigned int order)
972 {
973 	set_page_private(page, order);
974 	__SetPageBuddy(page);
975 }
976 
977 /*
978  * This function checks whether a page is free && is the buddy
979  * we can coalesce a page and its buddy if
980  * (a) the buddy is not in a hole (check before calling!) &&
981  * (b) the buddy is in the buddy system &&
982  * (c) a page and its buddy have the same order &&
983  * (d) a page and its buddy are in the same zone.
984  *
985  * For recording whether a page is in the buddy system, we set PageBuddy.
986  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
987  *
988  * For recording page's order, we use page_private(page).
989  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)990 static inline bool page_is_buddy(struct page *page, struct page *buddy,
991 							unsigned int order)
992 {
993 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
994 		return false;
995 
996 	if (buddy_order(buddy) != order)
997 		return false;
998 
999 	/*
1000 	 * zone check is done late to avoid uselessly calculating
1001 	 * zone/node ids for pages that could never merge.
1002 	 */
1003 	if (page_zone_id(page) != page_zone_id(buddy))
1004 		return false;
1005 
1006 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
1007 
1008 	return true;
1009 }
1010 
1011 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)1012 static inline struct capture_control *task_capc(struct zone *zone)
1013 {
1014 	struct capture_control *capc = current->capture_control;
1015 
1016 	return unlikely(capc) &&
1017 		!(current->flags & PF_KTHREAD) &&
1018 		!capc->page &&
1019 		capc->cc->zone == zone ? capc : NULL;
1020 }
1021 
1022 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1023 compaction_capture(struct capture_control *capc, struct page *page,
1024 		   int order, int migratetype)
1025 {
1026 	if (!capc || order != capc->cc->order)
1027 		return false;
1028 
1029 	/* Do not accidentally pollute CMA or isolated regions*/
1030 	if (is_migrate_cma(migratetype) ||
1031 	    is_migrate_isolate(migratetype))
1032 		return false;
1033 
1034 	/*
1035 	 * Do not let lower order allocations pollute a movable pageblock.
1036 	 * This might let an unmovable request use a reclaimable pageblock
1037 	 * and vice-versa but no more than normal fallback logic which can
1038 	 * have trouble finding a high-order free page.
1039 	 */
1040 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
1041 		return false;
1042 
1043 	capc->page = page;
1044 	return true;
1045 }
1046 
1047 #else
task_capc(struct zone * zone)1048 static inline struct capture_control *task_capc(struct zone *zone)
1049 {
1050 	return NULL;
1051 }
1052 
1053 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1054 compaction_capture(struct capture_control *capc, struct page *page,
1055 		   int order, int migratetype)
1056 {
1057 	return false;
1058 }
1059 #endif /* CONFIG_COMPACTION */
1060 
1061 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1062 static inline void add_to_free_list(struct page *page, struct zone *zone,
1063 				    unsigned int order, int migratetype)
1064 {
1065 	struct free_area *area = &zone->free_area[order];
1066 
1067 	list_add(&page->lru, &area->free_list[migratetype]);
1068 	area->nr_free++;
1069 }
1070 
1071 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)1072 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1073 					 unsigned int order, int migratetype)
1074 {
1075 	struct free_area *area = &zone->free_area[order];
1076 
1077 	list_add_tail(&page->lru, &area->free_list[migratetype]);
1078 	area->nr_free++;
1079 }
1080 
1081 /*
1082  * Used for pages which are on another list. Move the pages to the tail
1083  * of the list - so the moved pages won't immediately be considered for
1084  * allocation again (e.g., optimization for memory onlining).
1085  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1086 static inline void move_to_free_list(struct page *page, struct zone *zone,
1087 				     unsigned int order, int migratetype)
1088 {
1089 	struct free_area *area = &zone->free_area[order];
1090 
1091 	list_move_tail(&page->lru, &area->free_list[migratetype]);
1092 }
1093 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)1094 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1095 					   unsigned int order)
1096 {
1097 	/* clear reported state and update reported page count */
1098 	if (page_reported(page))
1099 		__ClearPageReported(page);
1100 
1101 	list_del(&page->lru);
1102 	__ClearPageBuddy(page);
1103 	set_page_private(page, 0);
1104 	zone->free_area[order].nr_free--;
1105 }
1106 
1107 /*
1108  * If this is not the largest possible page, check if the buddy
1109  * of the next-highest order is free. If it is, it's possible
1110  * that pages are being freed that will coalesce soon. In case,
1111  * that is happening, add the free page to the tail of the list
1112  * so it's less likely to be used soon and more likely to be merged
1113  * as a higher order page
1114  */
1115 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1116 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1117 		   struct page *page, unsigned int order)
1118 {
1119 	struct page *higher_page, *higher_buddy;
1120 	unsigned long combined_pfn;
1121 
1122 	if (order >= MAX_ORDER - 2)
1123 		return false;
1124 
1125 	combined_pfn = buddy_pfn & pfn;
1126 	higher_page = page + (combined_pfn - pfn);
1127 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1128 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1129 
1130 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1131 }
1132 
1133 /*
1134  * Freeing function for a buddy system allocator.
1135  *
1136  * The concept of a buddy system is to maintain direct-mapped table
1137  * (containing bit values) for memory blocks of various "orders".
1138  * The bottom level table contains the map for the smallest allocatable
1139  * units of memory (here, pages), and each level above it describes
1140  * pairs of units from the levels below, hence, "buddies".
1141  * At a high level, all that happens here is marking the table entry
1142  * at the bottom level available, and propagating the changes upward
1143  * as necessary, plus some accounting needed to play nicely with other
1144  * parts of the VM system.
1145  * At each level, we keep a list of pages, which are heads of continuous
1146  * free pages of length of (1 << order) and marked with PageBuddy.
1147  * Page's order is recorded in page_private(page) field.
1148  * So when we are allocating or freeing one, we can derive the state of the
1149  * other.  That is, if we allocate a small block, and both were
1150  * free, the remainder of the region must be split into blocks.
1151  * If a block is freed, and its buddy is also free, then this
1152  * triggers coalescing into a block of larger size.
1153  *
1154  * -- nyc
1155  */
1156 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1157 static inline void __free_one_page(struct page *page,
1158 		unsigned long pfn,
1159 		struct zone *zone, unsigned int order,
1160 		int migratetype, fpi_t fpi_flags)
1161 {
1162 	struct capture_control *capc = task_capc(zone);
1163 	unsigned long buddy_pfn;
1164 	unsigned long combined_pfn;
1165 	unsigned int max_order;
1166 	struct page *buddy;
1167 	bool to_tail;
1168 	bool bypass = false;
1169 
1170 	trace_android_vh_free_one_page_bypass(page, zone, order,
1171 		migratetype, (int)fpi_flags, &bypass);
1172 
1173 	if (bypass)
1174 		return;
1175 
1176 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1177 
1178 	VM_BUG_ON(!zone_is_initialized(zone));
1179 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1180 
1181 	VM_BUG_ON(migratetype == -1);
1182 	if (likely(!is_migrate_isolate(migratetype)))
1183 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1184 
1185 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1186 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1187 
1188 continue_merging:
1189 	while (order < max_order) {
1190 		if (compaction_capture(capc, page, order, migratetype)) {
1191 			__mod_zone_freepage_state(zone, -(1 << order),
1192 								migratetype);
1193 			return;
1194 		}
1195 		buddy_pfn = __find_buddy_pfn(pfn, order);
1196 		buddy = page + (buddy_pfn - pfn);
1197 
1198 		if (!page_is_buddy(page, buddy, order))
1199 			goto done_merging;
1200 		/*
1201 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1202 		 * merge with it and move up one order.
1203 		 */
1204 		if (page_is_guard(buddy))
1205 			clear_page_guard(zone, buddy, order, migratetype);
1206 		else
1207 			del_page_from_free_list(buddy, zone, order);
1208 		combined_pfn = buddy_pfn & pfn;
1209 		page = page + (combined_pfn - pfn);
1210 		pfn = combined_pfn;
1211 		order++;
1212 	}
1213 	if (order < MAX_ORDER - 1) {
1214 		/* If we are here, it means order is >= pageblock_order.
1215 		 * We want to prevent merge between freepages on isolate
1216 		 * pageblock and normal pageblock. Without this, pageblock
1217 		 * isolation could cause incorrect freepage or CMA accounting.
1218 		 *
1219 		 * We don't want to hit this code for the more frequent
1220 		 * low-order merging.
1221 		 */
1222 		if (unlikely(has_isolate_pageblock(zone))) {
1223 			int buddy_mt;
1224 
1225 			buddy_pfn = __find_buddy_pfn(pfn, order);
1226 			buddy = page + (buddy_pfn - pfn);
1227 			buddy_mt = get_pageblock_migratetype(buddy);
1228 
1229 			if (migratetype != buddy_mt
1230 					&& (is_migrate_isolate(migratetype) ||
1231 						is_migrate_isolate(buddy_mt)))
1232 				goto done_merging;
1233 		}
1234 		max_order = order + 1;
1235 		goto continue_merging;
1236 	}
1237 
1238 done_merging:
1239 	set_buddy_order(page, order);
1240 
1241 	if (fpi_flags & FPI_TO_TAIL)
1242 		to_tail = true;
1243 	else if (is_shuffle_order(order))
1244 		to_tail = shuffle_pick_tail();
1245 	else
1246 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1247 
1248 	if (to_tail)
1249 		add_to_free_list_tail(page, zone, order, migratetype);
1250 	else
1251 		add_to_free_list(page, zone, order, migratetype);
1252 
1253 	/* Notify page reporting subsystem of freed page */
1254 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1255 		page_reporting_notify_free(order);
1256 }
1257 
1258 /*
1259  * A bad page could be due to a number of fields. Instead of multiple branches,
1260  * try and check multiple fields with one check. The caller must do a detailed
1261  * check if necessary.
1262  */
page_expected_state(struct page * page,unsigned long check_flags)1263 static inline bool page_expected_state(struct page *page,
1264 					unsigned long check_flags)
1265 {
1266 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1267 		return false;
1268 
1269 	if (unlikely((unsigned long)page->mapping |
1270 			page_ref_count(page) |
1271 #ifdef CONFIG_MEMCG
1272 			page->memcg_data |
1273 #endif
1274 			(page->flags & check_flags)))
1275 		return false;
1276 
1277 	return true;
1278 }
1279 
page_bad_reason(struct page * page,unsigned long flags)1280 static const char *page_bad_reason(struct page *page, unsigned long flags)
1281 {
1282 	const char *bad_reason = NULL;
1283 
1284 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1285 		bad_reason = "nonzero mapcount";
1286 	if (unlikely(page->mapping != NULL))
1287 		bad_reason = "non-NULL mapping";
1288 	if (unlikely(page_ref_count(page) != 0))
1289 		bad_reason = "nonzero _refcount";
1290 	if (unlikely(page->flags & flags)) {
1291 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1292 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1293 		else
1294 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1295 	}
1296 #ifdef CONFIG_MEMCG
1297 	if (unlikely(page->memcg_data))
1298 		bad_reason = "page still charged to cgroup";
1299 #endif
1300 	return bad_reason;
1301 }
1302 
check_free_page_bad(struct page * page)1303 static void check_free_page_bad(struct page *page)
1304 {
1305 	bad_page(page,
1306 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1307 }
1308 
check_free_page(struct page * page)1309 static inline int check_free_page(struct page *page)
1310 {
1311 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1312 		return 0;
1313 
1314 	/* Something has gone sideways, find it */
1315 	check_free_page_bad(page);
1316 	return 1;
1317 }
1318 
free_tail_pages_check(struct page * head_page,struct page * page)1319 static int free_tail_pages_check(struct page *head_page, struct page *page)
1320 {
1321 	int ret = 1;
1322 
1323 	/*
1324 	 * We rely page->lru.next never has bit 0 set, unless the page
1325 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1326 	 */
1327 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1328 
1329 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1330 		ret = 0;
1331 		goto out;
1332 	}
1333 	switch (page - head_page) {
1334 	case 1:
1335 		/* the first tail page: ->mapping may be compound_mapcount() */
1336 		if (unlikely(compound_mapcount(page))) {
1337 			bad_page(page, "nonzero compound_mapcount");
1338 			goto out;
1339 		}
1340 		break;
1341 	case 2:
1342 		/*
1343 		 * the second tail page: ->mapping is
1344 		 * deferred_list.next -- ignore value.
1345 		 */
1346 		break;
1347 	default:
1348 		if (page->mapping != TAIL_MAPPING) {
1349 			bad_page(page, "corrupted mapping in tail page");
1350 			goto out;
1351 		}
1352 		break;
1353 	}
1354 	if (unlikely(!PageTail(page))) {
1355 		bad_page(page, "PageTail not set");
1356 		goto out;
1357 	}
1358 	if (unlikely(compound_head(page) != head_page)) {
1359 		bad_page(page, "compound_head not consistent");
1360 		goto out;
1361 	}
1362 	ret = 0;
1363 out:
1364 	page->mapping = NULL;
1365 	clear_compound_head(page);
1366 	return ret;
1367 }
1368 
1369 /*
1370  * Skip KASAN memory poisoning when either:
1371  *
1372  * 1. Deferred memory initialization has not yet completed,
1373  *    see the explanation below.
1374  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1375  *    see the comment next to it.
1376  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1377  *    see the comment next to it.
1378  *
1379  * Poisoning pages during deferred memory init will greatly lengthen the
1380  * process and cause problem in large memory systems as the deferred pages
1381  * initialization is done with interrupt disabled.
1382  *
1383  * Assuming that there will be no reference to those newly initialized
1384  * pages before they are ever allocated, this should have no effect on
1385  * KASAN memory tracking as the poison will be properly inserted at page
1386  * allocation time. The only corner case is when pages are allocated by
1387  * on-demand allocation and then freed again before the deferred pages
1388  * initialization is done, but this is not likely to happen.
1389  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1390 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1391 {
1392 	return deferred_pages_enabled() ||
1393 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1394 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1395 	       PageSkipKASanPoison(page);
1396 }
1397 
kernel_init_free_pages(struct page * page,int numpages)1398 static void kernel_init_free_pages(struct page *page, int numpages)
1399 {
1400 	int i;
1401 
1402 	/* s390's use of memset() could override KASAN redzones. */
1403 	kasan_disable_current();
1404 	for (i = 0; i < numpages; i++) {
1405 		u8 tag = page_kasan_tag(page + i);
1406 		page_kasan_tag_reset(page + i);
1407 		clear_highpage(page + i);
1408 		page_kasan_tag_set(page + i, tag);
1409 	}
1410 	kasan_enable_current();
1411 }
1412 
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1413 static __always_inline bool free_pages_prepare(struct page *page,
1414 			unsigned int order, bool check_free, fpi_t fpi_flags)
1415 {
1416 	int bad = 0;
1417 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1418 	bool init = want_init_on_free();
1419 
1420 	VM_BUG_ON_PAGE(PageTail(page), page);
1421 
1422 	trace_mm_page_free(page, order);
1423 
1424 	if (unlikely(PageHWPoison(page)) && !order) {
1425 		/*
1426 		 * Do not let hwpoison pages hit pcplists/buddy
1427 		 * Untie memcg state and reset page's owner
1428 		 */
1429 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1430 			__memcg_kmem_uncharge_page(page, order);
1431 		reset_page_owner(page, order);
1432 		free_page_pinner(page, order);
1433 		return false;
1434 	}
1435 
1436 	/*
1437 	 * Check tail pages before head page information is cleared to
1438 	 * avoid checking PageCompound for order-0 pages.
1439 	 */
1440 	if (unlikely(order)) {
1441 		bool compound = PageCompound(page);
1442 		int i;
1443 
1444 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1445 
1446 		if (compound) {
1447 			ClearPageDoubleMap(page);
1448 			ClearPageHasHWPoisoned(page);
1449 		}
1450 		for (i = 1; i < (1 << order); i++) {
1451 			if (compound)
1452 				bad += free_tail_pages_check(page, page + i);
1453 			if (unlikely(check_free_page(page + i))) {
1454 				bad++;
1455 				continue;
1456 			}
1457 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1458 		}
1459 	}
1460 	if (PageMappingFlags(page))
1461 		page->mapping = NULL;
1462 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1463 		__memcg_kmem_uncharge_page(page, order);
1464 	if (check_free)
1465 		bad += check_free_page(page);
1466 	if (bad)
1467 		return false;
1468 
1469 	page_cpupid_reset_last(page);
1470 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1471 	reset_page_owner(page, order);
1472 	free_page_pinner(page, order);
1473 
1474 	if (!PageHighMem(page)) {
1475 		debug_check_no_locks_freed(page_address(page),
1476 					   PAGE_SIZE << order);
1477 		debug_check_no_obj_freed(page_address(page),
1478 					   PAGE_SIZE << order);
1479 	}
1480 
1481 	kernel_poison_pages(page, 1 << order);
1482 
1483 	/*
1484 	 * As memory initialization might be integrated into KASAN,
1485 	 * KASAN poisoning and memory initialization code must be
1486 	 * kept together to avoid discrepancies in behavior.
1487 	 *
1488 	 * With hardware tag-based KASAN, memory tags must be set before the
1489 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1490 	 */
1491 	if (!skip_kasan_poison) {
1492 		kasan_poison_pages(page, order, init);
1493 
1494 		/* Memory is already initialized if KASAN did it internally. */
1495 		if (kasan_has_integrated_init())
1496 			init = false;
1497 	}
1498 	if (init)
1499 		kernel_init_free_pages(page, 1 << order);
1500 
1501 	/*
1502 	 * arch_free_page() can make the page's contents inaccessible.  s390
1503 	 * does this.  So nothing which can access the page's contents should
1504 	 * happen after this.
1505 	 */
1506 	arch_free_page(page, order);
1507 
1508 	debug_pagealloc_unmap_pages(page, 1 << order);
1509 
1510 	return true;
1511 }
1512 
1513 #ifdef CONFIG_DEBUG_VM
1514 /*
1515  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1516  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1517  * moved from pcp lists to free lists.
1518  */
free_pcp_prepare(struct page * page,unsigned int order)1519 static bool free_pcp_prepare(struct page *page, unsigned int order)
1520 {
1521 	return free_pages_prepare(page, order, true, FPI_NONE);
1522 }
1523 
bulkfree_pcp_prepare(struct page * page)1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526 	if (debug_pagealloc_enabled_static())
1527 		return check_free_page(page);
1528 	else
1529 		return false;
1530 }
1531 #else
1532 /*
1533  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1534  * moving from pcp lists to free list in order to reduce overhead. With
1535  * debug_pagealloc enabled, they are checked also immediately when being freed
1536  * to the pcp lists.
1537  */
free_pcp_prepare(struct page * page,unsigned int order)1538 static bool free_pcp_prepare(struct page *page, unsigned int order)
1539 {
1540 	if (debug_pagealloc_enabled_static())
1541 		return free_pages_prepare(page, order, true, FPI_NONE);
1542 	else
1543 		return free_pages_prepare(page, order, false, FPI_NONE);
1544 }
1545 
bulkfree_pcp_prepare(struct page * page)1546 static bool bulkfree_pcp_prepare(struct page *page)
1547 {
1548 	return check_free_page(page);
1549 }
1550 #endif /* CONFIG_DEBUG_VM */
1551 
prefetch_buddy(struct page * page)1552 static inline void prefetch_buddy(struct page *page)
1553 {
1554 	unsigned long pfn = page_to_pfn(page);
1555 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1556 	struct page *buddy = page + (buddy_pfn - pfn);
1557 
1558 	prefetch(buddy);
1559 }
1560 
1561 /*
1562  * Frees a number of pages from the PCP lists
1563  * Assumes all pages on list are in same zone, and of same order.
1564  * count is the number of pages to free.
1565  *
1566  * If the zone was previously in an "all pages pinned" state then look to
1567  * see if this freeing clears that state.
1568  *
1569  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1570  * pinned" detection logic.
1571  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1572 static void free_pcppages_bulk(struct zone *zone, int count,
1573 					struct per_cpu_pages *pcp)
1574 {
1575 	int pindex = 0;
1576 	int batch_free = 0;
1577 	int nr_freed = 0;
1578 	unsigned int order;
1579 	int prefetch_nr = READ_ONCE(pcp->batch);
1580 	bool isolated_pageblocks;
1581 	struct page *page, *tmp;
1582 	LIST_HEAD(head);
1583 
1584 	/*
1585 	 * Ensure proper count is passed which otherwise would stuck in the
1586 	 * below while (list_empty(list)) loop.
1587 	 */
1588 	count = min(pcp->count, count);
1589 	while (count > 0) {
1590 		struct list_head *list;
1591 
1592 		/*
1593 		 * Remove pages from lists in a round-robin fashion. A
1594 		 * batch_free count is maintained that is incremented when an
1595 		 * empty list is encountered.  This is so more pages are freed
1596 		 * off fuller lists instead of spinning excessively around empty
1597 		 * lists
1598 		 */
1599 		do {
1600 			batch_free++;
1601 			if (++pindex == NR_PCP_LISTS)
1602 				pindex = 0;
1603 			list = &pcp->lists[pindex];
1604 		} while (list_empty(list));
1605 
1606 		/* This is the only non-empty list. Free them all. */
1607 		if (batch_free == NR_PCP_LISTS)
1608 			batch_free = count;
1609 
1610 		order = pindex_to_order(pindex);
1611 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1612 		do {
1613 			page = list_last_entry(list, struct page, lru);
1614 			/* must delete to avoid corrupting pcp list */
1615 			list_del(&page->lru);
1616 			nr_freed += 1 << order;
1617 			count -= 1 << order;
1618 
1619 			if (bulkfree_pcp_prepare(page))
1620 				continue;
1621 
1622 			/* Encode order with the migratetype */
1623 			page->index <<= NR_PCP_ORDER_WIDTH;
1624 			page->index |= order;
1625 
1626 			list_add_tail(&page->lru, &head);
1627 
1628 			/*
1629 			 * We are going to put the page back to the global
1630 			 * pool, prefetch its buddy to speed up later access
1631 			 * under zone->lock. It is believed the overhead of
1632 			 * an additional test and calculating buddy_pfn here
1633 			 * can be offset by reduced memory latency later. To
1634 			 * avoid excessive prefetching due to large count, only
1635 			 * prefetch buddy for the first pcp->batch nr of pages.
1636 			 */
1637 			if (prefetch_nr) {
1638 				prefetch_buddy(page);
1639 				prefetch_nr--;
1640 			}
1641 		} while (count > 0 && --batch_free && !list_empty(list));
1642 	}
1643 	pcp->count -= nr_freed;
1644 
1645 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1646 	spin_lock(&zone->lock);
1647 	isolated_pageblocks = has_isolate_pageblock(zone);
1648 
1649 	/*
1650 	 * Use safe version since after __free_one_page(),
1651 	 * page->lru.next will not point to original list.
1652 	 */
1653 	list_for_each_entry_safe(page, tmp, &head, lru) {
1654 		int mt = get_pcppage_migratetype(page);
1655 
1656 		/* mt has been encoded with the order (see above) */
1657 		order = mt & NR_PCP_ORDER_MASK;
1658 		mt >>= NR_PCP_ORDER_WIDTH;
1659 
1660 		/* MIGRATE_ISOLATE page should not go to pcplists */
1661 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1662 		/* Pageblock could have been isolated meanwhile */
1663 		if (unlikely(isolated_pageblocks))
1664 			mt = get_pageblock_migratetype(page);
1665 
1666 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1667 		trace_mm_page_pcpu_drain(page, order, mt);
1668 	}
1669 	spin_unlock(&zone->lock);
1670 }
1671 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1672 static void free_one_page(struct zone *zone,
1673 				struct page *page, unsigned long pfn,
1674 				unsigned int order,
1675 				int migratetype, fpi_t fpi_flags)
1676 {
1677 	unsigned long flags;
1678 
1679 	spin_lock_irqsave(&zone->lock, flags);
1680 	if (unlikely(has_isolate_pageblock(zone) ||
1681 		is_migrate_isolate(migratetype))) {
1682 		migratetype = get_pfnblock_migratetype(page, pfn);
1683 	}
1684 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1685 	spin_unlock_irqrestore(&zone->lock, flags);
1686 }
1687 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1688 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1689 				unsigned long zone, int nid)
1690 {
1691 	mm_zero_struct_page(page);
1692 	set_page_links(page, zone, nid, pfn);
1693 	init_page_count(page);
1694 	page_mapcount_reset(page);
1695 	page_cpupid_reset_last(page);
1696 	page_kasan_tag_reset(page);
1697 
1698 	INIT_LIST_HEAD(&page->lru);
1699 #ifdef WANT_PAGE_VIRTUAL
1700 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1701 	if (!is_highmem_idx(zone))
1702 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1703 #endif
1704 }
1705 
1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1707 static void __meminit init_reserved_page(unsigned long pfn)
1708 {
1709 	pg_data_t *pgdat;
1710 	int nid, zid;
1711 
1712 	if (!early_page_uninitialised(pfn))
1713 		return;
1714 
1715 	nid = early_pfn_to_nid(pfn);
1716 	pgdat = NODE_DATA(nid);
1717 
1718 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719 		struct zone *zone = &pgdat->node_zones[zid];
1720 
1721 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1722 			break;
1723 	}
1724 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1725 }
1726 #else
init_reserved_page(unsigned long pfn)1727 static inline void init_reserved_page(unsigned long pfn)
1728 {
1729 }
1730 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1731 
1732 /*
1733  * Initialised pages do not have PageReserved set. This function is
1734  * called for each range allocated by the bootmem allocator and
1735  * marks the pages PageReserved. The remaining valid pages are later
1736  * sent to the buddy page allocator.
1737  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1738 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1739 {
1740 	unsigned long start_pfn = PFN_DOWN(start);
1741 	unsigned long end_pfn = PFN_UP(end);
1742 
1743 	for (; start_pfn < end_pfn; start_pfn++) {
1744 		if (pfn_valid(start_pfn)) {
1745 			struct page *page = pfn_to_page(start_pfn);
1746 
1747 			init_reserved_page(start_pfn);
1748 
1749 			/* Avoid false-positive PageTail() */
1750 			INIT_LIST_HEAD(&page->lru);
1751 
1752 			/*
1753 			 * no need for atomic set_bit because the struct
1754 			 * page is not visible yet so nobody should
1755 			 * access it yet.
1756 			 */
1757 			__SetPageReserved(page);
1758 		}
1759 	}
1760 }
1761 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1762 static void __free_pages_ok(struct page *page, unsigned int order,
1763 			    fpi_t fpi_flags)
1764 {
1765 	unsigned long flags;
1766 	int migratetype;
1767 	unsigned long pfn = page_to_pfn(page);
1768 	struct zone *zone = page_zone(page);
1769 	bool skip_free_unref_page = false;
1770 
1771 	if (!free_pages_prepare(page, order, true, fpi_flags))
1772 		return;
1773 
1774 	migratetype = get_pfnblock_migratetype(page, pfn);
1775 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
1776 	if (skip_free_unref_page)
1777 		return;
1778 
1779 	spin_lock_irqsave(&zone->lock, flags);
1780 	if (unlikely(has_isolate_pageblock(zone) ||
1781 		is_migrate_isolate(migratetype))) {
1782 		migratetype = get_pfnblock_migratetype(page, pfn);
1783 	}
1784 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1785 	spin_unlock_irqrestore(&zone->lock, flags);
1786 
1787 	__count_vm_events(PGFREE, 1 << order);
1788 }
1789 
__free_pages_core(struct page * page,unsigned int order)1790 void __free_pages_core(struct page *page, unsigned int order)
1791 {
1792 	unsigned int nr_pages = 1 << order;
1793 	struct page *p = page;
1794 	unsigned int loop;
1795 
1796 	/*
1797 	 * When initializing the memmap, __init_single_page() sets the refcount
1798 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1799 	 * refcount of all involved pages to 0.
1800 	 */
1801 	prefetchw(p);
1802 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1803 		prefetchw(p + 1);
1804 		__ClearPageReserved(p);
1805 		set_page_count(p, 0);
1806 	}
1807 	__ClearPageReserved(p);
1808 	set_page_count(p, 0);
1809 
1810 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1811 
1812 	/*
1813 	 * Bypass PCP and place fresh pages right to the tail, primarily
1814 	 * relevant for memory onlining.
1815 	 */
1816 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1817 }
1818 
1819 #ifdef CONFIG_NUMA
1820 
1821 /*
1822  * During memory init memblocks map pfns to nids. The search is expensive and
1823  * this caches recent lookups. The implementation of __early_pfn_to_nid
1824  * treats start/end as pfns.
1825  */
1826 struct mminit_pfnnid_cache {
1827 	unsigned long last_start;
1828 	unsigned long last_end;
1829 	int last_nid;
1830 };
1831 
1832 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1833 
1834 /*
1835  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1836  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1837 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1838 					struct mminit_pfnnid_cache *state)
1839 {
1840 	unsigned long start_pfn, end_pfn;
1841 	int nid;
1842 
1843 	if (state->last_start <= pfn && pfn < state->last_end)
1844 		return state->last_nid;
1845 
1846 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1847 	if (nid != NUMA_NO_NODE) {
1848 		state->last_start = start_pfn;
1849 		state->last_end = end_pfn;
1850 		state->last_nid = nid;
1851 	}
1852 
1853 	return nid;
1854 }
1855 
early_pfn_to_nid(unsigned long pfn)1856 int __meminit early_pfn_to_nid(unsigned long pfn)
1857 {
1858 	static DEFINE_SPINLOCK(early_pfn_lock);
1859 	int nid;
1860 
1861 	spin_lock(&early_pfn_lock);
1862 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1863 	if (nid < 0)
1864 		nid = first_online_node;
1865 	spin_unlock(&early_pfn_lock);
1866 
1867 	return nid;
1868 }
1869 #endif /* CONFIG_NUMA */
1870 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1871 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1872 							unsigned int order)
1873 {
1874 	if (early_page_uninitialised(pfn))
1875 		return;
1876 	__free_pages_core(page, order);
1877 }
1878 
1879 /*
1880  * Check that the whole (or subset of) a pageblock given by the interval of
1881  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1882  * with the migration of free compaction scanner.
1883  *
1884  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1885  *
1886  * It's possible on some configurations to have a setup like node0 node1 node0
1887  * i.e. it's possible that all pages within a zones range of pages do not
1888  * belong to a single zone. We assume that a border between node0 and node1
1889  * can occur within a single pageblock, but not a node0 node1 node0
1890  * interleaving within a single pageblock. It is therefore sufficient to check
1891  * the first and last page of a pageblock and avoid checking each individual
1892  * page in a pageblock.
1893  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1894 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1895 				     unsigned long end_pfn, struct zone *zone)
1896 {
1897 	struct page *start_page;
1898 	struct page *end_page;
1899 
1900 	/* end_pfn is one past the range we are checking */
1901 	end_pfn--;
1902 
1903 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1904 		return NULL;
1905 
1906 	start_page = pfn_to_online_page(start_pfn);
1907 	if (!start_page)
1908 		return NULL;
1909 
1910 	if (page_zone(start_page) != zone)
1911 		return NULL;
1912 
1913 	end_page = pfn_to_page(end_pfn);
1914 
1915 	/* This gives a shorter code than deriving page_zone(end_page) */
1916 	if (page_zone_id(start_page) != page_zone_id(end_page))
1917 		return NULL;
1918 
1919 	return start_page;
1920 }
1921 
set_zone_contiguous(struct zone * zone)1922 void set_zone_contiguous(struct zone *zone)
1923 {
1924 	unsigned long block_start_pfn = zone->zone_start_pfn;
1925 	unsigned long block_end_pfn;
1926 
1927 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1928 	for (; block_start_pfn < zone_end_pfn(zone);
1929 			block_start_pfn = block_end_pfn,
1930 			 block_end_pfn += pageblock_nr_pages) {
1931 
1932 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1933 
1934 		if (!__pageblock_pfn_to_page(block_start_pfn,
1935 					     block_end_pfn, zone))
1936 			return;
1937 		cond_resched();
1938 	}
1939 
1940 	/* We confirm that there is no hole */
1941 	zone->contiguous = true;
1942 }
1943 
clear_zone_contiguous(struct zone * zone)1944 void clear_zone_contiguous(struct zone *zone)
1945 {
1946 	zone->contiguous = false;
1947 }
1948 
1949 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1950 static void __init deferred_free_range(unsigned long pfn,
1951 				       unsigned long nr_pages)
1952 {
1953 	struct page *page;
1954 	unsigned long i;
1955 
1956 	if (!nr_pages)
1957 		return;
1958 
1959 	page = pfn_to_page(pfn);
1960 
1961 	/* Free a large naturally-aligned chunk if possible */
1962 	if (nr_pages == pageblock_nr_pages &&
1963 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1964 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1965 		__free_pages_core(page, pageblock_order);
1966 		return;
1967 	}
1968 
1969 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1970 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1971 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1972 		__free_pages_core(page, 0);
1973 	}
1974 }
1975 
1976 /* Completion tracking for deferred_init_memmap() threads */
1977 static atomic_t pgdat_init_n_undone __initdata;
1978 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1979 
pgdat_init_report_one_done(void)1980 static inline void __init pgdat_init_report_one_done(void)
1981 {
1982 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1983 		complete(&pgdat_init_all_done_comp);
1984 }
1985 
1986 /*
1987  * Returns true if page needs to be initialized or freed to buddy allocator.
1988  *
1989  * First we check if pfn is valid on architectures where it is possible to have
1990  * holes within pageblock_nr_pages. On systems where it is not possible, this
1991  * function is optimized out.
1992  *
1993  * Then, we check if a current large page is valid by only checking the validity
1994  * of the head pfn.
1995  */
deferred_pfn_valid(unsigned long pfn)1996 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1997 {
1998 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1999 		return false;
2000 	return true;
2001 }
2002 
2003 /*
2004  * Free pages to buddy allocator. Try to free aligned pages in
2005  * pageblock_nr_pages sizes.
2006  */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)2007 static void __init deferred_free_pages(unsigned long pfn,
2008 				       unsigned long end_pfn)
2009 {
2010 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
2011 	unsigned long nr_free = 0;
2012 
2013 	for (; pfn < end_pfn; pfn++) {
2014 		if (!deferred_pfn_valid(pfn)) {
2015 			deferred_free_range(pfn - nr_free, nr_free);
2016 			nr_free = 0;
2017 		} else if (!(pfn & nr_pgmask)) {
2018 			deferred_free_range(pfn - nr_free, nr_free);
2019 			nr_free = 1;
2020 		} else {
2021 			nr_free++;
2022 		}
2023 	}
2024 	/* Free the last block of pages to allocator */
2025 	deferred_free_range(pfn - nr_free, nr_free);
2026 }
2027 
2028 /*
2029  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2030  * by performing it only once every pageblock_nr_pages.
2031  * Return number of pages initialized.
2032  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2033 static unsigned long  __init deferred_init_pages(struct zone *zone,
2034 						 unsigned long pfn,
2035 						 unsigned long end_pfn)
2036 {
2037 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
2038 	int nid = zone_to_nid(zone);
2039 	unsigned long nr_pages = 0;
2040 	int zid = zone_idx(zone);
2041 	struct page *page = NULL;
2042 
2043 	for (; pfn < end_pfn; pfn++) {
2044 		if (!deferred_pfn_valid(pfn)) {
2045 			page = NULL;
2046 			continue;
2047 		} else if (!page || !(pfn & nr_pgmask)) {
2048 			page = pfn_to_page(pfn);
2049 		} else {
2050 			page++;
2051 		}
2052 		__init_single_page(page, pfn, zid, nid);
2053 		nr_pages++;
2054 	}
2055 	return (nr_pages);
2056 }
2057 
2058 /*
2059  * This function is meant to pre-load the iterator for the zone init.
2060  * Specifically it walks through the ranges until we are caught up to the
2061  * first_init_pfn value and exits there. If we never encounter the value we
2062  * return false indicating there are no valid ranges left.
2063  */
2064 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2065 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2066 				    unsigned long *spfn, unsigned long *epfn,
2067 				    unsigned long first_init_pfn)
2068 {
2069 	u64 j;
2070 
2071 	/*
2072 	 * Start out by walking through the ranges in this zone that have
2073 	 * already been initialized. We don't need to do anything with them
2074 	 * so we just need to flush them out of the system.
2075 	 */
2076 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2077 		if (*epfn <= first_init_pfn)
2078 			continue;
2079 		if (*spfn < first_init_pfn)
2080 			*spfn = first_init_pfn;
2081 		*i = j;
2082 		return true;
2083 	}
2084 
2085 	return false;
2086 }
2087 
2088 /*
2089  * Initialize and free pages. We do it in two loops: first we initialize
2090  * struct page, then free to buddy allocator, because while we are
2091  * freeing pages we can access pages that are ahead (computing buddy
2092  * page in __free_one_page()).
