1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * In-Memory Collection (IMC) Performance Monitor counter support.
4 *
5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6 * (C) 2017 Anju T Sudhakar, IBM Corporation.
7 * (C) 2017 Hemant K Shaw, IBM Corporation.
8 */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16 #include <linux/spinlock.h>
17
18 /* Nest IMC data structures and variables */
19
20 /*
21 * Used to avoid races in counting the nest-pmu units during hotplug
22 * register and unregister
23 */
24 static DEFINE_MUTEX(nest_init_lock);
25 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
26 static struct imc_pmu **per_nest_pmu_arr;
27 static cpumask_t nest_imc_cpumask;
28 static struct imc_pmu_ref *nest_imc_refc;
29 static int nest_pmus;
30
31 /* Core IMC data structures and variables */
32
33 static cpumask_t core_imc_cpumask;
34 static struct imc_pmu_ref *core_imc_refc;
35 static struct imc_pmu *core_imc_pmu;
36
37 /* Thread IMC data structures and variables */
38
39 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
40 static struct imc_pmu *thread_imc_pmu;
41 static int thread_imc_mem_size;
42
43 /* Trace IMC data structures */
44 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
45 static struct imc_pmu_ref *trace_imc_refc;
46 static int trace_imc_mem_size;
47
48 /*
49 * Global data structure used to avoid races between thread,
50 * core and trace-imc
51 */
52 static struct imc_pmu_ref imc_global_refc = {
53 .lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock),
54 .id = 0,
55 .refc = 0,
56 };
57
imc_event_to_pmu(struct perf_event * event)58 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
59 {
60 return container_of(event->pmu, struct imc_pmu, pmu);
61 }
62
63 PMU_FORMAT_ATTR(event, "config:0-61");
64 PMU_FORMAT_ATTR(offset, "config:0-31");
65 PMU_FORMAT_ATTR(rvalue, "config:32");
66 PMU_FORMAT_ATTR(mode, "config:33-40");
67 static struct attribute *imc_format_attrs[] = {
68 &format_attr_event.attr,
69 &format_attr_offset.attr,
70 &format_attr_rvalue.attr,
71 &format_attr_mode.attr,
72 NULL,
73 };
74
75 static struct attribute_group imc_format_group = {
76 .name = "format",
77 .attrs = imc_format_attrs,
78 };
79
80 /* Format attribute for imc trace-mode */
81 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
82 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
83 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
84 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
85 static struct attribute *trace_imc_format_attrs[] = {
86 &format_attr_event.attr,
87 &format_attr_cpmc_reserved.attr,
88 &format_attr_cpmc_event.attr,
89 &format_attr_cpmc_samplesel.attr,
90 &format_attr_cpmc_load.attr,
91 NULL,
92 };
93
94 static struct attribute_group trace_imc_format_group = {
95 .name = "format",
96 .attrs = trace_imc_format_attrs,
97 };
98
99 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
101 struct device_attribute *attr,
102 char *buf)
103 {
104 struct pmu *pmu = dev_get_drvdata(dev);
105 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
106 cpumask_t *active_mask;
107
108 switch(imc_pmu->domain){
109 case IMC_DOMAIN_NEST:
110 active_mask = &nest_imc_cpumask;
111 break;
112 case IMC_DOMAIN_CORE:
113 active_mask = &core_imc_cpumask;
114 break;
115 default:
116 return 0;
117 }
118
119 return cpumap_print_to_pagebuf(true, buf, active_mask);
120 }
121
122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
123
124 static struct attribute *imc_pmu_cpumask_attrs[] = {
125 &dev_attr_cpumask.attr,
126 NULL,
127 };
128
129 static struct attribute_group imc_pmu_cpumask_attr_group = {
130 .attrs = imc_pmu_cpumask_attrs,
131 };
132
133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)134 static struct attribute *device_str_attr_create(const char *name, const char *str)
135 {
136 struct perf_pmu_events_attr *attr;
137
138 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
139 if (!attr)
140 return NULL;
141 sysfs_attr_init(&attr->attr.attr);
142
143 attr->event_str = str;
144 attr->attr.attr.name = name;
145 attr->attr.attr.mode = 0444;
146 attr->attr.show = perf_event_sysfs_show;
147
148 return &attr->attr.attr;
149 }
150
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base,struct imc_events * event)151 static int imc_parse_event(struct device_node *np, const char *scale,
152 const char *unit, const char *prefix,
153 u32 base, struct imc_events *event)
154 {
155 const char *s;
156 u32 reg;
157
158 if (of_property_read_u32(np, "reg", ®))
159 goto error;
160 /* Add the base_reg value to the "reg" */
161 event->value = base + reg;
162
163 if (of_property_read_string(np, "event-name", &s))
164 goto error;
165
166 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
167 if (!event->name)
168 goto error;
169
170 if (of_property_read_string(np, "scale", &s))
171 s = scale;
172
173 if (s) {
174 event->scale = kstrdup(s, GFP_KERNEL);
175 if (!event->scale)
176 goto error;
177 }
178
179 if (of_property_read_string(np, "unit", &s))
180 s = unit;
181
182 if (s) {
183 event->unit = kstrdup(s, GFP_KERNEL);
184 if (!event->unit)
185 goto error;
186 }
187
188 return 0;
189 error:
190 kfree(event->unit);
191 kfree(event->scale);
192 kfree(event->name);
193 return -EINVAL;
194 }
195
196 /*
197 * imc_free_events: Function to cleanup the events list, having
198 * "nr_entries".