2093  *
2094  * In order to try and keep some memory in the cache we have the loop
2095  * broken along max page order boundaries. This way we will not cause
2096  * any issues with the buddy page computation.
2097  */
2098 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2099 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2100 		       unsigned long *end_pfn)
2101 {
2102 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2103 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2104 	unsigned long nr_pages = 0;
2105 	u64 j = *i;
2106 
2107 	/* First we loop through and initialize the page values */
2108 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2109 		unsigned long t;
2110 
2111 		if (mo_pfn <= *start_pfn)
2112 			break;
2113 
2114 		t = min(mo_pfn, *end_pfn);
2115 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2116 
2117 		if (mo_pfn < *end_pfn) {
2118 			*start_pfn = mo_pfn;
2119 			break;
2120 		}
2121 	}
2122 
2123 	/* Reset values and now loop through freeing pages as needed */
2124 	swap(j, *i);
2125 
2126 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2127 		unsigned long t;
2128 
2129 		if (mo_pfn <= spfn)
2130 			break;
2131 
2132 		t = min(mo_pfn, epfn);
2133 		deferred_free_pages(spfn, t);
2134 
2135 		if (mo_pfn <= epfn)
2136 			break;
2137 	}
2138 
2139 	return nr_pages;
2140 }
2141 
2142 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2143 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2144 			   void *arg)
2145 {
2146 	unsigned long spfn, epfn;
2147 	struct zone *zone = arg;
2148 	u64 i;
2149 
2150 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2151 
2152 	/*
2153 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2154 	 * can avoid introducing any issues with the buddy allocator.
2155 	 */
2156 	while (spfn < end_pfn) {
2157 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2158 		cond_resched();
2159 	}
2160 }
2161 
2162 /* An arch may override for more concurrency. */
2163 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2164 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2165 {
2166 	return 1;
2167 }
2168 
2169 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2170 static int __init deferred_init_memmap(void *data)
2171 {
2172 	pg_data_t *pgdat = data;
2173 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2174 	unsigned long spfn = 0, epfn = 0;
2175 	unsigned long first_init_pfn, flags;
2176 	unsigned long start = jiffies;
2177 	struct zone *zone;
2178 	int zid, max_threads;
2179 	u64 i;
2180 
2181 	/* Bind memory initialisation thread to a local node if possible */
2182 	if (!cpumask_empty(cpumask))
2183 		set_cpus_allowed_ptr(current, cpumask);
2184 
2185 	pgdat_resize_lock(pgdat, &flags);
2186 	first_init_pfn = pgdat->first_deferred_pfn;
2187 	if (first_init_pfn == ULONG_MAX) {
2188 		pgdat_resize_unlock(pgdat, &flags);
2189 		pgdat_init_report_one_done();
2190 		return 0;
2191 	}
2192 
2193 	/* Sanity check boundaries */
2194 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2195 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2196 	pgdat->first_deferred_pfn = ULONG_MAX;
2197 
2198 	/*
2199 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2200 	 * interrupt thread must allocate this early in boot, zone must be
2201 	 * pre-grown prior to start of deferred page initialization.
2202 	 */
2203 	pgdat_resize_unlock(pgdat, &flags);
2204 
2205 	/* Only the highest zone is deferred so find it */
2206 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2207 		zone = pgdat->node_zones + zid;
2208 		if (first_init_pfn < zone_end_pfn(zone))
2209 			break;
2210 	}
2211 
2212 	/* If the zone is empty somebody else may have cleared out the zone */
2213 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2214 						 first_init_pfn))
2215 		goto zone_empty;
2216 
2217 	max_threads = deferred_page_init_max_threads(cpumask);
2218 
2219 	while (spfn < epfn) {
2220 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2221 		struct padata_mt_job job = {
2222 			.thread_fn   = deferred_init_memmap_chunk,
2223 			.fn_arg      = zone,
2224 			.start       = spfn,
2225 			.size        = epfn_align - spfn,
2226 			.align       = PAGES_PER_SECTION,
2227 			.min_chunk   = PAGES_PER_SECTION,
2228 			.max_threads = max_threads,
2229 		};
2230 
2231 		padata_do_multithreaded(&job);
2232 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2233 						    epfn_align);
2234 	}
2235 zone_empty:
2236 	/* Sanity check that the next zone really is unpopulated */
2237 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2238 
2239 	pr_info("node %d deferred pages initialised in %ums\n",
2240 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2241 
2242 	pgdat_init_report_one_done();
2243 	return 0;
2244 }
2245 
2246 /*
2247  * If this zone has deferred pages, try to grow it by initializing enough
2248  * deferred pages to satisfy the allocation specified by order, rounded up to
2249  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2250  * of SECTION_SIZE bytes by initializing struct pages in increments of
2251  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2252  *
2253  * Return true when zone was grown, otherwise return false. We return true even
2254  * when we grow less than requested, to let the caller decide if there are
2255  * enough pages to satisfy the allocation.
2256  *
2257  * Note: We use noinline because this function is needed only during boot, and
2258  * it is called from a __ref function _deferred_grow_zone. This way we are
2259  * making sure that it is not inlined into permanent text section.
2260  */
2261 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2262 deferred_grow_zone(struct zone *zone, unsigned int order)
2263 {
2264 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2265 	pg_data_t *pgdat = zone->zone_pgdat;
2266 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2267 	unsigned long spfn, epfn, flags;
2268 	unsigned long nr_pages = 0;
2269 	u64 i;
2270 
2271 	/* Only the last zone may have deferred pages */
2272 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2273 		return false;
2274 
2275 	pgdat_resize_lock(pgdat, &flags);
2276 
2277 	/*
2278 	 * If someone grew this zone while we were waiting for spinlock, return
2279 	 * true, as there might be enough pages already.
2280 	 */
2281 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2282 		pgdat_resize_unlock(pgdat, &flags);
2283 		return true;
2284 	}
2285 
2286 	/* If the zone is empty somebody else may have cleared out the zone */
2287 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2288 						 first_deferred_pfn)) {
2289 		pgdat->first_deferred_pfn = ULONG_MAX;
2290 		pgdat_resize_unlock(pgdat, &flags);
2291 		/* Retry only once. */
2292 		return first_deferred_pfn != ULONG_MAX;
2293 	}
2294 
2295 	/*
2296 	 * Initialize and free pages in MAX_ORDER sized increments so
2297 	 * that we can avoid introducing any issues with the buddy
2298 	 * allocator.
2299 	 */
2300 	while (spfn < epfn) {
2301 		/* update our first deferred PFN for this section */
2302 		first_deferred_pfn = spfn;
2303 
2304 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2305 		touch_nmi_watchdog();
2306 
2307 		/* We should only stop along section boundaries */
2308 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2309 			continue;
2310 
2311 		/* If our quota has been met we can stop here */
2312 		if (nr_pages >= nr_pages_needed)
2313 			break;
2314 	}
2315 
2316 	pgdat->first_deferred_pfn = spfn;
2317 	pgdat_resize_unlock(pgdat, &flags);
2318 
2319 	return nr_pages > 0;
2320 }
2321 
2322 /*
2323  * deferred_grow_zone() is __init, but it is called from
2324  * get_page_from_freelist() during early boot until deferred_pages permanently
2325  * disables this call. This is why we have refdata wrapper to avoid warning,
2326  * and to ensure that the function body gets unloaded.
2327  */
2328 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2329 _deferred_grow_zone(struct zone *zone, unsigned int order)
2330 {
2331 	return deferred_grow_zone(zone, order);
2332 }
2333 
2334 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2335 
page_alloc_init_late(void)2336 void __init page_alloc_init_late(void)
2337 {
2338 	struct zone *zone;
2339 	int nid;
2340 
2341 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2342 
2343 	/* There will be num_node_state(N_MEMORY) threads */
2344 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2345 	for_each_node_state(nid, N_MEMORY) {
2346 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2347 	}
2348 
2349 	/* Block until all are initialised */
2350 	wait_for_completion(&pgdat_init_all_done_comp);
2351 
2352 	/*
2353 	 * We initialized the rest of the deferred pages.  Permanently disable
2354 	 * on-demand struct page initialization.
2355 	 */
2356 	static_branch_disable(&deferred_pages);
2357 
2358 	/* Reinit limits that are based on free pages after the kernel is up */
2359 	files_maxfiles_init();
2360 #endif
2361 
2362 	buffer_init();
2363 
2364 	/* Discard memblock private memory */
2365 	memblock_discard();
2366 
2367 	for_each_node_state(nid, N_MEMORY)
2368 		shuffle_free_memory(NODE_DATA(nid));
2369 
2370 	for_each_populated_zone(zone)
2371 		set_zone_contiguous(zone);
2372 }
2373 
2374 #ifdef CONFIG_CMA
2375 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2376 void __init init_cma_reserved_pageblock(struct page *page)
2377 {
2378 	unsigned i = pageblock_nr_pages;
2379 	struct page *p = page;
2380 
2381 	do {
2382 		__ClearPageReserved(p);
2383 		set_page_count(p, 0);
2384 	} while (++p, --i);
2385 
2386 	set_pageblock_migratetype(page, MIGRATE_CMA);
2387 
2388 	if (pageblock_order >= MAX_ORDER) {
2389 		i = pageblock_nr_pages;
2390 		p = page;
2391 		do {
2392 			set_page_refcounted(p);
2393 			__free_pages(p, MAX_ORDER - 1);
2394 			p += MAX_ORDER_NR_PAGES;
2395 		} while (i -= MAX_ORDER_NR_PAGES);
2396 	} else {
2397 		set_page_refcounted(page);
2398 		__free_pages(page, pageblock_order);
2399 	}
2400 
2401 	adjust_managed_page_count(page, pageblock_nr_pages);
2402 	page_zone(page)->cma_pages += pageblock_nr_pages;
2403 }
2404 #endif
2405 
2406 /*
2407  * The order of subdivision here is critical for the IO subsystem.
2408  * Please do not alter this order without good reasons and regression
2409  * testing. Specifically, as large blocks of memory are subdivided,
2410  * the order in which smaller blocks are delivered depends on the order
2411  * they're subdivided in this function. This is the primary factor
2412  * influencing the order in which pages are delivered to the IO
2413  * subsystem according to empirical testing, and this is also justified
2414  * by considering the behavior of a buddy system containing a single
2415  * large block of memory acted on by a series of small allocations.
2416  * This behavior is a critical factor in sglist merging's success.
2417  *
2418  * -- nyc
2419  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2420 static inline void expand(struct zone *zone, struct page *page,
2421 	int low, int high, int migratetype)
2422 {
2423 	unsigned long size = 1 << high;
2424 
2425 	while (high > low) {
2426 		high--;
2427 		size >>= 1;
2428 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2429 
2430 		/*
2431 		 * Mark as guard pages (or page), that will allow to
2432 		 * merge back to allocator when buddy will be freed.
2433 		 * Corresponding page table entries will not be touched,
2434 		 * pages will stay not present in virtual address space
2435 		 */
2436 		if (set_page_guard(zone, &page[size], high, migratetype))
2437 			continue;
2438 
2439 		add_to_free_list(&page[size], zone, high, migratetype);
2440 		set_buddy_order(&page[size], high);
2441 	}
2442 }
2443 
check_new_page_bad(struct page * page)2444 static void check_new_page_bad(struct page *page)
2445 {
2446 	if (unlikely(page->flags & __PG_HWPOISON)) {
2447 		/* Don't complain about hwpoisoned pages */
2448 		page_mapcount_reset(page); /* remove PageBuddy */
2449 		return;
2450 	}
2451 
2452 	bad_page(page,
2453 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2454 }
2455 
2456 /*
2457  * This page is about to be returned from the page allocator
2458  */
check_new_page(struct page * page)2459 static inline int check_new_page(struct page *page)
2460 {
2461 	if (likely(page_expected_state(page,
2462 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2463 		return 0;
2464 
2465 	check_new_page_bad(page);
2466 	return 1;
2467 }
2468 
2469 #ifdef CONFIG_DEBUG_VM
2470 /*
2471  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2472  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2473  * also checked when pcp lists are refilled from the free lists.
2474  */
check_pcp_refill(struct page * page)2475 static inline bool check_pcp_refill(struct page *page)
2476 {
2477 	if (debug_pagealloc_enabled_static())
2478 		return check_new_page(page);
2479 	else
2480 		return false;
2481 }
2482 
check_new_pcp(struct page * page)2483 static inline bool check_new_pcp(struct page *page)
2484 {
2485 	return check_new_page(page);
2486 }
2487 #else
2488 /*
2489  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2490  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2491  * enabled, they are also checked when being allocated from the pcp lists.
2492  */
check_pcp_refill(struct page * page)2493 static inline bool check_pcp_refill(struct page *page)
2494 {
2495 	return check_new_page(page);
2496 }
check_new_pcp(struct page * page)2497 static inline bool check_new_pcp(struct page *page)
2498 {
2499 	if (debug_pagealloc_enabled_static())
2500 		return check_new_page(page);
2501 	else
2502 		return false;
2503 }
2504 #endif /* CONFIG_DEBUG_VM */
2505 
check_new_pages(struct page * page,unsigned int order)2506 static bool check_new_pages(struct page *page, unsigned int order)
2507 {
2508 	int i;
2509 	for (i = 0; i < (1 << order); i++) {
2510 		struct page *p = page + i;
2511 
2512 		if (unlikely(check_new_page(p)))
2513 			return true;
2514 	}
2515 
2516 	return false;
2517 }
2518 
should_skip_kasan_unpoison(gfp_t flags,bool init_tags)2519 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2520 {
2521 	/* Don't skip if a software KASAN mode is enabled. */
2522 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2523 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2524 		return false;
2525 
2526 	/* Skip, if hardware tag-based KASAN is not enabled. */
2527 	if (!kasan_hw_tags_enabled())
2528 		return true;
2529 
2530 	/*
2531 	 * With hardware tag-based KASAN enabled, skip if either:
2532 	 *
2533 	 * 1. Memory tags have already been cleared via tag_clear_highpage().
2534 	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2535 	 */
2536 	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2537 }
2538 
should_skip_init(gfp_t flags)2539 static inline bool should_skip_init(gfp_t flags)
2540 {
2541 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2542 	if (!kasan_hw_tags_enabled())
2543 		return false;
2544 
2545 	/* For hardware tag-based KASAN, skip if requested. */
2546 	return (flags & __GFP_SKIP_ZERO);
2547 }
2548 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2549 inline void post_alloc_hook(struct page *page, unsigned int order,
2550 				gfp_t gfp_flags)
2551 {
2552 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2553 			!should_skip_init(gfp_flags);
2554 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2555 
2556 	set_page_private(page, 0);
2557 	set_page_refcounted(page);
2558 
2559 	arch_alloc_page(page, order);
2560 	debug_pagealloc_map_pages(page, 1 << order);
2561 
2562 	/*
2563 	 * Page unpoisoning must happen before memory initialization.
2564 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2565 	 * allocations and the page unpoisoning code will complain.
2566 	 */
2567 	kernel_unpoison_pages(page, 1 << order);
2568 
2569 	/*
2570 	 * As memory initialization might be integrated into KASAN,
2571 	 * KASAN unpoisoning and memory initializion code must be
2572 	 * kept together to avoid discrepancies in behavior.
2573 	 */
2574 
2575 	/*
2576 	 * If memory tags should be zeroed (which happens only when memory
2577 	 * should be initialized as well).
2578 	 */
2579 	if (init_tags) {
2580 		int i;
2581 
2582 		/* Initialize both memory and tags. */
2583 		for (i = 0; i != 1 << order; ++i)
2584 			tag_clear_highpage(page + i);
2585 
2586 		/* Note that memory is already initialized by the loop above. */
2587 		init = false;
2588 	}
2589 	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2590 		/* Unpoison shadow memory or set memory tags. */
2591 		kasan_unpoison_pages(page, order, init);
2592 
2593 		/* Note that memory is already initialized by KASAN. */
2594 		if (kasan_has_integrated_init())
2595 			init = false;
2596 	}
2597 	/* If memory is still not initialized, do it now. */
2598 	if (init)
2599 		kernel_init_free_pages(page, 1 << order);
2600 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2601 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2602 		SetPageSkipKASanPoison(page);
2603 
2604 	set_page_owner(page, order, gfp_flags);
2605 }
2606 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2607 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2608 							unsigned int alloc_flags)
2609 {
2610 	post_alloc_hook(page, order, gfp_flags);
2611 
2612 	if (order && (gfp_flags & __GFP_COMP))
2613 		prep_compound_page(page, order);
2614 
2615 	/*
2616 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2617 	 * allocate the page. The expectation is that the caller is taking
2618 	 * steps that will free more memory. The caller should avoid the page
2619 	 * being used for !PFMEMALLOC purposes.
2620 	 */
2621 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2622 		set_page_pfmemalloc(page);
2623 	else
2624 		clear_page_pfmemalloc(page);
2625 	trace_android_vh_test_clear_look_around_ref(page);
2626 }
2627 
2628 /*
2629  * Go through the free lists for the given migratetype and remove
2630  * the smallest available page from the freelists
2631  */
2632 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2633 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2634 						int migratetype)
2635 {
2636 	unsigned int current_order;
2637 	struct free_area *area;
2638 	struct page *page;
2639 
2640 	/* Find a page of the appropriate size in the preferred list */
2641 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2642 		area = &(zone->free_area[current_order]);
2643 		page = get_page_from_free_area(area, migratetype);
2644 		if (!page)
2645 			continue;
2646 		del_page_from_free_list(page, zone, current_order);
2647 		expand(zone, page, order, current_order, migratetype);
2648 		set_pcppage_migratetype(page, migratetype);
2649 		return page;
2650 	}
2651 
2652 	return NULL;
2653 }
2654 
2655 
2656 /*
2657  * This array describes the order lists are fallen back to when
2658  * the free lists for the desirable migrate type are depleted
2659  */
2660 static int fallbacks[MIGRATE_TYPES][3] = {
2661 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2662 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2663 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2664 #ifdef CONFIG_CMA
2665 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2666 #endif
2667 #ifdef CONFIG_MEMORY_ISOLATION
2668 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2669 #endif
2670 };
2671 
2672 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2673 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2674 					unsigned int order)
2675 {
2676 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2677 }
2678 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2679 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2680 					unsigned int order) { return NULL; }
2681 #endif
2682 
2683 /*
2684  * Move the free pages in a range to the freelist tail of the requested type.
2685  * Note that start_page and end_pages are not aligned on a pageblock
2686  * boundary. If alignment is required, use move_freepages_block()
2687  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2688 static int move_freepages(struct zone *zone,
2689 			  unsigned long start_pfn, unsigned long end_pfn,
2690 			  int migratetype, int *num_movable)
2691 {
2692 	struct page *page;
2693 	unsigned long pfn;
2694 	unsigned int order;
2695 	int pages_moved = 0;
2696 
2697 	for (pfn = start_pfn; pfn <= end_pfn;) {
2698 		page = pfn_to_page(pfn);
2699 		if (!PageBuddy(page)) {
2700 			/*
2701 			 * We assume that pages that could be isolated for
2702 			 * migration are movable. But we don't actually try
2703 			 * isolating, as that would be expensive.
2704 			 */
2705 			if (num_movable &&
2706 					(PageLRU(page) || __PageMovable(page)))
2707 				(*num_movable)++;
2708 			pfn++;
2709 			continue;
2710 		}
2711 
2712 		/* Make sure we are not inadvertently changing nodes */
2713 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2714 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2715 
2716 		order = buddy_order(page);
2717 		move_to_free_list(page, zone, order, migratetype);
2718 		pfn += 1 << order;
2719 		pages_moved += 1 << order;
2720 	}
2721 
2722 	return pages_moved;
2723 }
2724 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2725 int move_freepages_block(struct zone *zone, struct page *page,
2726 				int migratetype, int *num_movable)
2727 {
2728 	unsigned long start_pfn, end_pfn, pfn;
2729 
2730 	if (num_movable)
2731 		*num_movable = 0;
2732 
2733 	pfn = page_to_pfn(page);
2734 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2735 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2736 
2737 	/* Do not cross zone boundaries */
2738 	if (!zone_spans_pfn(zone, start_pfn))
2739 		start_pfn = pfn;
2740 	if (!zone_spans_pfn(zone, end_pfn))
2741 		return 0;
2742 
2743 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2744 								num_movable);
2745 }
2746 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2747 static void change_pageblock_range(struct page *pageblock_page,
2748 					int start_order, int migratetype)
2749 {
2750 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2751 
2752 	while (nr_pageblocks--) {
2753 		set_pageblock_migratetype(pageblock_page, migratetype);
2754 		pageblock_page += pageblock_nr_pages;
2755 	}
2756 }
2757 
2758 /*
2759  * When we are falling back to another migratetype during allocation, try to
2760  * steal extra free pages from the same pageblocks to satisfy further
2761  * allocations, instead of polluting multiple pageblocks.
2762  *
2763  * If we are stealing a relatively large buddy page, it is likely there will
2764  * be more free pages in the pageblock, so try to steal them all. For
2765  * reclaimable and unmovable allocations, we steal regardless of page size,
2766  * as fragmentation caused by those allocations polluting movable pageblocks
2767  * is worse than movable allocations stealing from unmovable and reclaimable
2768  * pageblocks.
2769  */
can_steal_fallback(unsigned int order,int start_mt)2770 static bool can_steal_fallback(unsigned int order, int start_mt)
2771 {
2772 	/*
2773 	 * Leaving this order check is intended, although there is
2774 	 * relaxed order check in next check. The reason is that
2775 	 * we can actually steal whole pageblock if this condition met,
2776 	 * but, below check doesn't guarantee it and that is just heuristic
2777 	 * so could be changed anytime.
2778 	 */
2779 	if (order >= pageblock_order)
2780 		return true;
2781 
2782 	if (order >= pageblock_order / 2 ||
2783 		start_mt == MIGRATE_RECLAIMABLE ||
2784 		start_mt == MIGRATE_UNMOVABLE ||
2785 		page_group_by_mobility_disabled)
2786 		return true;
2787 
2788 	return false;
2789 }
2790 
boost_watermark(struct zone * zone)2791 static inline bool boost_watermark(struct zone *zone)
2792 {
2793 	unsigned long max_boost;
2794 
2795 	if (!watermark_boost_factor)
2796 		return false;
2797 	/*
2798 	 * Don't bother in zones that are unlikely to produce results.
2799 	 * On small machines, including kdump capture kernels running
2800 	 * in a small area, boosting the watermark can cause an out of
2801 	 * memory situation immediately.
2802 	 */
2803 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2804 		return false;
2805 
2806 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2807 			watermark_boost_factor, 10000);
2808 
2809 	/*
2810 	 * high watermark may be uninitialised if fragmentation occurs
2811 	 * very early in boot so do not boost. We do not fall
2812 	 * through and boost by pageblock_nr_pages as failing
2813 	 * allocations that early means that reclaim is not going
2814 	 * to help and it may even be impossible to reclaim the
2815 	 * boosted watermark resulting in a hang.
2816 	 */
2817 	if (!max_boost)
2818 		return false;
2819 
2820 	max_boost = max(pageblock_nr_pages, max_boost);
2821 
2822 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2823 		max_boost);
2824 
2825 	return true;
2826 }
2827 
2828 /*
2829  * This function implements actual steal behaviour. If order is large enough,
2830  * we can steal whole pageblock. If not, we first move freepages in this
2831  * pageblock to our migratetype and determine how many already-allocated pages
2832  * are there in the pageblock with a compatible migratetype. If at least half
2833  * of pages are free or compatible, we can change migratetype of the pageblock
2834  * itself, so pages freed in the future will be put on the correct free list.
2835  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2836 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2837 		unsigned int alloc_flags, int start_type, bool whole_block)
2838 {
2839 	unsigned int current_order = buddy_order(page);
2840 	int free_pages, movable_pages, alike_pages;
2841 	int old_block_type;
2842 
2843 	old_block_type = get_pageblock_migratetype(page);
2844 
2845 	/*
2846 	 * This can happen due to races and we want to prevent broken
2847 	 * highatomic accounting.
2848 	 */
2849 	if (is_migrate_highatomic(old_block_type))
2850 		goto single_page;
2851 
2852 	/* Take ownership for orders >= pageblock_order */
2853 	if (current_order >= pageblock_order) {
2854 		change_pageblock_range(page, current_order, start_type);
2855 		goto single_page;
2856 	}
2857 
2858 	/*
2859 	 * Boost watermarks to increase reclaim pressure to reduce the
2860 	 * likelihood of future fallbacks. Wake kswapd now as the node
2861 	 * may be balanced overall and kswapd will not wake naturally.
2862 	 */
2863 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2864 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2865 
2866 	/* We are not allowed to try stealing from the whole block */
2867 	if (!whole_block)
2868 		goto single_page;
2869 
2870 	free_pages = move_freepages_block(zone, page, start_type,
2871 						&movable_pages);
2872 	/*
2873 	 * Determine how many pages are compatible with our allocation.
2874 	 * For movable allocation, it's the number of movable pages which
2875 	 * we just obtained. For other types it's a bit more tricky.
2876 	 */
2877 	if (start_type == MIGRATE_MOVABLE) {
2878 		alike_pages = movable_pages;
2879 	} else {
2880 		/*
2881 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2882 		 * to MOVABLE pageblock, consider all non-movable pages as
2883 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2884 		 * vice versa, be conservative since we can't distinguish the
2885 		 * exact migratetype of non-movable pages.
2886 		 */
2887 		if (old_block_type == MIGRATE_MOVABLE)
2888 			alike_pages = pageblock_nr_pages
2889 						- (free_pages + movable_pages);
2890 		else
2891 			alike_pages = 0;
2892 	}
2893 
2894 	/* moving whole block can fail due to zone boundary conditions */
2895 	if (!free_pages)
2896 		goto single_page;
2897 
2898 	/*
2899 	 * If a sufficient number of pages in the block are either free or of
2900 	 * comparable migratability as our allocation, claim the whole block.
2901 	 */
2902 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2903 			page_group_by_mobility_disabled)
2904 		set_pageblock_migratetype(page, start_type);
2905 
2906 	return;
2907 
2908 single_page:
2909 	move_to_free_list(page, zone, current_order, start_type);
2910 }
2911 
2912 /*
2913  * Check whether there is a suitable fallback freepage with requested order.
2914  * If only_stealable is true, this function returns fallback_mt only if
2915  * we can steal other freepages all together. This would help to reduce
2916  * fragmentation due to mixed migratetype pages in one pageblock.
2917  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2918 int find_suitable_fallback(struct free_area *area, unsigned int order,
2919 			int migratetype, bool only_stealable, bool *can_steal)
2920 {
2921 	int i;
2922 	int fallback_mt;
2923 
2924 	if (area->nr_free == 0)
2925 		return -1;
2926 
2927 	*can_steal = false;
2928 	for (i = 0;; i++) {
2929 		fallback_mt = fallbacks[migratetype][i];
2930 		if (fallback_mt == MIGRATE_TYPES)
2931 			break;
2932 
2933 		if (free_area_empty(area, fallback_mt))
2934 			continue;
2935 
2936 		if (can_steal_fallback(order, migratetype))
2937 			*can_steal = true;
2938 
2939 		if (!only_stealable)
2940 			return fallback_mt;
2941 
2942 		if (*can_steal)
2943 			return fallback_mt;
2944 	}
2945 
2946 	return -1;
2947 }
2948 
2949 /*
2950  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2951  * there are no empty page blocks that contain a page with a suitable order
2952  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2953 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2954 				unsigned int alloc_order)
2955 {
2956 	int mt;
2957 	unsigned long max_managed, flags;
2958 
2959 	/*
2960 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2961 	 * Check is race-prone but harmless.
2962 	 */
2963 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2964 	if (zone->nr_reserved_highatomic >= max_managed)
2965 		return;
2966 
2967 	spin_lock_irqsave(&zone->lock, flags);
2968 
2969 	/* Recheck the nr_reserved_highatomic limit under the lock */
2970 	if (zone->nr_reserved_highatomic >= max_managed)
2971 		goto out_unlock;
2972 
2973 	/* Yoink! */
2974 	mt = get_pageblock_migratetype(page);
2975 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2976 	    && !is_migrate_cma(mt)) {
2977 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2978 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2979 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2980 	}
2981 
2982 out_unlock:
2983 	spin_unlock_irqrestore(&zone->lock, flags);
2984 }
2985 
2986 /*
2987  * Used when an allocation is about to fail under memory pressure. This
2988  * potentially hurts the reliability of high-order allocations when under
2989  * intense memory pressure but failed atomic allocations should be easier
2990  * to recover from than an OOM.
2991  *
2992  * If @force is true, try to unreserve a pageblock even though highatomic
2993  * pageblock is exhausted.
2994  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2995 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2996 						bool force)
2997 {
2998 	struct zonelist *zonelist = ac->zonelist;
2999 	unsigned long flags;
3000 	struct zoneref *z;
3001 	struct zone *zone;
3002 	struct page *page;
3003 	int order;
3004 	bool ret;
3005 	bool skip_unreserve_highatomic = false;
3006 
3007 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3008 								ac->nodemask) {
3009 		/*
3010 		 * Preserve at least one pageblock unless memory pressure
3011 		 * is really high.
3012 		 */
3013 		if (!force && zone->nr_reserved_highatomic <=
3014 					pageblock_nr_pages)
3015 			continue;
3016 
3017 		trace_android_vh_unreserve_highatomic_bypass(force, zone,
3018 				&skip_unreserve_highatomic);
3019 		if (skip_unreserve_highatomic)
3020 			continue;
3021 
3022 		spin_lock_irqsave(&zone->lock, flags);
3023 		for (order = 0; order < MAX_ORDER; order++) {
3024 			struct free_area *area = &(zone->free_area[order]);
3025 
3026 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3027 			if (!page)
3028 				continue;
3029 
3030 			/*
3031 			 * In page freeing path, migratetype change is racy so
3032 			 * we can counter several free pages in a pageblock
3033 			 * in this loop although we changed the pageblock type
3034 			 * from highatomic to ac->migratetype. So we should
3035 			 * adjust the count once.
3036 			 */
3037 			if (is_migrate_highatomic_page(page)) {
3038 				/*
3039 				 * It should never happen but changes to
3040 				 * locking could inadvertently allow a per-cpu
3041 				 * drain to add pages to MIGRATE_HIGHATOMIC
3042 				 * while unreserving so be safe and watch for
3043 				 * underflows.
3044 				 */
3045 				zone->nr_reserved_highatomic -= min(
3046 						pageblock_nr_pages,
3047 						zone->nr_reserved_highatomic);
3048 			}
3049 
3050 			/*
3051 			 * Convert to ac->migratetype and avoid the normal
3052 			 * pageblock stealing heuristics. Minimally, the caller
3053 			 * is doing the work and needs the pages. More
3054 			 * importantly, if the block was always converted to
3055 			 * MIGRATE_UNMOVABLE or another type then the number
3056 			 * of pageblocks that cannot be completely freed
3057 			 * may increase.
3058 			 */
3059 			set_pageblock_migratetype(page, ac->migratetype);
3060 			ret = move_freepages_block(zone, page, ac->migratetype,
3061 									NULL);
3062 			if (ret) {
3063 				spin_unlock_irqrestore(&zone->lock, flags);
3064 				return ret;
3065 			}
3066 		}
3067 		spin_unlock_irqrestore(&zone->lock, flags);
3068 	}
3069 
3070 	return false;
3071 }
3072 
3073 /*
3074  * Try finding a free buddy page on the fallback list and put it on the free
3075  * list of requested migratetype, possibly along with other pages from the same
3076  * block, depending on fragmentation avoidance heuristics. Returns true if
3077  * fallback was found so that __rmqueue_smallest() can grab it.
3078  *
3079  * The use of signed ints for order and current_order is a deliberate
3080  * deviation from the rest of this file, to make the for loop
3081  * condition simpler.
3082  */
3083 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)3084 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3085 						unsigned int alloc_flags)
3086 {
3087 	struct free_area *area;
3088 	int current_order;
3089 	int min_order = order;
3090 	struct page *page;
3091 	int fallback_mt;
3092 	bool can_steal;
3093 
3094 	/*
3095 	 * Do not steal pages from freelists belonging to other pageblocks
3096 	 * i.e. orders < pageblock_order. If there are no local zones free,
3097 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3098 	 */
3099 	if (alloc_flags & ALLOC_NOFRAGMENT)
3100 		min_order = pageblock_order;
3101 
3102 	/*
3103 	 * Find the largest available free page in the other list. This roughly
3104 	 * approximates finding the pageblock with the most free pages, which
3105 	 * would be too costly to do exactly.
3106 	 */
3107 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3108 				--current_order) {
3109 		area = &(zone->free_area[current_order]);
3110 		fallback_mt = find_suitable_fallback(area, current_order,
3111 				start_migratetype, false, &can_steal);
3112 		if (fallback_mt == -1)
3113 			continue;
3114 
3115 		/*
3116 		 * We cannot steal all free pages from the pageblock and the
3117 		 * requested migratetype is movable. In that case it's better to
3118 		 * steal and split the smallest available page instead of the
3119 		 * largest available page, because even if the next movable
3120 		 * allocation falls back into a different pageblock than this
3121 		 * one, it won't cause permanent fragmentation.
3122 		 */
3123 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3124 					&& current_order > order)
3125 			goto find_smallest;
3126 
3127 		goto do_steal;
3128 	}
3129 
3130 	return false;
3131 
3132 find_smallest:
3133 	for (current_order = order; current_order < MAX_ORDER;
3134 							current_order++) {
3135 		area = &(zone->free_area[current_order]);
3136 		fallback_mt = find_suitable_fallback(area, current_order,
3137 				start_migratetype, false, &can_steal);
3138 		if (fallback_mt != -1)
3139 			break;
3140 	}
3141 
3142 	/*
3143 	 * This should not happen - we already found a suitable fallback
3144 	 * when looking for the largest page.
3145 	 */
3146 	VM_BUG_ON(current_order == MAX_ORDER);
3147 
3148 do_steal:
3149 	page = get_page_from_free_area(area, fallback_mt);
3150 
3151 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3152 								can_steal);
3153 
3154 	trace_mm_page_alloc_extfrag(page, order, current_order,
3155 		start_migratetype, fallback_mt);
3156 
3157 	return true;
3158 
3159 }
3160 
3161 /*
3162  * Do the hard work of removing an element from the buddy allocator.
3163  * Call me with the zone->lock already held.
3164  */
3165 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3166 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3167 						unsigned int alloc_flags)
3168 {
3169 	struct page *page = NULL;
3170 
3171 	trace_android_vh_rmqueue_smallest_bypass(&page, zone, order, migratetype);
3172 	if (page)
3173 		return page;
3174 
3175 retry:
3176 	page = __rmqueue_smallest(zone, order, migratetype);
3177 
3178 	/*
3179 	 * let normal GFP_MOVABLE has chance to try MIGRATE_CMA
3180 	 */
3181 	if (unlikely(!page) && (migratetype == MIGRATE_MOVABLE)) {
3182 		bool try_cma = false;
3183 		trace_android_vh_rmqueue_cma_fallback(zone, order, &page);
3184 		trace_android_vh_try_cma_fallback(zone, order, &try_cma);
3185 		if (try_cma)
3186 			page = __rmqueue_cma_fallback(zone, order);
3187 	}
3188 
3189 	if (unlikely(!page) && __rmqueue_fallback(zone, order, migratetype,
3190 						  alloc_flags))
3191 		goto retry;
3192 
3193 	if (page)
3194 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3195 	return page;
3196 }
3197 
3198 #ifdef CONFIG_CMA
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3199 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
3200 				  int migratetype,
3201 				  unsigned int alloc_flags)
3202 {
3203 	struct page *page = __rmqueue_cma_fallback(zone, order);
3204 
3205 	if (page)
3206 		trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
3207 	return page;
3208 }
3209 #else
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3210 static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
3211 					 int migratetype,
3212 					 unsigned int alloc_flags)
3213 {
3214 	return NULL;
3215 }
3216 #endif
3217 
3218 /*
3219  * Obtain a specified number of elements from the buddy allocator, all under
3220  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3221  * Returns the number of new pages which were placed at *list.