199 */
imc_free_events(struct imc_events * events,int nr_entries)200 static void imc_free_events(struct imc_events *events, int nr_entries)
201 {
202 int i;
203
204 /* Nothing to clean, return */
205 if (!events)
206 return;
207 for (i = 0; i < nr_entries; i++) {
208 kfree(events[i].unit);
209 kfree(events[i].scale);
210 kfree(events[i].name);
211 }
212
213 kfree(events);
214 }
215
216 /*
217 * update_events_in_group: Update the "events" information in an attr_group
218 * and assign the attr_group to the pmu "pmu".
219 */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
221 {
222 struct attribute_group *attr_group;
223 struct attribute **attrs, *dev_str;
224 struct device_node *np, *pmu_events;
225 u32 handle, base_reg;
226 int i = 0, j = 0, ct, ret;
227 const char *prefix, *g_scale, *g_unit;
228 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
229
230 if (!of_property_read_u32(node, "events", &handle))
231 pmu_events = of_find_node_by_phandle(handle);
232 else
233 return 0;
234
235 /* Did not find any node with a given phandle */
236 if (!pmu_events)
237 return 0;
238
239 /* Get a count of number of child nodes */
240 ct = of_get_child_count(pmu_events);
241
242 /* Get the event prefix */
243 if (of_property_read_string(node, "events-prefix", &prefix))
244 return 0;
245
246 /* Get a global unit and scale data if available */
247 if (of_property_read_string(node, "scale", &g_scale))
248 g_scale = NULL;
249
250 if (of_property_read_string(node, "unit", &g_unit))
251 g_unit = NULL;
252
253 /* "reg" property gives out the base offset of the counters data */
254 of_property_read_u32(node, "reg", &base_reg);
255
256 /* Allocate memory for the events */
257 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
258 if (!pmu->events)
259 return -ENOMEM;
260
261 ct = 0;
262 /* Parse the events and update the struct */
263 for_each_child_of_node(pmu_events, np) {
264 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
265 if (!ret)
266 ct++;
267 }
268
269 /* Allocate memory for attribute group */
270 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
271 if (!attr_group) {
272 imc_free_events(pmu->events, ct);
273 return -ENOMEM;
274 }
275
276 /*
277 * Allocate memory for attributes.
278 * Since we have count of events for this pmu, we also allocate
279 * memory for the scale and unit attribute for now.
280 * "ct" has the total event structs added from the events-parent node.
281 * So allocate three times the "ct" (this includes event, event_scale and
282 * event_unit).
283 */
284 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
285 if (!attrs) {
286 kfree(attr_group);
287 imc_free_events(pmu->events, ct);
288 return -ENOMEM;
289 }
290
291 attr_group->name = "events";
292 attr_group->attrs = attrs;
293 do {
294 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
295 if (!ev_val_str)
296 continue;
297 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
298 if (!dev_str)
299 continue;
300
301 attrs[j++] = dev_str;
302 if (pmu->events[i].scale) {
303 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
304 if (!ev_scale_str)
305 continue;
306 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
307 if (!dev_str)
308 continue;
309
310 attrs[j++] = dev_str;
311 }
312
313 if (pmu->events[i].unit) {
314 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
315 if (!ev_unit_str)
316 continue;
317 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
318 if (!dev_str)
319 continue;
320
321 attrs[j++] = dev_str;
322 }
323 } while (++i < ct);
324
325 /* Save the event attribute */
326 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
327
328 return 0;
329 }
330
331 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)332 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
333 {
334 return per_cpu(local_nest_imc_refc, cpu);
335 }
336
nest_change_cpu_context(int old_cpu,int new_cpu)337 static void nest_change_cpu_context(int old_cpu, int new_cpu)
338 {
339 struct imc_pmu **pn = per_nest_pmu_arr;
340
341 if (old_cpu < 0 || new_cpu < 0)
342 return;
343
344 while (*pn) {
345 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
346 pn++;
347 }
348 }
349
ppc_nest_imc_cpu_offline(unsigned int cpu)350 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
351 {
352 int nid, target = -1;
353 const struct cpumask *l_cpumask;
354 struct imc_pmu_ref *ref;
355
356 /*
357 * Check in the designated list for this cpu. Dont bother
358 * if not one of them.
359 */
360 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
361 return 0;
362
363 /*
364 * Check whether nest_imc is registered. We could end up here if the
365 * cpuhotplug callback registration fails. i.e, callback invokes the
366 * offline path for all successfully registered nodes. At this stage,
367 * nest_imc pmu will not be registered and we should return here.
368 *
369 * We return with a zero since this is not an offline failure. And
370 * cpuhp_setup_state() returns the actual failure reason to the caller,
371 * which in turn will call the cleanup routine.
372 */
373 if (!nest_pmus)
374 return 0;
375
376 /*
377 * Now that this cpu is one of the designated,
378 * find a next cpu a) which is online and b) in same chip.