3222  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)3223 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3224 			unsigned long count, struct list_head *list,
3225 			int migratetype, unsigned int alloc_flags)
3226 {
3227 	int i, allocated = 0;
3228 
3229 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3230 	spin_lock(&zone->lock);
3231 	for (i = 0; i < count; ++i) {
3232 		struct page *page;
3233 
3234 		trace_android_rvh_rmqueue_bulk(NULL);
3235 		if (is_migrate_cma(migratetype))
3236 			page = __rmqueue_cma(zone, order, migratetype,
3237 					     alloc_flags);
3238 		else
3239 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3240 
3241 		if (unlikely(page == NULL))
3242 			break;
3243 
3244 		if (unlikely(check_pcp_refill(page)))
3245 			continue;
3246 
3247 		/*
3248 		 * Split buddy pages returned by expand() are received here in
3249 		 * physical page order. The page is added to the tail of
3250 		 * caller's list. From the callers perspective, the linked list
3251 		 * is ordered by page number under some conditions. This is
3252 		 * useful for IO devices that can forward direction from the
3253 		 * head, thus also in the physical page order. This is useful
3254 		 * for IO devices that can merge IO requests if the physical
3255 		 * pages are ordered properly.
3256 		 */
3257 		list_add_tail(&page->lru, list);
3258 		allocated++;
3259 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3260 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3261 					      -(1 << order));
3262 	}
3263 
3264 	/*
3265 	 * i pages were removed from the buddy list even if some leak due
3266 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3267 	 * on i. Do not confuse with 'allocated' which is the number of
3268 	 * pages added to the pcp list.
3269 	 */
3270 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3271 	spin_unlock(&zone->lock);
3272 	return allocated;
3273 }
3274 
3275 /*
3276  * Return the pcp list that corresponds to the migrate type if that list isn't
3277  * empty.
3278  * If the list is empty return NULL.
3279  */
get_populated_pcp_list(struct zone * zone,unsigned int order,struct per_cpu_pages * pcp,int migratetype,unsigned int alloc_flags)3280 static struct list_head *get_populated_pcp_list(struct zone *zone,
3281 			unsigned int order, struct per_cpu_pages *pcp,
3282 			int migratetype, unsigned int alloc_flags)
3283 {
3284 	struct list_head *list = &pcp->lists[order_to_pindex(migratetype, order)];
3285 
3286 	if (list_empty(list)) {
3287 		int batch = READ_ONCE(pcp->batch);
3288 		int alloced;
3289 
3290 		trace_android_vh_rmqueue_bulk_bypass(order, pcp, migratetype, list);
3291 		if (!list_empty(list))
3292 			return list;
3293 
3294 		/*
3295 		 * Scale batch relative to order if batch implies
3296 		 * free pages can be stored on the PCP. Batch can
3297 		 * be 1 for small zones or for boot pagesets which
3298 		 * should never store free pages as the pages may
3299 		 * belong to arbitrary zones.
3300 		 */
3301 		if (batch > 1)
3302 			batch = max(batch >> order, 2);
3303 		alloced = rmqueue_bulk(zone, order, batch, list, migratetype, alloc_flags);
3304 
3305 		pcp->count += alloced << order;
3306 		if (list_empty(list))
3307 			list = NULL;
3308 	}
3309 	return list;
3310 }
3311 
3312 #ifdef CONFIG_NUMA
3313 /*
3314  * Called from the vmstat counter updater to drain pagesets of this
3315  * currently executing processor on remote nodes after they have
3316  * expired.
3317  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3319 {
3320 	int to_drain, batch;
3321 
3322 	batch = READ_ONCE(pcp->batch);
3323 	to_drain = min(pcp->count, batch);
3324 	if (to_drain > 0) {
3325 		unsigned long flags;
3326 		struct per_cpu_pages_ext *pcp_ext = pcp_to_pcpext(pcp);
3327 
3328 		/*
3329 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3330 		 * so even though pcp->lock is not intended to be IRQ-safe,
3331 		 * it's needed in this context.
3332 		 */
3333 		spin_lock_irqsave(&pcp_ext->lock, flags);
3334 		free_pcppages_bulk(zone, to_drain, pcp);
3335 		spin_unlock_irqrestore(&pcp_ext->lock, flags);
3336 	}
3337 }
3338 #endif
3339 
3340 /*
3341  * Drain pcplists of the indicated processor and zone.
3342  */
drain_pages_zone(unsigned int cpu,struct zone * zone)3343 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3344 {
3345 	struct per_cpu_pages *pcp;
3346 	struct per_cpu_pages_ext *pcp_ext;
3347 
3348 	pcp_ext = per_cpu_ptr(zone_per_cpu_pageset(zone), cpu);
3349 	pcp = &pcp_ext->pcp;
3350 	if (pcp->count) {
3351 		unsigned long flags;
3352 
3353 		/* See drain_zone_pages on why this is disabling IRQs */
3354 		spin_lock_irqsave(&pcp_ext->lock, flags);
3355 		free_pcppages_bulk(zone, pcp->count, pcp);
3356 		spin_unlock_irqrestore(&pcp_ext->lock, flags);
3357 	}
3358 }
3359 
3360 /*
3361  * Drain pcplists of all zones on the indicated processor.
3362  */
drain_pages(unsigned int cpu)3363 static void drain_pages(unsigned int cpu)
3364 {
3365 	struct zone *zone;
3366 
3367 	for_each_populated_zone(zone) {
3368 		drain_pages_zone(cpu, zone);
3369 	}
3370 }
3371 
3372 /*
3373  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3374  */
drain_local_pages(struct zone * zone)3375 void drain_local_pages(struct zone *zone)
3376 {
3377 	int cpu = smp_processor_id();
3378 
3379 	if (zone)
3380 		drain_pages_zone(cpu, zone);
3381 	else
3382 		drain_pages(cpu);
3383 }
3384 
3385 /*
3386  * The implementation of drain_all_pages(), exposing an extra parameter to
3387  * drain on all cpus.
3388  *
3389  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3390  * not empty. The check for non-emptiness can however race with a free to
3391  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3392  * that need the guarantee that every CPU has drained can disable the
3393  * optimizing racy check.
3394  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)3395 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3396 {
3397 	int cpu;
3398 
3399 	/*
3400 	 * Allocate in the BSS so we won't require allocation in
3401 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3402 	 */
3403 	static cpumask_t cpus_with_pcps;
3404 
3405 	/*
3406 	 * Do not drain if one is already in progress unless it's specific to
3407 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3408 	 * the drain to be complete when the call returns.
3409 	 */
3410 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3411 		if (!zone)
3412 			return;
3413 		mutex_lock(&pcpu_drain_mutex);
3414 	}
3415 
3416 	/*
3417 	 * We don't care about racing with CPU hotplug event
3418 	 * as offline notification will cause the notified
3419 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3420 	 * disables preemption as part of its processing
3421 	 */
3422 	for_each_online_cpu(cpu) {
3423 		struct per_cpu_pages *pcp;
3424 		struct zone *z;
3425 		bool has_pcps = false;
3426 
3427 		if (force_all_cpus) {
3428 			/*
3429 			 * The pcp.count check is racy, some callers need a
3430 			 * guarantee that no cpu is missed.
3431 			 */
3432 			has_pcps = true;
3433 		} else if (zone) {
3434 			pcp = &per_cpu_ptr(zone_per_cpu_pageset(zone), cpu)->pcp;
3435 			if (pcp->count)
3436 				has_pcps = true;
3437 		} else {
3438 			for_each_populated_zone(z) {
3439 				pcp = &per_cpu_ptr(zone_per_cpu_pageset(z), cpu)->pcp;
3440 				if (pcp->count) {
3441 					has_pcps = true;
3442 					break;
3443 				}
3444 			}
3445 		}
3446 
3447 		if (has_pcps)
3448 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3449 		else
3450 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3451 	}
3452 
3453 	for_each_cpu(cpu, &cpus_with_pcps) {
3454 		if (zone)
3455 			drain_pages_zone(cpu, zone);
3456 		else
3457 			drain_pages(cpu);
3458 	}
3459 
3460 	mutex_unlock(&pcpu_drain_mutex);
3461 }
3462 
3463 /*
3464  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3465  *
3466  * When zone parameter is non-NULL, spill just the single zone's pages.
3467  */
drain_all_pages(struct zone * zone)3468 void drain_all_pages(struct zone *zone)
3469 {
3470 	__drain_all_pages(zone, false);
3471 }
3472 
3473 #ifdef CONFIG_HIBERNATION
3474 
3475 /*
3476  * Touch the watchdog for every WD_PAGE_COUNT pages.
3477  */
3478 #define WD_PAGE_COUNT	(128*1024)
3479 
mark_free_pages(struct zone * zone)3480 void mark_free_pages(struct zone *zone)
3481 {
3482 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3483 	unsigned long flags;
3484 	unsigned int order, t;
3485 	struct page *page;
3486 
3487 	if (zone_is_empty(zone))
3488 		return;
3489 
3490 	spin_lock_irqsave(&zone->lock, flags);
3491 
3492 	max_zone_pfn = zone_end_pfn(zone);
3493 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3494 		if (pfn_valid(pfn)) {
3495 			page = pfn_to_page(pfn);
3496 
3497 			if (!--page_count) {
3498 				touch_nmi_watchdog();
3499 				page_count = WD_PAGE_COUNT;
3500 			}
3501 
3502 			if (page_zone(page) != zone)
3503 				continue;
3504 
3505 			if (!swsusp_page_is_forbidden(page))
3506 				swsusp_unset_page_free(page);
3507 		}
3508 
3509 	for_each_migratetype_order(order, t) {
3510 		list_for_each_entry(page,
3511 				&zone->free_area[order].free_list[t], lru) {
3512 			unsigned long i;
3513 
3514 			pfn = page_to_pfn(page);
3515 			for (i = 0; i < (1UL << order); i++) {
3516 				if (!--page_count) {
3517 					touch_nmi_watchdog();
3518 					page_count = WD_PAGE_COUNT;
3519 				}
3520 				swsusp_set_page_free(pfn_to_page(pfn + i));
3521 			}
3522 		}
3523 	}
3524 	spin_unlock_irqrestore(&zone->lock, flags);
3525 }
3526 #endif /* CONFIG_PM */
3527 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)3528 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3529 							unsigned int order)
3530 {
3531 	int migratetype;
3532 
3533 	if (!free_pcp_prepare(page, order))
3534 		return false;
3535 
3536 	migratetype = get_pfnblock_migratetype(page, pfn);
3537 	set_pcppage_migratetype(page, migratetype);
3538 	return true;
3539 }
3540 
nr_pcp_free(struct per_cpu_pages * pcp,int high,int batch)3541 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3542 {
3543 	int min_nr_free, max_nr_free;
3544 
3545 	/* Check for PCP disabled or boot pageset */
3546 	if (unlikely(high < batch))
3547 		return 1;
3548 
3549 	/* Leave at least pcp->batch pages on the list */
3550 	min_nr_free = batch;
3551 	max_nr_free = high - batch;
3552 
3553 	/*
3554 	 * Double the number of pages freed each time there is subsequent
3555 	 * freeing of pages without any allocation.
3556 	 */
3557 	batch <<= pcp->free_factor;
3558 	if (batch < max_nr_free)
3559 		pcp->free_factor++;
3560 	batch = clamp(batch, min_nr_free, max_nr_free);
3561 
3562 	return batch;
3563 }
3564 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone)3565 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3566 {
3567 	int high = READ_ONCE(pcp->high);
3568 
3569 	if (unlikely(!high))
3570 		return 0;
3571 
3572 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3573 		return high;
3574 
3575 	/*
3576 	 * If reclaim is active, limit the number of pages that can be
3577 	 * stored on pcp lists
3578 	 */
3579 	return min(READ_ONCE(pcp->batch) << 2, high);
3580 }
3581 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,unsigned long pfn,int migratetype,unsigned int order)3582 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3583 				   struct page *page, unsigned long pfn,
3584 				   int migratetype, unsigned int order)
3585 {
3586 	int high;
3587 	int pindex;
3588 
3589 	__count_vm_event(PGFREE);
3590 	pindex = order_to_pindex(migratetype, order);
3591 	list_add(&page->lru, &pcp->lists[pindex]);
3592 	pcp->count += 1 << order;
3593 	high = nr_pcp_high(pcp, zone);
3594 	if (pcp->count >= high) {
3595 		int batch = READ_ONCE(pcp->batch);
3596 
3597 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3598 	}
3599 }
3600 
3601 /*
3602  * Free a pcp page
3603  */
free_unref_page(struct page * page,unsigned int order)3604 void free_unref_page(struct page *page, unsigned int order)
3605 {
3606 	unsigned long flags;
3607 	unsigned long __maybe_unused UP_flags;
3608 	struct per_cpu_pages *pcp;
3609 	struct zone *zone;
3610 	unsigned long pfn = page_to_pfn(page);
3611 	int migratetype, pcpmigratetype;
3612 	bool pcp_skip_cma_pages = false;
3613 	bool skip_free_unref_page = false;
3614 
3615 	if (!free_unref_page_prepare(page, pfn, order))
3616 		return;
3617 
3618 	migratetype = get_pcppage_migratetype(page);
3619 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
3620 	if (skip_free_unref_page)
3621 		return;
3622 
3623 	/*
3624 	 * We only track unmovable, reclaimable movable, and CMA on pcp lists.
3625 	 * Place ISOLATE pages on the isolated list because they are being
3626 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
3627 	 * get those areas back if necessary. Otherwise, we may have to free
3628 	 * excessively into the page allocator
3629 	 */
3630 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
3631 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3632 		trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3633 			&pcp_skip_cma_pages);
3634 		if (unlikely(is_migrate_isolate(migratetype)) ||
3635 			pcp_skip_cma_pages) {
3636 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3637 			return;
3638 		}
3639 		pcpmigratetype = MIGRATE_MOVABLE;
3640 	}
3641 
3642 	zone = page_zone(page);
3643 	pcp_trylock_prepare(UP_flags);
3644 	pcp = pcp_spin_trylock_irqsave(zone_per_cpu_pageset(zone), flags);
3645 	if (pcp) {
3646 		free_unref_page_commit(zone, pcp, page, pfn, pcpmigratetype, order);
3647 		pcp_spin_unlock_irqrestore(pcp, flags);
3648 	} else {
3649 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3650 	}
3651 	pcp_trylock_finish(UP_flags);
3652 }
3653 
3654 /*
3655  * Free a list of 0-order pages
3656  */
free_unref_page_list(struct list_head * list)3657 void free_unref_page_list(struct list_head *list)
3658 {
3659 	struct page *page, *next;
3660 	struct per_cpu_pages *pcp = NULL;
3661 	struct zone *locked_zone = NULL;
3662 	unsigned long flags, pfn;
3663 	int batch_count = 0;
3664 	int migratetype;
3665 	bool pcp_skip_cma_pages = false;
3666 
3667 	/* Prepare pages for freeing */
3668 	list_for_each_entry_safe(page, next, list, lru) {
3669 		pfn = page_to_pfn(page);
3670 		if (!free_unref_page_prepare(page, pfn, 0)) {
3671 			list_del(&page->lru);
3672 			continue;
3673 		}
3674 
3675 		/*
3676 		 * Free isolated pages directly to the allocator, see
3677 		 * comment in free_unref_page.
3678 		 */
3679 		migratetype = get_pcppage_migratetype(page);
3680 		trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3681 			&pcp_skip_cma_pages);
3682 		if (unlikely(is_migrate_isolate(migratetype)) ||
3683 			pcp_skip_cma_pages) {
3684 			list_del(&page->lru);
3685 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3686 			continue;
3687 		}
3688 
3689 		set_page_private(page, pfn);
3690 	}
3691 
3692 	list_for_each_entry_safe(page, next, list, lru) {
3693 		struct zone *zone = page_zone(page);
3694 
3695 		/* Different zone, different pcp lock. */
3696 		if (zone != locked_zone) {
3697 			if (pcp)
3698 				pcp_spin_unlock_irqrestore(pcp, flags);
3699 
3700 			locked_zone = zone;
3701 			pcp = pcp_spin_lock_irqsave(zone_per_cpu_pageset(locked_zone), flags);
3702 		}
3703 
3704 		pfn = page_private(page);
3705 		set_page_private(page, 0);
3706 
3707 		/*
3708 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3709 		 * to the MIGRATE_MOVABLE pcp list.
3710 		 */
3711 		migratetype = get_pcppage_migratetype(page);
3712 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3713 			migratetype = MIGRATE_MOVABLE;
3714 
3715 		trace_mm_page_free_batched(page);
3716 		free_unref_page_commit(zone, pcp, page, pfn, migratetype, 0);
3717 
3718 		/*
3719 		 * Guard against excessive IRQ disabled times when we get
3720 		 * a large list of pages to free.
3721 		 */
3722 		if (++batch_count == SWAP_CLUSTER_MAX) {
3723 			pcp_spin_unlock_irqrestore(pcp, flags);
3724 			batch_count = 0;
3725 			pcp = pcp_spin_lock_irqsave(zone_per_cpu_pageset(locked_zone), flags);
3726 		}
3727 	}
3728 
3729 	if (pcp)
3730 		pcp_spin_unlock_irqrestore(pcp, flags);
3731 }
3732 
3733 /*
3734  * split_page takes a non-compound higher-order page, and splits it into
3735  * n (1<<order) sub-pages: page[0..n]
3736  * Each sub-page must be freed individually.
3737  *
3738  * Note: this is probably too low level an operation for use in drivers.
3739  * Please consult with lkml before using this in your driver.
3740  */
split_page(struct page * page,unsigned int order)3741 void split_page(struct page *page, unsigned int order)
3742 {
3743 	int i;
3744 
3745 	VM_BUG_ON_PAGE(PageCompound(page), page);
3746 	VM_BUG_ON_PAGE(!page_count(page), page);
3747 
3748 	for (i = 1; i < (1 << order); i++)
3749 		set_page_refcounted(page + i);
3750 	split_page_owner(page, 1 << order);
3751 	split_page_memcg(page, 1 << order);
3752 }
3753 EXPORT_SYMBOL_GPL(split_page);
3754 
__isolate_free_page(struct page * page,unsigned int order)3755 int __isolate_free_page(struct page *page, unsigned int order)
3756 {
3757 	unsigned long watermark;
3758 	struct zone *zone;
3759 	int mt;
3760 
3761 	BUG_ON(!PageBuddy(page));
3762 
3763 	zone = page_zone(page);
3764 	mt = get_pageblock_migratetype(page);
3765 
3766 	if (!is_migrate_isolate(mt)) {
3767 		/*
3768 		 * Obey watermarks as if the page was being allocated. We can
3769 		 * emulate a high-order watermark check with a raised order-0
3770 		 * watermark, because we already know our high-order page
3771 		 * exists.
3772 		 */
3773 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3774 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3775 			return 0;
3776 
3777 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3778 	}
3779 
3780 	/* Remove page from free list */
3781 
3782 	del_page_from_free_list(page, zone, order);
3783 
3784 	/*
3785 	 * Set the pageblock if the isolated page is at least half of a
3786 	 * pageblock
3787 	 */
3788 	if (order >= pageblock_order - 1) {
3789 		struct page *endpage = page + (1 << order) - 1;
3790 		for (; page < endpage; page += pageblock_nr_pages) {
3791 			int mt = get_pageblock_migratetype(page);
3792 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3793 			    && !is_migrate_highatomic(mt))
3794 				set_pageblock_migratetype(page,
3795 							  MIGRATE_MOVABLE);
3796 		}
3797 	}
3798 
3799 
3800 	return 1UL << order;
3801 }
3802 
3803 /**
3804  * __putback_isolated_page - Return a now-isolated page back where we got it
3805  * @page: Page that was isolated
3806  * @order: Order of the isolated page
3807  * @mt: The page's pageblock's migratetype
3808  *
3809  * This function is meant to return a page pulled from the free lists via
3810  * __isolate_free_page back to the free lists they were pulled from.
3811  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3812 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3813 {
3814 	struct zone *zone = page_zone(page);
3815 
3816 	/* zone lock should be held when this function is called */
3817 	lockdep_assert_held(&zone->lock);
3818 
3819 	/* Return isolated page to tail of freelist. */
3820 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3821 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3822 }
3823 
3824 /*
3825  * Update NUMA hit/miss statistics
3826  *
3827  * Must be called with interrupts disabled.
3828  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3829 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3830 				   long nr_account)
3831 {
3832 #ifdef CONFIG_NUMA
3833 	enum numa_stat_item local_stat = NUMA_LOCAL;
3834 
3835 	/* skip numa counters update if numa stats is disabled */
3836 	if (!static_branch_likely(&vm_numa_stat_key))
3837 		return;
3838 
3839 	if (zone_to_nid(z) != numa_node_id())
3840 		local_stat = NUMA_OTHER;
3841 
3842 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3843 		__count_numa_events(z, NUMA_HIT, nr_account);
3844 	else {
3845 		__count_numa_events(z, NUMA_MISS, nr_account);
3846 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3847 	}
3848 	__count_numa_events(z, local_stat, nr_account);
3849 #endif
3850 }
3851 
3852 #ifdef CONFIG_CMA
3853 /*
3854  * GFP_MOVABLE allocation could drain UNMOVABLE & RECLAIMABLE page blocks via
3855  * the help of CMA which makes GFP_KERNEL failed. Checking if zone_watermark_ok
3856  * again without ALLOC_CMA to see if to use CMA first.
3857  */
use_cma_first(struct zone * zone,unsigned int order,unsigned int alloc_flags)3858 static bool use_cma_first(struct zone *zone, unsigned int order, unsigned int alloc_flags)
3859 {
3860 	unsigned long watermark;
3861 	bool cma_first = false;
3862 
3863 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3864 	/* check if GFP_MOVABLE pass previous zone_watermark_ok via the help of CMA */
3865 	if (zone_watermark_ok(zone, order, watermark, 0, alloc_flags & (~ALLOC_CMA))) {
3866 		/*
3867 		 * Balance movable allocations between regular and CMA areas by
3868 		 * allocating from CMA when over half of the zone's free memory
3869 		 * is in the CMA area.
3870 		 */
3871 		cma_first = (zone_page_state(zone, NR_FREE_CMA_PAGES) >
3872 				zone_page_state(zone, NR_FREE_PAGES) / 2);
3873 	} else {
3874 		/*
3875 		 * watermark failed means UNMOVABLE & RECLAIMBLE is not enough
3876 		 * now, we should use cma first to keep them stay around the
3877 		 * corresponding watermark
3878 		 */
3879 		cma_first = true;
3880 	}
3881 	return cma_first;
3882 }
3883 #else
use_cma_first(struct zone * zone,unsigned int order,unsigned int alloc_flags)3884 static bool use_cma_first(struct zone *zone, unsigned int order, unsigned int alloc_flags)
3885 {
3886 	return false;
3887 }
3888 #endif
3889 
3890 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)3891 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3892 			   unsigned int order, unsigned int alloc_flags,
3893 			   int migratetype)
3894 {
3895 	struct page *page;
3896 	unsigned long flags;
3897 
3898 	do {
3899 		page = NULL;
3900 		spin_lock_irqsave(&zone->lock, flags);
3901 		/*
3902 		 * order-0 request can reach here when the pcplist is skipped
3903 		 * due to non-CMA allocation context. HIGHATOMIC area is
3904 		 * reserved for high-order atomic allocation, so order-0
3905 		 * request should skip it.
3906 		 */
3907 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3908 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3909 			if (page)
3910 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3911 		}
3912 		if (!page) {
3913 			/*
3914 			 * Balance movable allocations between regular and CMA areas by
3915 			 * allocating from CMA base on judging zone_watermark_ok again
3916 			 * to see if the latest check got pass via the help of CMA
3917 			 */
3918 			if (alloc_flags & ALLOC_CMA) {
3919 				bool use_cma_first_check = false;
3920 				bool try_cma;
3921 
3922 				trace_android_vh_use_cma_first_check(&use_cma_first_check);
3923 				try_cma = use_cma_first_check ?
3924 					use_cma_first(zone, order, alloc_flags) :
3925 					migratetype == MIGRATE_MOVABLE;
3926 				if (try_cma)
3927 					page = __rmqueue_cma(zone, order, migratetype,
3928 							alloc_flags);
3929 			}
3930 			if (!page)
3931 				page = __rmqueue(zone, order, migratetype,
3932 						alloc_flags);
3933 		}
3934 		if (!page) {
3935 			spin_unlock_irqrestore(&zone->lock, flags);
3936 			return NULL;
3937 		}
3938 		__mod_zone_freepage_state(zone, -(1 << order),
3939 					  get_pcppage_migratetype(page));
3940 		spin_unlock_irqrestore(&zone->lock, flags);
3941 	} while (check_new_pages(page, order));
3942 
3943 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3944 	zone_statistics(preferred_zone, zone, 1);
3945 
3946 	return page;
3947 }
3948 
3949 /* Remove page from the per-cpu list, caller must protect the list */
3950 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,gfp_t gfp_flags)3951 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3952 			int migratetype,
3953 			unsigned int alloc_flags,
3954 			struct per_cpu_pages *pcp,
3955 			gfp_t gfp_flags)
3956 {
3957 	struct page *page = NULL;
3958 	struct list_head *list = NULL;
3959 
3960 	do {
3961 		/* First try to get CMA pages */
3962 		if (migratetype == MIGRATE_MOVABLE && alloc_flags & ALLOC_CMA)
3963 			list = get_populated_pcp_list(zone, order, pcp, get_cma_migrate_type(),
3964 						      alloc_flags);
3965 		if (list == NULL) {
3966 			/*
3967 			 * Either CMA is not suitable or there are no
3968 			 * free CMA pages.
3969 			 */
3970 			list = get_populated_pcp_list(zone, order, pcp, migratetype, alloc_flags);
3971 			if (unlikely(list == NULL) || unlikely(list_empty(list)))
3972 				return NULL;
3973 		}
3974 
3975 		page = list_first_entry(list, struct page, lru);
3976 		list_del(&page->lru);
3977 		pcp->count -= 1 << order;
3978 	} while (check_new_pcp(page));
3979 
3980 	return page;
3981 }
3982 
3983 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3984 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3985 			struct zone *zone, unsigned int order,
3986 			gfp_t gfp_flags, int migratetype,
3987 			unsigned int alloc_flags)
3988 {
3989 	struct per_cpu_pages *pcp;
3990 	struct page *page;
3991 	unsigned long flags;
3992 	unsigned long __maybe_unused UP_flags;
3993 
3994 	/*
3995 	 * spin_trylock may fail due to a parallel drain. In the future, the
3996 	 * trylock will also protect against IRQ reentrancy.
3997 	 */
3998 	pcp_trylock_prepare(UP_flags);
3999 	pcp = pcp_spin_trylock_irqsave(zone_per_cpu_pageset(zone), flags);
4000 	if (!pcp) {
4001 		pcp_trylock_finish(UP_flags);
4002 		return NULL;
4003 	}
4004 
4005 	/*
4006 	 * On allocation, reduce the number of pages that are batch freed.
4007 	 * See nr_pcp_free() where free_factor is increased for subsequent
4008 	 * frees.
4009 	 */
4010 	pcp->free_factor >>= 1;
4011 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, gfp_flags);
4012 	pcp_spin_unlock_irqrestore(pcp, flags);
4013 	pcp_trylock_finish(UP_flags);
4014 	if (page) {
4015 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
4016 		zone_statistics(preferred_zone, zone, 1);
4017 	}
4018 	return page;
4019 }
4020 
4021 /*
4022  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
4023  */
4024 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)4025 struct page *rmqueue(struct zone *preferred_zone,
4026 			struct zone *zone, unsigned int order,
4027 			gfp_t gfp_flags, unsigned int alloc_flags,
4028 			int migratetype)
4029 {
4030 	struct page *page;
4031 
4032 	if (likely(pcp_allowed_order(order))) {
4033 		page = rmqueue_pcplist(preferred_zone, zone, order,
4034 				gfp_flags, migratetype, alloc_flags);
4035 		if (likely(page))
4036 			goto out;
4037 	}
4038 
4039 	/*
4040 	 * We most definitely don't want callers attempting to
4041 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
4042 	 */
4043 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
4044 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
4045 							migratetype);
4046 	trace_android_vh_rmqueue(preferred_zone, zone, order,
4047 			gfp_flags, alloc_flags, migratetype);
4048 
4049 out:
4050 	/* Separate test+clear to avoid unnecessary atomics */
4051 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
4052 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
4053 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
4054 	}
4055 
4056 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
4057 	return page;
4058 }
4059 
4060 #ifdef CONFIG_FAIL_PAGE_ALLOC
4061 
4062 static struct {
4063 	struct fault_attr attr;
4064 
4065 	bool ignore_gfp_highmem;
4066 	bool ignore_gfp_reclaim;
4067 	u32 min_order;
4068 } fail_page_alloc = {
4069 	.attr = FAULT_ATTR_INITIALIZER,
4070 	.ignore_gfp_reclaim = true,
4071 	.ignore_gfp_highmem = true,
4072 	.min_order = 1,
4073 };
4074 
setup_fail_page_alloc(char * str)4075 static int __init setup_fail_page_alloc(char *str)
4076 {
4077 	return setup_fault_attr(&fail_page_alloc.attr, str);
4078 }
4079 __setup("fail_page_alloc=", setup_fail_page_alloc);
4080 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4081 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4082 {
4083 	if (order < fail_page_alloc.min_order)
4084 		return false;
4085 	if (gfp_mask & __GFP_NOFAIL)
4086 		return false;
4087 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
4088 		return false;
4089 	if (fail_page_alloc.ignore_gfp_reclaim &&
4090 			(gfp_mask & __GFP_DIRECT_RECLAIM))
4091 		return false;
4092 
4093 	return should_fail(&fail_page_alloc.attr, 1 << order);
4094 }
4095 
4096 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
4097 
fail_page_alloc_debugfs(void)4098 static int __init fail_page_alloc_debugfs(void)
4099 {
4100 	umode_t mode = S_IFREG | 0600;
4101 	struct dentry *dir;
4102 
4103 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
4104 					&fail_page_alloc.attr);
4105 
4106 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
4107 			    &fail_page_alloc.ignore_gfp_reclaim);
4108 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
4109 			    &fail_page_alloc.ignore_gfp_highmem);
4110 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
4111 
4112 	return 0;
4113 }
4114 
4115 late_initcall(fail_page_alloc_debugfs);
4116 
4117 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
4118 
4119 #else /* CONFIG_FAIL_PAGE_ALLOC */
4120 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4121 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4122 {
4123 	return false;
4124 }
4125 
4126 #endif /* CONFIG_FAIL_PAGE_ALLOC */
4127 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4128 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4129 {
4130 	return __should_fail_alloc_page(gfp_mask, order);
4131 }
4132 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
4133 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)4134 static inline long __zone_watermark_unusable_free(struct zone *z,
4135 				unsigned int order, unsigned int alloc_flags)
4136 {
4137 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4138 	long unusable_free = (1 << order) - 1;
4139 
4140 	/*
4141 	 * If the caller does not have rights to ALLOC_HARDER then subtract
4142 	 * the high-atomic reserves. This will over-estimate the size of the
4143 	 * atomic reserve but it avoids a search.
4144 	 */
4145 	if (likely(!alloc_harder))
4146 		unusable_free += z->nr_reserved_highatomic;
4147 
4148 #ifdef CONFIG_CMA
4149 	/* If allocation can't use CMA areas don't use free CMA pages */
4150 	if (!(alloc_flags & ALLOC_CMA))
4151 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
4152 #endif
4153 
4154 	return unusable_free;
4155 }
4156 
4157 /*
4158  * Return true if free base pages are above 'mark'. For high-order checks it
4159  * will return true of the order-0 watermark is reached and there is at least
4160  * one free page of a suitable size. Checking now avoids taking the zone lock
4161  * to check in the allocation paths if no pages are free.
4162  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)4163 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4164 			 int highest_zoneidx, unsigned int alloc_flags,
4165 			 long free_pages)
4166 {
4167 	long min = mark;
4168 	int o;
4169 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4170 
4171 	/* free_pages may go negative - that's OK */
4172 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4173 
4174 	if (alloc_flags & ALLOC_HIGH)
4175 		min -= min / 2;
4176 
4177 	if (unlikely(alloc_harder)) {
4178 		/*
4179 		 * OOM victims can try even harder than normal ALLOC_HARDER
4180 		 * users on the grounds that it's definitely going to be in
4181 		 * the exit path shortly and free memory. Any allocation it
4182 		 * makes during the free path will be small and short-lived.
4183 		 */
4184 		if (alloc_flags & ALLOC_OOM)
4185 			min -= min / 2;
4186 		else
4187 			min -= min / 4;
4188 	}
4189 
4190 	/*
4191 	 * Check watermarks for an order-0 allocation request. If these
4192 	 * are not met, then a high-order request also cannot go ahead
4193 	 * even if a suitable page happened to be free.
4194 	 */
4195 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4196 		return false;
4197 
4198 	/* If this is an order-0 request then the watermark is fine */
4199 	if (!order)
4200 		return true;
4201 
4202 	/* For a high-order request, check at least one suitable page is free */
4203 	for (o = order; o < MAX_ORDER; o++) {
4204 		struct free_area *area = &z->free_area[o];
4205 		int mt;
4206 
4207 		if (!area->nr_free)
4208 			continue;
4209 
4210 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4211 #ifdef CONFIG_CMA
4212 			/*
4213 			 * Note that this check is needed only
4214 			 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
4215 			 */
4216 			if (mt == MIGRATE_CMA)
4217 				continue;
4218 #endif
4219 			if (!free_area_empty(area, mt))
4220 				return true;
4221 		}
4222 
4223 #ifdef CONFIG_CMA
4224 		if ((alloc_flags & ALLOC_CMA) &&
4225 		    !free_area_empty(area, MIGRATE_CMA)) {
4226 			return true;
4227 		}
4228 #endif
4229 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4230 			return true;
4231 	}
4232 	return false;
4233 }
4234 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)4235 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4236 		      int highest_zoneidx, unsigned int alloc_flags)
4237 {
4238 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4239 					zone_page_state(z, NR_FREE_PAGES));
4240 }
4241 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)4242 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4243 				unsigned long mark, int highest_zoneidx,
4244 				unsigned int alloc_flags, gfp_t gfp_mask)
4245 {
4246 	long free_pages;
4247 
4248 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4249 
4250 	/*
4251 	 * Fast check for order-0 only. If this fails then the reserves
4252 	 * need to be calculated.
4253 	 */
4254 	if (!order) {
4255 		long usable_free;
4256 		long reserved;
4257 
4258 		usable_free = free_pages;
4259 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4260 
4261 		/* reserved may over estimate high-atomic reserves. */
4262 		usable_free -= min(usable_free, reserved);
4263 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4264 			return true;
4265 	}
4266 
4267 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4268 					free_pages))
4269 		return true;
4270 	/*
4271 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4272 	 * when checking the min watermark. The min watermark is the
4273 	 * point where boosting is ignored so that kswapd is woken up
4274 	 * when below the low watermark.
4275 	 */
4276 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4277 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4278 		mark = z->_watermark[WMARK_MIN];
4279 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4280 					alloc_flags, free_pages);
4281 	}
4282 
4283 	return false;
4284 }
4285 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)4286 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4287 			unsigned long mark, int highest_zoneidx)
4288 {
4289 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4290 
4291 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4292 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4293 
4294 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4295 								free_pages);
4296 }
4297 
4298 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4299 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4300 {
4301 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4302 				node_reclaim_distance;
4303 }
4304 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4305 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4306 {
4307 	return true;
4308 }
4309 #endif	/* CONFIG_NUMA */
4310 
4311 /*
4312  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4313  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4314  * premature use of a lower zone may cause lowmem pressure problems that
4315  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4316  * probably too small. It only makes sense to spread allocations to avoid
4317  * fragmentation between the Normal and DMA32 zones.
4318  */
4319 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)4320 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4321 {
4322 	unsigned int alloc_flags;
4323 
4324 	/*
4325 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4326 	 * to save a branch.
4327 	 */
4328 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4329 
4330 #ifdef CONFIG_ZONE_DMA32
4331 	if (!zone)
4332 		return alloc_flags;
4333 
4334 	if (zone_idx(zone) != ZONE_NORMAL)
4335 		return alloc_flags;
4336 
4337 	/*
4338 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4339 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4340 	 * on UMA that if Normal is populated then so is DMA32.
4341 	 */
4342 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4343 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4344 		return alloc_flags;
4345 
4346 	alloc_flags |= ALLOC_NOFRAGMENT;
4347 #endif /* CONFIG_ZONE_DMA32 */
4348 	return alloc_flags;
4349 }
4350 
4351 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)4352 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4353 						  unsigned int alloc_flags)
4354 {
4355 #ifdef CONFIG_CMA
4356 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE && gfp_mask & __GFP_CMA)
4357 		alloc_flags |= ALLOC_CMA;
4358 	trace_android_vh_alloc_flags_cma_adjust(gfp_mask, &alloc_flags);
4359 #endif
4360 	return alloc_flags;
4361 }
4362 
4363 /*
4364  * get_page_from_freelist goes through the zonelist trying to allocate
4365  * a page.
4366  */
4367 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)4368 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4369 						const struct alloc_context *ac)
4370 {
4371 	struct zoneref *z;
4372 	struct zone *zone;
4373 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4374 	bool no_fallback;
4375 
4376 retry:
4377 	/*
4378 	 * Scan zonelist, looking for a zone with enough free.
4379 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4380 	 */
4381 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4382 	z = ac->preferred_zoneref;
4383 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4384 					ac->nodemask) {
4385 		struct page *page;
4386 		unsigned long mark;
4387 
4388 		if (cpusets_enabled() &&
4389 			(alloc_flags & ALLOC_CPUSET) &&
4390 			!__cpuset_zone_allowed(zone, gfp_mask))
4391 				continue;
4392 		/*
4393 		 * When allocating a page cache page for writing, we
4394 		 * want to get it from a node that is within its dirty
4395 		 * limit, such that no single node holds more than its
4396 		 * proportional share of globally allowed dirty pages.
4397 		 * The dirty limits take into account the node's
4398 		 * lowmem reserves and high watermark so that kswapd
4399 		 * should be able to balance it without having to
4400 		 * write pages from its LRU list.
4401 		 *
4402 		 * XXX: For now, allow allocations to potentially
4403 		 * exceed the per-node dirty limit in the slowpath
4404 		 * (spread_dirty_pages unset) before going into reclaim,
4405 		 * which is important when on a NUMA setup the allowed
4406 		 * nodes are together not big enough to reach the
4407 		 * global limit.  The proper fix for these situations
4408 		 * will require awareness of nodes in the
4409 		 * dirty-throttling and the flusher threads.
4410 		 */
4411 		if (ac->spread_dirty_pages) {
4412 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4413 				continue;
4414 
4415 			if (!node_dirty_ok(zone->zone_pgdat)) {
4416 				last_pgdat_dirty_limit = zone->zone_pgdat;
4417 				continue;
4418 			}
4419 		}
4420 
4421 		if (no_fallback && nr_online_nodes > 1 &&
4422 		    zone != ac->preferred_zoneref->zone) {
4423 			int local_nid;
4424 
4425 			/*
4426 			 * If moving to a remote node, retry but allow
4427 			 * fragmenting fallbacks. Locality is more important
4428 			 * than fragmentation avoidance.
4429 			 */
4430 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4431 			if (zone_to_nid(zone) != local_nid) {
4432 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4433 				goto retry;
4434 			}
4435 		}
4436 
4437 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4438 		if (!zone_watermark_fast(zone, order, mark,
4439 				       ac->highest_zoneidx, alloc_flags,
4440 				       gfp_mask)) {
4441 			int ret;
4442 
4443 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4444 			/*
4445 			 * Watermark failed for this zone, but see if we can
4446 			 * grow this zone if it contains deferred pages.
4447 			 */
4448 			if (static_branch_unlikely(&deferred_pages)) {
4449 				if (_deferred_grow_zone(zone, order))
4450 					goto try_this_zone;
4451 			}
4452 #endif
4453 			/* Checked here to keep the fast path fast */
4454 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4455 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4456 				goto try_this_zone;
4457 
4458 			if (!node_reclaim_enabled() ||
4459 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4460 				continue;
4461 
4462 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4463 			switch (ret) {
4464 			case NODE_RECLAIM_NOSCAN:
4465 				/* did not scan */
4466 				continue;
4467 			case NODE_RECLAIM_FULL:
4468 				/* scanned but unreclaimable */
4469 				continue;
4470 			default:
4471 				/* did we reclaim enough */
4472 				if (zone_watermark_ok(zone, order, mark,
4473 					ac->highest_zoneidx, alloc_flags))
4474 					goto try_this_zone;
4475 
4476 				continue;
4477 			}
4478 		}
4479 
4480 try_this_zone:
4481 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4482 				gfp_mask, alloc_flags, ac->migratetype);
4483 		if (page) {
4484 			prep_new_page(page, order, gfp_mask, alloc_flags);
4485 
4486 			/*
4487 			 * If this is a high-order atomic allocation then check
4488 			 * if the pageblock should be reserved for the future
4489 			 */
4490 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4491 				reserve_highatomic_pageblock(page, zone, order);
4492 
4493 			return page;
4494 		} else {
4495 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4496 			/* Try again if zone has deferred pages */
4497 			if (static_branch_unlikely(&deferred_pages)) {
4498 				if (_deferred_grow_zone(zone, order))
4499 					goto try_this_zone;
4500 			}
4501 #endif
4502 		}
4503 	}
4504 
4505 	/*
4506 	 * It's possible on a UMA machine to get through all zones that are
4507 	 * fragmented. If avoiding fragmentation, reset and try again.
4508 	 */
4509 	if (no_fallback) {
4510 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4511 		goto retry;
4512 	}
4513 
4514 	return NULL;
4515 }
4516 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4517 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4518 {
4519 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4520 
4521 	/*
4522 	 * This documents exceptions given to allocations in certain
4523 	 * contexts that are allowed to allocate outside current's set
4524 	 * of allowed nodes.
4525 	 */
4526 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4527 		if (tsk_is_oom_victim(current) ||
4528 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4529 			filter &= ~SHOW_MEM_FILTER_NODES;
4530 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4531 		filter &= ~SHOW_MEM_FILTER_NODES;
4532 
4533 	show_mem(filter, nodemask);
4534 }
4535 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4536 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4537 {
4538 	struct va_format vaf;
4539 	va_list args;
4540 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4541 
4542 	if ((gfp_mask & __GFP_NOWARN) ||
4543 	     !__ratelimit(&nopage_rs) ||
4544 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4545 		return;
4546 
4547 	va_start(args, fmt);
4548 	vaf.fmt = fmt;
4549 	vaf.va = &args;
4550 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4551 			current->comm, &vaf, gfp_mask, &gfp_mask,
4552 			nodemask_pr_args(nodemask));
4553 	va_end(args);
4554 
4555 	cpuset_print_current_mems_allowed();
4556 	pr_cont("\n");
4557 	dump_stack();
4558 	warn_alloc_show_mem(gfp_mask, nodemask);
4559 }
4560 
4561 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4562 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4563 			      unsigned int alloc_flags,
4564 			      const struct alloc_context *ac)
4565 {
4566 	struct page *page;
4567 
4568 	page = get_page_from_freelist(gfp_mask, order,
4569 			alloc_flags|ALLOC_CPUSET, ac);
4570 	/*
4571 	 * fallback to ignore cpuset restriction if our nodes
4572 	 * are depleted
4573 	 */
4574 	if (!page)
4575 		page = get_page_from_freelist(gfp_mask, order,
4576 				alloc_flags, ac);
4577 
4578 	return page;
4579 }
4580 
4581 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4582 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4583 	const struct alloc_context *ac, unsigned long *did_some_progress)
4584 {
4585 	struct oom_control oc = {
4586 		.zonelist = ac->zonelist,
4587 		.nodemask = ac->nodemask,
4588 		.memcg = NULL,
4589 		.gfp_mask = gfp_mask,
4590 		.order = order,
4591 	};
4592 	struct page *page;
4593 
4594 	*did_some_progress = 0;
4595 
4596 	/*
4597 	 * Acquire the oom lock.  If that fails, somebody else is
4598 	 * making progress for us.
4599 	 */
4600 	if (!mutex_trylock(&oom_lock)) {
4601 		*did_some_progress = 1;
4602 		schedule_timeout_uninterruptible(1);
4603 		return NULL;
4604 	}
4605 
4606 	/*
4607 	 * Go through the zonelist yet one more time, keep very high watermark
4608 	 * here, this is only to catch a parallel oom killing, we must fail if
4609 	 * we're still under heavy pressure. But make sure that this reclaim
4610 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4611 	 * allocation which will never fail due to oom_lock already held.
4612 	 */
4613 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4614 				      ~__GFP_DIRECT_RECLAIM, order,
4615 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4616 	if (page)
4617 		goto out;
4618 
4619 	/* Coredumps can quickly deplete all memory reserves */
4620 	if (current->flags & PF_DUMPCORE)
4621 		goto out;
4622 	/* The OOM killer will not help higher order allocs */
4623 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4624 		goto out;
4625 	/*
4626 	 * We have already exhausted all our reclaim opportunities without any
4627 	 * success so it is time to admit defeat. We will skip the OOM killer
4628 	 * because it is very likely that the caller has a more reasonable
4629 	 * fallback than shooting a random task.
4630 	 *
4631 	 * The OOM killer may not free memory on a specific node.
4632 	 */
4633 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4634 		goto out;
4635 	/* The OOM killer does not needlessly kill tasks for lowmem */
4636 	if (ac->highest_zoneidx < ZONE_NORMAL)
4637 		goto out;
4638 	if (pm_suspended_storage())
4639 		goto out;
4640 	/*
4641 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4642 	 * other request to make a forward progress.
4643 	 * We are in an unfortunate situation where out_of_memory cannot
4644 	 * do much for this context but let's try it to at least get
4645 	 * access to memory reserved if the current task is killed (see
4646 	 * out_of_memory). Once filesystems are ready to handle allocation
4647 	 * failures more gracefully we should just bail out here.
4648 	 */
4649 
4650 	/* Exhausted what can be done so it's blame time */
4651 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4652 		*did_some_progress = 1;
4653 
4654 		/*
4655 		 * Help non-failing allocations by giving them access to memory
4656 		 * reserves
4657 		 */
4658 		if (gfp_mask & __GFP_NOFAIL)
4659 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4660 					ALLOC_NO_WATERMARKS, ac);
4661 	}
4662 out:
4663 	mutex_unlock(&oom_lock);
4664 	return page;
4665 }
4666 
4667 /*
4668  * Maximum number of compaction retries with a progress before OOM
4669  * killer is consider as the only way to move forward.
4670  */
4671 #define MAX_COMPACT_RETRIES 16
4672 
4673 #ifdef CONFIG_COMPACTION
4674 /* Try memory compaction for high-order allocations before reclaim */
4675 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4676 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4677 		unsigned int alloc_flags, const struct alloc_context *ac,
4678 		enum compact_priority prio, enum compact_result *compact_result)
4679 {
4680 	struct page *page = NULL;
4681 	unsigned long pflags;
4682 	unsigned int noreclaim_flag;
4683 
4684 	if (!order)
4685 		return NULL;
4686 
4687 	psi_memstall_enter(&pflags);
4688 	noreclaim_flag = memalloc_noreclaim_save();
4689 
4690 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4691 								prio, &page);
4692 
4693 	memalloc_noreclaim_restore(noreclaim_flag);
4694 	psi_memstall_leave(&pflags);
4695 
4696 	if (*compact_result == COMPACT_SKIPPED)
4697 		return NULL;
4698 	/*
4699 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4700 	 * count a compaction stall
4701 	 */
4702 	count_vm_event(COMPACTSTALL);
4703 
4704 	/* Prep a captured page if available */
4705 	if (page)
4706 		prep_new_page(page, order, gfp_mask, alloc_flags);
4707 
4708 	/* Try get a page from the freelist if available */
4709 	if (!page)
4710 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4711 
4712 	if (page) {
4713 		struct zone *zone = page_zone(page);
4714 
4715 		zone->compact_blockskip_flush = false;
4716 		compaction_defer_reset(zone, order, true);
4717 		count_vm_event(COMPACTSUCCESS);
4718 		return page;
4719 	}
4720 
4721 	/*
4722 	 * It's bad if compaction run occurs and fails. The most likely reason
4723 	 * is that pages exist, but not enough to satisfy watermarks.
4724 	 */
4725 	count_vm_event(COMPACTFAIL);
4726 
4727 	cond_resched();
4728 
4729 	return NULL;
4730 }
4731 
4732 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4733 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4734 		     enum compact_result compact_result,
4735 		     enum compact_priority *compact_priority,
4736 		     int *compaction_retries)
4737 {
4738 	int max_retries = MAX_COMPACT_RETRIES;
4739 	int min_priority;
4740 	bool ret = false;
4741 	int retries = *compaction_retries;
4742 	enum compact_priority priority = *compact_priority;
4743 
4744 	if (!order)
4745 		return false;
4746 
4747 	if (fatal_signal_pending(current))
4748 		return false;
4749 
4750 	if (compaction_made_progress(compact_result))
4751 		(*compaction_retries)++;
4752 
4753 	/*
4754 	 * compaction considers all the zone as desperately out of memory
4755 	 * so it doesn't really make much sense to retry except when the
4756 	 * failure could be caused by insufficient priority
4757 	 */
4758 	if (compaction_failed(compact_result))
4759 		goto check_priority;
4760 
4761 	/*
4762 	 * compaction was skipped because there are not enough order-0 pages
4763 	 * to work with, so we retry only if it looks like reclaim can help.
4764 	 */
4765 	if (compaction_needs_reclaim(compact_result)) {
4766 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4767 		goto out;
4768 	}
4769 
4770 	/*
4771 	 * make sure the compaction wasn't deferred or didn't bail out early
4772 	 * due to locks contention before we declare that we should give up.
4773 	 * But the next retry should use a higher priority if allowed, so
4774 	 * we don't just keep bailing out endlessly.
4775 	 */
4776 	if (compaction_withdrawn(compact_result)) {
4777 		goto check_priority;
4778 	}
4779 
4780 	/*
4781 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4782 	 * costly ones because they are de facto nofail and invoke OOM
4783 	 * killer to move on while costly can fail and users are ready
4784 	 * to cope with that. 1/4 retries is rather arbitrary but we
4785 	 * would need much more detailed feedback from compaction to
4786 	 * make a better decision.
4787 	 */
4788 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4789 		max_retries /= 4;
4790 	if (*compaction_retries <= max_retries) {
4791 		ret = true;
4792 		goto out;
4793 	}
4794 
4795 	/*
4796 	 * Make sure there are attempts at the highest priority if we exhausted
4797 	 * all retries or failed at the lower priorities.
4798 	 */
4799 check_priority:
4800 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4801 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4802 
4803 	if (*compact_priority > min_priority) {
4804 		(*compact_priority)--;
4805 		*compaction_retries = 0;
4806 		ret = true;
4807 	}
4808 out:
4809 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4810 	return ret;
4811 }
4812 #else
4813 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4814 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4815 		unsigned int alloc_flags, const struct alloc_context *ac,
4816 		enum compact_priority prio, enum compact_result *compact_result)
4817 {
4818 	*compact_result = COMPACT_SKIPPED;
4819 	return NULL;
4820 }
4821 
4822 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4823 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4824 		     enum compact_result compact_result,
4825 		     enum compact_priority *compact_priority,
4826 		     int *compaction_retries)
4827 {
4828 	struct zone *zone;
4829 	struct zoneref *z;
4830 
4831 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4832 		return false;
4833 
4834 	/*
4835 	 * There are setups with compaction disabled which would prefer to loop
4836 	 * inside the allocator rather than hit the oom killer prematurely.
4837 	 * Let's give them a good hope and keep retrying while the order-0
4838 	 * watermarks are OK.
4839 	 */
4840 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4841 				ac->highest_zoneidx, ac->nodemask) {
4842 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4843 					ac->highest_zoneidx, alloc_flags))
4844 			return true;
4845 	}
4846 	return false;
4847 }
4848 #endif /* CONFIG_COMPACTION */
4849 
4850 #ifdef CONFIG_LOCKDEP
4851 static struct lockdep_map __fs_reclaim_map =
4852 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4853 
__need_reclaim(gfp_t gfp_mask)4854 static bool __need_reclaim(gfp_t gfp_mask)
4855 {
4856 	/* no reclaim without waiting on it */
4857 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4858 		return false;
4859 
4860 	/* this guy won't enter reclaim */
4861 	if (current->flags & PF_MEMALLOC)
4862 		return false;
4863 
4864 	if (gfp_mask & __GFP_NOLOCKDEP)
4865 		return false;
4866 
4867 	return true;
4868 }
4869 
__fs_reclaim_acquire(unsigned long ip)4870 void __fs_reclaim_acquire(unsigned long ip)
4871 {
4872 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4873 }
4874 
__fs_reclaim_release(unsigned long ip)4875 void __fs_reclaim_release(unsigned long ip)
4876 {
4877 	lock_release(&__fs_reclaim_map, ip);
4878 }
4879 
fs_reclaim_acquire(gfp_t gfp_mask)4880 void fs_reclaim_acquire(gfp_t gfp_mask)
4881 {
4882 	gfp_mask = current_gfp_context(gfp_mask);
4883 
4884 	if (__need_reclaim(gfp_mask)) {
4885 		if (gfp_mask & __GFP_FS)
4886 			__fs_reclaim_acquire(_RET_IP_);
4887 
4888 #ifdef CONFIG_MMU_NOTIFIER
4889 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4890 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4891 #endif
4892 
4893 	}
4894 }
4895 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4896 
fs_reclaim_release(gfp_t gfp_mask)4897 void fs_reclaim_release(gfp_t gfp_mask)
4898 {
4899 	gfp_mask = current_gfp_context(gfp_mask);
4900 
4901 	if (__need_reclaim(gfp_mask)) {
4902 		if (gfp_mask & __GFP_FS)
4903 			__fs_reclaim_release(_RET_IP_);
4904 	}
4905 }
4906 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4907 #endif
4908 
4909 /*
4910  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4911  * have been rebuilt so allocation retries. Reader side does not lock and
4912  * retries the allocation if zonelist changes. Writer side is protected by the
4913  * embedded spin_lock.
4914  */
4915 static DEFINE_SEQLOCK(zonelist_update_seq);
4916 
zonelist_iter_begin(void)4917 static unsigned int zonelist_iter_begin(void)
4918 {
4919 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4920 		return read_seqbegin(&zonelist_update_seq);
4921 
4922 	return 0;
4923 }
4924 
check_retry_zonelist(unsigned int seq)4925 static unsigned int check_retry_zonelist(unsigned int seq)
4926 {
4927 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4928 		return read_seqretry(&zonelist_update_seq, seq);
4929 
4930 	return seq;
4931 }
4932 
4933 /* Perform direct synchronous page reclaim */
4934 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4935 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4936 					const struct alloc_context *ac)
4937 {
4938 	unsigned int noreclaim_flag;
4939 	unsigned long progress;
4940 
4941 	cond_resched();
4942 
4943 	/* We now go into synchronous reclaim */
4944 	cpuset_memory_pressure_bump();
4945 	fs_reclaim_acquire(gfp_mask);
4946 	noreclaim_flag = memalloc_noreclaim_save();
4947 
4948 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4949 								ac->nodemask);
4950 
4951 	memalloc_noreclaim_restore(noreclaim_flag);
4952 	fs_reclaim_release(gfp_mask);
4953 
4954 	cond_resched();
4955 
4956 	return progress;
4957 }
4958 
4959 /* The really slow allocator path where we enter direct reclaim */
4960 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4961 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4962 		unsigned int alloc_flags, const struct alloc_context *ac,
4963 		unsigned long *did_some_progress)
4964 {
4965 	struct page *page = NULL;
4966 	unsigned long pflags;
4967 	bool drained = false;
4968 	bool skip_pcp_drain = false;
4969 
4970 	psi_memstall_enter(&pflags);
4971 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4972 	if (unlikely(!(*did_some_progress)))
4973 		goto out;
4974 
4975 retry:
4976 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4977 
4978 	/*
4979 	 * If an allocation failed after direct reclaim, it could be because
4980 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4981 	 * Shrink them and try again
4982 	 */
4983 	if (!page && !drained) {
4984 		unreserve_highatomic_pageblock(ac, false);
4985 		trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
4986 			alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
4987 		if (!skip_pcp_drain)
4988 			drain_all_pages(NULL);
4989 		drained = true;
4990 		goto retry;
4991 	}
4992 out:
4993 	psi_memstall_leave(&pflags);
4994 
4995 	return page;
4996 }
4997 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4998 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4999 			     const struct alloc_context *ac)
5000 {
5001 	struct zoneref *z;
5002 	struct zone *zone;
5003 	pg_data_t *last_pgdat = NULL;
5004 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
5005 
5006 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5007 					ac->nodemask) {
5008 		if (last_pgdat != zone->zone_pgdat)
5009 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
5010 		last_pgdat = zone->zone_pgdat;
5011 	}
5012 }
5013 
5014 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)5015 gfp_to_alloc_flags(gfp_t gfp_mask)
5016 {
5017 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
5018 
5019 	/*
5020 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
5021 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
5022 	 * to save two branches.
5023 	 */
5024 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
5025 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
5026 
5027 	/*
5028 	 * The caller may dip into page reserves a bit more if the caller
5029 	 * cannot run direct reclaim, or if the caller has realtime scheduling
5030 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
5031 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
5032 	 */
5033 	alloc_flags |= (__force int)
5034 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
5035 
5036 	if (gfp_mask & __GFP_ATOMIC) {
5037 		/*
5038 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
5039 		 * if it can't schedule.
5040 		 */
5041 		if (!(gfp_mask & __GFP_NOMEMALLOC))
5042 			alloc_flags |= ALLOC_HARDER;
5043 		/*
5044 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
5045 		 * comment for __cpuset_node_allowed().
5046 		 */
5047 		alloc_flags &= ~ALLOC_CPUSET;
5048 	} else if (unlikely(rt_task(current)) && in_task())
5049 		alloc_flags |= ALLOC_HARDER;
5050 
5051 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
5052 
5053 	return alloc_flags;
5054 }
5055 
oom_reserves_allowed(struct task_struct * tsk)5056 static bool oom_reserves_allowed(struct task_struct *tsk)
5057 {
5058 	if (!tsk_is_oom_victim(tsk))
5059 		return false;
5060 
5061 	/*
5062 	 * !MMU doesn't have oom reaper so give access to memory reserves
5063 	 * only to the thread with TIF_MEMDIE set
5064 	 */
5065 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
5066 		return false;
5067 
5068 	return true;
5069 }
5070 
5071 /*
5072  * Distinguish requests which really need access to full memory
5073  * reserves from oom victims which can live with a portion of it
5074  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)5075 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
5076 {
5077 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
5078 		return 0;
5079 	if (gfp_mask & __GFP_MEMALLOC)
5080 		return ALLOC_NO_WATERMARKS;
5081 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
5082 		return ALLOC_NO_WATERMARKS;
5083 	if (!in_interrupt()) {
5084 		if (current->flags & PF_MEMALLOC)
5085 			return ALLOC_NO_WATERMARKS;
5086 		else if (oom_reserves_allowed(current))
5087 			return ALLOC_OOM;
5088 	}
5089 
5090 	return 0;
5091 }
5092 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)5093 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
5094 {
5095 	return !!__gfp_pfmemalloc_flags(gfp_mask);
5096 }
5097 
5098 /*
5099  * Checks whether it makes sense to retry the reclaim to make a forward progress
5100  * for the given allocation request.
5101  *
5102  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
5103  * without success, or when we couldn't even meet the watermark if we
5104  * reclaimed all remaining pages on the LRU lists.
5105  *
5106  * Returns true if a retry is viable or false to enter the oom path.
5107  */
5108 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)5109 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
5110 		     struct alloc_context *ac, int alloc_flags,
5111 		     bool did_some_progress, int *no_progress_loops)
5112 {
5113 	struct zone *zone;
5114 	struct zoneref *z;
5115 	bool ret = false;
5116 
5117 	/*
5118 	 * Costly allocations might have made a progress but this doesn't mean
5119 	 * their order will become available due to high fragmentation so
5120 	 * always increment the no progress counter for them
5121 	 */
5122 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
5123 		*no_progress_loops = 0;
5124 	else
5125 		(*no_progress_loops)++;
5126 
5127 	/*
5128 	 * Make sure we converge to OOM if we cannot make any progress
5129 	 * several times in the row.
5130 	 */
5131 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
5132 		/* Before OOM, exhaust highatomic_reserve */
5133 		return unreserve_highatomic_pageblock(ac, true);
5134 	}
5135 
5136 	/*
5137 	 * Keep reclaiming pages while there is a chance this will lead
5138 	 * somewhere.  If none of the target zones can satisfy our allocation
5139 	 * request even if all reclaimable pages are considered then we are
5140 	 * screwed and have to go OOM.
5141 	 */
5142 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
5143 				ac->highest_zoneidx, ac->nodemask) {
5144 		unsigned long available;
5145 		unsigned long reclaimable;
5146 		unsigned long min_wmark = min_wmark_pages(zone);
5147 		bool wmark;
5148 
5149 		available = reclaimable = zone_reclaimable_pages(zone);
5150 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5151 
5152 		/*
5153 		 * Would the allocation succeed if we reclaimed all
5154 		 * reclaimable pages?
5155 		 */
5156 		wmark = __zone_watermark_ok(zone, order, min_wmark,
5157 				ac->highest_zoneidx, alloc_flags, available);
5158 		trace_reclaim_retry_zone(z, order, reclaimable,
5159 				available, min_wmark, *no_progress_loops, wmark);
5160 		if (wmark) {
5161 			/*
5162 			 * If we didn't make any progress and have a lot of
5163 			 * dirty + writeback pages then we should wait for
5164 			 * an IO to complete to slow down the reclaim and
5165 			 * prevent from pre mature OOM
5166 			 */
5167 			if (!did_some_progress) {
5168 				unsigned long write_pending;
5169 
5170 				write_pending = zone_page_state_snapshot(zone,
5171 							NR_ZONE_WRITE_PENDING);
5172 
5173 				if (2 * write_pending > reclaimable) {
5174 					congestion_wait(BLK_RW_ASYNC, HZ/10);
5175 					return true;
5176 				}
5177 			}
5178 
5179 			ret = true;
5180 			goto out;
5181 		}
5182 	}
5183 
5184 out:
5185 	/*
5186 	 * Memory allocation/reclaim might be called from a WQ context and the
5187 	 * current implementation of the WQ concurrency control doesn't
5188 	 * recognize that a particular WQ is congested if the worker thread is
5189 	 * looping without ever sleeping. Therefore we have to do a short sleep
5190 	 * here rather than calling cond_resched().
5191 	 */
5192 	if (current->flags & PF_WQ_WORKER)
5193 		schedule_timeout_uninterruptible(1);
5194 	else
5195 		cond_resched();
5196 	return ret;
5197 }
5198 
5199 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)5200 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5201 {
5202 	/*
5203 	 * It's possible that cpuset's mems_allowed and the nodemask from
5204 	 * mempolicy don't intersect. This should be normally dealt with by
5205 	 * policy_nodemask(), but it's possible to race with cpuset update in
5206 	 * such a way the check therein was true, and then it became false
5207 	 * before we got our cpuset_mems_cookie here.
5208 	 * This assumes that for all allocations, ac->nodemask can come only
5209 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5210 	 * when it does not intersect with the cpuset restrictions) or the
5211 	 * caller can deal with a violated nodemask.
5212 	 */
5213 	if (cpusets_enabled() && ac->nodemask &&
5214 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5215 		ac->nodemask = NULL;
5216 		return true;
5217 	}
5218 
5219 	/*
5220 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5221 	 * possible to race with parallel threads in such a way that our
5222 	 * allocation can fail while the mask is being updated. If we are about
5223 	 * to fail, check if the cpuset changed during allocation and if so,
5224 	 * retry.
5225 	 */
5226 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5227 		return true;
5228 
5229 	return false;
5230 }
5231 
5232 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)5233 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5234 						struct alloc_context *ac)
5235 {
5236 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5237 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5238 	struct page *page = NULL;
5239 	unsigned int alloc_flags;
5240 	unsigned long did_some_progress;
5241 	enum compact_priority compact_priority;
5242 	enum compact_result compact_result;
5243 	int compaction_retries;
5244 	int no_progress_loops;
5245 	unsigned int cpuset_mems_cookie;
5246 	unsigned int zonelist_iter_cookie;
5247 	int reserve_flags;
5248 	unsigned long alloc_start = jiffies;
5249 	bool should_alloc_retry = false;
5250 	/*
5251 	 * We also sanity check to catch abuse of atomic reserves being used by
5252 	 * callers that are not in atomic context.
5253 	 */
5254 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5255 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5256 		gfp_mask &= ~__GFP_ATOMIC;
5257 
5258 restart:
5259 	compaction_retries = 0;
5260 	no_progress_loops = 0;
5261 	compact_priority = DEF_COMPACT_PRIORITY;
5262 	cpuset_mems_cookie = read_mems_allowed_begin();
5263 	zonelist_iter_cookie = zonelist_iter_begin();
5264 
5265 	/*
5266 	 * The fast path uses conservative alloc_flags to succeed only until
5267 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5268 	 * alloc_flags precisely. So we do that now.
5269 	 */
5270 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5271 
5272 	/*
5273 	 * We need to recalculate the starting point for the zonelist iterator
5274 	 * because we might have used different nodemask in the fast path, or
5275 	 * there was a cpuset modification and we are retrying - otherwise we
5276 	 * could end up iterating over non-eligible zones endlessly.
5277 	 */
5278 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5279 					ac->highest_zoneidx, ac->nodemask);
5280 	if (!ac->preferred_zoneref->zone)
5281 		goto nopage;
5282 
5283 	if (alloc_flags & ALLOC_KSWAPD)
5284 		wake_all_kswapds(order, gfp_mask, ac);
5285 
5286 	/*
5287 	 * The adjusted alloc_flags might result in immediate success, so try
5288 	 * that first
5289 	 */
5290 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5291 	if (page)
5292 		goto got_pg;
5293 
5294 	/*
5295 	 * For costly allocations, try direct compaction first, as it's likely
5296 	 * that we have enough base pages and don't need to reclaim. For non-
5297 	 * movable high-order allocations, do that as well, as compaction will
5298 	 * try prevent permanent fragmentation by migrating from blocks of the
5299 	 * same migratetype.
5300 	 * Don't try this for allocations that are allowed to ignore
5301 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5302 	 */
5303 	if (can_direct_reclaim &&
5304 			(costly_order ||
5305 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5306 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5307 		page = __alloc_pages_direct_compact(gfp_mask, order,
5308 						alloc_flags, ac,
5309 						INIT_COMPACT_PRIORITY,
5310 						&compact_result);
5311 		if (page)
5312 			goto got_pg;
5313 
5314 		/*
5315 		 * Checks for costly allocations with __GFP_NORETRY, which
5316 		 * includes some THP page fault allocations
5317 		 */
5318 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5319 			/*
5320 			 * If allocating entire pageblock(s) and compaction
5321 			 * failed because all zones are below low watermarks
5322 			 * or is prohibited because it recently failed at this
5323 			 * order, fail immediately unless the allocator has
5324 			 * requested compaction and reclaim retry.
5325 			 *
5326 			 * Reclaim is
5327 			 *  - potentially very expensive because zones are far
5328 			 *    below their low watermarks or this is part of very
5329 			 *    bursty high order allocations,
5330 			 *  - not guaranteed to help because isolate_freepages()
5331 			 *    may not iterate over freed pages as part of its
5332 			 *    linear scan, and
5333 			 *  - unlikely to make entire pageblocks free on its
5334 			 *    own.
5335 			 */
5336 			if (compact_result == COMPACT_SKIPPED ||
5337 			    compact_result == COMPACT_DEFERRED)
5338 				goto nopage;
5339 
5340 			/*
5341 			 * Looks like reclaim/compaction is worth trying, but
5342 			 * sync compaction could be very expensive, so keep
5343 			 * using async compaction.
5344 			 */
5345 			compact_priority = INIT_COMPACT_PRIORITY;
5346 		}
5347 	}
5348 
5349 retry:
5350 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5351 	if (alloc_flags & ALLOC_KSWAPD)
5352 		wake_all_kswapds(order, gfp_mask, ac);
5353 
5354 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5355 	if (reserve_flags)
5356 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5357 
5358 	/*
5359 	 * Reset the nodemask and zonelist iterators if memory policies can be
5360 	 * ignored. These allocations are high priority and system rather than
5361 	 * user oriented.
5362 	 */
5363 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5364 		ac->nodemask = NULL;
5365 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5366 					ac->highest_zoneidx, ac->nodemask);
5367 	}
5368 
5369 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5370 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5371 	if (page)
5372 		goto got_pg;
5373 
5374 	/* Caller is not willing to reclaim, we can't balance anything */
5375 	if (!can_direct_reclaim)
5376 		goto nopage;
5377 
5378 	/* Avoid recursion of direct reclaim */
5379 	if (current->flags & PF_MEMALLOC)
5380 		goto nopage;
5381 
5382 	trace_android_vh_alloc_pages_reclaim_bypass(gfp_mask, order,
5383 		alloc_flags, ac->migratetype, &page);
5384 
5385 	if (page)
5386 		goto got_pg;
5387 
5388 	trace_android_vh_should_alloc_pages_retry(gfp_mask, order, &alloc_flags,
5389 		ac->migratetype, ac->preferred_zoneref->zone, &page, &should_alloc_retry);
5390 	if (should_alloc_retry)
5391 		goto retry;
5392 
5393 	/* Try direct reclaim and then allocating */
5394 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5395 							&did_some_progress);
5396 	if (page)
5397 		goto got_pg;
5398 
5399 	/* Try direct compaction and then allocating */
5400 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5401 					compact_priority, &compact_result);
5402 	if (page)
5403 		goto got_pg;
5404 
5405 	/* Do not loop if specifically requested */
5406 	if (gfp_mask & __GFP_NORETRY)
5407 		goto nopage;
5408 
5409 	/*
5410 	 * Do not retry costly high order allocations unless they are
5411 	 * __GFP_RETRY_MAYFAIL
5412 	 */
5413 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5414 		goto nopage;
5415 
5416 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5417 				 did_some_progress > 0, &no_progress_loops))
5418 		goto retry;
5419 
5420 	/*
5421 	 * It doesn't make any sense to retry for the compaction if the order-0
5422 	 * reclaim is not able to make any progress because the current
5423 	 * implementation of the compaction depends on the sufficient amount
5424 	 * of free memory (see __compaction_suitable)
5425 	 */
5426 	if (did_some_progress > 0 &&
5427 			should_compact_retry(ac, order, alloc_flags,
5428 				compact_result, &compact_priority,
5429 				&compaction_retries))
5430 		goto retry;
5431 
5432 
5433 	/*
5434 	 * Deal with possible cpuset update races or zonelist updates to avoid
5435 	 * a unnecessary OOM kill.
5436 	 */
5437 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5438 	    check_retry_zonelist(zonelist_iter_cookie))
5439 		goto restart;
5440 
5441 	/* Reclaim has failed us, start killing things */
5442 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5443 	if (page)
5444 		goto got_pg;
5445 
5446 	/* Avoid allocations with no watermarks from looping endlessly */
5447 	if (tsk_is_oom_victim(current) &&
5448 	    (alloc_flags & ALLOC_OOM ||
5449 	     (gfp_mask & __GFP_NOMEMALLOC)))
5450 		goto nopage;
5451 
5452 	/* Retry as long as the OOM killer is making progress */
5453 	if (did_some_progress) {
5454 		no_progress_loops = 0;
5455 		goto retry;
5456 	}
5457 
5458 nopage:
5459 	/*
5460 	 * Deal with possible cpuset update races or zonelist updates to avoid
5461 	 * a unnecessary OOM kill.
5462 	 */
5463 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5464 	    check_retry_zonelist(zonelist_iter_cookie))
5465 		goto restart;
5466 
5467 	/*
5468 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5469 	 * we always retry
5470 	 */
5471 	if (gfp_mask & __GFP_NOFAIL) {
5472 		/*
5473 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5474 		 * of any new users that actually require GFP_NOWAIT
5475 		 */
5476 		if (WARN_ON_ONCE(!can_direct_reclaim))
5477 			goto fail;
5478 
5479 		/*
5480 		 * PF_MEMALLOC request from this context is rather bizarre
5481 		 * because we cannot reclaim anything and only can loop waiting
5482 		 * for somebody to do a work for us
5483 		 */
5484 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5485 
5486 		/*
5487 		 * non failing costly orders are a hard requirement which we
5488 		 * are not prepared for much so let's warn about these users
5489 		 * so that we can identify them and convert them to something
5490 		 * else.