379 */
380 nid = cpu_to_node(cpu);
381 l_cpumask = cpumask_of_node(nid);
382 target = cpumask_last(l_cpumask);
383
384 /*
385 * If this(target) is the last cpu in the cpumask for this chip,
386 * check for any possible online cpu in the chip.
387 */
388 if (unlikely(target == cpu))
389 target = cpumask_any_but(l_cpumask, cpu);
390
391 /*
392 * Update the cpumask with the target cpu and
393 * migrate the context if needed
394 */
395 if (target >= 0 && target < nr_cpu_ids) {
396 cpumask_set_cpu(target, &nest_imc_cpumask);
397 nest_change_cpu_context(cpu, target);
398 } else {
399 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
400 get_hard_smp_processor_id(cpu));
401 /*
402 * If this is the last cpu in this chip then, skip the reference
403 * count lock and make the reference count on this chip zero.
404 */
405 ref = get_nest_pmu_ref(cpu);
406 if (!ref)
407 return -EINVAL;
408
409 ref->refc = 0;
410 }
411 return 0;
412 }
413
ppc_nest_imc_cpu_online(unsigned int cpu)414 static int ppc_nest_imc_cpu_online(unsigned int cpu)
415 {
416 const struct cpumask *l_cpumask;
417 static struct cpumask tmp_mask;
418 int res;
419
420 /* Get the cpumask of this node */
421 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
422
423 /*
424 * If this is not the first online CPU on this node, then
425 * just return.
426 */
427 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
428 return 0;
429
430 /*
431 * If this is the first online cpu on this node
432 * disable the nest counters by making an OPAL call.
433 */
434 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
435 get_hard_smp_processor_id(cpu));
436 if (res)
437 return res;
438
439 /* Make this CPU the designated target for counter collection */
440 cpumask_set_cpu(cpu, &nest_imc_cpumask);
441 return 0;
442 }
443
nest_pmu_cpumask_init(void)444 static int nest_pmu_cpumask_init(void)
445 {
446 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
447 "perf/powerpc/imc:online",
448 ppc_nest_imc_cpu_online,
449 ppc_nest_imc_cpu_offline);
450 }
451
nest_imc_counters_release(struct perf_event * event)452 static void nest_imc_counters_release(struct perf_event *event)
453 {
454 int rc, node_id;
455 struct imc_pmu_ref *ref;
456
457 if (event->cpu < 0)
458 return;
459
460 node_id = cpu_to_node(event->cpu);
461
462 /*
463 * See if we need to disable the nest PMU.
464 * If no events are currently in use, then we have to take a
465 * lock to ensure that we don't race with another task doing
466 * enable or disable the nest counters.
467 */
468 ref = get_nest_pmu_ref(event->cpu);
469 if (!ref)
470 return;
471
472 /* Take the lock for this node and then decrement the reference count */
473 spin_lock(&ref->lock);
474 if (ref->refc == 0) {
475 /*
476 * The scenario where this is true is, when perf session is
477 * started, followed by offlining of all cpus in a given node.
478 *
479 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
480 * function set the ref->count to zero, if the cpu which is
481 * about to offline is the last cpu in a given node and make
482 * an OPAL call to disable the engine in that node.
483 *
484 */
485 spin_unlock(&ref->lock);
486 return;
487 }
488 ref->refc--;
489 if (ref->refc == 0) {
490 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
491 get_hard_smp_processor_id(event->cpu));
492 if (rc) {
493 spin_unlock(&ref->lock);
494 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
495 return;
496 }
497 } else if (ref->refc < 0) {
498 WARN(1, "nest-imc: Invalid event reference count\n");
499 ref->refc = 0;
500 }
501 spin_unlock(&ref->lock);
502 }
503
nest_imc_event_init(struct perf_event * event)504 static int nest_imc_event_init(struct perf_event *event)
505 {
506 int chip_id, rc, node_id;
507 u32 l_config, config = event->attr.config;
508 struct imc_mem_info *pcni;
509 struct imc_pmu *pmu;
510 struct imc_pmu_ref *ref;
511 bool flag = false;
512
513 if (event->attr.type != event->pmu->type)
514 return -ENOENT;
515
516 /* Sampling not supported */
517 if (event->hw.sample_period)
518 return -EINVAL;
519
520 if (event->cpu < 0)
521 return -EINVAL;
522
523 pmu = imc_event_to_pmu(event);
524
525 /* Sanity check for config (event offset) */
526 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
527 return -EINVAL;
528
529 /*
530 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
531 * Get the base memory addresss for this cpu.
532 */
533 chip_id = cpu_to_chip_id(event->cpu);
534
535 /* Return, if chip_id is not valid */
536 if (chip_id < 0)
537 return -ENODEV;
538
539 pcni = pmu->mem_info;
540 do {
541 if (pcni->id == chip_id) {
542 flag = true;
543 break;
544 }
545 pcni++;
546 } while (pcni->vbase != 0);
547
548 if (!flag)
549 return -ENODEV;
550
551 /*
552 * Add the event offset to the base address.
553 */
554 l_config = config & IMC_EVENT_OFFSET_MASK;
555 event->hw.event_base = (u64)pcni->vbase + l_config;
556 node_id = cpu_to_node(event->cpu);
557
558 /*
559 * Get the imc_pmu_ref struct for this node.
560 * Take the lock and then increment the count of nest pmu events inited.
561 */
562 ref = get_nest_pmu_ref(event->cpu);
563 if (!ref)
564 return -EINVAL;
565
566 spin_lock(&ref->lock);
567 if (ref->refc == 0) {
568 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
569 get_hard_smp_processor_id(event->cpu));
570 if (rc) {
571 spin_unlock(&ref->lock);
572 pr_err("nest-imc: Unable to start the counters for node %d\n",
573 node_id);
574 return rc;
575 }
576 }
577 ++ref->refc;
578 spin_unlock(&ref->lock);
579
580 event->destroy = nest_imc_counters_release;
581 return 0;
582 }
583
584 /*
585 * core_imc_mem_init : Initializes memory for the current core.
586 *
587 * Uses alloc_pages_node() and uses the returned address as an argument to
588 * an opal call to configure the pdbar. The address sent as an argument is
589 * converted to physical address before the opal call is made. This is the
590 * base address at which the core imc counters are populated.
591 */
core_imc_mem_init(int cpu,int size)592 static int core_imc_mem_init(int cpu, int size)
593 {
594 int nid, rc = 0, core_id = (cpu / threads_per_core);
595 struct imc_mem_info *mem_info;
596 struct page *page;
597
598 /*
599 * alloc_pages_node() will allocate memory for core in the
600 * local node only.
601 */
602 nid = cpu_to_node(cpu);
603 mem_info = &core_imc_pmu->mem_info[core_id];
604 mem_info->id = core_id;
605
606 /* We need only vbase for core counters */
607 page = alloc_pages_node(nid,
608 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
609 __GFP_NOWARN, get_order(size));
610 if (!page)
611 return -ENOMEM;
612 mem_info->vbase = page_address(page);
613
614 core_imc_refc[core_id].id = core_id;
615 spin_lock_init(&core_imc_refc[core_id].lock);
616
617 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
618 __pa((void *)mem_info->vbase),
619 get_hard_smp_processor_id(cpu));
620 if (rc) {
621 free_pages((u64)mem_info->vbase, get_order(size));
622 mem_info->vbase = NULL;
623 }
624
625 return rc;
626 }
627
is_core_imc_mem_inited(int cpu)628 static bool is_core_imc_mem_inited(int cpu)
629 {
630 struct imc_mem_info *mem_info;
631 int core_id = (cpu / threads_per_core);
632
633 mem_info = &core_imc_pmu->mem_info[core_id];
634 if (!mem_info->vbase)
635 return false;
636
637 return true;
638 }
639
ppc_core_imc_cpu_online(unsigned int cpu)640 static int ppc_core_imc_cpu_online(unsigned int cpu)
641 {
642 const struct cpumask *l_cpumask;
643 static struct cpumask tmp_mask;
644 int ret = 0;
645
646 /* Get the cpumask for this core */
647 l_cpumask = cpu_sibling_mask(cpu);
648
649 /* If a cpu for this core is already set, then, don't do anything */
650 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
651 return 0;
652
653 if (!is_core_imc_mem_inited(cpu)) {
654 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
655 if (ret) {
656 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
657 return ret;
658 }
659 }
660
661 /* set the cpu in the mask */
662 cpumask_set_cpu(cpu, &core_imc_cpumask);
663 return 0;
664 }
665
ppc_core_imc_cpu_offline(unsigned int cpu)666 static int ppc_core_imc_cpu_offline(unsigned int cpu)
667 {
668 unsigned int core_id;
669 int ncpu;
670 struct imc_pmu_ref *ref;
671
672 /*
673 * clear this cpu out of the mask, if not present in the mask,
674 * don't bother doing anything.
675 */
676 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
677 return 0;
678
679 /*
680 * Check whether core_imc is registered. We could end up here
681 * if the cpuhotplug callback registration fails. i.e, callback
682 * invokes the offline path for all sucessfully registered cpus.
683 * At this stage, core_imc pmu will not be registered and we
684 * should return here.
685 *
686 * We return with a zero since this is not an offline failure.
687 * And cpuhp_setup_state() returns the actual failure reason
688 * to the caller, which inturn will call the cleanup routine.
689 */
690 if (!core_imc_pmu->pmu.event_init)
691 return 0;
692
693 /* Find any online cpu in that core except the current "cpu" */
694 ncpu = cpumask_last(cpu_sibling_mask(cpu));
695
696 if (unlikely(ncpu == cpu))
697 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
698
699 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
700 cpumask_set_cpu(ncpu, &core_imc_cpumask);
701 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
702 } else {
703 /*
704 * If this is the last cpu in this core then skip taking reference
705 * count lock for this core and directly zero "refc" for this core.
706 */
707 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
708 get_hard_smp_processor_id(cpu));
709 core_id = cpu / threads_per_core;
710 ref = &core_imc_refc[core_id];
711 if (!ref)
712 return -EINVAL;
713
714 ref->refc = 0;
715 /*
716 * Reduce the global reference count, if this is the
717 * last cpu in this core and core-imc event running
718 * in this cpu.