5491 		 */
5492 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5493 
5494 		/*
5495 		 * Help non-failing allocations by giving them access to memory
5496 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5497 		 * could deplete whole memory reserves which would just make
5498 		 * the situation worse
5499 		 */
5500 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5501 		if (page)
5502 			goto got_pg;
5503 
5504 		cond_resched();
5505 		goto retry;
5506 	}
5507 fail:
5508 	trace_android_vh_alloc_pages_failure_bypass(gfp_mask, order,
5509 		alloc_flags, ac->migratetype, &page);
5510 	if (page)
5511 		goto got_pg;
5512 
5513 	warn_alloc(gfp_mask, ac->nodemask,
5514 			"page allocation failure: order:%u", order);
5515 got_pg:
5516 	trace_android_vh_alloc_pages_slowpath(gfp_mask, order, alloc_start);
5517 	return page;
5518 }
5519 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)5520 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5521 		int preferred_nid, nodemask_t *nodemask,
5522 		struct alloc_context *ac, gfp_t *alloc_gfp,
5523 		unsigned int *alloc_flags)
5524 {
5525 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5526 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5527 	ac->nodemask = nodemask;
5528 	ac->migratetype = gfp_migratetype(gfp_mask);
5529 
5530 	if (cpusets_enabled()) {
5531 		*alloc_gfp |= __GFP_HARDWALL;
5532 		/*
5533 		 * When we are in the interrupt context, it is irrelevant
5534 		 * to the current task context. It means that any node ok.
5535 		 */
5536 		if (in_task() && !ac->nodemask)
5537 			ac->nodemask = &cpuset_current_mems_allowed;
5538 		else
5539 			*alloc_flags |= ALLOC_CPUSET;
5540 	}
5541 
5542 	fs_reclaim_acquire(gfp_mask);
5543 	fs_reclaim_release(gfp_mask);
5544 
5545 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5546 
5547 	if (should_fail_alloc_page(gfp_mask, order))
5548 		return false;
5549 
5550 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5551 
5552 	/* Dirty zone balancing only done in the fast path */
5553 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5554 
5555 	/*
5556 	 * The preferred zone is used for statistics but crucially it is
5557 	 * also used as the starting point for the zonelist iterator. It
5558 	 * may get reset for allocations that ignore memory policies.
5559 	 */
5560 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5561 					ac->highest_zoneidx, ac->nodemask);
5562 
5563 	return true;
5564 }
5565 
5566 /*
5567  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5568  * @gfp: GFP flags for the allocation
5569  * @preferred_nid: The preferred NUMA node ID to allocate from
5570  * @nodemask: Set of nodes to allocate from, may be NULL
5571  * @nr_pages: The number of pages desired on the list or array
5572  * @page_list: Optional list to store the allocated pages
5573  * @page_array: Optional array to store the pages
5574  *
5575  * This is a batched version of the page allocator that attempts to
5576  * allocate nr_pages quickly. Pages are added to page_list if page_list
5577  * is not NULL, otherwise it is assumed that the page_array is valid.
5578  *
5579  * For lists, nr_pages is the number of pages that should be allocated.
5580  *
5581  * For arrays, only NULL elements are populated with pages and nr_pages
5582  * is the maximum number of pages that will be stored in the array.
5583  *
5584  * Returns the number of pages on the list or array.
5585  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5586 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5587 			nodemask_t *nodemask, int nr_pages,
5588 			struct list_head *page_list,
5589 			struct page **page_array)
5590 {
5591 	struct page *page;
5592 	unsigned long flags;
5593 	unsigned long __maybe_unused UP_flags;
5594 	struct zone *zone;
5595 	struct zoneref *z;
5596 	struct per_cpu_pages *pcp;
5597 	struct alloc_context ac;
5598 	gfp_t alloc_gfp;
5599 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5600 	int nr_populated = 0, nr_account = 0;
5601 
5602 	/*
5603 	 * Skip populated array elements to determine if any pages need
5604 	 * to be allocated before disabling IRQs.
5605 	 */
5606 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5607 		nr_populated++;
5608 
5609 	/* No pages requested? */
5610 	if (unlikely(nr_pages <= 0))
5611 		goto out;
5612 
5613 	/* Already populated array? */
5614 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5615 		goto out;
5616 
5617 	/* Bulk allocator does not support memcg accounting. */
5618 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5619 		goto failed;
5620 
5621 	/* Use the single page allocator for one page. */
5622 	if (nr_pages - nr_populated == 1)
5623 		goto failed;
5624 
5625 #ifdef CONFIG_PAGE_OWNER
5626 	/*
5627 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5628 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5629 	 * removes much of the performance benefit of bulk allocation so
5630 	 * force the caller to allocate one page at a time as it'll have
5631 	 * similar performance to added complexity to the bulk allocator.
5632 	 */
5633 	if (static_branch_unlikely(&page_owner_inited))
5634 		goto failed;
5635 #endif
5636 
5637 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5638 	gfp &= gfp_allowed_mask;
5639 	alloc_gfp = gfp;
5640 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5641 		goto out;
5642 	gfp = alloc_gfp;
5643 
5644 	/* Find an allowed local zone that meets the low watermark. */
5645 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5646 		unsigned long mark;
5647 
5648 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5649 		    !__cpuset_zone_allowed(zone, gfp)) {
5650 			continue;
5651 		}
5652 
5653 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5654 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5655 			goto failed;
5656 		}
5657 
5658 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5659 		if (zone_watermark_fast(zone, 0,  mark,
5660 				zonelist_zone_idx(ac.preferred_zoneref),
5661 				alloc_flags, gfp)) {
5662 			break;
5663 		}
5664 	}
5665 
5666 	/*
5667 	 * If there are no allowed local zones that meets the watermarks then
5668 	 * try to allocate a single page and reclaim if necessary.
5669 	 */
5670 	if (unlikely(!zone))
5671 		goto failed;
5672 
5673 	/* Is a parallel drain in progress? */
5674 	pcp_trylock_prepare(UP_flags);
5675 	pcp = pcp_spin_trylock_irqsave(zone_per_cpu_pageset(zone), flags);
5676 	if (!pcp)
5677 		goto failed_irq;
5678 
5679 	/* Attempt the batch allocation */
5680 	while (nr_populated < nr_pages) {
5681 
5682 		/* Skip existing pages */
5683 		if (page_array && page_array[nr_populated]) {
5684 			nr_populated++;
5685 			continue;
5686 		}
5687 
5688 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5689 								pcp, alloc_gfp);
5690 		if (unlikely(!page)) {
5691 			/* Try and allocate at least one page */
5692 			if (!nr_account) {
5693 				pcp_spin_unlock_irqrestore(pcp, flags);
5694 				goto failed_irq;
5695 			}
5696 			break;
5697 		}
5698 		nr_account++;
5699 
5700 		prep_new_page(page, 0, gfp, 0);
5701 		if (page_list)
5702 			list_add(&page->lru, page_list);
5703 		else
5704 			page_array[nr_populated] = page;
5705 		nr_populated++;
5706 	}
5707 
5708 	pcp_spin_unlock_irqrestore(pcp, flags);
5709 	pcp_trylock_finish(UP_flags);
5710 
5711 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5712 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5713 
5714 out:
5715 	return nr_populated;
5716 
5717 failed_irq:
5718 	pcp_trylock_finish(UP_flags);
5719 
5720 failed:
5721 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5722 	if (page) {
5723 		if (page_list)
5724 			list_add(&page->lru, page_list);
5725 		else
5726 			page_array[nr_populated] = page;
5727 		nr_populated++;
5728 	}
5729 
5730 	goto out;
5731 }
5732 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5733 
5734 /*
5735  * This is the 'heart' of the zoned buddy allocator.
5736  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5737 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5738 							nodemask_t *nodemask)
5739 {
5740 	struct page *page;
5741 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5742 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5743 	struct alloc_context ac = { };
5744 
5745 	trace_android_vh_alloc_pages_entry(&gfp, order, preferred_nid, nodemask);
5746 	/*
5747 	 * There are several places where we assume that the order value is sane
5748 	 * so bail out early if the request is out of bound.
5749 	 */
5750 	if (unlikely(order >= MAX_ORDER)) {
5751 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5752 		return NULL;
5753 	}
5754 
5755 	gfp &= gfp_allowed_mask;
5756 	/*
5757 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5758 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5759 	 * from a particular context which has been marked by
5760 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5761 	 * movable zones are not used during allocation.
5762 	 */
5763 	gfp = current_gfp_context(gfp);
5764 	alloc_gfp = gfp;
5765 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5766 			&alloc_gfp, &alloc_flags))
5767 		return NULL;
5768 
5769 	/*
5770 	 * Forbid the first pass from falling back to types that fragment
5771 	 * memory until all local zones are considered.
5772 	 */
5773 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5774 
5775 	/* First allocation attempt */
5776 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5777 	if (likely(page))
5778 		goto out;
5779 
5780 	alloc_gfp = gfp;
5781 	ac.spread_dirty_pages = false;
5782 
5783 	/*
5784 	 * Restore the original nodemask if it was potentially replaced with
5785 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5786 	 */
5787 	ac.nodemask = nodemask;
5788 
5789 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5790 
5791 out:
5792 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5793 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5794 		__free_pages(page, order);
5795 		page = NULL;
5796 	}
5797 
5798 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5799 
5800 	return page;
5801 }
5802 EXPORT_SYMBOL(__alloc_pages);
5803 
5804 /*
5805  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5806  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5807  * you need to access high mem.
5808  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5809 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5810 {
5811 	struct page *page;
5812 
5813 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5814 	if (!page)
5815 		return 0;
5816 	return (unsigned long) page_address(page);
5817 }
5818 EXPORT_SYMBOL(__get_free_pages);
5819 
get_zeroed_page(gfp_t gfp_mask)5820 unsigned long get_zeroed_page(gfp_t gfp_mask)
5821 {
5822 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5823 }
5824 EXPORT_SYMBOL(get_zeroed_page);
5825 
5826 /**
5827  * __free_pages - Free pages allocated with alloc_pages().
5828  * @page: The page pointer returned from alloc_pages().
5829  * @order: The order of the allocation.
5830  *
5831  * This function can free multi-page allocations that are not compound
5832  * pages.  It does not check that the @order passed in matches that of
5833  * the allocation, so it is easy to leak memory.  Freeing more memory
5834  * than was allocated will probably emit a warning.
5835  *
5836  * If the last reference to this page is speculative, it will be released
5837  * by put_page() which only frees the first page of a non-compound
5838  * allocation.  To prevent the remaining pages from being leaked, we free
5839  * the subsequent pages here.  If you want to use the page's reference
5840  * count to decide when to free the allocation, you should allocate a
5841  * compound page, and use put_page() instead of __free_pages().
5842  *
5843  * Context: May be called in interrupt context or while holding a normal
5844  * spinlock, but not in NMI context or while holding a raw spinlock.
5845  */
__free_pages(struct page * page,unsigned int order)5846 void __free_pages(struct page *page, unsigned int order)
5847 {
5848 	/* get PageHead before we drop reference */
5849 	int head = PageHead(page);
5850 
5851 	if (put_page_testzero(page))
5852 		free_the_page(page, order);
5853 	else if (!head)
5854 		while (order-- > 0)
5855 			free_the_page(page + (1 << order), order);
5856 }
5857 EXPORT_SYMBOL(__free_pages);
5858 
free_pages(unsigned long addr,unsigned int order)5859 void free_pages(unsigned long addr, unsigned int order)
5860 {
5861 	if (addr != 0) {
5862 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5863 		__free_pages(virt_to_page((void *)addr), order);
5864 	}
5865 }
5866 
5867 EXPORT_SYMBOL(free_pages);
5868 
5869 /*
5870  * Page Fragment:
5871  *  An arbitrary-length arbitrary-offset area of memory which resides
5872  *  within a 0 or higher order page.  Multiple fragments within that page
5873  *  are individually refcounted, in the page's reference counter.
5874  *
5875  * The page_frag functions below provide a simple allocation framework for
5876  * page fragments.  This is used by the network stack and network device
5877  * drivers to provide a backing region of memory for use as either an
5878  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5879  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5880 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5881 					     gfp_t gfp_mask)
5882 {
5883 	struct page *page = NULL;
5884 	gfp_t gfp = gfp_mask;
5885 
5886 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5887 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5888 		    __GFP_NOMEMALLOC;
5889 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5890 				PAGE_FRAG_CACHE_MAX_ORDER);
5891 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5892 #endif
5893 	if (unlikely(!page))
5894 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5895 
5896 	nc->va = page ? page_address(page) : NULL;
5897 
5898 	return page;
5899 }
5900 
__page_frag_cache_drain(struct page * page,unsigned int count)5901 void __page_frag_cache_drain(struct page *page, unsigned int count)
5902 {
5903 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5904 
5905 	if (page_ref_sub_and_test(page, count))
5906 		free_the_page(page, compound_order(page));
5907 }
5908 EXPORT_SYMBOL(__page_frag_cache_drain);
5909 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5910 void *page_frag_alloc_align(struct page_frag_cache *nc,
5911 		      unsigned int fragsz, gfp_t gfp_mask,
5912 		      unsigned int align_mask)
5913 {
5914 	unsigned int size = PAGE_SIZE;
5915 	struct page *page;
5916 	int offset;
5917 
5918 	if (unlikely(!nc->va)) {
5919 refill:
5920 		page = __page_frag_cache_refill(nc, gfp_mask);
5921 		if (!page)
5922 			return NULL;
5923 
5924 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5925 		/* if size can vary use size else just use PAGE_SIZE */
5926 		size = nc->size;
5927 #endif
5928 		/* Even if we own the page, we do not use atomic_set().
5929 		 * This would break get_page_unless_zero() users.
5930 		 */
5931 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5932 
5933 		/* reset page count bias and offset to start of new frag */
5934 		nc->pfmemalloc = page_is_pfmemalloc(page);
5935 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5936 		nc->offset = size;
5937 	}
5938 
5939 	offset = nc->offset - fragsz;
5940 	if (unlikely(offset < 0)) {
5941 		page = virt_to_page(nc->va);
5942 
5943 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5944 			goto refill;
5945 
5946 		if (unlikely(nc->pfmemalloc)) {
5947 			free_the_page(page, compound_order(page));
5948 			goto refill;
5949 		}
5950 
5951 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5952 		/* if size can vary use size else just use PAGE_SIZE */
5953 		size = nc->size;
5954 #endif
5955 		/* OK, page count is 0, we can safely set it */
5956 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5957 
5958 		/* reset page count bias and offset to start of new frag */
5959 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5960 		offset = size - fragsz;
5961 		if (unlikely(offset < 0)) {
5962 			/*
5963 			 * The caller is trying to allocate a fragment
5964 			 * with fragsz > PAGE_SIZE but the cache isn't big
5965 			 * enough to satisfy the request, this may
5966 			 * happen in low memory conditions.
5967 			 * We don't release the cache page because
5968 			 * it could make memory pressure worse
5969 			 * so we simply return NULL here.
5970 			 */
5971 			return NULL;
5972 		}
5973 	}
5974 
5975 	nc->pagecnt_bias--;
5976 	offset &= align_mask;
5977 	nc->offset = offset;
5978 
5979 	return nc->va + offset;
5980 }
5981 EXPORT_SYMBOL(page_frag_alloc_align);
5982 
5983 /*
5984  * Frees a page fragment allocated out of either a compound or order 0 page.
5985  */
page_frag_free(void * addr)5986 void page_frag_free(void *addr)
5987 {
5988 	struct page *page = virt_to_head_page(addr);
5989 
5990 	if (unlikely(put_page_testzero(page)))
5991 		free_the_page(page, compound_order(page));
5992 }
5993 EXPORT_SYMBOL(page_frag_free);
5994 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5995 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5996 		size_t size)
5997 {
5998 	if (addr) {
5999 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
6000 		unsigned long used = addr + PAGE_ALIGN(size);
6001 
6002 		split_page(virt_to_page((void *)addr), order);
6003 		while (used < alloc_end) {
6004 			free_page(used);
6005 			used += PAGE_SIZE;
6006 		}
6007 	}
6008 	return (void *)addr;
6009 }
6010 
6011 /**
6012  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
6013  * @size: the number of bytes to allocate
6014  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
6015  *
6016  * This function is similar to alloc_pages(), except that it allocates the
6017  * minimum number of pages to satisfy the request.  alloc_pages() can only
6018  * allocate memory in power-of-two pages.
6019  *
6020  * This function is also limited by MAX_ORDER.
6021  *
6022  * Memory allocated by this function must be released by free_pages_exact().
6023  *
6024  * Return: pointer to the allocated area or %NULL in case of error.
6025  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)6026 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
6027 {
6028 	unsigned int order = get_order(size);
6029 	unsigned long addr;
6030 
6031 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
6032 		gfp_mask &= ~__GFP_COMP;
6033 
6034 	addr = __get_free_pages(gfp_mask, order);
6035 	return make_alloc_exact(addr, order, size);
6036 }
6037 EXPORT_SYMBOL(alloc_pages_exact);
6038 
6039 /**
6040  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
6041  *			   pages on a node.
6042  * @nid: the preferred node ID where memory should be allocated
6043  * @size: the number of bytes to allocate
6044  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
6045  *
6046  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
6047  * back.
6048  *
6049  * Return: pointer to the allocated area or %NULL in case of error.
6050  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)6051 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
6052 {
6053 	unsigned int order = get_order(size);
6054 	struct page *p;
6055 
6056 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
6057 		gfp_mask &= ~__GFP_COMP;
6058 
6059 	p = alloc_pages_node(nid, gfp_mask, order);
6060 	if (!p)
6061 		return NULL;
6062 	return make_alloc_exact((unsigned long)page_address(p), order, size);
6063 }
6064 
6065 /**
6066  * free_pages_exact - release memory allocated via alloc_pages_exact()
6067  * @virt: the value returned by alloc_pages_exact.
6068  * @size: size of allocation, same value as passed to alloc_pages_exact().
6069  *
6070  * Release the memory allocated by a previous call to alloc_pages_exact.
6071  */
free_pages_exact(void * virt,size_t size)6072 void free_pages_exact(void *virt, size_t size)
6073 {
6074 	unsigned long addr = (unsigned long)virt;
6075 	unsigned long end = addr + PAGE_ALIGN(size);
6076 
6077 	while (addr < end) {
6078 		free_page(addr);
6079 		addr += PAGE_SIZE;
6080 	}
6081 }
6082 EXPORT_SYMBOL(free_pages_exact);
6083 
6084 /**
6085  * nr_free_zone_pages - count number of pages beyond high watermark
6086  * @offset: The zone index of the highest zone
6087  *
6088  * nr_free_zone_pages() counts the number of pages which are beyond the
6089  * high watermark within all zones at or below a given zone index.  For each
6090  * zone, the number of pages is calculated as:
6091  *
6092  *     nr_free_zone_pages = managed_pages - high_pages
6093  *
6094  * Return: number of pages beyond high watermark.
6095  */
nr_free_zone_pages(int offset)6096 static unsigned long nr_free_zone_pages(int offset)
6097 {
6098 	struct zoneref *z;
6099 	struct zone *zone;
6100 
6101 	/* Just pick one node, since fallback list is circular */
6102 	unsigned long sum = 0;
6103 
6104 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
6105 
6106 	for_each_zone_zonelist(zone, z, zonelist, offset) {
6107 		unsigned long size = zone_managed_pages(zone);
6108 		unsigned long high = high_wmark_pages(zone);
6109 		if (size > high)
6110 			sum += size - high;
6111 	}
6112 
6113 	return sum;
6114 }
6115 
6116 /**
6117  * nr_free_buffer_pages - count number of pages beyond high watermark
6118  *
6119  * nr_free_buffer_pages() counts the number of pages which are beyond the high
6120  * watermark within ZONE_DMA and ZONE_NORMAL.
6121  *
6122  * Return: number of pages beyond high watermark within ZONE_DMA and
6123  * ZONE_NORMAL.
6124  */
nr_free_buffer_pages(void)6125 unsigned long nr_free_buffer_pages(void)
6126 {
6127 	return nr_free_zone_pages(gfp_zone(GFP_USER));
6128 }
6129 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
6130 
show_node(struct zone * zone)6131 static inline void show_node(struct zone *zone)
6132 {
6133 	if (IS_ENABLED(CONFIG_NUMA))
6134 		printk("Node %d ", zone_to_nid(zone));
6135 }
6136 
si_mem_available(void)6137 long si_mem_available(void)
6138 {
6139 	long available;
6140 	unsigned long pagecache;
6141 	unsigned long wmark_low = 0;
6142 	unsigned long pages[NR_LRU_LISTS];
6143 	unsigned long reclaimable;
6144 	struct zone *zone;
6145 	int lru;
6146 
6147 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
6148 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
6149 
6150 	for_each_zone(zone)
6151 		wmark_low += low_wmark_pages(zone);
6152 
6153 	/*
6154 	 * Estimate the amount of memory available for userspace allocations,
6155 	 * without causing swapping.
6156 	 */
6157 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
6158 
6159 	/*
6160 	 * Not all the page cache can be freed, otherwise the system will
6161 	 * start swapping. Assume at least half of the page cache, or the
6162 	 * low watermark worth of cache, needs to stay.
6163 	 */
6164 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
6165 	pagecache -= min(pagecache / 2, wmark_low);
6166 	available += pagecache;
6167 
6168 	/*
6169 	 * Part of the reclaimable slab and other kernel memory consists of
6170 	 * items that are in use, and cannot be freed. Cap this estimate at the
6171 	 * low watermark.
6172 	 */
6173 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6174 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6175 	available += reclaimable - min(reclaimable / 2, wmark_low);
6176 
6177 	if (available < 0)
6178 		available = 0;
6179 	return available;
6180 }
6181 EXPORT_SYMBOL_GPL(si_mem_available);
6182 
si_meminfo(struct sysinfo * val)6183 void si_meminfo(struct sysinfo *val)
6184 {
6185 	val->totalram = totalram_pages();
6186 	val->sharedram = global_node_page_state(NR_SHMEM);
6187 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
6188 	val->bufferram = nr_blockdev_pages();
6189 	val->totalhigh = totalhigh_pages();
6190 	val->freehigh = nr_free_highpages();
6191 	val->mem_unit = PAGE_SIZE;
6192 }
6193 
6194 EXPORT_SYMBOL(si_meminfo);
6195 
6196 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)6197 void si_meminfo_node(struct sysinfo *val, int nid)
6198 {
6199 	int zone_type;		/* needs to be signed */
6200 	unsigned long managed_pages = 0;
6201 	unsigned long managed_highpages = 0;
6202 	unsigned long free_highpages = 0;
6203 	pg_data_t *pgdat = NODE_DATA(nid);
6204 
6205 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6206 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6207 	val->totalram = managed_pages;
6208 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6209 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6210 #ifdef CONFIG_HIGHMEM
6211 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6212 		struct zone *zone = &pgdat->node_zones[zone_type];
6213 
6214 		if (is_highmem(zone)) {
6215 			managed_highpages += zone_managed_pages(zone);
6216 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6217 		}
6218 	}
6219 	val->totalhigh = managed_highpages;
6220 	val->freehigh = free_highpages;
6221 #else
6222 	val->totalhigh = managed_highpages;
6223 	val->freehigh = free_highpages;
6224 #endif
6225 	val->mem_unit = PAGE_SIZE;
6226 }
6227 #endif
6228 
6229 /*
6230  * Determine whether the node should be displayed or not, depending on whether
6231  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6232  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)6233 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6234 {
6235 	if (!(flags & SHOW_MEM_FILTER_NODES))
6236 		return false;
6237 
6238 	/*
6239 	 * no node mask - aka implicit memory numa policy. Do not bother with
6240 	 * the synchronization - read_mems_allowed_begin - because we do not
6241 	 * have to be precise here.
6242 	 */
6243 	if (!nodemask)
6244 		nodemask = &cpuset_current_mems_allowed;
6245 
6246 	return !node_isset(nid, *nodemask);
6247 }
6248 
6249 #define K(x) ((x) << (PAGE_SHIFT-10))
6250 
show_migration_types(unsigned char type)6251 static void show_migration_types(unsigned char type)
6252 {
6253 	static const char types[MIGRATE_TYPES] = {
6254 		[MIGRATE_UNMOVABLE]	= 'U',
6255 		[MIGRATE_MOVABLE]	= 'M',
6256 		[MIGRATE_RECLAIMABLE]	= 'E',
6257 		[MIGRATE_HIGHATOMIC]	= 'H',
6258 #ifdef CONFIG_CMA
6259 		[MIGRATE_CMA]		= 'C',
6260 #endif
6261 #ifdef CONFIG_MEMORY_ISOLATION
6262 		[MIGRATE_ISOLATE]	= 'I',
6263 #endif
6264 	};
6265 	char tmp[MIGRATE_TYPES + 1];
6266 	char *p = tmp;
6267 	int i;
6268 
6269 	for (i = 0; i < MIGRATE_TYPES; i++) {
6270 		if (type & (1 << i))
6271 			*p++ = types[i];
6272 	}
6273 
6274 	*p = '\0';
6275 	printk(KERN_CONT "(%s) ", tmp);
6276 }
6277 
6278 /*
6279  * Show free area list (used inside shift_scroll-lock stuff)
6280  * We also calculate the percentage fragmentation. We do this by counting the
6281  * memory on each free list with the exception of the first item on the list.
6282  *
6283  * Bits in @filter:
6284  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6285  *   cpuset.
6286  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)6287 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6288 {
6289 	unsigned long free_pcp = 0;
6290 	int cpu;
6291 	struct zone *zone;
6292 	pg_data_t *pgdat;
6293 
6294 	for_each_populated_zone(zone) {
6295 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6296 			continue;
6297 
6298 		for_each_online_cpu(cpu)
6299 			free_pcp += per_cpu_ptr(zone_per_cpu_pageset(zone), cpu)->pcp.count;
6300 	}
6301 
6302 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6303 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6304 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6305 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6306 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6307 		" kernel_misc_reclaimable:%lu\n"
6308 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6309 		global_node_page_state(NR_ACTIVE_ANON),
6310 		global_node_page_state(NR_INACTIVE_ANON),
6311 		global_node_page_state(NR_ISOLATED_ANON),
6312 		global_node_page_state(NR_ACTIVE_FILE),
6313 		global_node_page_state(NR_INACTIVE_FILE),
6314 		global_node_page_state(NR_ISOLATED_FILE),
6315 		global_node_page_state(NR_UNEVICTABLE),
6316 		global_node_page_state(NR_FILE_DIRTY),
6317 		global_node_page_state(NR_WRITEBACK),
6318 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6319 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6320 		global_node_page_state(NR_FILE_MAPPED),
6321 		global_node_page_state(NR_SHMEM),
6322 		global_node_page_state(NR_PAGETABLE),
6323 		global_zone_page_state(NR_BOUNCE),
6324 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6325 		global_zone_page_state(NR_FREE_PAGES),
6326 		free_pcp,
6327 		global_zone_page_state(NR_FREE_CMA_PAGES));
6328 
6329 	trace_android_vh_show_mapcount_pages(NULL);
6330 	for_each_online_pgdat(pgdat) {
6331 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6332 			continue;
6333 
6334 		printk("Node %d"
6335 			" active_anon:%lukB"
6336 			" inactive_anon:%lukB"
6337 			" active_file:%lukB"
6338 			" inactive_file:%lukB"
6339 			" unevictable:%lukB"
6340 			" isolated(anon):%lukB"
6341 			" isolated(file):%lukB"
6342 			" mapped:%lukB"
6343 			" dirty:%lukB"
6344 			" writeback:%lukB"
6345 			" shmem:%lukB"
6346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6347 			" shmem_thp: %lukB"
6348 			" shmem_pmdmapped: %lukB"
6349 			" anon_thp: %lukB"
6350 #endif
6351 			" writeback_tmp:%lukB"
6352 			" kernel_stack:%lukB"
6353 #ifdef CONFIG_SHADOW_CALL_STACK
6354 			" shadow_call_stack:%lukB"
6355 #endif
6356 			" pagetables:%lukB"
6357 			" all_unreclaimable? %s"
6358 			"\n",
6359 			pgdat->node_id,
6360 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6361 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6362 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6363 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6364 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6365 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6366 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6367 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6368 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6369 			K(node_page_state(pgdat, NR_WRITEBACK)),
6370 			K(node_page_state(pgdat, NR_SHMEM)),
6371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6372 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6373 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6374 			K(node_page_state(pgdat, NR_ANON_THPS)),
6375 #endif
6376 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6377 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6378 #ifdef CONFIG_SHADOW_CALL_STACK
6379 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6380 #endif
6381 			K(node_page_state(pgdat, NR_PAGETABLE)),
6382 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6383 				"yes" : "no");
6384 	}
6385 
6386 	for_each_populated_zone(zone) {
6387 		int i;
6388 
6389 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6390 			continue;
6391 
6392 		free_pcp = 0;
6393 		for_each_online_cpu(cpu)
6394 			free_pcp += per_cpu_ptr(zone_per_cpu_pageset(zone), cpu)->pcp.count;
6395 
6396 		show_node(zone);
6397 		printk(KERN_CONT
6398 			"%s"
6399 			" free:%lukB"
6400 			" min:%lukB"
6401 			" low:%lukB"
6402 			" high:%lukB"
6403 			" reserved_highatomic:%luKB"
6404 			" active_anon:%lukB"
6405 			" inactive_anon:%lukB"
6406 			" active_file:%lukB"
6407 			" inactive_file:%lukB"
6408 			" unevictable:%lukB"
6409 			" writepending:%lukB"
6410 			" present:%lukB"
6411 			" managed:%lukB"
6412 			" mlocked:%lukB"
6413 			" bounce:%lukB"
6414 			" free_pcp:%lukB"
6415 			" local_pcp:%ukB"
6416 			" free_cma:%lukB"
6417 			"\n",
6418 			zone->name,
6419 			K(zone_page_state(zone, NR_FREE_PAGES)),
6420 			K(min_wmark_pages(zone)),
6421 			K(low_wmark_pages(zone)),
6422 			K(high_wmark_pages(zone)),
6423 			K(zone->nr_reserved_highatomic),
6424 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6425 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6426 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6427 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6428 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6429 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6430 			K(zone->present_pages),
6431 			K(zone_managed_pages(zone)),
6432 			K(zone_page_state(zone, NR_MLOCK)),
6433 			K(zone_page_state(zone, NR_BOUNCE)),
6434 			K(free_pcp),
6435 			K(this_cpu_read((zone_per_cpu_pageset(zone))->pcp.count)),
6436 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6437 		printk("lowmem_reserve[]:");
6438 		for (i = 0; i < MAX_NR_ZONES; i++)
6439 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6440 		printk(KERN_CONT "\n");
6441 	}
6442 
6443 	for_each_populated_zone(zone) {
6444 		unsigned int order;
6445 		unsigned long nr[MAX_ORDER], flags, total = 0;
6446 		unsigned char types[MAX_ORDER];
6447 
6448 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6449 			continue;
6450 		show_node(zone);
6451 		printk(KERN_CONT "%s: ", zone->name);
6452 
6453 		spin_lock_irqsave(&zone->lock, flags);
6454 		for (order = 0; order < MAX_ORDER; order++) {
6455 			struct free_area *area = &zone->free_area[order];
6456 			int type;
6457 
6458 			nr[order] = area->nr_free;
6459 			total += nr[order] << order;
6460 
6461 			types[order] = 0;
6462 			for (type = 0; type < MIGRATE_TYPES; type++) {
6463 				if (!free_area_empty(area, type))
6464 					types[order] |= 1 << type;
6465 			}
6466 		}
6467 		spin_unlock_irqrestore(&zone->lock, flags);
6468 		for (order = 0; order < MAX_ORDER; order++) {
6469 			printk(KERN_CONT "%lu*%lukB ",
6470 			       nr[order], K(1UL) << order);
6471 			if (nr[order])
6472 				show_migration_types(types[order]);
6473 		}
6474 		printk(KERN_CONT "= %lukB\n", K(total));
6475 	}
6476 
6477 	hugetlb_show_meminfo();
6478 
6479 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6480 
6481 	show_swap_cache_info();
6482 }
6483 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)6484 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6485 {
6486 	zoneref->zone = zone;
6487 	zoneref->zone_idx = zone_idx(zone);
6488 }
6489 
6490 /*
6491  * Builds allocation fallback zone lists.
6492  *
6493  * Add all populated zones of a node to the zonelist.
6494  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)6495 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6496 {
6497 	struct zone *zone;
6498 	enum zone_type zone_type = MAX_NR_ZONES;
6499 	int nr_zones = 0;
6500 
6501 	do {
6502 		zone_type--;
6503 		zone = pgdat->node_zones + zone_type;
6504 		if (populated_zone(zone)) {
6505 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6506 			check_highest_zone(zone_type);
6507 		}
6508 	} while (zone_type);
6509 
6510 	return nr_zones;
6511 }
6512 
6513 #ifdef CONFIG_NUMA
6514 
__parse_numa_zonelist_order(char * s)6515 static int __parse_numa_zonelist_order(char *s)
6516 {
6517 	/*
6518 	 * We used to support different zonelists modes but they turned
6519 	 * out to be just not useful. Let's keep the warning in place
6520 	 * if somebody still use the cmd line parameter so that we do
6521 	 * not fail it silently
6522 	 */
6523 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6524 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6525 		return -EINVAL;
6526 	}
6527 	return 0;
6528 }
6529 
6530 char numa_zonelist_order[] = "Node";
6531 
6532 /*
6533  * sysctl handler for numa_zonelist_order
6534  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6535 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6536 		void *buffer, size_t *length, loff_t *ppos)
6537 {
6538 	if (write)
6539 		return __parse_numa_zonelist_order(buffer);
6540 	return proc_dostring(table, write, buffer, length, ppos);
6541 }
6542 
6543 
6544 #define MAX_NODE_LOAD (nr_online_nodes)
6545 static int node_load[MAX_NUMNODES];
6546 
6547 /**
6548  * find_next_best_node - find the next node that should appear in a given node's fallback list
6549  * @node: node whose fallback list we're appending
6550  * @used_node_mask: nodemask_t of already used nodes
6551  *
6552  * We use a number of factors to determine which is the next node that should
6553  * appear on a given node's fallback list.  The node should not have appeared
6554  * already in @node's fallback list, and it should be the next closest node
6555  * according to the distance array (which contains arbitrary distance values
6556  * from each node to each node in the system), and should also prefer nodes
6557  * with no CPUs, since presumably they'll have very little allocation pressure
6558  * on them otherwise.
6559  *
6560  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6561  */
find_next_best_node(int node,nodemask_t * used_node_mask)6562 int find_next_best_node(int node, nodemask_t *used_node_mask)
6563 {
6564 	int n, val;
6565 	int min_val = INT_MAX;
6566 	int best_node = NUMA_NO_NODE;
6567 
6568 	/* Use the local node if we haven't already */
6569 	if (!node_isset(node, *used_node_mask)) {
6570 		node_set(node, *used_node_mask);
6571 		return node;
6572 	}
6573 
6574 	for_each_node_state(n, N_MEMORY) {
6575 
6576 		/* Don't want a node to appear more than once */
6577 		if (node_isset(n, *used_node_mask))
6578 			continue;
6579 
6580 		/* Use the distance array to find the distance */
6581 		val = node_distance(node, n);
6582 
6583 		/* Penalize nodes under us ("prefer the next node") */
6584 		val += (n < node);
6585 
6586 		/* Give preference to headless and unused nodes */
6587 		if (!cpumask_empty(cpumask_of_node(n)))
6588 			val += PENALTY_FOR_NODE_WITH_CPUS;
6589 
6590 		/* Slight preference for less loaded node */
6591 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6592 		val += node_load[n];
6593 
6594 		if (val < min_val) {
6595 			min_val = val;
6596 			best_node = n;
6597 		}
6598 	}
6599 
6600 	if (best_node >= 0)
6601 		node_set(best_node, *used_node_mask);
6602 
6603 	return best_node;
6604 }
6605 
6606 
6607 /*
6608  * Build zonelists ordered by node and zones within node.
6609  * This results in maximum locality--normal zone overflows into local
6610  * DMA zone, if any--but risks exhausting DMA zone.
6611  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6612 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6613 		unsigned nr_nodes)
6614 {
6615 	struct zoneref *zonerefs;
6616 	int i;
6617 
6618 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6619 
6620 	for (i = 0; i < nr_nodes; i++) {
6621 		int nr_zones;
6622 
6623 		pg_data_t *node = NODE_DATA(node_order[i]);
6624 
6625 		nr_zones = build_zonerefs_node(node, zonerefs);
6626 		zonerefs += nr_zones;
6627 	}
6628 	zonerefs->zone = NULL;
6629 	zonerefs->zone_idx = 0;
6630 }
6631 
6632 /*
6633  * Build gfp_thisnode zonelists
6634  */
build_thisnode_zonelists(pg_data_t * pgdat)6635 static void build_thisnode_zonelists(pg_data_t *pgdat)
6636 {
6637 	struct zoneref *zonerefs;
6638 	int nr_zones;
6639 
6640 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6641 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6642 	zonerefs += nr_zones;
6643 	zonerefs->zone = NULL;
6644 	zonerefs->zone_idx = 0;
6645 }
6646 
6647 /*
6648  * Build zonelists ordered by zone and nodes within zones.