719 */
720 spin_lock(&imc_global_refc.lock);
721 if (imc_global_refc.id == IMC_DOMAIN_CORE)
722 imc_global_refc.refc--;
723
724 spin_unlock(&imc_global_refc.lock);
725 }
726 return 0;
727 }
728
core_imc_pmu_cpumask_init(void)729 static int core_imc_pmu_cpumask_init(void)
730 {
731 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
732 "perf/powerpc/imc_core:online",
733 ppc_core_imc_cpu_online,
734 ppc_core_imc_cpu_offline);
735 }
736
reset_global_refc(struct perf_event * event)737 static void reset_global_refc(struct perf_event *event)
738 {
739 spin_lock(&imc_global_refc.lock);
740 imc_global_refc.refc--;
741
742 /*
743 * If no other thread is running any
744 * event for this domain(thread/core/trace),
745 * set the global id to zero.
746 */
747 if (imc_global_refc.refc <= 0) {
748 imc_global_refc.refc = 0;
749 imc_global_refc.id = 0;
750 }
751 spin_unlock(&imc_global_refc.lock);
752 }
753
core_imc_counters_release(struct perf_event * event)754 static void core_imc_counters_release(struct perf_event *event)
755 {
756 int rc, core_id;
757 struct imc_pmu_ref *ref;
758
759 if (event->cpu < 0)
760 return;
761 /*
762 * See if we need to disable the IMC PMU.
763 * If no events are currently in use, then we have to take a
764 * lock to ensure that we don't race with another task doing
765 * enable or disable the core counters.
766 */
767 core_id = event->cpu / threads_per_core;
768
769 /* Take the lock and decrement the refernce count for this core */
770 ref = &core_imc_refc[core_id];
771 if (!ref)
772 return;
773
774 spin_lock(&ref->lock);
775 if (ref->refc == 0) {
776 /*
777 * The scenario where this is true is, when perf session is
778 * started, followed by offlining of all cpus in a given core.
779 *
780 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
781 * function set the ref->count to zero, if the cpu which is
782 * about to offline is the last cpu in a given core and make
783 * an OPAL call to disable the engine in that core.
784 *
785 */
786 spin_unlock(&ref->lock);
787 return;
788 }
789 ref->refc--;
790 if (ref->refc == 0) {
791 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
792 get_hard_smp_processor_id(event->cpu));
793 if (rc) {
794 spin_unlock(&ref->lock);
795 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
796 return;
797 }
798 } else if (ref->refc < 0) {
799 WARN(1, "core-imc: Invalid event reference count\n");
800 ref->refc = 0;
801 }
802 spin_unlock(&ref->lock);
803
804 reset_global_refc(event);
805 }
806
core_imc_event_init(struct perf_event * event)807 static int core_imc_event_init(struct perf_event *event)
808 {
809 int core_id, rc;
810 u64 config = event->attr.config;
811 struct imc_mem_info *pcmi;
812 struct imc_pmu *pmu;
813 struct imc_pmu_ref *ref;
814
815 if (event->attr.type != event->pmu->type)
816 return -ENOENT;
817
818 /* Sampling not supported */
819 if (event->hw.sample_period)
820 return -EINVAL;
821
822 if (event->cpu < 0)
823 return -EINVAL;
824
825 event->hw.idx = -1;
826 pmu = imc_event_to_pmu(event);
827
828 /* Sanity check for config (event offset) */
829 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
830 return -EINVAL;
831
832 if (!is_core_imc_mem_inited(event->cpu))
833 return -ENODEV;
834
835 core_id = event->cpu / threads_per_core;
836 pcmi = &core_imc_pmu->mem_info[core_id];
837 if ((!pcmi->vbase))
838 return -ENODEV;
839
840 ref = &core_imc_refc[core_id];
841 if (!ref)
842 return -EINVAL;
843
844 /*
845 * Core pmu units are enabled only when it is used.
846 * See if this is triggered for the first time.
847 * If yes, take the lock and enable the core counters.
848 * If not, just increment the count in core_imc_refc struct.
849 */
850 spin_lock(&ref->lock);
851 if (ref->refc == 0) {
852 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
853 get_hard_smp_processor_id(event->cpu));
854 if (rc) {
855 spin_unlock(&ref->lock);
856 pr_err("core-imc: Unable to start the counters for core %d\n",
857 core_id);
858 return rc;
859 }
860 }
861 ++ref->refc;
862 spin_unlock(&ref->lock);
863
864 /*
865 * Since the system can run either in accumulation or trace-mode
866 * of IMC at a time, core-imc events are allowed only if no other
867 * trace/thread imc events are enabled/monitored.
868 *
869 * Take the global lock, and check the refc.id
870 * to know whether any other trace/thread imc
871 * events are running.
872 */
873 spin_lock(&imc_global_refc.lock);
874 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
875 /*
876 * No other trace/thread imc events are running in
877 * the system, so set the refc.id to core-imc.
878 */
879 imc_global_refc.id = IMC_DOMAIN_CORE;
880 imc_global_refc.refc++;
881 } else {
882 spin_unlock(&imc_global_refc.lock);
883 return -EBUSY;
884 }
885 spin_unlock(&imc_global_refc.lock);
886
887 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
888 event->destroy = core_imc_counters_release;
889 return 0;
890 }
891
892 /*
893 * Allocates a page of memory for each of the online cpus, and load
894 * LDBAR with 0.
895 * The physical base address of the page allocated for a cpu will be
896 * written to the LDBAR for that cpu, when the thread-imc event
897 * is added.
898 *
899 * LDBAR Register Layout:
900 *
901 * 0 4 8 12 16 20 24 28
902 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
903 * | | [ ] [ Counter Address [8:50]
904 * | * Mode |
905 * | * PB Scope
906 * * Enable/Disable
907 *
908 * 32 36 40 44 48 52 56 60
909 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
910 * Counter Address [8:50] ]
911 *
912 */
thread_imc_mem_alloc(int cpu_id,int size)913 static int thread_imc_mem_alloc(int cpu_id, int size)
914 {
915 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
916 int nid = cpu_to_node(cpu_id);
917
918 if (!local_mem) {
919 struct page *page;
920 /*
921 * This case could happen only once at start, since we dont
922 * free the memory in cpu offline path.
923 */
924 page = alloc_pages_node(nid,
925 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
926 __GFP_NOWARN, get_order(size));
927 if (!page)
928 return -ENOMEM;
929 local_mem = page_address(page);
930
931 per_cpu(thread_imc_mem, cpu_id) = local_mem;
932 }
933
934 mtspr(SPRN_LDBAR, 0);
935 return 0;
936 }
937
ppc_thread_imc_cpu_online(unsigned int cpu)938 static int ppc_thread_imc_cpu_online(unsigned int cpu)
939 {
940 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
941 }
942
ppc_thread_imc_cpu_offline(unsigned int cpu)943 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
944 {
945 /*
946 * Set the bit 0 of LDBAR to zero.
947 *
948 * If bit 0 of LDBAR is unset, it will stop posting
949 * the counter data to memory.
950 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
951 * event_add function. So reset this bit here, to stop the updates
952 * to memory in the cpu_offline path.
953 */
954 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
955
956 /* Reduce the refc if thread-imc event running on this cpu */
957 spin_lock(&imc_global_refc.lock);
958 if (imc_global_refc.id == IMC_DOMAIN_THREAD)
959 imc_global_refc.refc--;
960 spin_unlock(&imc_global_refc.lock);
961
962 return 0;
963 }
964
thread_imc_cpu_init(void)965 static int thread_imc_cpu_init(void)
966 {
967 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
968 "perf/powerpc/imc_thread:online",
969 ppc_thread_imc_cpu_online,
970 ppc_thread_imc_cpu_offline);
971 }
972
thread_imc_event_init(struct perf_event * event)973 static int thread_imc_event_init(struct perf_event *event)
974 {
975 u32 config = event->attr.config;
976 struct task_struct *target;
977 struct imc_pmu *pmu;
978
979 if (event->attr.type != event->pmu->type)
980 return -ENOENT;
981
982 if (!perfmon_capable())
983 return -EACCES;
984
985 /* Sampling not supported */
986 if (event->hw.sample_period)
987 return -EINVAL;
988
989 event->hw.idx = -1;
990 pmu = imc_event_to_pmu(event);
991
992 /* Sanity check for config offset */
993 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
994 return -EINVAL;
995
996 target = event->hw.target;
997 if (!target)
998 return -EINVAL;
999
1000 spin_lock(&imc_global_refc.lock);
1001 /*
1002 * Check if any other trace/core imc events are running in the
1003 * system, if not set the global id to thread-imc.
1004 */
1005 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1006 imc_global_refc.id = IMC_DOMAIN_THREAD;
1007 imc_global_refc.refc++;
1008 } else {
1009 spin_unlock(&imc_global_refc.lock);
1010 return -EBUSY;
1011 }
1012 spin_unlock(&imc_global_refc.lock);
1013
1014 event->pmu->task_ctx_nr = perf_sw_context;
1015 event->destroy = reset_global_refc;
1016 return 0;
1017 }
1018
is_thread_imc_pmu(struct perf_event * event)1019 static bool is_thread_imc_pmu(struct perf_event *event)
1020 {
1021 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1022 return true;
1023
1024 return false;
1025 }
1026
get_event_base_addr(struct perf_event * event)1027 static u64 * get_event_base_addr(struct perf_event *event)
1028 {
1029 u64 addr;
1030
1031 if (is_thread_imc_pmu(event)) {
1032 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1033 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1034 }
1035
1036 return (u64 *)event->hw.event_base;
1037 }
1038
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1039 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1040 unsigned int txn_flags)
1041 {
1042 if (txn_flags & ~PERF_PMU_TXN_ADD)
1043 return;
1044 perf_pmu_disable(pmu);
1045 }
1046
thread_imc_pmu_cancel_txn(struct pmu * pmu)1047 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1048 {
1049 perf_pmu_enable(pmu);
1050 }
1051
thread_imc_pmu_commit_txn(struct pmu * pmu)1052 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1053 {
1054 perf_pmu_enable(pmu);
1055 return 0;
1056 }
1057
imc_read_counter(struct perf_event * event)1058 static u64 imc_read_counter(struct perf_event *event)
1059 {
1060 u64 *addr, data;
1061
1062 /*
1063 * In-Memory Collection (IMC) counters are free flowing counters.