6649  * This results in conserving DMA zone[s] until all Normal memory is
6650  * exhausted, but results in overflowing to remote node while memory
6651  * may still exist in local DMA zone.
6652  */
6653 
build_zonelists(pg_data_t * pgdat)6654 static void build_zonelists(pg_data_t *pgdat)
6655 {
6656 	static int node_order[MAX_NUMNODES];
6657 	int node, load, nr_nodes = 0;
6658 	nodemask_t used_mask = NODE_MASK_NONE;
6659 	int local_node, prev_node;
6660 
6661 	/* NUMA-aware ordering of nodes */
6662 	local_node = pgdat->node_id;
6663 	load = nr_online_nodes;
6664 	prev_node = local_node;
6665 
6666 	memset(node_order, 0, sizeof(node_order));
6667 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6668 		/*
6669 		 * We don't want to pressure a particular node.
6670 		 * So adding penalty to the first node in same
6671 		 * distance group to make it round-robin.
6672 		 */
6673 		if (node_distance(local_node, node) !=
6674 		    node_distance(local_node, prev_node))
6675 			node_load[node] = load;
6676 
6677 		node_order[nr_nodes++] = node;
6678 		prev_node = node;
6679 		load--;
6680 	}
6681 
6682 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6683 	build_thisnode_zonelists(pgdat);
6684 }
6685 
6686 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6687 /*
6688  * Return node id of node used for "local" allocations.
6689  * I.e., first node id of first zone in arg node's generic zonelist.
6690  * Used for initializing percpu 'numa_mem', which is used primarily
6691  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6692  */
local_memory_node(int node)6693 int local_memory_node(int node)
6694 {
6695 	struct zoneref *z;
6696 
6697 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6698 				   gfp_zone(GFP_KERNEL),
6699 				   NULL);
6700 	return zone_to_nid(z->zone);
6701 }
6702 #endif
6703 
6704 static void setup_min_unmapped_ratio(void);
6705 static void setup_min_slab_ratio(void);
6706 #else	/* CONFIG_NUMA */
6707 
build_zonelists(pg_data_t * pgdat)6708 static void build_zonelists(pg_data_t *pgdat)
6709 {
6710 	int node, local_node;
6711 	struct zoneref *zonerefs;
6712 	int nr_zones;
6713 
6714 	local_node = pgdat->node_id;
6715 
6716 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6717 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6718 	zonerefs += nr_zones;
6719 
6720 	/*
6721 	 * Now we build the zonelist so that it contains the zones
6722 	 * of all the other nodes.
6723 	 * We don't want to pressure a particular node, so when
6724 	 * building the zones for node N, we make sure that the
6725 	 * zones coming right after the local ones are those from
6726 	 * node N+1 (modulo N)
6727 	 */
6728 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6729 		if (!node_online(node))
6730 			continue;
6731 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6732 		zonerefs += nr_zones;
6733 	}
6734 	for (node = 0; node < local_node; node++) {
6735 		if (!node_online(node))
6736 			continue;
6737 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6738 		zonerefs += nr_zones;
6739 	}
6740 
6741 	zonerefs->zone = NULL;
6742 	zonerefs->zone_idx = 0;
6743 }
6744 
6745 #endif	/* CONFIG_NUMA */
6746 
6747 /*
6748  * Boot pageset table. One per cpu which is going to be used for all
6749  * zones and all nodes. The parameters will be set in such a way
6750  * that an item put on a list will immediately be handed over to
6751  * the buddy list. This is safe since pageset manipulation is done
6752  * with interrupts disabled.
6753  *
6754  * The boot_pagesets must be kept even after bootup is complete for
6755  * unused processors and/or zones. They do play a role for bootstrapping
6756  * hotplugged processors.
6757  *
6758  * zoneinfo_show() and maybe other functions do
6759  * not check if the processor is online before following the pageset pointer.
6760  * Other parts of the kernel may not check if the zone is available.
6761  */
6762 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6763 /* These effectively disable the pcplists in the boot pageset completely */
6764 #define BOOT_PAGESET_HIGH	0
6765 #define BOOT_PAGESET_BATCH	1
6766 static DEFINE_PER_CPU(struct per_cpu_pages_ext, boot_pageset);
6767 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6768 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6769 
__build_all_zonelists(void * data)6770 static void __build_all_zonelists(void *data)
6771 {
6772 	int nid;
6773 	int __maybe_unused cpu;
6774 	pg_data_t *self = data;
6775 	unsigned long flags;
6776 
6777 	/*
6778 	 * Explicitly disable this CPU's interrupts before taking seqlock
6779 	 * to prevent any IRQ handler from calling into the page allocator
6780 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6781 	 */
6782 	local_irq_save(flags);
6783 	/*
6784 	 * Explicitly disable this CPU's synchronous printk() before taking
6785 	 * seqlock to prevent any printk() from trying to hold port->lock, for
6786 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6787 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6788 	 */
6789 	printk_deferred_enter();
6790 	write_seqlock(&zonelist_update_seq);
6791 
6792 #ifdef CONFIG_NUMA
6793 	memset(node_load, 0, sizeof(node_load));
6794 #endif
6795 
6796 	/*
6797 	 * This node is hotadded and no memory is yet present.   So just
6798 	 * building zonelists is fine - no need to touch other nodes.
6799 	 */
6800 	if (self && !node_online(self->node_id)) {
6801 		build_zonelists(self);
6802 	} else {
6803 		for_each_online_node(nid) {
6804 			pg_data_t *pgdat = NODE_DATA(nid);
6805 
6806 			build_zonelists(pgdat);
6807 		}
6808 
6809 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6810 		/*
6811 		 * We now know the "local memory node" for each node--
6812 		 * i.e., the node of the first zone in the generic zonelist.
6813 		 * Set up numa_mem percpu variable for on-line cpus.  During
6814 		 * boot, only the boot cpu should be on-line;  we'll init the
6815 		 * secondary cpus' numa_mem as they come on-line.  During
6816 		 * node/memory hotplug, we'll fixup all on-line cpus.
6817 		 */
6818 		for_each_online_cpu(cpu)
6819 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6820 #endif
6821 	}
6822 
6823 	write_sequnlock(&zonelist_update_seq);
6824 	printk_deferred_exit();
6825 	local_irq_restore(flags);
6826 }
6827 
6828 static noinline void __init
build_all_zonelists_init(void)6829 build_all_zonelists_init(void)
6830 {
6831 	int cpu;
6832 
6833 	__build_all_zonelists(NULL);
6834 
6835 	/*
6836 	 * Initialize the boot_pagesets that are going to be used
6837 	 * for bootstrapping processors. The real pagesets for
6838 	 * each zone will be allocated later when the per cpu
6839 	 * allocator is available.
6840 	 *
6841 	 * boot_pagesets are used also for bootstrapping offline
6842 	 * cpus if the system is already booted because the pagesets
6843 	 * are needed to initialize allocators on a specific cpu too.
6844 	 * F.e. the percpu allocator needs the page allocator which
6845 	 * needs the percpu allocator in order to allocate its pagesets
6846 	 * (a chicken-egg dilemma).
6847 	 */
6848 	for_each_possible_cpu(cpu)
6849 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu).pcp, &per_cpu(boot_zonestats, cpu));
6850 
6851 	mminit_verify_zonelist();
6852 	cpuset_init_current_mems_allowed();
6853 }
6854 
6855 /*
6856  * unless system_state == SYSTEM_BOOTING.
6857  *
6858  * __ref due to call of __init annotated helper build_all_zonelists_init
6859  * [protected by SYSTEM_BOOTING].
6860  */
build_all_zonelists(pg_data_t * pgdat)6861 void __ref build_all_zonelists(pg_data_t *pgdat)
6862 {
6863 	unsigned long vm_total_pages;
6864 
6865 	if (system_state == SYSTEM_BOOTING) {
6866 		build_all_zonelists_init();
6867 	} else {
6868 		__build_all_zonelists(pgdat);
6869 		/* cpuset refresh routine should be here */
6870 	}
6871 	/* Get the number of free pages beyond high watermark in all zones. */
6872 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6873 	/*
6874 	 * Disable grouping by mobility if the number of pages in the
6875 	 * system is too low to allow the mechanism to work. It would be
6876 	 * more accurate, but expensive to check per-zone. This check is
6877 	 * made on memory-hotadd so a system can start with mobility
6878 	 * disabled and enable it later
6879 	 */
6880 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6881 		page_group_by_mobility_disabled = 1;
6882 	else
6883 		page_group_by_mobility_disabled = 0;
6884 
6885 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6886 		nr_online_nodes,
6887 		page_group_by_mobility_disabled ? "off" : "on",
6888 		vm_total_pages);
6889 #ifdef CONFIG_NUMA
6890 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6891 #endif
6892 }
6893 
6894 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6895 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6896 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6897 {
6898 	static struct memblock_region *r;
6899 
6900 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6901 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6902 			for_each_mem_region(r) {
6903 				if (*pfn < memblock_region_memory_end_pfn(r))
6904 					break;
6905 			}
6906 		}
6907 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6908 		    memblock_is_mirror(r)) {
6909 			*pfn = memblock_region_memory_end_pfn(r);
6910 			return true;
6911 		}
6912 	}
6913 	return false;
6914 }
6915 
6916 /*
6917  * Initially all pages are reserved - free ones are freed
6918  * up by memblock_free_all() once the early boot process is
6919  * done. Non-atomic initialization, single-pass.
6920  *
6921  * All aligned pageblocks are initialized to the specified migratetype
6922  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6923  * zone stats (e.g., nr_isolate_pageblock) are touched.
6924  */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6925 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6926 		unsigned long start_pfn, unsigned long zone_end_pfn,
6927 		enum meminit_context context,
6928 		struct vmem_altmap *altmap, int migratetype)
6929 {
6930 	unsigned long pfn, end_pfn = start_pfn + size;
6931 	struct page *page;
6932 
6933 	if (highest_memmap_pfn < end_pfn - 1)
6934 		highest_memmap_pfn = end_pfn - 1;
6935 
6936 #ifdef CONFIG_ZONE_DEVICE
6937 	/*
6938 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6939 	 * memory. We limit the total number of pages to initialize to just
6940 	 * those that might contain the memory mapping. We will defer the
6941 	 * ZONE_DEVICE page initialization until after we have released
6942 	 * the hotplug lock.
6943 	 */
6944 	if (zone == ZONE_DEVICE) {
6945 		if (!altmap)
6946 			return;
6947 
6948 		if (start_pfn == altmap->base_pfn)
6949 			start_pfn += altmap->reserve;
6950 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6951 	}
6952 #endif
6953 
6954 	for (pfn = start_pfn; pfn < end_pfn; ) {
6955 		/*
6956 		 * There can be holes in boot-time mem_map[]s handed to this
6957 		 * function.  They do not exist on hotplugged memory.
6958 		 */
6959 		if (context == MEMINIT_EARLY) {
6960 			if (overlap_memmap_init(zone, &pfn))
6961 				continue;
6962 			if (defer_init(nid, pfn, zone_end_pfn))
6963 				break;
6964 		}
6965 
6966 		page = pfn_to_page(pfn);
6967 		__init_single_page(page, pfn, zone, nid);
6968 		if (context == MEMINIT_HOTPLUG)
6969 			__SetPageReserved(page);
6970 
6971 		/*
6972 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6973 		 * such that unmovable allocations won't be scattered all
6974 		 * over the place during system boot.
6975 		 */
6976 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6977 			set_pageblock_migratetype(page, migratetype);
6978 			cond_resched();
6979 		}
6980 		pfn++;
6981 	}
6982 }
6983 
6984 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6985 void __ref memmap_init_zone_device(struct zone *zone,
6986 				   unsigned long start_pfn,
6987 				   unsigned long nr_pages,
6988 				   struct dev_pagemap *pgmap)
6989 {
6990 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6991 	struct pglist_data *pgdat = zone->zone_pgdat;
6992 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6993 	unsigned long zone_idx = zone_idx(zone);
6994 	unsigned long start = jiffies;
6995 	int nid = pgdat->node_id;
6996 
6997 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6998 		return;
6999 
7000 	/*
7001 	 * The call to memmap_init should have already taken care
7002 	 * of the pages reserved for the memmap, so we can just jump to
7003 	 * the end of that region and start processing the device pages.
7004 	 */
7005 	if (altmap) {
7006 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
7007 		nr_pages = end_pfn - start_pfn;
7008 	}
7009 
7010 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
7011 		struct page *page = pfn_to_page(pfn);
7012 
7013 		__init_single_page(page, pfn, zone_idx, nid);
7014 
7015 		/*
7016 		 * Mark page reserved as it will need to wait for onlining
7017 		 * phase for it to be fully associated with a zone.
7018 		 *
7019 		 * We can use the non-atomic __set_bit operation for setting
7020 		 * the flag as we are still initializing the pages.
7021 		 */
7022 		__SetPageReserved(page);
7023 
7024 		/*
7025 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
7026 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
7027 		 * ever freed or placed on a driver-private list.
7028 		 */
7029 		page->pgmap = pgmap;
7030 		page->zone_device_data = NULL;
7031 
7032 		/*
7033 		 * Mark the block movable so that blocks are reserved for
7034 		 * movable at startup. This will force kernel allocations
7035 		 * to reserve their blocks rather than leaking throughout
7036 		 * the address space during boot when many long-lived
7037 		 * kernel allocations are made.
7038 		 *
7039 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
7040 		 * because this is done early in section_activate()
7041 		 */
7042 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
7043 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
7044 			cond_resched();
7045 		}
7046 	}
7047 
7048 	pr_info("%s initialised %lu pages in %ums\n", __func__,
7049 		nr_pages, jiffies_to_msecs(jiffies - start));
7050 }
7051 
7052 #endif
zone_init_free_lists(struct zone * zone)7053 static void __meminit zone_init_free_lists(struct zone *zone)
7054 {
7055 	unsigned int order, t;
7056 	for_each_migratetype_order(order, t) {
7057 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
7058 		zone->free_area[order].nr_free = 0;
7059 	}
7060 }
7061 
7062 /*
7063  * Only struct pages that correspond to ranges defined by memblock.memory
7064  * are zeroed and initialized by going through __init_single_page() during
7065  * memmap_init_zone_range().
7066  *
7067  * But, there could be struct pages that correspond to holes in
7068  * memblock.memory. This can happen because of the following reasons:
7069  * - physical memory bank size is not necessarily the exact multiple of the
7070  *   arbitrary section size
7071  * - early reserved memory may not be listed in memblock.memory
7072  * - memory layouts defined with memmap= kernel parameter may not align
7073  *   nicely with memmap sections
7074  *
7075  * Explicitly initialize those struct pages so that:
7076  * - PG_Reserved is set
7077  * - zone and node links point to zone and node that span the page if the
7078  *   hole is in the middle of a zone
7079  * - zone and node links point to adjacent zone/node if the hole falls on
7080  *   the zone boundary; the pages in such holes will be prepended to the
7081  *   zone/node above the hole except for the trailing pages in the last
7082  *   section that will be appended to the zone/node below.
7083  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)7084 static void __init init_unavailable_range(unsigned long spfn,
7085 					  unsigned long epfn,
7086 					  int zone, int node)
7087 {
7088 	unsigned long pfn;
7089 	u64 pgcnt = 0;
7090 
7091 	for (pfn = spfn; pfn < epfn; pfn++) {
7092 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7093 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7094 				+ pageblock_nr_pages - 1;
7095 			continue;
7096 		}
7097 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
7098 		__SetPageReserved(pfn_to_page(pfn));
7099 		pgcnt++;
7100 	}
7101 
7102 	if (pgcnt)
7103 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7104 			node, zone_names[zone], pgcnt);
7105 }
7106 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)7107 static void __init memmap_init_zone_range(struct zone *zone,
7108 					  unsigned long start_pfn,
7109 					  unsigned long end_pfn,
7110 					  unsigned long *hole_pfn)
7111 {
7112 	unsigned long zone_start_pfn = zone->zone_start_pfn;
7113 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7114 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7115 
7116 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7117 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7118 
7119 	if (start_pfn >= end_pfn)
7120 		return;
7121 
7122 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7123 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7124 
7125 	if (*hole_pfn < start_pfn)
7126 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7127 
7128 	*hole_pfn = end_pfn;
7129 }
7130 
memmap_init(void)7131 static void __init memmap_init(void)
7132 {
7133 	unsigned long start_pfn, end_pfn;
7134 	unsigned long hole_pfn = 0;
7135 	int i, j, zone_id = 0, nid;
7136 
7137 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7138 		struct pglist_data *node = NODE_DATA(nid);
7139 
7140 		for (j = 0; j < MAX_NR_ZONES; j++) {
7141 			struct zone *zone = node->node_zones + j;
7142 
7143 			if (!populated_zone(zone))
7144 				continue;
7145 
7146 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7147 					       &hole_pfn);
7148 			zone_id = j;
7149 		}
7150 	}
7151 
7152 #ifdef CONFIG_SPARSEMEM
7153 	/*
7154 	 * Initialize the memory map for hole in the range [memory_end,
7155 	 * section_end].
7156 	 * Append the pages in this hole to the highest zone in the last
7157 	 * node.
7158 	 * The call to init_unavailable_range() is outside the ifdef to
7159 	 * silence the compiler warining about zone_id set but not used;
7160 	 * for FLATMEM it is a nop anyway
7161 	 */
7162 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7163 	if (hole_pfn < end_pfn)
7164 #endif
7165 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7166 }
7167 
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)7168 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7169 			  phys_addr_t min_addr, int nid, bool exact_nid)
7170 {
7171 	void *ptr;
7172 
7173 	if (exact_nid)
7174 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7175 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7176 						   nid);
7177 	else
7178 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7179 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7180 						 nid);
7181 
7182 	if (ptr && size > 0)
7183 		page_init_poison(ptr, size);
7184 
7185 	return ptr;
7186 }
7187 
zone_batchsize(struct zone * zone)7188 static int zone_batchsize(struct zone *zone)
7189 {
7190 #ifdef CONFIG_MMU
7191 	int batch;
7192 
7193 	/*
7194 	 * The number of pages to batch allocate is either ~0.1%
7195 	 * of the zone or 1MB, whichever is smaller. The batch
7196 	 * size is striking a balance between allocation latency
7197 	 * and zone lock contention.
7198 	 */
7199 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7200 	batch /= 4;		/* We effectively *= 4 below */
7201 	if (batch < 1)
7202 		batch = 1;
7203 
7204 	/*
7205 	 * Clamp the batch to a 2^n - 1 value. Having a power
7206 	 * of 2 value was found to be more likely to have
7207 	 * suboptimal cache aliasing properties in some cases.
7208 	 *
7209 	 * For example if 2 tasks are alternately allocating
7210 	 * batches of pages, one task can end up with a lot
7211 	 * of pages of one half of the possible page colors
7212 	 * and the other with pages of the other colors.
7213 	 */
7214 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7215 
7216 	return batch;
7217 
7218 #else
7219 	/* The deferral and batching of frees should be suppressed under NOMMU
7220 	 * conditions.
7221 	 *
7222 	 * The problem is that NOMMU needs to be able to allocate large chunks
7223 	 * of contiguous memory as there's no hardware page translation to
7224 	 * assemble apparent contiguous memory from discontiguous pages.
7225 	 *
7226 	 * Queueing large contiguous runs of pages for batching, however,
7227 	 * causes the pages to actually be freed in smaller chunks.  As there
7228 	 * can be a significant delay between the individual batches being
7229 	 * recycled, this leads to the once large chunks of space being
7230 	 * fragmented and becoming unavailable for high-order allocations.
7231 	 */
7232 	return 0;
7233 #endif
7234 }
7235 
zone_highsize(struct zone * zone,int batch,int cpu_online)7236 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7237 {
7238 #ifdef CONFIG_MMU
7239 	int high;
7240 	int nr_split_cpus;
7241 	unsigned long total_pages;
7242 
7243 	if (!percpu_pagelist_high_fraction) {
7244 		/*
7245 		 * By default, the high value of the pcp is based on the zone
7246 		 * low watermark so that if they are full then background
7247 		 * reclaim will not be started prematurely.
7248 		 */
7249 		total_pages = low_wmark_pages(zone);
7250 	} else {
7251 		/*
7252 		 * If percpu_pagelist_high_fraction is configured, the high
7253 		 * value is based on a fraction of the managed pages in the
7254 		 * zone.
7255 		 */
7256 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7257 	}
7258 
7259 	/*
7260 	 * Split the high value across all online CPUs local to the zone. Note
7261 	 * that early in boot that CPUs may not be online yet and that during
7262 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7263 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7264 	 * all online CPUs to mitigate the risk that reclaim is triggered
7265 	 * prematurely due to pages stored on pcp lists.
7266 	 */
7267 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7268 	if (!nr_split_cpus)
7269 		nr_split_cpus = num_online_cpus();
7270 	high = total_pages / nr_split_cpus;
7271 
7272 	/*
7273 	 * Ensure high is at least batch*4. The multiple is based on the
7274 	 * historical relationship between high and batch.
7275 	 */
7276 	high = max(high, batch << 2);
7277 
7278 	return high;
7279 #else
7280 	return 0;
7281 #endif
7282 }
7283 
7284 /*
7285  * pcp->high and pcp->batch values are related and generally batch is lower
7286  * than high. They are also related to pcp->count such that count is lower
7287  * than high, and as soon as it reaches high, the pcplist is flushed.
7288  *
7289  * However, guaranteeing these relations at all times would require e.g. write
7290  * barriers here but also careful usage of read barriers at the read side, and
7291  * thus be prone to error and bad for performance. Thus the update only prevents
7292  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7293  * can cope with those fields changing asynchronously, and fully trust only the
7294  * pcp->count field on the local CPU with interrupts disabled.
7295  *
7296  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7297  * outside of boot time (or some other assurance that no concurrent updaters
7298  * exist).
7299  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)7300 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7301 		unsigned long batch)
7302 {
7303 	WRITE_ONCE(pcp->batch, batch);
7304 	WRITE_ONCE(pcp->high, high);
7305 }
7306 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)7307 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7308 {
7309 	struct per_cpu_pages_ext *pcp_ext = pcp_to_pcpext(pcp);
7310 	int pindex;
7311 
7312 	memset(pcp, 0, sizeof(*pcp));
7313 	memset(pzstats, 0, sizeof(*pzstats));
7314 
7315 	spin_lock_init(&pcp_ext->lock);
7316 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7317 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7318 
7319 	/*
7320 	 * Set batch and high values safe for a boot pageset. A true percpu
7321 	 * pageset's initialization will update them subsequently. Here we don't
7322 	 * need to be as careful as pageset_update() as nobody can access the
7323 	 * pageset yet.
7324 	 */
7325 	pcp->high = BOOT_PAGESET_HIGH;
7326 	pcp->batch = BOOT_PAGESET_BATCH;
7327 	pcp->free_factor = 0;
7328 }
7329 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)7330 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7331 		unsigned long batch)
7332 {
7333 	struct per_cpu_pages *pcp;
7334 	int cpu;
7335 
7336 	for_each_possible_cpu(cpu) {
7337 		pcp = &per_cpu_ptr(zone_per_cpu_pageset(zone), cpu)->pcp;
7338 		pageset_update(pcp, high, batch);
7339 	}
7340 }
7341 
7342 /*
7343  * Calculate and set new high and batch values for all per-cpu pagesets of a
7344  * zone based on the zone's size.
7345  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)7346 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7347 {
7348 	int new_high, new_batch;
7349 
7350 	new_batch = max(1, zone_batchsize(zone));
7351 	new_high = zone_highsize(zone, new_batch, cpu_online);
7352 
7353 	if (zone->pageset_high == new_high &&
7354 	    zone->pageset_batch == new_batch)
7355 		return;
7356 
7357 	zone->pageset_high = new_high;
7358 	zone->pageset_batch = new_batch;
7359 
7360 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7361 }
7362 
setup_zone_pageset(struct zone * zone)7363 void __meminit setup_zone_pageset(struct zone *zone)
7364 {
7365 	int cpu;
7366 
7367 	/* Size may be 0 on !SMP && !NUMA */
7368 	if (sizeof(struct per_cpu_zonestat) > 0)
7369 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7370 
7371 	zone->per_cpu_pageset = (struct per_cpu_pages __percpu *)
7372 					alloc_percpu(struct per_cpu_pages_ext);
7373 	for_each_possible_cpu(cpu) {
7374 		struct per_cpu_pages *pcp;
7375 		struct per_cpu_zonestat *pzstats;
7376 
7377 		pcp = &per_cpu_ptr(zone_per_cpu_pageset(zone), cpu)->pcp;
7378 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7379 		per_cpu_pages_init(pcp, pzstats);
7380 	}
7381 
7382 	zone_set_pageset_high_and_batch(zone, 0);
7383 }
7384 
7385 /*
7386  * Allocate per cpu pagesets and initialize them.
7387  * Before this call only boot pagesets were available.
7388  */
setup_per_cpu_pageset(void)7389 void __init setup_per_cpu_pageset(void)
7390 {
7391 	struct pglist_data *pgdat;
7392 	struct zone *zone;
7393 	int __maybe_unused cpu;
7394 
7395 	for_each_populated_zone(zone)
7396 		setup_zone_pageset(zone);
7397 
7398 #ifdef CONFIG_NUMA
7399 	/*
7400 	 * Unpopulated zones continue using the boot pagesets.
7401 	 * The numa stats for these pagesets need to be reset.
7402 	 * Otherwise, they will end up skewing the stats of
7403 	 * the nodes these zones are associated with.
7404 	 */
7405 	for_each_possible_cpu(cpu) {
7406 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7407 		memset(pzstats->vm_numa_event, 0,
7408 		       sizeof(pzstats->vm_numa_event));
7409 	}
7410 #endif
7411 
7412 	for_each_online_pgdat(pgdat)
7413 		pgdat->per_cpu_nodestats =
7414 			alloc_percpu(struct per_cpu_nodestat);
7415 }
7416 
zone_pcp_init(struct zone * zone)7417 static __meminit void zone_pcp_init(struct zone *zone)
7418 {
7419 	/*
7420 	 * per cpu subsystem is not up at this point. The following code
7421 	 * relies on the ability of the linker to provide the
7422 	 * offset of a (static) per cpu variable into the per cpu area.
7423 	 */
7424 	zone->per_cpu_pageset = (struct per_cpu_pages __percpu *)&boot_pageset;
7425 	zone->per_cpu_zonestats = &boot_zonestats;
7426 	zone->pageset_high = BOOT_PAGESET_HIGH;
7427 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7428 
7429 	if (populated_zone(zone))
7430 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7431 			 zone->present_pages, zone_batchsize(zone));
7432 }
7433 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)7434 void __meminit init_currently_empty_zone(struct zone *zone,
7435 					unsigned long zone_start_pfn,
7436 					unsigned long size)
7437 {
7438 	struct pglist_data *pgdat = zone->zone_pgdat;
7439 	int zone_idx = zone_idx(zone) + 1;
7440 
7441 	if (zone_idx > pgdat->nr_zones)
7442 		pgdat->nr_zones = zone_idx;
7443 
7444 	zone->zone_start_pfn = zone_start_pfn;
7445 
7446 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7447 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7448 			pgdat->node_id,
7449 			(unsigned long)zone_idx(zone),
7450 			zone_start_pfn, (zone_start_pfn + size));
7451 
7452 	zone_init_free_lists(zone);
7453 	zone->initialized = 1;
7454 }
7455 
7456 /**
7457  * get_pfn_range_for_nid - Return the start and end page frames for a node
7458  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7459  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7460  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7461  *
7462  * It returns the start and end page frame of a node based on information
7463  * provided by memblock_set_node(). If called for a node
7464  * with no available memory, a warning is printed and the start and end
7465  * PFNs will be 0.
7466  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)7467 void __init get_pfn_range_for_nid(unsigned int nid,
7468 			unsigned long *start_pfn, unsigned long *end_pfn)
7469 {
7470 	unsigned long this_start_pfn, this_end_pfn;
7471 	int i;
7472 
7473 	*start_pfn = -1UL;
7474 	*end_pfn = 0;
7475 
7476 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7477 		*start_pfn = min(*start_pfn, this_start_pfn);
7478 		*end_pfn = max(*end_pfn, this_end_pfn);
7479 	}
7480 
7481 	if (*start_pfn == -1UL)
7482 		*start_pfn = 0;
7483 }
7484 
7485 /*
7486  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7487  * assumption is made that zones within a node are ordered in monotonic
7488  * increasing memory addresses so that the "highest" populated zone is used
7489  */
find_usable_zone_for_movable(void)7490 static void __init find_usable_zone_for_movable(void)
7491 {
7492 	int zone_index;
7493 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7494 		if (zone_index == ZONE_MOVABLE)
7495 			continue;
7496 
7497 		if (arch_zone_highest_possible_pfn[zone_index] >
7498 				arch_zone_lowest_possible_pfn[zone_index])
7499 			break;
7500 	}
7501 
7502 	VM_BUG_ON(zone_index == -1);
7503 	movable_zone = zone_index;
7504 }
7505 
7506 /*
7507  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7508  * because it is sized independent of architecture. Unlike the other zones,
7509  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7510  * in each node depending on the size of each node and how evenly kernelcore
7511  * is distributed. This helper function adjusts the zone ranges
7512  * provided by the architecture for a given node by using the end of the
7513  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7514  * zones within a node are in order of monotonic increases memory addresses
7515  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7516 static void __init adjust_zone_range_for_zone_movable(int nid,
7517 					unsigned long zone_type,
7518 					unsigned long node_start_pfn,
7519 					unsigned long node_end_pfn,
7520 					unsigned long *zone_start_pfn,
7521 					unsigned long *zone_end_pfn)
7522 {
7523 	/* Only adjust if ZONE_MOVABLE is on this node */
7524 	if (zone_movable_pfn[nid]) {
7525 		/* Size ZONE_MOVABLE */
7526 		if (zone_type == ZONE_MOVABLE) {
7527 			*zone_start_pfn = zone_movable_pfn[nid];
7528 			*zone_end_pfn = min(node_end_pfn,
7529 				arch_zone_highest_possible_pfn[movable_zone]);
7530 
7531 		/* Adjust for ZONE_MOVABLE starting within this range */
7532 		} else if (!mirrored_kernelcore &&
7533 			*zone_start_pfn < zone_movable_pfn[nid] &&
7534 			*zone_end_pfn > zone_movable_pfn[nid]) {
7535 			*zone_end_pfn = zone_movable_pfn[nid];
7536 
7537 		/* Check if this whole range is within ZONE_MOVABLE */
7538 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7539 			*zone_start_pfn = *zone_end_pfn;
7540 	}
7541 }
7542 
7543 /*
7544  * Return the number of pages a zone spans in a node, including holes
7545  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7546  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7547 static unsigned long __init zone_spanned_pages_in_node(int nid,
7548 					unsigned long zone_type,
7549 					unsigned long node_start_pfn,
7550 					unsigned long node_end_pfn,
7551 					unsigned long *zone_start_pfn,
7552 					unsigned long *zone_end_pfn)
7553 {
7554 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7555 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7556 	/* When hotadd a new node from cpu_up(), the node should be empty */
7557 	if (!node_start_pfn && !node_end_pfn)
7558 		return 0;
7559 
7560 	/* Get the start and end of the zone */
7561 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7562 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7563 	adjust_zone_range_for_zone_movable(nid, zone_type,
7564 				node_start_pfn, node_end_pfn,
7565 				zone_start_pfn, zone_end_pfn);
7566 
7567 	/* Check that this node has pages within the zone's required range */
7568 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7569 		return 0;
7570 
7571 	/* Move the zone boundaries inside the node if necessary */
7572 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7573 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7574 
7575 	/* Return the spanned pages */
7576 	return *zone_end_pfn - *zone_start_pfn;
7577 }
7578 
7579 /*
7580  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7581  * then all holes in the requested range will be accounted for.
7582  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)7583 unsigned long __init __absent_pages_in_range(int nid,
7584 				unsigned long range_start_pfn,
7585 				unsigned long range_end_pfn)
7586 {
7587 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7588 	unsigned long start_pfn, end_pfn;
7589 	int i;
7590 
7591 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7592 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7593 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7594 		nr_absent -= end_pfn - start_pfn;
7595 	}
7596 	return nr_absent;
7597 }
7598 
7599 /**
7600  * absent_pages_in_range - Return number of page frames in holes within a range
7601  * @start_pfn: The start PFN to start searching for holes
7602  * @end_pfn: The end PFN to stop searching for holes
7603  *
7604  * Return: the number of pages frames in memory holes within a range.
7605  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)7606 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7607 							unsigned long end_pfn)
7608 {
7609 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7610 }
7611 
7612 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)7613 static unsigned long __init zone_absent_pages_in_node(int nid,
7614 					unsigned long zone_type,
7615 					unsigned long node_start_pfn,
7616 					unsigned long node_end_pfn)
7617 {
7618 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7619 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7620 	unsigned long zone_start_pfn, zone_end_pfn;
7621 	unsigned long nr_absent;
7622 
7623 	/* When hotadd a new node from cpu_up(), the node should be empty */
7624 	if (!node_start_pfn && !node_end_pfn)
7625 		return 0;
7626 
7627 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7628 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7629 
7630 	adjust_zone_range_for_zone_movable(nid, zone_type,
7631 			node_start_pfn, node_end_pfn,
7632 			&zone_start_pfn, &zone_end_pfn);
7633 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7634 
7635 	/*
7636 	 * ZONE_MOVABLE handling.
7637 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7638 	 * and vice versa.
7639 	 */
7640 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7641 		unsigned long start_pfn, end_pfn;
7642 		struct memblock_region *r;
7643 
7644 		for_each_mem_region(r) {
7645 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7646 					  zone_start_pfn, zone_end_pfn);
7647 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7648 					zone_start_pfn, zone_end_pfn);
7649 
7650 			if (zone_type == ZONE_MOVABLE &&
7651 			    memblock_is_mirror(r))
7652 				nr_absent += end_pfn - start_pfn;
7653 
7654 			if (zone_type == ZONE_NORMAL &&
7655 			    !memblock_is_mirror(r))
7656 				nr_absent += end_pfn - start_pfn;
7657 		}
7658 	}
7659 
7660 	return nr_absent;
7661 }
7662 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7663 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7664 						unsigned long node_start_pfn,
7665 						unsigned long node_end_pfn)
7666 {
7667 	unsigned long realtotalpages = 0, totalpages = 0;
7668 	enum zone_type i;
7669 
7670 	for (i = 0; i < MAX_NR_ZONES; i++) {
7671 		struct zone *zone = pgdat->node_zones + i;
7672 		unsigned long zone_start_pfn, zone_end_pfn;
7673 		unsigned long spanned, absent;
7674 		unsigned long size, real_size;
7675 
7676 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7677 						     node_start_pfn,
7678 						     node_end_pfn,
7679 						     &zone_start_pfn,
7680 						     &zone_end_pfn);
7681 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7682 						   node_start_pfn,
7683 						   node_end_pfn);
7684 
7685 		size = spanned;
7686 		real_size = size - absent;
7687 
7688 		if (size)
7689 			zone->zone_start_pfn = zone_start_pfn;
7690 		else
7691 			zone->zone_start_pfn = 0;
7692 		zone->spanned_pages = size;
7693 		zone->present_pages = real_size;
7694 #if defined(CONFIG_MEMORY_HOTPLUG)
7695 		zone->present_early_pages = real_size;
7696 #endif
7697 
7698 		totalpages += size;
7699 		realtotalpages += real_size;
7700 	}
7701 
7702 	pgdat->node_spanned_pages = totalpages;
7703 	pgdat->node_present_pages = realtotalpages;
7704 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7705 }
7706 
7707 #ifndef CONFIG_SPARSEMEM
7708 /*
7709  * Calculate the size of the zone->blockflags rounded to an unsigned long
7710  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7711  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7712  * round what is now in bits to nearest long in bits, then return it in
7713  * bytes.
7714  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7715 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7716 {
7717 	unsigned long usemapsize;
7718 
7719 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7720 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7721 	usemapsize = usemapsize >> pageblock_order;
7722 	usemapsize *= NR_PAGEBLOCK_BITS;
7723 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7724 
7725 	return usemapsize / 8;
7726 }
7727 
setup_usemap(struct zone * zone)7728 static void __ref setup_usemap(struct zone *zone)
7729 {
7730 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7731 					       zone->spanned_pages);
7732 	zone->pageblock_flags = NULL;
7733 	if (usemapsize) {
7734 		zone->pageblock_flags =
7735 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7736 					    zone_to_nid(zone));
7737 		if (!zone->pageblock_flags)
7738 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7739 			      usemapsize, zone->name, zone_to_nid(zone));
7740 	}
7741 }
7742 #else
setup_usemap(struct zone * zone)7743 static inline void setup_usemap(struct zone *zone) {}
7744 #endif /* CONFIG_SPARSEMEM */
7745 
7746 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7747 
7748 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7749 void __init set_pageblock_order(void)
7750 {
7751 	unsigned int order;
7752 
7753 	/* Check that pageblock_nr_pages has not already been setup */
7754 	if (pageblock_order)
7755 		return;
7756 
7757 	if (HPAGE_SHIFT > PAGE_SHIFT)
7758 		order = HUGETLB_PAGE_ORDER;
7759 	else
7760 		order = MAX_ORDER - 1;
7761 
7762 	/*
7763 	 * Assume the largest contiguous order of interest is a huge page.
7764 	 * This value may be variable depending on boot parameters on IA64 and
7765 	 * powerpc.
7766 	 */
7767 	pageblock_order = order;
7768 }
7769 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7770 
7771 /*
7772  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7773  * is unused as pageblock_order is set at compile-time. See
7774  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7775  * the kernel config
7776  */
set_pageblock_order(void)7777 void __init set_pageblock_order(void)
7778 {
7779 }
7780 
7781 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7782 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7783 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7784 						unsigned long present_pages)
7785 {
7786 	unsigned long pages = spanned_pages;
7787 
7788 	/*
7789 	 * Provide a more accurate estimation if there are holes within
7790 	 * the zone and SPARSEMEM is in use. If there are holes within the
7791 	 * zone, each populated memory region may cost us one or two extra
7792 	 * memmap pages due to alignment because memmap pages for each
7793 	 * populated regions may not be naturally aligned on page boundary.
7794 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7795 	 */
7796 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7797 	    IS_ENABLED(CONFIG_SPARSEMEM))
7798 		pages = present_pages;
7799 
7800 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7801 }
7802 
7803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7804 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7805 {
7806 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7807 
7808 	spin_lock_init(&ds_queue->split_queue_lock);
7809 	INIT_LIST_HEAD(&ds_queue->split_queue);
7810 	ds_queue->split_queue_len = 0;
7811 }
7812 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7813 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7814 #endif
7815 
7816 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7817 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7818 {
7819 	init_waitqueue_head(&pgdat->kcompactd_wait);
7820 }
7821 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7822 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7823 #endif
7824 
pgdat_init_internals(struct pglist_data * pgdat)7825 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7826 {
7827 	pgdat_resize_init(pgdat);
7828 
7829 	pgdat_init_split_queue(pgdat);
7830 	pgdat_init_kcompactd(pgdat);
7831 
7832 	init_waitqueue_head(&pgdat->kswapd_wait);
7833 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7834 
7835 	pgdat_page_ext_init(pgdat);
7836 	lruvec_init(&pgdat->__lruvec);
7837 }
7838 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7839 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7840 							unsigned long remaining_pages)
7841 {
7842 	atomic_long_set(&zone->managed_pages, remaining_pages);
7843 	zone_set_nid(zone, nid);
7844 	zone->name = zone_names[idx];
7845 	zone->zone_pgdat = NODE_DATA(nid);
7846 	spin_lock_init(&zone->lock);
7847 	zone_seqlock_init(zone);
7848 	zone_pcp_init(zone);
7849 }
7850 
7851 /*
7852  * Set up the zone data structures
7853  * - init pgdat internals
7854  * - init all zones belonging to this node
7855  *
7856  * NOTE: this function is only called during memory hotplug
7857  */
7858 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7859 void __ref free_area_init_core_hotplug(int nid)
7860 {
7861 	enum zone_type z;
7862 	pg_data_t *pgdat = NODE_DATA(nid);
7863 
7864 	pgdat_init_internals(pgdat);
7865 	for (z = 0; z < MAX_NR_ZONES; z++)
7866 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7867 }
7868 #endif
7869 
7870 /*
7871  * Set up the zone data structures:
7872  *   - mark all pages reserved
7873  *   - mark all memory queues empty
7874  *   - clear the memory bitmaps
7875  *
7876  * NOTE: pgdat should get zeroed by caller.
7877  * NOTE: this function is only called during early init.
7878  */
free_area_init_core(struct pglist_data * pgdat)7879 static void __init free_area_init_core(struct pglist_data *pgdat)
7880 {
7881 	enum zone_type j;
7882 	int nid = pgdat->node_id;
7883 
7884 	pgdat_init_internals(pgdat);
7885 	pgdat->per_cpu_nodestats = &boot_nodestats;
7886 
7887 	for (j = 0; j < MAX_NR_ZONES; j++) {
7888 		struct zone *zone = pgdat->node_zones + j;
7889 		unsigned long size, freesize, memmap_pages;
7890 
7891 		size = zone->spanned_pages;
7892 		freesize = zone->present_pages;
7893 
7894 		/*
7895 		 * Adjust freesize so that it accounts for how much memory
7896 		 * is used by this zone for memmap. This affects the watermark
7897 		 * and per-cpu initialisations
7898 		 */
7899 		memmap_pages = calc_memmap_size(size, freesize);
7900 		if (!is_highmem_idx(j)) {
7901 			if (freesize >= memmap_pages) {
7902 				freesize -= memmap_pages;
7903 				if (memmap_pages)
7904 					pr_debug("  %s zone: %lu pages used for memmap\n",
7905 						 zone_names[j], memmap_pages);
7906 			} else
7907 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7908 					zone_names[j], memmap_pages, freesize);
7909 		}
7910 
7911 		/* Account for reserved pages */
7912 		if (j == 0 && freesize > dma_reserve) {
7913 			freesize -= dma_reserve;
7914 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7915 		}
7916 
7917 		if (!is_highmem_idx(j))
7918 			nr_kernel_pages += freesize;
7919 		/* Charge for highmem memmap if there are enough kernel pages */
7920 		else if (nr_kernel_pages > memmap_pages * 2)
7921 			nr_kernel_pages -= memmap_pages;
7922 		nr_all_pages += freesize;
7923 
7924 		/*
7925 		 * Set an approximate value for lowmem here, it will be adjusted
7926 		 * when the bootmem allocator frees pages into the buddy system.
7927 		 * And all highmem pages will be managed by the buddy system.
7928 		 */
7929 		zone_init_internals(zone, j, nid, freesize);
7930 
7931 		if (!size)
7932 			continue;
7933 
7934 		set_pageblock_order();
7935 		setup_usemap(zone);
7936 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7937 	}
7938 }
7939 
7940 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)7941 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7942 {
7943 	unsigned long __maybe_unused start = 0;
7944 	unsigned long __maybe_unused offset = 0;
7945 
7946 	/* Skip empty nodes */
7947 	if (!pgdat->node_spanned_pages)
7948 		return;
7949 
7950 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7951 	offset = pgdat->node_start_pfn - start;
7952 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7953 	if (!pgdat->node_mem_map) {
7954 		unsigned long size, end;
7955 		struct page *map;
7956 
7957 		/*
7958 		 * The zone's endpoints aren't required to be MAX_ORDER
7959 		 * aligned but the node_mem_map endpoints must be in order
7960 		 * for the buddy allocator to function correctly.
7961 		 */
7962 		end = pgdat_end_pfn(pgdat);
7963 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7964 		size =  (end - start) * sizeof(struct page);
7965 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7966 				   pgdat->node_id, false);
7967 		if (!map)
7968 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7969 			      size, pgdat->node_id);
7970 		pgdat->node_mem_map = map + offset;
7971 	}
7972 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7973 				__func__, pgdat->node_id, (unsigned long)pgdat,
7974 				(unsigned long)pgdat->node_mem_map);
7975 #ifndef CONFIG_NUMA
7976 	/*
7977 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7978 	 */
7979 	if (pgdat == NODE_DATA(0)) {
7980 		mem_map = NODE_DATA(0)->node_mem_map;
7981 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7982 			mem_map -= offset;
7983 	}
7984 #endif
7985 }
7986 #else
alloc_node_mem_map(struct pglist_data * pgdat)7987 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7988 #endif /* CONFIG_FLATMEM */
7989 
7990 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7991 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7992 {
7993 	pgdat->first_deferred_pfn = ULONG_MAX;
7994 }
7995 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7996 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7997 #endif
7998 
free_area_init_node(int nid)7999 static void __init free_area_init_node(int nid)
8000 {
8001 	pg_data_t *pgdat = NODE_DATA(nid);
8002 	unsigned long start_pfn = 0;
8003 	unsigned long end_pfn = 0;
8004 
8005 	/* pg_data_t should be reset to zero when it's allocated */
8006 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
8007 
8008 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8009 
8010 	pgdat->node_id = nid;
8011 	pgdat->node_start_pfn = start_pfn;
8012 	pgdat->per_cpu_nodestats = NULL;
8013 
8014 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
8015 		(u64)start_pfn << PAGE_SHIFT,
8016 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
8017 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
8018 
8019 	alloc_node_mem_map(pgdat);
8020 	pgdat_set_deferred_range(pgdat);
8021 
8022 	free_area_init_core(pgdat);
8023 }
8024 
free_area_init_memoryless_node(int nid)8025 void __init free_area_init_memoryless_node(int nid)
8026 {
8027 	free_area_init_node(nid);
8028 }
8029 
8030 #if MAX_NUMNODES > 1
8031 /*
8032  * Figure out the number of possible node ids.
8033  */
setup_nr_node_ids(void)8034 void __init setup_nr_node_ids(void)
8035 {
8036 	unsigned int highest;
8037 
8038 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
8039 	nr_node_ids = highest + 1;
8040 }
8041 #endif
8042 
8043 /**
8044  * node_map_pfn_alignment - determine the maximum internode alignment
8045  *
8046  * This function should be called after node map is populated and sorted.
8047  * It calculates the maximum power of two alignment which can distinguish
8048  * all the nodes.
8049  *
8050  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8051  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
8052  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
8053  * shifted, 1GiB is enough and this function will indicate so.
8054  *
8055  * This is used to test whether pfn -> nid mapping of the chosen memory
8056  * model has fine enough granularity to avoid incorrect mapping for the
8057  * populated node map.
8058  *
8059  * Return: the determined alignment in pfn's.  0 if there is no alignment
8060  * requirement (single node).
8061  */
node_map_pfn_alignment(void)8062 unsigned long __init node_map_pfn_alignment(void)
8063 {
8064 	unsigned long accl_mask = 0, last_end = 0;
8065 	unsigned long start, end, mask;
8066 	int last_nid = NUMA_NO_NODE;
8067 	int i, nid;
8068 
8069 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8070 		if (!start || last_nid < 0 || last_nid == nid) {
8071 			last_nid = nid;
8072 			last_end = end;
8073 			continue;
8074 		}
8075 
8076 		/*
8077 		 * Start with a mask granular enough to pin-point to the
8078 		 * start pfn and tick off bits one-by-one until it becomes
8079 		 * too coarse to separate the current node from the last.
8080 		 */
8081 		mask = ~((1 << __ffs(start)) - 1);
8082 		while (mask && last_end <= (start & (mask << 1)))
8083 			mask <<= 1;
8084 
8085 		/* accumulate all internode masks */
8086 		accl_mask |= mask;
8087 	}
8088 
8089 	/* convert mask to number of pages */
8090 	return ~accl_mask + 1;
8091 }
8092 
8093 /**
8094  * find_min_pfn_with_active_regions - Find the minimum PFN registered
8095  *
8096  * Return: the minimum PFN based on information provided via
8097  * memblock_set_node().
8098  */
find_min_pfn_with_active_regions(void)8099 unsigned long __init find_min_pfn_with_active_regions(void)
8100 {
8101 	return PHYS_PFN(memblock_start_of_DRAM());
8102 }
8103 
8104 /*
8105  * early_calculate_totalpages()
8106  * Sum pages in active regions for movable zone.
8107  * Populate N_MEMORY for calculating usable_nodes.
8108  */
early_calculate_totalpages(void)8109 static unsigned long __init early_calculate_totalpages(void)
8110 {
8111 	unsigned long totalpages = 0;
8112 	unsigned long start_pfn, end_pfn;
8113 	int i, nid;
8114 
8115 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8116 		unsigned long pages = end_pfn - start_pfn;
8117 
8118 		totalpages += pages;
8119 		if (pages)
8120 			node_set_state(nid, N_MEMORY);
8121 	}
8122 	return totalpages;
8123 }
8124 
8125 /*
8126  * Find the PFN the Movable zone begins in each node. Kernel memory
8127  * is spread evenly between nodes as long as the nodes have enough
8128  * memory. When they don't, some nodes will have more kernelcore than
8129  * others
8130  */
find_zone_movable_pfns_for_nodes(void)8131 static void __init find_zone_movable_pfns_for_nodes(void)
8132 {
8133 	int i, nid;
8134 	unsigned long usable_startpfn;
8135 	unsigned long kernelcore_node, kernelcore_remaining;
8136 	/* save the state before borrow the nodemask */
8137 	nodemask_t saved_node_state = node_states[N_MEMORY];
8138 	unsigned long totalpages = early_calculate_totalpages();
8139 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8140 	struct memblock_region *r;
8141 
8142 	/* Need to find movable_zone earlier when movable_node is specified. */
8143 	find_usable_zone_for_movable();
8144 
8145 	/*
8146 	 * If movable_node is specified, ignore kernelcore and movablecore
8147 	 * options.
8148 	 */
8149 	if (movable_node_is_enabled()) {
8150 		for_each_mem_region(r) {
8151 			if (!memblock_is_hotpluggable(r))
8152 				continue;
8153 
8154 			nid = memblock_get_region_node(r);
8155 
8156 			usable_startpfn = PFN_DOWN(r->base);
8157 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8158 				min(usable_startpfn, zone_movable_pfn[nid]) :
8159 				usable_startpfn;
8160 		}
8161 
8162 		goto out2;
8163 	}
8164 
8165 	/*
8166 	 * If kernelcore=mirror is specified, ignore movablecore option
8167 	 */
8168 	if (mirrored_kernelcore) {
8169 		bool mem_below_4gb_not_mirrored = false;
8170 
8171 		for_each_mem_region(r) {
8172 			if (memblock_is_mirror(r))
8173 				continue;
8174 
8175 			nid = memblock_get_region_node(r);
8176 
8177 			usable_startpfn = memblock_region_memory_base_pfn(r);
8178 
8179 			if (usable_startpfn < 0x100000) {
8180 				mem_below_4gb_not_mirrored = true;
8181 				continue;
8182 			}
8183 
8184 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8185 				min(usable_startpfn, zone_movable_pfn[nid]) :
8186 				usable_startpfn;
8187 		}
8188 
8189 		if (mem_below_4gb_not_mirrored)
8190 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8191 
8192 		goto out2;
8193 	}
8194 
8195 	/*
8196 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8197 	 * amount of necessary memory.
8198 	 */
8199 	if (required_kernelcore_percent)
8200 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8201 				       10000UL;
8202 	if (required_movablecore_percent)
8203 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8204 					10000UL;
8205 
8206 	/*
8207 	 * If movablecore= was specified, calculate what size of
8208 	 * kernelcore that corresponds so that memory usable for
8209 	 * any allocation type is evenly spread. If both kernelcore
8210 	 * and movablecore are specified, then the value of kernelcore
8211 	 * will be used for required_kernelcore if it's greater than
8212 	 * what movablecore would have allowed.
8213 	 */
8214 	if (required_movablecore) {
8215 		unsigned long corepages;
8216 
8217 		/*
8218 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8219 		 * was requested by the user
8220 		 */
8221 		required_movablecore =
8222 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8223 		required_movablecore = min(totalpages, required_movablecore);
8224 		corepages = totalpages - required_movablecore;
8225 
8226 		required_kernelcore = max(required_kernelcore, corepages);
8227 	}
8228 
8229 	/*
8230 	 * If kernelcore was not specified or kernelcore size is larger
8231 	 * than totalpages, there is no ZONE_MOVABLE.
8232 	 */
8233 	if (!required_kernelcore || required_kernelcore >= totalpages)
8234 		goto out;
8235 
8236 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8237 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8238 
8239 restart:
8240 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8241 	kernelcore_node = required_kernelcore / usable_nodes;
8242 	for_each_node_state(nid, N_MEMORY) {
8243 		unsigned long start_pfn, end_pfn;
8244 
8245 		/*
8246 		 * Recalculate kernelcore_node if the division per node
8247 		 * now exceeds what is necessary to satisfy the requested
8248 		 * amount of memory for the kernel
8249 		 */
8250 		if (required_kernelcore < kernelcore_node)
8251 			kernelcore_node = required_kernelcore / usable_nodes;
8252 
8253 		/*
8254 		 * As the map is walked, we track how much memory is usable
8255 		 * by the kernel using kernelcore_remaining. When it is
8256 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8257 		 */
8258 		kernelcore_remaining = kernelcore_node;
8259 
8260 		/* Go through each range of PFNs within this node */
8261 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8262 			unsigned long size_pages;
8263 
8264 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8265 			if (start_pfn >= end_pfn)
8266 				continue;
8267 
8268 			/* Account for what is only usable for kernelcore */
8269 			if (start_pfn < usable_startpfn) {
8270 				unsigned long kernel_pages;
8271 				kernel_pages = min(end_pfn, usable_startpfn)
8272 								- start_pfn;
8273 
8274 				kernelcore_remaining -= min(kernel_pages,
8275 							kernelcore_remaining);
8276 				required_kernelcore -= min(kernel_pages,
8277 							required_kernelcore);
8278 
8279 				/* Continue if range is now fully accounted */
8280 				if (end_pfn <= usable_startpfn) {
8281 
8282 					/*
8283 					 * Push zone_movable_pfn to the end so
8284 					 * that if we have to rebalance
8285 					 * kernelcore across nodes, we will
8286 					 * not double account here
8287 					 */
8288 					zone_movable_pfn[nid] = end_pfn;
8289 					continue;
8290 				}
8291 				start_pfn = usable_startpfn;
8292 			}
8293 
8294 			/*
8295 			 * The usable PFN range for ZONE_MOVABLE is from
8296 			 * start_pfn->end_pfn. Calculate size_pages as the
8297 			 * number of pages used as kernelcore
8298 			 */
8299 			size_pages = end_pfn - start_pfn;
8300 			if (size_pages > kernelcore_remaining)
8301 				size_pages = kernelcore_remaining;
8302 			zone_movable_pfn[nid] = start_pfn + size_pages;
8303 
8304 			/*
8305 			 * Some kernelcore has been met, update counts and
8306 			 * break if the kernelcore for this node has been
8307 			 * satisfied
8308 			 */
8309 			required_kernelcore -= min(required_kernelcore,
8310 								size_pages);
8311 			kernelcore_remaining -= size_pages;
8312 			if (!kernelcore_remaining)
8313 				break;
8314 		}
8315 	}
8316 
8317 	/*
8318 	 * If there is still required_kernelcore, we do another pass with one
8319 	 * less node in the count. This will push zone_movable_pfn[nid] further
8320 	 * along on the nodes that still have memory until kernelcore is
8321 	 * satisfied
8322 	 */
8323 	usable_nodes--;
8324 	if (usable_nodes && required_kernelcore > usable_nodes)
8325 		goto restart;
8326 
8327 out2:
8328 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8329 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8330 		unsigned long start_pfn, end_pfn;
8331 
8332 		zone_movable_pfn[nid] =
8333 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8334 
8335 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8336 		if (zone_movable_pfn[nid] >= end_pfn)
8337 			zone_movable_pfn[nid] = 0;
8338 	}
8339 
8340 out:
8341 	/* restore the node_state */
8342 	node_states[N_MEMORY] = saved_node_state;
8343 }
8344 
8345 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)8346 static void check_for_memory(pg_data_t *pgdat, int nid)
8347 {
8348 	enum zone_type zone_type;
8349 
8350 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8351 		struct zone *zone = &pgdat->node_zones[zone_type];
8352 		if (populated_zone(zone)) {
8353 			if (IS_ENABLED(CONFIG_HIGHMEM))
8354 				node_set_state(nid, N_HIGH_MEMORY);
8355 			if (zone_type <= ZONE_NORMAL)
8356 				node_set_state(nid, N_NORMAL_MEMORY);
8357 			break;
8358 		}
8359 	}
8360 }
8361 
8362 /*
8363  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8364  * such cases we allow max_zone_pfn sorted in the descending order
8365  */
arch_has_descending_max_zone_pfns(void)8366 bool __weak arch_has_descending_max_zone_pfns(void)
8367 {
8368 	return false;
8369 }
8370 
8371 /**
8372  * free_area_init - Initialise all pg_data_t and zone data
8373  * @max_zone_pfn: an array of max PFNs for each zone
8374  *
8375  * This will call free_area_init_node() for each active node in the system.
8376  * Using the page ranges provided by memblock_set_node(), the size of each
8377  * zone in each node and their holes is calculated. If the maximum PFN
8378  * between two adjacent zones match, it is assumed that the zone is empty.
8379  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8380  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8381  * starts where the previous one ended. For example, ZONE_DMA32 starts
8382  * at arch_max_dma_pfn.
8383  */
free_area_init(unsigned long * max_zone_pfn)8384 void __init free_area_init(unsigned long *max_zone_pfn)
8385 {
8386 	unsigned long start_pfn, end_pfn;
8387 	int i, nid, zone;
8388 	bool descending;
8389 
8390 	/* Record where the zone boundaries are */
8391 	memset(arch_zone_lowest_possible_pfn, 0,
8392 				sizeof(arch_zone_lowest_possible_pfn));
8393 	memset(arch_zone_highest_possible_pfn, 0,
8394 				sizeof(arch_zone_highest_possible_pfn));
8395 
8396 	start_pfn = find_min_pfn_with_active_regions();
8397 	descending = arch_has_descending_max_zone_pfns();
8398 
8399 	for (i = 0; i < MAX_NR_ZONES; i++) {
8400 		if (descending)
8401 			zone = MAX_NR_ZONES - i - 1;
8402 		else
8403 			zone = i;
8404 
8405 		if (zone == ZONE_MOVABLE)
8406 			continue;
8407 
8408 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8409 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8410 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8411 
8412 		start_pfn = end_pfn;
8413 	}
8414 
8415 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8416 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8417 	find_zone_movable_pfns_for_nodes();
8418 
8419 	/* Print out the zone ranges */
8420 	pr_info("Zone ranges:\n");
8421 	for (i = 0; i < MAX_NR_ZONES; i++) {
8422 		if (i == ZONE_MOVABLE)
8423 			continue;
8424 		pr_info("  %-8s ", zone_names[i]);
8425 		if (arch_zone_lowest_possible_pfn[i] ==
8426 				arch_zone_highest_possible_pfn[i])
8427 			pr_cont("empty\n");
8428 		else
8429 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8430 				(u64)arch_zone_lowest_possible_pfn[i]
8431 					<< PAGE_SHIFT,
8432 				((u64)arch_zone_highest_possible_pfn[i]
8433 					<< PAGE_SHIFT) - 1);
8434 	}
8435 
8436 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8437 	pr_info("Movable zone start for each node\n");
8438 	for (i = 0; i < MAX_NUMNODES; i++) {
8439 		if (zone_movable_pfn[i])
8440 			pr_info("  Node %d: %#018Lx\n", i,
8441 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8442 	}
8443 
8444 	/*
8445 	 * Print out the early node map, and initialize the
8446 	 * subsection-map relative to active online memory ranges to
8447 	 * enable future "sub-section" extensions of the memory map.
8448 	 */
8449 	pr_info("Early memory node ranges\n");
8450 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8451 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8452 			(u64)start_pfn << PAGE_SHIFT,
8453 			((u64)end_pfn << PAGE_SHIFT) - 1);
8454 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8455 	}
8456 
8457 	/* Initialise every node */
8458 	mminit_verify_pageflags_layout();
8459 	setup_nr_node_ids();
8460 	for_each_online_node(nid) {
8461 		pg_data_t *pgdat = NODE_DATA(nid);
8462 		free_area_init_node(nid);
8463 
8464 		/* Any memory on that node */
8465 		if (pgdat->node_present_pages)
8466 			node_set_state(nid, N_MEMORY);
8467 		check_for_memory(pgdat, nid);
8468 	}
8469 
8470 	memmap_init();
8471 }
8472 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)8473 static int __init cmdline_parse_core(char *p, unsigned long *core,
8474 				     unsigned long *percent)
8475 {
8476 	unsigned long long coremem;
8477 	char *endptr;
8478 
8479 	if (!p)
8480 		return -EINVAL;
8481 
8482 	/* Value may be a percentage of total memory, otherwise bytes */
8483 	coremem = simple_strtoull(p, &endptr, 0);
8484 	if (*endptr == '%') {
8485 		/* Paranoid check for percent values greater than 100 */
8486 		WARN_ON(coremem > 100);
8487 
8488 		*percent = coremem;
8489 	} else {
8490 		coremem = memparse(p, &p);
8491 		/* Paranoid check that UL is enough for the coremem value */
8492 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8493 
8494 		*core = coremem >> PAGE_SHIFT;
8495 		*percent = 0UL;
8496 	}
8497 	return 0;
8498 }
8499 
8500 /*
8501  * kernelcore=size sets the amount of memory for use for allocations that
8502  * cannot be reclaimed or migrated.
8503  */
cmdline_parse_kernelcore(char * p)8504 static int __init cmdline_parse_kernelcore(char *p)
8505 {
8506 	/* parse kernelcore=mirror */
8507 	if (parse_option_str(p, "mirror")) {
8508 		mirrored_kernelcore = true;
8509 		return 0;
8510 	}
8511 
8512 	return cmdline_parse_core(p, &required_kernelcore,
8513 				  &required_kernelcore_percent);
8514 }
8515 
8516 /*
8517  * movablecore=size sets the amount of memory for use for allocations that
8518  * can be reclaimed or migrated.
8519  */
cmdline_parse_movablecore(char * p)8520 static int __init cmdline_parse_movablecore(char *p)
8521 {
8522 	return cmdline_parse_core(p, &required_movablecore,
8523 				  &required_movablecore_percent);
8524 }
8525 
8526 early_param("kernelcore", cmdline_parse_kernelcore);
8527 early_param("movablecore", cmdline_parse_movablecore);
8528 
adjust_managed_page_count(struct page * page,long count)8529 void adjust_managed_page_count(struct page *page, long count)
8530 {
8531 	atomic_long_add(count, &page_zone(page)->managed_pages);
8532 	totalram_pages_add(count);
8533 #ifdef CONFIG_HIGHMEM
8534 	if (PageHighMem(page))
8535 		totalhigh_pages_add(count);
8536 #endif
8537 }
8538 EXPORT_SYMBOL(adjust_managed_page_count);
8539 
free_reserved_area(void * start,void * end,int poison,const char * s)8540 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8541 {
8542 	void *pos;
8543 	unsigned long pages = 0;
8544 
8545 	start = (void *)PAGE_ALIGN((unsigned long)start);
8546 	end = (void *)((unsigned long)end & PAGE_MASK);
8547 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8548 		struct page *page = virt_to_page(pos);
8549 		void *direct_map_addr;
8550 
8551 		/*
8552 		 * 'direct_map_addr' might be different from 'pos'
8553 		 * because some architectures' virt_to_page()
8554 		 * work with aliases.  Getting the direct map
8555 		 * address ensures that we get a _writeable_
8556 		 * alias for the memset().
8557 		 */
8558 		direct_map_addr = page_address(page);
8559 		/*
8560 		 * Perform a kasan-unchecked memset() since this memory
8561 		 * has not been initialized.
8562 		 */
8563 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8564 		if ((unsigned int)poison <= 0xFF)
8565 			memset(direct_map_addr, poison, PAGE_SIZE);
8566 
8567 		free_reserved_page(page);
8568 	}
8569 
8570 	if (pages && s)
8571 		pr_info("Freeing %s memory: %ldK\n",
8572 			s, pages << (PAGE_SHIFT - 10));
8573 
8574 	return pages;
8575 }
8576 
mem_init_print_info(void)8577 void __init mem_init_print_info(void)
8578 {
8579 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8580 	unsigned long init_code_size, init_data_size;
8581 
8582 	physpages = get_num_physpages();
8583 	codesize = _etext - _stext;
8584 	datasize = _edata - _sdata;
8585 	rosize = __end_rodata - __start_rodata;
8586 	bss_size = __bss_stop - __bss_start;
8587 	init_data_size = __init_end - __init_begin;
8588 	init_code_size = _einittext - _sinittext;
8589 
8590 	/*
8591 	 * Detect special cases and adjust section sizes accordingly:
8592 	 * 1) .init.* may be embedded into .data sections
8593 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8594 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8595 	 * 3) .rodata.* may be embedded into .text or .data sections.
8596 	 */
8597 #define adj_init_size(start, end, size, pos, adj) \
8598 	do { \
8599 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8600 			size -= adj; \
8601 	} while (0)
8602 
8603 	adj_init_size(__init_begin, __init_end, init_data_size,
8604 		     _sinittext, init_code_size);
8605 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8606 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8607 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8608 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8609 
8610 #undef	adj_init_size
8611 
8612 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8613 #ifdef	CONFIG_HIGHMEM
8614 		", %luK highmem"
8615 #endif
8616 		")\n",
8617 		nr_free_pages() << (PAGE_SHIFT - 10),
8618 		physpages << (PAGE_SHIFT - 10),
8619 		codesize >> 10, datasize >> 10, rosize >> 10,
8620 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8621 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8622 		totalcma_pages << (PAGE_SHIFT - 10)
8623 #ifdef	CONFIG_HIGHMEM
8624 		, totalhigh_pages() << (PAGE_SHIFT - 10)
8625 #endif
8626 		);
8627 }
8628 
8629 /**
8630  * set_dma_reserve - set the specified number of pages reserved in the first zone
8631  * @new_dma_reserve: The number of pages to mark reserved
8632  *
8633  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8634  * In the DMA zone, a significant percentage may be consumed by kernel image
8635  * and other unfreeable allocations which can skew the watermarks badly. This
8636  * function may optionally be used to account for unfreeable pages in the
8637  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8638  * smaller per-cpu batchsize.
8639  */
set_dma_reserve(unsigned long new_dma_reserve)8640 void __init set_dma_reserve(unsigned long new_dma_reserve)
8641 {
8642 	dma_reserve = new_dma_reserve;
8643 }
8644 
page_alloc_cpu_dead(unsigned int cpu)8645 static int page_alloc_cpu_dead(unsigned int cpu)
8646 {
8647 	struct zone *zone;
8648 
8649 	lru_add_drain_cpu(cpu);
8650 	drain_pages(cpu);
8651 
8652 	/*
8653 	 * Spill the event counters of the dead processor
8654 	 * into the current processors event counters.
8655 	 * This artificially elevates the count of the current
8656 	 * processor.
8657 	 */
8658 	vm_events_fold_cpu(cpu);
8659 
8660 	/*
8661 	 * Zero the differential counters of the dead processor
8662 	 * so that the vm statistics are consistent.
8663 	 *
8664 	 * This is only okay since the processor is dead and cannot
8665 	 * race with what we are doing.
8666 	 */
8667 	cpu_vm_stats_fold(cpu);
8668 
8669 	for_each_populated_zone(zone)
8670 		zone_pcp_update(zone, 0);
8671 
8672 	return 0;
8673 }
8674 
page_alloc_cpu_online(unsigned int cpu)8675 static int page_alloc_cpu_online(unsigned int cpu)
8676 {
8677 	struct zone *zone;
8678 
8679 	for_each_populated_zone(zone)
8680 		zone_pcp_update(zone, 1);
8681 	return 0;
8682 }
8683 
8684 #ifdef CONFIG_NUMA
8685 int hashdist = HASHDIST_DEFAULT;
8686 
set_hashdist(char * str)8687 static int __init set_hashdist(char *str)
8688 {
8689 	if (!str)
8690 		return 0;
8691 	hashdist = simple_strtoul(str, &str, 0);
8692 	return 1;
8693 }
8694 __setup("hashdist=", set_hashdist);
8695 #endif
8696 
page_alloc_init(void)8697 void __init page_alloc_init(void)
8698 {
8699 	int ret;
8700 
8701 #ifdef CONFIG_NUMA
8702 	if (num_node_state(N_MEMORY) == 1)
8703 		hashdist = 0;
8704 #endif
8705 
8706 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8707 					"mm/page_alloc:pcp",
8708 					page_alloc_cpu_online,
8709 					page_alloc_cpu_dead);
8710 	WARN_ON(ret < 0);
8711 }
8712 
8713 /*
8714  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8715  *	or min_free_kbytes changes.
8716  */
calculate_totalreserve_pages(void)8717 static void calculate_totalreserve_pages(void)
8718 {
8719 	struct pglist_data *pgdat;
8720 	unsigned long reserve_pages = 0;
8721 	enum zone_type i, j;
8722 
8723 	for_each_online_pgdat(pgdat) {
8724 
8725 		pgdat->totalreserve_pages = 0;
8726 
8727 		for (i = 0; i < MAX_NR_ZONES; i++) {
8728 			struct zone *zone = pgdat->node_zones + i;
8729 			long max = 0;
8730 			unsigned long managed_pages = zone_managed_pages(zone);
8731 
8732 			/* Find valid and maximum lowmem_reserve in the zone */
8733 			for (j = i; j < MAX_NR_ZONES; j++) {
8734 				if (zone->lowmem_reserve[j] > max)
8735 					max = zone->lowmem_reserve[j];
8736 			}
8737 
8738 			/* we treat the high watermark as reserved pages. */
8739 			max += high_wmark_pages(zone);
8740 
8741 			if (max > managed_pages)
8742 				max = managed_pages;
8743 
8744 			pgdat->totalreserve_pages += max;
8745 
8746 			reserve_pages += max;
8747 		}
8748 	}
8749 	totalreserve_pages = reserve_pages;
8750 }
8751 
8752 /*
8753  * setup_per_zone_lowmem_reserve - called whenever
8754  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8755  *	has a correct pages reserved value, so an adequate number of
8756  *	pages are left in the zone after a successful __alloc_pages().
8757  */
setup_per_zone_lowmem_reserve(void)8758 static void setup_per_zone_lowmem_reserve(void)
8759 {
8760 	struct pglist_data *pgdat;
8761 	enum zone_type i, j;
8762 
8763 	for_each_online_pgdat(pgdat) {
8764 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8765 			struct zone *zone = &pgdat->node_zones[i];
8766 			int ratio = sysctl_lowmem_reserve_ratio[i];
8767 			bool clear = !ratio || !zone_managed_pages(zone);
8768 			unsigned long managed_pages = 0;
8769 
8770 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8771 				struct zone *upper_zone = &pgdat->node_zones[j];
8772 
8773 				managed_pages += zone_managed_pages(upper_zone);
8774 
8775 				if (clear)
8776 					zone->lowmem_reserve[j] = 0;
8777 				else
8778 					zone->lowmem_reserve[j] = managed_pages / ratio;
8779 			}
8780 		}
8781 	}
8782 
8783 	/* update totalreserve_pages */
8784 	calculate_totalreserve_pages();
8785 }
8786 
__setup_per_zone_wmarks(void)8787 static void __setup_per_zone_wmarks(void)
8788 {
8789 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8790 	unsigned long lowmem_pages = 0;
8791 	struct zone *zone;
8792 	unsigned long flags;
8793 
8794 	/* Calculate total number of !ZONE_HIGHMEM pages */
8795 	for_each_zone(zone) {
8796 		if (!is_highmem(zone))
8797 			lowmem_pages += zone_managed_pages(zone);
8798 	}
8799 
8800 	for_each_zone(zone) {
8801 		u64 tmp;
8802 
8803 		spin_lock_irqsave(&zone->lock, flags);
8804 		tmp = (u64)pages_min * zone_managed_pages(zone);
8805 		do_div(tmp, lowmem_pages);
8806 		if (is_highmem(zone)) {
8807 			/*
8808 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8809 			 * need highmem pages, so cap pages_min to a small
8810 			 * value here.
8811 			 *
8812 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8813 			 * deltas control async page reclaim, and so should
8814 			 * not be capped for highmem.