1064 * So we take a snapshot of the counter value on enable and save it
1065 * to calculate the delta at later stage to present the event counter
1066 * value.
1067 */
1068 addr = get_event_base_addr(event);
1069 data = be64_to_cpu(READ_ONCE(*addr));
1070 local64_set(&event->hw.prev_count, data);
1071
1072 return data;
1073 }
1074
imc_event_update(struct perf_event * event)1075 static void imc_event_update(struct perf_event *event)
1076 {
1077 u64 counter_prev, counter_new, final_count;
1078
1079 counter_prev = local64_read(&event->hw.prev_count);
1080 counter_new = imc_read_counter(event);
1081 final_count = counter_new - counter_prev;
1082
1083 /* Update the delta to the event count */
1084 local64_add(final_count, &event->count);
1085 }
1086
imc_event_start(struct perf_event * event,int flags)1087 static void imc_event_start(struct perf_event *event, int flags)
1088 {
1089 /*
1090 * In Memory Counters are free flowing counters. HW or the microcode
1091 * keeps adding to the counter offset in memory. To get event
1092 * counter value, we snapshot the value here and we calculate
1093 * delta at later point.
1094 */
1095 imc_read_counter(event);
1096 }
1097
imc_event_stop(struct perf_event * event,int flags)1098 static void imc_event_stop(struct perf_event *event, int flags)
1099 {
1100 /*
1101 * Take a snapshot and calculate the delta and update
1102 * the event counter values.
1103 */
1104 imc_event_update(event);
1105 }
1106
imc_event_add(struct perf_event * event,int flags)1107 static int imc_event_add(struct perf_event *event, int flags)
1108 {
1109 if (flags & PERF_EF_START)
1110 imc_event_start(event, flags);
1111
1112 return 0;
1113 }
1114
thread_imc_event_add(struct perf_event * event,int flags)1115 static int thread_imc_event_add(struct perf_event *event, int flags)
1116 {
1117 int core_id;
1118 struct imc_pmu_ref *ref;
1119 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1120
1121 if (flags & PERF_EF_START)
1122 imc_event_start(event, flags);
1123
1124 if (!is_core_imc_mem_inited(smp_processor_id()))
1125 return -EINVAL;
1126
1127 core_id = smp_processor_id() / threads_per_core;
1128 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1129 mtspr(SPRN_LDBAR, ldbar_value);
1130
1131 /*
1132 * imc pmus are enabled only when it is used.
1133 * See if this is triggered for the first time.
1134 * If yes, take the lock and enable the counters.
1135 * If not, just increment the count in ref count struct.
1136 */
1137 ref = &core_imc_refc[core_id];
1138 if (!ref)
1139 return -EINVAL;
1140
1141 spin_lock(&ref->lock);
1142 if (ref->refc == 0) {
1143 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1144 get_hard_smp_processor_id(smp_processor_id()))) {
1145 spin_unlock(&ref->lock);
1146 pr_err("thread-imc: Unable to start the counter\
1147 for core %d\n", core_id);
1148 return -EINVAL;
1149 }
1150 }
1151 ++ref->refc;
1152 spin_unlock(&ref->lock);
1153 return 0;
1154 }
1155
thread_imc_event_del(struct perf_event * event,int flags)1156 static void thread_imc_event_del(struct perf_event *event, int flags)
1157 {
1158
1159 int core_id;
1160 struct imc_pmu_ref *ref;
1161
1162 core_id = smp_processor_id() / threads_per_core;
1163 ref = &core_imc_refc[core_id];
1164 if (!ref) {
1165 pr_debug("imc: Failed to get event reference count\n");
1166 return;
1167 }
1168
1169 spin_lock(&ref->lock);
1170 ref->refc--;
1171 if (ref->refc == 0) {
1172 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1173 get_hard_smp_processor_id(smp_processor_id()))) {
1174 spin_unlock(&ref->lock);
1175 pr_err("thread-imc: Unable to stop the counters\
1176 for core %d\n", core_id);
1177 return;
1178 }
1179 } else if (ref->refc < 0) {
1180 ref->refc = 0;
1181 }
1182 spin_unlock(&ref->lock);
1183
1184 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1185 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1186
1187 /*
1188 * Take a snapshot and calculate the delta and update
1189 * the event counter values.
1190 */
1191 imc_event_update(event);
1192 }
1193
1194 /*
1195 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1196 */
trace_imc_mem_alloc(int cpu_id,int size)1197 static int trace_imc_mem_alloc(int cpu_id, int size)
1198 {
1199 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1200 int phys_id = cpu_to_node(cpu_id), rc = 0;
1201 int core_id = (cpu_id / threads_per_core);
1202
1203 if (!local_mem) {
1204 struct page *page;
1205
1206 page = alloc_pages_node(phys_id,
1207 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1208 __GFP_NOWARN, get_order(size));
1209 if (!page)
1210 return -ENOMEM;
1211 local_mem = page_address(page);
1212 per_cpu(trace_imc_mem, cpu_id) = local_mem;
1213
1214 /* Initialise the counters for trace mode */
1215 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1216 get_hard_smp_processor_id(cpu_id));
1217 if (rc) {
1218 pr_info("IMC:opal init failed for trace imc\n");
1219 return rc;
1220 }
1221 }
1222
1223 trace_imc_refc[core_id].id = core_id;
1224 spin_lock_init(&trace_imc_refc[core_id].lock);
1225
1226 mtspr(SPRN_LDBAR, 0);
1227 return 0;
1228 }
1229
ppc_trace_imc_cpu_online(unsigned int cpu)1230 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1231 {
1232 return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1233 }
1234
ppc_trace_imc_cpu_offline(unsigned int cpu)1235 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1236 {
1237 /*
1238 * No need to set bit 0 of LDBAR to zero, as
1239 * it is set to zero for imc trace-mode
1240 *
1241 * Reduce the refc if any trace-imc event running
1242 * on this cpu.