8815 			 */
8816 			unsigned long min_pages;
8817 
8818 			min_pages = zone_managed_pages(zone) / 1024;
8819 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8820 			zone->_watermark[WMARK_MIN] = min_pages;
8821 		} else {
8822 			/*
8823 			 * If it's a lowmem zone, reserve a number of pages
8824 			 * proportionate to the zone's size.
8825 			 */
8826 			zone->_watermark[WMARK_MIN] = tmp;
8827 		}
8828 
8829 		/*
8830 		 * Set the kswapd watermarks distance according to the
8831 		 * scale factor in proportion to available memory, but
8832 		 * ensure a minimum size on small systems.
8833 		 */
8834 		tmp = max_t(u64, tmp >> 2,
8835 			    mult_frac(zone_managed_pages(zone),
8836 				      watermark_scale_factor, 10000));
8837 
8838 		zone->watermark_boost = 0;
8839 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8840 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8841 
8842 		spin_unlock_irqrestore(&zone->lock, flags);
8843 	}
8844 
8845 	/* update totalreserve_pages */
8846 	calculate_totalreserve_pages();
8847 }
8848 
8849 /**
8850  * setup_per_zone_wmarks - called when min_free_kbytes changes
8851  * or when memory is hot-{added|removed}
8852  *
8853  * Ensures that the watermark[min,low,high] values for each zone are set
8854  * correctly with respect to min_free_kbytes.
8855  */
setup_per_zone_wmarks(void)8856 void setup_per_zone_wmarks(void)
8857 {
8858 	struct zone *zone;
8859 	static DEFINE_SPINLOCK(lock);
8860 
8861 	spin_lock(&lock);
8862 	__setup_per_zone_wmarks();
8863 	spin_unlock(&lock);
8864 
8865 	/*
8866 	 * The watermark size have changed so update the pcpu batch
8867 	 * and high limits or the limits may be inappropriate.
8868 	 */
8869 	for_each_zone(zone)
8870 		zone_pcp_update(zone, 0);
8871 }
8872 
8873 /*
8874  * Initialise min_free_kbytes.
8875  *
8876  * For small machines we want it small (128k min).  For large machines
8877  * we want it large (256MB max).  But it is not linear, because network
8878  * bandwidth does not increase linearly with machine size.  We use
8879  *
8880  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8881  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8882  *
8883  * which yields
8884  *
8885  * 16MB:	512k
8886  * 32MB:	724k
8887  * 64MB:	1024k
8888  * 128MB:	1448k
8889  * 256MB:	2048k
8890  * 512MB:	2896k
8891  * 1024MB:	4096k
8892  * 2048MB:	5792k
8893  * 4096MB:	8192k
8894  * 8192MB:	11584k
8895  * 16384MB:	16384k
8896  */
calculate_min_free_kbytes(void)8897 void calculate_min_free_kbytes(void)
8898 {
8899 	unsigned long lowmem_kbytes;
8900 	int new_min_free_kbytes;
8901 
8902 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8903 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8904 
8905 	if (new_min_free_kbytes > user_min_free_kbytes) {
8906 		min_free_kbytes = new_min_free_kbytes;
8907 		if (min_free_kbytes < 128)
8908 			min_free_kbytes = 128;
8909 		if (min_free_kbytes > 262144)
8910 			min_free_kbytes = 262144;
8911 	} else {
8912 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8913 				new_min_free_kbytes, user_min_free_kbytes);
8914 	}
8915 }
8916 
init_per_zone_wmark_min(void)8917 int __meminit init_per_zone_wmark_min(void)
8918 {
8919 	calculate_min_free_kbytes();
8920 	setup_per_zone_wmarks();
8921 	refresh_zone_stat_thresholds();
8922 	setup_per_zone_lowmem_reserve();
8923 
8924 #ifdef CONFIG_NUMA
8925 	setup_min_unmapped_ratio();
8926 	setup_min_slab_ratio();
8927 #endif
8928 
8929 	khugepaged_min_free_kbytes_update();
8930 
8931 	return 0;
8932 }
postcore_initcall(init_per_zone_wmark_min)8933 postcore_initcall(init_per_zone_wmark_min)
8934 
8935 /*
8936  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8937  *	that we can call two helper functions whenever min_free_kbytes
8938  *	changes.
8939  */
8940 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8941 		void *buffer, size_t *length, loff_t *ppos)
8942 {
8943 	int rc;
8944 
8945 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8946 	if (rc)
8947 		return rc;
8948 
8949 	if (write) {
8950 		user_min_free_kbytes = min_free_kbytes;
8951 		setup_per_zone_wmarks();
8952 	}
8953 	return 0;
8954 }
8955 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8956 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8957 		void *buffer, size_t *length, loff_t *ppos)
8958 {
8959 	int rc;
8960 
8961 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8962 	if (rc)
8963 		return rc;
8964 
8965 	if (write)
8966 		setup_per_zone_wmarks();
8967 
8968 	return 0;
8969 }
8970 
8971 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8972 static void setup_min_unmapped_ratio(void)
8973 {
8974 	pg_data_t *pgdat;
8975 	struct zone *zone;
8976 
8977 	for_each_online_pgdat(pgdat)
8978 		pgdat->min_unmapped_pages = 0;
8979 
8980 	for_each_zone(zone)
8981 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8982 						         sysctl_min_unmapped_ratio) / 100;
8983 }
8984 
8985 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8986 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8987 		void *buffer, size_t *length, loff_t *ppos)
8988 {
8989 	int rc;
8990 
8991 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8992 	if (rc)
8993 		return rc;
8994 
8995 	setup_min_unmapped_ratio();
8996 
8997 	return 0;
8998 }
8999 
setup_min_slab_ratio(void)9000 static void setup_min_slab_ratio(void)
9001 {
9002 	pg_data_t *pgdat;
9003 	struct zone *zone;
9004 
9005 	for_each_online_pgdat(pgdat)
9006 		pgdat->min_slab_pages = 0;
9007 
9008 	for_each_zone(zone)
9009 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
9010 						     sysctl_min_slab_ratio) / 100;
9011 }
9012 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)9013 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
9014 		void *buffer, size_t *length, loff_t *ppos)
9015 {
9016 	int rc;
9017 
9018 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9019 	if (rc)
9020 		return rc;
9021 
9022 	setup_min_slab_ratio();
9023 
9024 	return 0;
9025 }
9026 #endif
9027 
9028 /*
9029  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
9030  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
9031  *	whenever sysctl_lowmem_reserve_ratio changes.
9032  *
9033  * The reserve ratio obviously has absolutely no relation with the
9034  * minimum watermarks. The lowmem reserve ratio can only make sense
9035  * if in function of the boot time zone sizes.
9036  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)9037 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
9038 		void *buffer, size_t *length, loff_t *ppos)
9039 {
9040 	int i;
9041 
9042 	proc_dointvec_minmax(table, write, buffer, length, ppos);
9043 
9044 	for (i = 0; i < MAX_NR_ZONES; i++) {
9045 		if (sysctl_lowmem_reserve_ratio[i] < 1)
9046 			sysctl_lowmem_reserve_ratio[i] = 0;
9047 	}
9048 
9049 	setup_per_zone_lowmem_reserve();
9050 	return 0;
9051 }
9052 
9053 /*
9054  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9055  * cpu. It is the fraction of total pages in each zone that a hot per cpu
9056  * pagelist can have before it gets flushed back to buddy allocator.
9057  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)9058 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9059 		int write, void *buffer, size_t *length, loff_t *ppos)
9060 {
9061 	struct zone *zone;
9062 	int old_percpu_pagelist_high_fraction;
9063 	int ret;
9064 
9065 	mutex_lock(&pcp_batch_high_lock);
9066 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9067 
9068 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9069 	if (!write || ret < 0)
9070 		goto out;
9071 
9072 	/* Sanity checking to avoid pcp imbalance */
9073 	if (percpu_pagelist_high_fraction &&
9074 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9075 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9076 		ret = -EINVAL;
9077 		goto out;
9078 	}
9079 
9080 	/* No change? */
9081 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9082 		goto out;
9083 
9084 	for_each_populated_zone(zone)
9085 		zone_set_pageset_high_and_batch(zone, 0);
9086 out:
9087 	mutex_unlock(&pcp_batch_high_lock);
9088 	return ret;
9089 }
9090 
9091 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9092 /*
9093  * Returns the number of pages that arch has reserved but
9094  * is not known to alloc_large_system_hash().
9095  */
arch_reserved_kernel_pages(void)9096 static unsigned long __init arch_reserved_kernel_pages(void)
9097 {
9098 	return 0;
9099 }
9100 #endif
9101 
9102 /*
9103  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9104  * machines. As memory size is increased the scale is also increased but at
9105  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9106  * quadruples the scale is increased by one, which means the size of hash table
9107  * only doubles, instead of quadrupling as well.
9108  * Because 32-bit systems cannot have large physical memory, where this scaling
9109  * makes sense, it is disabled on such platforms.
9110  */
9111 #if __BITS_PER_LONG > 32
9112 #define ADAPT_SCALE_BASE	(64ul << 30)
9113 #define ADAPT_SCALE_SHIFT	2
9114 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9115 #endif
9116 
9117 /*
9118  * allocate a large system hash table from bootmem
9119  * - it is assumed that the hash table must contain an exact power-of-2
9120  *   quantity of entries
9121  * - limit is the number of hash buckets, not the total allocation size
9122  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)9123 void *__init alloc_large_system_hash(const char *tablename,
9124 				     unsigned long bucketsize,
9125 				     unsigned long numentries,
9126 				     int scale,
9127 				     int flags,
9128 				     unsigned int *_hash_shift,
9129 				     unsigned int *_hash_mask,
9130 				     unsigned long low_limit,
9131 				     unsigned long high_limit)
9132 {
9133 	unsigned long long max = high_limit;
9134 	unsigned long log2qty, size;
9135 	void *table = NULL;
9136 	gfp_t gfp_flags;
9137 	bool virt;
9138 	bool huge;
9139 
9140 	/* allow the kernel cmdline to have a say */
9141 	if (!numentries) {
9142 		/* round applicable memory size up to nearest megabyte */
9143 		numentries = nr_kernel_pages;
9144 		numentries -= arch_reserved_kernel_pages();
9145 
9146 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9147 		if (PAGE_SHIFT < 20)
9148 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9149 
9150 #if __BITS_PER_LONG > 32
9151 		if (!high_limit) {
9152 			unsigned long adapt;
9153 
9154 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9155 			     adapt <<= ADAPT_SCALE_SHIFT)
9156 				scale++;
9157 		}
9158 #endif
9159 
9160 		/* limit to 1 bucket per 2^scale bytes of low memory */
9161 		if (scale > PAGE_SHIFT)
9162 			numentries >>= (scale - PAGE_SHIFT);
9163 		else
9164 			numentries <<= (PAGE_SHIFT - scale);
9165 
9166 		/* Make sure we've got at least a 0-order allocation.. */
9167 		if (unlikely(flags & HASH_SMALL)) {
9168 			/* Makes no sense without HASH_EARLY */
9169 			WARN_ON(!(flags & HASH_EARLY));
9170 			if (!(numentries >> *_hash_shift)) {
9171 				numentries = 1UL << *_hash_shift;
9172 				BUG_ON(!numentries);
9173 			}
9174 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9175 			numentries = PAGE_SIZE / bucketsize;
9176 	}
9177 	numentries = roundup_pow_of_two(numentries);
9178 
9179 	/* limit allocation size to 1/16 total memory by default */
9180 	if (max == 0) {
9181 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9182 		do_div(max, bucketsize);
9183 	}
9184 	max = min(max, 0x80000000ULL);
9185 
9186 	if (numentries < low_limit)
9187 		numentries = low_limit;
9188 	if (numentries > max)
9189 		numentries = max;
9190 
9191 	log2qty = ilog2(numentries);
9192 
9193 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9194 	do {
9195 		virt = false;
9196 		size = bucketsize << log2qty;
9197 		if (flags & HASH_EARLY) {
9198 			if (flags & HASH_ZERO)
9199 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9200 			else
9201 				table = memblock_alloc_raw(size,
9202 							   SMP_CACHE_BYTES);
9203 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9204 			table = __vmalloc(size, gfp_flags);
9205 			virt = true;
9206 			huge = is_vm_area_hugepages(table);
9207 		} else {
9208 			/*
9209 			 * If bucketsize is not a power-of-two, we may free
9210 			 * some pages at the end of hash table which
9211 			 * alloc_pages_exact() automatically does
9212 			 */
9213 			table = alloc_pages_exact(size, gfp_flags);
9214 			kmemleak_alloc(table, size, 1, gfp_flags);
9215 		}
9216 	} while (!table && size > PAGE_SIZE && --log2qty);
9217 
9218 	if (!table)
9219 		panic("Failed to allocate %s hash table\n", tablename);
9220 
9221 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9222 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9223 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9224 
9225 	if (_hash_shift)
9226 		*_hash_shift = log2qty;
9227 	if (_hash_mask)
9228 		*_hash_mask = (1 << log2qty) - 1;
9229 
9230 	return table;
9231 }
9232 
9233 /*
9234  * This function checks whether pageblock includes unmovable pages or not.
9235  *
9236  * PageLRU check without isolation or lru_lock could race so that
9237  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
9238  * check without lock_page also may miss some movable non-lru pages at
9239  * race condition. So you can't expect this function should be exact.
9240  *
9241  * Returns a page without holding a reference. If the caller wants to
9242  * dereference that page (e.g., dumping), it has to make sure that it
9243  * cannot get removed (e.g., via memory unplug) concurrently.
9244  *
9245  */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)9246 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
9247 				 int migratetype, int flags)
9248 {
9249 	unsigned long iter = 0;
9250 	unsigned long pfn = page_to_pfn(page);
9251 	unsigned long offset = pfn % pageblock_nr_pages;
9252 
9253 	if (is_migrate_cma_page(page)) {
9254 		/*
9255 		 * CMA allocations (alloc_contig_range) really need to mark
9256 		 * isolate CMA pageblocks even when they are not movable in fact
9257 		 * so consider them movable here.
9258 		 */
9259 		if (is_migrate_cma(migratetype))
9260 			return NULL;
9261 
9262 		return page;
9263 	}
9264 
9265 	for (; iter < pageblock_nr_pages - offset; iter++) {
9266 		page = pfn_to_page(pfn + iter);
9267 
9268 		/*
9269 		 * Both, bootmem allocations and memory holes are marked
9270 		 * PG_reserved and are unmovable. We can even have unmovable
9271 		 * allocations inside ZONE_MOVABLE, for example when
9272 		 * specifying "movablecore".
9273 		 */
9274 		if (PageReserved(page))
9275 			return page;
9276 
9277 		/*
9278 		 * If the zone is movable and we have ruled out all reserved
9279 		 * pages then it should be reasonably safe to assume the rest
9280 		 * is movable.
9281 		 */
9282 		if (zone_idx(zone) == ZONE_MOVABLE)
9283 			continue;
9284 
9285 		/*
9286 		 * Hugepages are not in LRU lists, but they're movable.
9287 		 * THPs are on the LRU, but need to be counted as #small pages.
9288 		 * We need not scan over tail pages because we don't
9289 		 * handle each tail page individually in migration.
9290 		 */
9291 		if (PageHuge(page) || PageTransCompound(page)) {
9292 			struct page *head = compound_head(page);
9293 			unsigned int skip_pages;
9294 
9295 			if (PageHuge(page)) {
9296 				if (!hugepage_migration_supported(page_hstate(head)))
9297 					return page;
9298 			} else if (!PageLRU(head) && !__PageMovable(head)) {
9299 				return page;
9300 			}
9301 
9302 			skip_pages = compound_nr(head) - (page - head);
9303 			iter += skip_pages - 1;
9304 			continue;
9305 		}
9306 
9307 		/*
9308 		 * We can't use page_count without pin a page
9309 		 * because another CPU can free compound page.
9310 		 * This check already skips compound tails of THP
9311 		 * because their page->_refcount is zero at all time.
9312 		 */
9313 		if (!page_ref_count(page)) {
9314 			if (PageBuddy(page))
9315 				iter += (1 << buddy_order(page)) - 1;
9316 			continue;
9317 		}
9318 
9319 		/*
9320 		 * The HWPoisoned page may be not in buddy system, and
9321 		 * page_count() is not 0.
9322 		 */
9323 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9324 			continue;
9325 
9326 		/*
9327 		 * We treat all PageOffline() pages as movable when offlining
9328 		 * to give drivers a chance to decrement their reference count
9329 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
9330 		 * can be offlined as there are no direct references anymore.
9331 		 * For actually unmovable PageOffline() where the driver does
9332 		 * not support this, we will fail later when trying to actually
9333 		 * move these pages that still have a reference count > 0.
9334 		 * (false negatives in this function only)
9335 		 */
9336 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9337 			continue;
9338 
9339 		if (__PageMovable(page) || PageLRU(page))
9340 			continue;
9341 
9342 		/*
9343 		 * If there are RECLAIMABLE pages, we need to check
9344 		 * it.  But now, memory offline itself doesn't call
9345 		 * shrink_node_slabs() and it still to be fixed.
9346 		 */
9347 		return page;
9348 	}
9349 	return NULL;
9350 }
9351 
9352 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)9353 static unsigned long pfn_max_align_down(unsigned long pfn)
9354 {
9355 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
9356 			     pageblock_nr_pages) - 1);
9357 }
9358 
pfn_max_align_up(unsigned long pfn)9359 static unsigned long pfn_max_align_up(unsigned long pfn)
9360 {
9361 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
9362 				pageblock_nr_pages));
9363 }
9364 
9365 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9366 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9367 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)9368 static void alloc_contig_dump_pages(struct list_head *page_list)
9369 {
9370 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9371 
9372 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9373 		struct page *page;
9374 
9375 		dump_stack();
9376 		list_for_each_entry(page, page_list, lru)
9377 			dump_page(page, "migration failure");
9378 	}
9379 }
9380 #else
alloc_contig_dump_pages(struct list_head * page_list)9381 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9382 {
9383 }
9384 #endif
9385 
9386 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)9387 static int __alloc_contig_migrate_range(struct compact_control *cc,
9388 					unsigned long start, unsigned long end)
9389 {
9390 	/* This function is based on compact_zone() from compaction.c. */
9391 	unsigned int nr_reclaimed;
9392 	unsigned long pfn = start;
9393 	unsigned int tries = 0;
9394 	int ret = 0;
9395 	struct migration_target_control mtc = {
9396 		.nid = zone_to_nid(cc->zone),
9397 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9398 	};
9399 
9400 	lru_cache_disable();
9401 
9402 	while (pfn < end || !list_empty(&cc->migratepages)) {
9403 		if (fatal_signal_pending(current)) {
9404 			ret = -EINTR;
9405 			break;
9406 		}
9407 
9408 		if (list_empty(&cc->migratepages)) {
9409 			cc->nr_migratepages = 0;
9410 			ret = isolate_migratepages_range(cc, pfn, end);
9411 			if (ret && ret != -EAGAIN)
9412 				break;
9413 			pfn = cc->migrate_pfn;
9414 			tries = 0;
9415 		} else if (++tries == 5) {
9416 			ret = -EBUSY;
9417 			break;
9418 		}
9419 
9420 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9421 							&cc->migratepages);
9422 		cc->nr_migratepages -= nr_reclaimed;
9423 
9424 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9425 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9426 
9427 		/*
9428 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9429 		 * to retry again over this error, so do the same here.
9430 		 */
9431 		if (ret == -ENOMEM)
9432 			break;
9433 	}
9434 
9435 	lru_cache_enable();
9436 	if (ret < 0) {
9437 		if (ret == -EBUSY) {
9438 			struct page *page;
9439 
9440 			alloc_contig_dump_pages(&cc->migratepages);
9441 			list_for_each_entry(page, &cc->migratepages, lru) {
9442 				/* The page will be freed by putback_movable_pages soon */
9443 				if (page_count(page) == 1)
9444 					continue;
9445 				page_pinner_failure_detect(page);
9446 			}
9447 		}
9448 		putback_movable_pages(&cc->migratepages);
9449 		return ret;
9450 	}
9451 	return 0;
9452 }
9453 
9454 /**
9455  * alloc_contig_range() -- tries to allocate given range of pages
9456  * @start:	start PFN to allocate
9457  * @end:	one-past-the-last PFN to allocate
9458  * @migratetype:	migratetype of the underlying pageblocks (either
9459  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9460  *			in range must have the same migratetype and it must
9461  *			be either of the two.
9462  * @gfp_mask:	GFP mask to use during compaction
9463  *
9464  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9465  * aligned.  The PFN range must belong to a single zone.
9466  *
9467  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9468  * pageblocks in the range.  Once isolated, the pageblocks should not
9469  * be modified by others.
9470  *
9471  * Return: zero on success or negative error code.  On success all
9472  * pages which PFN is in [start, end) are allocated for the caller and
9473  * need to be freed with free_contig_range().
9474  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)9475 int alloc_contig_range(unsigned long start, unsigned long end,
9476 		       unsigned migratetype, gfp_t gfp_mask)
9477 {
9478 	unsigned long outer_start, outer_end;
9479 	unsigned int order;
9480 	int ret = 0;
9481 	bool skip_drain_all_pages = false;
9482 
9483 	struct compact_control cc = {
9484 		.nr_migratepages = 0,
9485 		.order = -1,
9486 		.zone = page_zone(pfn_to_page(start)),
9487 		.mode = MIGRATE_SYNC,
9488 		.ignore_skip_hint = true,
9489 		.no_set_skip_hint = true,
9490 		.gfp_mask = current_gfp_context(gfp_mask),
9491 		.alloc_contig = true,
9492 	};
9493 	INIT_LIST_HEAD(&cc.migratepages);
9494 
9495 	/*
9496 	 * What we do here is we mark all pageblocks in range as
9497 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9498 	 * have different sizes, and due to the way page allocator
9499 	 * work, we align the range to biggest of the two pages so
9500 	 * that page allocator won't try to merge buddies from
9501 	 * different pageblocks and change MIGRATE_ISOLATE to some
9502 	 * other migration type.
9503 	 *
9504 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9505 	 * migrate the pages from an unaligned range (ie. pages that
9506 	 * we are interested in).  This will put all the pages in
9507 	 * range back to page allocator as MIGRATE_ISOLATE.
9508 	 *
9509 	 * When this is done, we take the pages in range from page
9510 	 * allocator removing them from the buddy system.  This way
9511 	 * page allocator will never consider using them.
9512 	 *
9513 	 * This lets us mark the pageblocks back as
9514 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9515 	 * aligned range but not in the unaligned, original range are
9516 	 * put back to page allocator so that buddy can use them.
9517 	 */
9518 
9519 	ret = start_isolate_page_range(pfn_max_align_down(start),
9520 				       pfn_max_align_up(end), migratetype, 0);
9521 	if (ret)
9522 		return ret;
9523 
9524 	trace_android_vh_cma_drain_all_pages_bypass(migratetype,
9525 						&skip_drain_all_pages);
9526 	if (!skip_drain_all_pages)
9527 		drain_all_pages(cc.zone);
9528 
9529 	/*
9530 	 * In case of -EBUSY, we'd like to know which page causes problem.
9531 	 * So, just fall through. test_pages_isolated() has a tracepoint
9532 	 * which will report the busy page.
9533 	 *
9534 	 * It is possible that busy pages could become available before
9535 	 * the call to test_pages_isolated, and the range will actually be
9536 	 * allocated.  So, if we fall through be sure to clear ret so that
9537 	 * -EBUSY is not accidentally used or returned to caller.
9538 	 */
9539 	ret = __alloc_contig_migrate_range(&cc, start, end);
9540 	if (ret && ret != -EBUSY)
9541 		goto done;
9542 	ret = 0;
9543 
9544 	/*
9545 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9546 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9547 	 * more, all pages in [start, end) are free in page allocator.
9548 	 * What we are going to do is to allocate all pages from
9549 	 * [start, end) (that is remove them from page allocator).
9550 	 *
9551 	 * The only problem is that pages at the beginning and at the
9552 	 * end of interesting range may be not aligned with pages that
9553 	 * page allocator holds, ie. they can be part of higher order
9554 	 * pages.  Because of this, we reserve the bigger range and
9555 	 * once this is done free the pages we are not interested in.
9556 	 *
9557 	 * We don't have to hold zone->lock here because the pages are
9558 	 * isolated thus they won't get removed from buddy.
9559 	 */
9560 
9561 	order = 0;
9562 	outer_start = start;
9563 	while (!PageBuddy(pfn_to_page(outer_start))) {
9564 		if (++order >= MAX_ORDER) {
9565 			outer_start = start;
9566 			break;
9567 		}
9568 		outer_start &= ~0UL << order;
9569 	}
9570 
9571 	if (outer_start != start) {
9572 		order = buddy_order(pfn_to_page(outer_start));
9573 
9574 		/*
9575 		 * outer_start page could be small order buddy page and
9576 		 * it doesn't include start page. Adjust outer_start
9577 		 * in this case to report failed page properly
9578 		 * on tracepoint in test_pages_isolated()
9579 		 */
9580 		if (outer_start + (1UL << order) <= start)
9581 			outer_start = start;
9582 	}
9583 
9584 	/* Make sure the range is really isolated. */
9585 	if (test_pages_isolated(outer_start, end, 0)) {
9586 		ret = -EBUSY;
9587 		goto done;
9588 	}
9589 
9590 	/* Grab isolated pages from freelists. */
9591 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9592 	if (!outer_end) {
9593 		ret = -EBUSY;
9594 		goto done;
9595 	}
9596 
9597 	/* Free head and tail (if any) */
9598 	if (start != outer_start)
9599 		free_contig_range(outer_start, start - outer_start);
9600 	if (end != outer_end)
9601 		free_contig_range(end, outer_end - end);
9602 
9603 done:
9604 	undo_isolate_page_range(pfn_max_align_down(start),
9605 				pfn_max_align_up(end), migratetype);
9606 	return ret;
9607 }
9608 EXPORT_SYMBOL(alloc_contig_range);
9609 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)9610 static int __alloc_contig_pages(unsigned long start_pfn,
9611 				unsigned long nr_pages, gfp_t gfp_mask)
9612 {
9613 	unsigned long end_pfn = start_pfn + nr_pages;
9614 
9615 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9616 				  gfp_mask);
9617 }
9618 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)9619 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9620 				   unsigned long nr_pages)
9621 {
9622 	unsigned long i, end_pfn = start_pfn + nr_pages;
9623 	struct page *page;
9624 
9625 	for (i = start_pfn; i < end_pfn; i++) {
9626 		page = pfn_to_online_page(i);
9627 		if (!page)
9628 			return false;
9629 
9630 		if (page_zone(page) != z)
9631 			return false;
9632 
9633 		if (PageReserved(page))
9634 			return false;
9635 
9636 		if (PageHuge(page))
9637 			return false;
9638 	}
9639 	return true;
9640 }
9641 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9642 static bool zone_spans_last_pfn(const struct zone *zone,
9643 				unsigned long start_pfn, unsigned long nr_pages)
9644 {
9645 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9646 
9647 	return zone_spans_pfn(zone, last_pfn);
9648 }
9649 
9650 /**
9651  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9652  * @nr_pages:	Number of contiguous pages to allocate
9653  * @gfp_mask:	GFP mask to limit search and used during compaction
9654  * @nid:	Target node
9655  * @nodemask:	Mask for other possible nodes
9656  *
9657  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9658  * on an applicable zonelist to find a contiguous pfn range which can then be
9659  * tried for allocation with alloc_contig_range(). This routine is intended
9660  * for allocation requests which can not be fulfilled with the buddy allocator.
9661  *
9662  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9663  * power of two then the alignment is guaranteed to be to the given nr_pages
9664  * (e.g. 1GB request would be aligned to 1GB).
9665  *
9666  * Allocated pages can be freed with free_contig_range() or by manually calling
9667  * __free_page() on each allocated page.
9668  *
9669  * Return: pointer to contiguous pages on success, or NULL if not successful.
9670  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9671 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9672 				int nid, nodemask_t *nodemask)
9673 {
9674 	unsigned long ret, pfn, flags;
9675 	struct zonelist *zonelist;
9676 	struct zone *zone;
9677 	struct zoneref *z;
9678 
9679 	zonelist = node_zonelist(nid, gfp_mask);
9680 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9681 					gfp_zone(gfp_mask), nodemask) {
9682 		spin_lock_irqsave(&zone->lock, flags);
9683 
9684 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9685 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9686 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9687 				/*
9688 				 * We release the zone lock here because
9689 				 * alloc_contig_range() will also lock the zone
9690 				 * at some point. If there's an allocation
9691 				 * spinning on this lock, it may win the race
9692 				 * and cause alloc_contig_range() to fail...
9693 				 */
9694 				spin_unlock_irqrestore(&zone->lock, flags);
9695 				ret = __alloc_contig_pages(pfn, nr_pages,
9696 							gfp_mask);
9697 				if (!ret)
9698 					return pfn_to_page(pfn);
9699 				spin_lock_irqsave(&zone->lock, flags);
9700 			}
9701 			pfn += nr_pages;
9702 		}
9703 		spin_unlock_irqrestore(&zone->lock, flags);
9704 	}
9705 	return NULL;
9706 }
9707 #endif /* CONFIG_CONTIG_ALLOC */
9708 
free_contig_range(unsigned long pfn,unsigned long nr_pages)9709 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9710 {
9711 	unsigned long count = 0;
9712 
9713 	for (; nr_pages--; pfn++) {
9714 		struct page *page = pfn_to_page(pfn);
9715 
9716 		count += page_count(page) != 1;
9717 		__free_page(page);
9718 	}
9719 	WARN(count != 0, "%lu pages are still in use!\n", count);
9720 }
9721 EXPORT_SYMBOL(free_contig_range);
9722 
9723 /*
9724  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9725  * page high values need to be recalculated.
9726  */
zone_pcp_update(struct zone * zone,int cpu_online)9727 void zone_pcp_update(struct zone *zone, int cpu_online)
9728 {
9729 	mutex_lock(&pcp_batch_high_lock);
9730 	zone_set_pageset_high_and_batch(zone, cpu_online);
9731 	mutex_unlock(&pcp_batch_high_lock);
9732 }
9733 
9734 /*
9735  * Effectively disable pcplists for the zone by setting the high limit to 0
9736  * and draining all cpus. A concurrent page freeing on another CPU that's about
9737  * to put the page on pcplist will either finish before the drain and the page
9738  * will be drained, or observe the new high limit and skip the pcplist.
9739  *
9740  * Must be paired with a call to zone_pcp_enable().
9741  */
zone_pcp_disable(struct zone * zone)9742 void zone_pcp_disable(struct zone *zone)
9743 {
9744 	mutex_lock(&pcp_batch_high_lock);
9745 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9746 	__drain_all_pages(zone, true);
9747 }
9748 
zone_pcp_enable(struct zone * zone)9749 void zone_pcp_enable(struct zone *zone)
9750 {
9751 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9752 	mutex_unlock(&pcp_batch_high_lock);
9753 }
9754 
zone_pcp_reset(struct zone * zone)9755 void zone_pcp_reset(struct zone *zone)
9756 {
9757 	int cpu;
9758 	struct per_cpu_zonestat *pzstats;
9759 
9760 	if (zone_per_cpu_pageset(zone) != &boot_pageset) {
9761 		for_each_online_cpu(cpu) {
9762 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9763 			drain_zonestat(zone, pzstats);
9764 		}
9765 		free_percpu(zone->per_cpu_pageset);
9766 		free_percpu(zone->per_cpu_zonestats);
9767 		zone->per_cpu_pageset = (struct per_cpu_pages __percpu *)&boot_pageset;
9768 		zone->per_cpu_zonestats = &boot_zonestats;
9769 	}
9770 }
9771 
9772 #ifdef CONFIG_MEMORY_HOTREMOVE
9773 /*
9774  * All pages in the range must be in a single zone, must not contain holes,
9775  * must span full sections, and must be isolated before calling this function.
9776  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9777 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9778 {
9779 	unsigned long pfn = start_pfn;
9780 	struct page *page;
9781 	struct zone *zone;
9782 	unsigned int order;
9783 	unsigned long flags;
9784 
9785 	offline_mem_sections(pfn, end_pfn);
9786 	zone = page_zone(pfn_to_page(pfn));
9787 	spin_lock_irqsave(&zone->lock, flags);
9788 	while (pfn < end_pfn) {
9789 		page = pfn_to_page(pfn);
9790 		/*
9791 		 * The HWPoisoned page may be not in buddy system, and
9792 		 * page_count() is not 0.
9793 		 */
9794 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9795 			pfn++;
9796 			continue;
9797 		}
9798 		/*
9799 		 * At this point all remaining PageOffline() pages have a
9800 		 * reference count of 0 and can simply be skipped.
9801 		 */
9802 		if (PageOffline(page)) {
9803 			BUG_ON(page_count(page));
9804 			BUG_ON(PageBuddy(page));
9805 			pfn++;
9806 			continue;
9807 		}
9808 
9809 		BUG_ON(page_count(page));
9810 		BUG_ON(!PageBuddy(page));
9811 		order = buddy_order(page);
9812 		del_page_from_free_list(page, zone, order);
9813 		pfn += (1 << order);
9814 	}
9815 	spin_unlock_irqrestore(&zone->lock, flags);
9816 }
9817 #endif
9818 
is_free_buddy_page(struct page * page)9819 bool is_free_buddy_page(struct page *page)
9820 {
9821 	struct zone *zone = page_zone(page);
9822 	unsigned long pfn = page_to_pfn(page);
9823 	unsigned long flags;
9824 	unsigned int order;
9825 
9826 	spin_lock_irqsave(&zone->lock, flags);
9827 	for (order = 0; order < MAX_ORDER; order++) {
9828 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9829 
9830 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9831 			break;
9832 	}
9833 	spin_unlock_irqrestore(&zone->lock, flags);
9834 
9835 	return order < MAX_ORDER;
9836 }
9837 
9838 #ifdef CONFIG_MEMORY_FAILURE
9839 /*
9840  * Break down a higher-order page in sub-pages, and keep our target out of
9841  * buddy allocator.
9842  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9843 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9844 				   struct page *target, int low, int high,
9845 				   int migratetype)
9846 {
9847 	unsigned long size = 1 << high;
9848 	struct page *current_buddy, *next_page;
9849 
9850 	while (high > low) {
9851 		high--;
9852 		size >>= 1;
9853 
9854 		if (target >= &page[size]) {
9855 			next_page = page + size;
9856 			current_buddy = page;
9857 		} else {
9858 			next_page = page;
9859 			current_buddy = page + size;
9860 		}
9861 		page = next_page;
9862 
9863 		if (set_page_guard(zone, current_buddy, high, migratetype))
9864 			continue;
9865 
9866 		if (current_buddy != target) {
9867 			add_to_free_list(current_buddy, zone, high, migratetype);
9868 			set_buddy_order(current_buddy, high);
9869 		}
9870 	}
9871 }
9872 
9873 /*
9874  * Take a page that will be marked as poisoned off the buddy allocator.
9875  */
take_page_off_buddy(struct page * page)9876 bool take_page_off_buddy(struct page *page)
9877 {
9878 	struct zone *zone = page_zone(page);
9879 	unsigned long pfn = page_to_pfn(page);
9880 	unsigned long flags;
9881 	unsigned int order;
9882 	bool ret = false;
9883 
9884 	spin_lock_irqsave(&zone->lock, flags);
9885 	for (order = 0; order < MAX_ORDER; order++) {
9886 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9887 		int page_order = buddy_order(page_head);
9888 
9889 		if (PageBuddy(page_head) && page_order >= order) {
9890 			unsigned long pfn_head = page_to_pfn(page_head);
9891 			int migratetype = get_pfnblock_migratetype(page_head,
9892 								   pfn_head);
9893 
9894 			del_page_from_free_list(page_head, zone, page_order);
9895 			break_down_buddy_pages(zone, page_head, page, 0,
9896 						page_order, migratetype);
9897 			if (!is_migrate_isolate(migratetype))
9898 				__mod_zone_freepage_state(zone, -1, migratetype);
9899 			ret = true;
9900 			break;
9901 		}
9902 		if (page_count(page_head) > 0)
9903 			break;
9904 	}
9905 	spin_unlock_irqrestore(&zone->lock, flags);
9906 	return ret;
9907 }
9908 #endif
9909 
9910 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9911 bool has_managed_dma(void)
9912 {
9913 	struct pglist_data *pgdat;
9914 
9915 	for_each_online_pgdat(pgdat) {
9916 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9917 
9918 		if (managed_zone(zone))
9919 			return true;
9920 	}
9921 	return false;
9922 }
9923 #endif /* CONFIG_ZONE_DMA */
9924