1243 */
1244 spin_lock(&imc_global_refc.lock);
1245 if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1246 imc_global_refc.refc--;
1247 spin_unlock(&imc_global_refc.lock);
1248
1249 return 0;
1250 }
1251
trace_imc_cpu_init(void)1252 static int trace_imc_cpu_init(void)
1253 {
1254 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1255 "perf/powerpc/imc_trace:online",
1256 ppc_trace_imc_cpu_online,
1257 ppc_trace_imc_cpu_offline);
1258 }
1259
get_trace_imc_event_base_addr(void)1260 static u64 get_trace_imc_event_base_addr(void)
1261 {
1262 return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1263 }
1264
1265 /*
1266 * Function to parse trace-imc data obtained
1267 * and to prepare the perf sample.
1268 */
trace_imc_prepare_sample(struct trace_imc_data * mem,struct perf_sample_data * data,u64 * prev_tb,struct perf_event_header * header,struct perf_event * event)1269 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1270 struct perf_sample_data *data,
1271 u64 *prev_tb,
1272 struct perf_event_header *header,
1273 struct perf_event *event)
1274 {
1275 /* Sanity checks for a valid record */
1276 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1277 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1278 else
1279 return -EINVAL;
1280
1281 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1282 be64_to_cpu(READ_ONCE(mem->tb2)))
1283 return -EINVAL;
1284
1285 /* Prepare perf sample */
1286 data->ip = be64_to_cpu(READ_ONCE(mem->ip));
1287 data->period = event->hw.last_period;
1288
1289 header->type = PERF_RECORD_SAMPLE;
1290 header->size = sizeof(*header) + event->header_size;
1291 header->misc = 0;
1292
1293 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1294 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1295 case 0:/* when MSR HV and PR not set in the trace-record */
1296 header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1297 break;
1298 case 1: /* MSR HV is 0 and PR is 1 */
1299 header->misc |= PERF_RECORD_MISC_GUEST_USER;
1300 break;
1301 case 2: /* MSR HV is 1 and PR is 0 */
1302 header->misc |= PERF_RECORD_MISC_KERNEL;
1303 break;
1304 case 3: /* MSR HV is 1 and PR is 1 */
1305 header->misc |= PERF_RECORD_MISC_USER;
1306 break;
1307 default:
1308 pr_info("IMC: Unable to set the flag based on MSR bits\n");
1309 break;
1310 }
1311 } else {
1312 if (is_kernel_addr(data->ip))
1313 header->misc |= PERF_RECORD_MISC_KERNEL;
1314 else
1315 header->misc |= PERF_RECORD_MISC_USER;
1316 }
1317 perf_event_header__init_id(header, data, event);
1318
1319 return 0;
1320 }
1321
dump_trace_imc_data(struct perf_event * event)1322 static void dump_trace_imc_data(struct perf_event *event)
1323 {
1324 struct trace_imc_data *mem;
1325 int i, ret;
1326 u64 prev_tb = 0;
1327
1328 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1329 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1330 i++, mem++) {
1331 struct perf_sample_data data;
1332 struct perf_event_header header;
1333
1334 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1335 if (ret) /* Exit, if not a valid record */
1336 break;
1337 else {
1338 /* If this is a valid record, create the sample */
1339 struct perf_output_handle handle;
1340
1341 if (perf_output_begin(&handle, &data, event, header.size))
1342 return;
1343
1344 perf_output_sample(&handle, &header, &data, event);
1345 perf_output_end(&handle);
1346 }
1347 }
1348 }
1349
trace_imc_event_add(struct perf_event * event,int flags)1350 static int trace_imc_event_add(struct perf_event *event, int flags)
1351 {
1352 int core_id = smp_processor_id() / threads_per_core;
1353 struct imc_pmu_ref *ref = NULL;
1354 u64 local_mem, ldbar_value;
1355
1356 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1357 local_mem = get_trace_imc_event_base_addr();
1358 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1359
1360 /* trace-imc reference count */
1361 if (trace_imc_refc)
1362 ref = &trace_imc_refc[core_id];
1363 if (!ref) {
1364 pr_debug("imc: Failed to get the event reference count\n");
1365 return -EINVAL;
1366 }
1367
1368 mtspr(SPRN_LDBAR, ldbar_value);
1369 spin_lock(&ref->lock);
1370 if (ref->refc == 0) {
1371 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1372 get_hard_smp_processor_id(smp_processor_id()))) {
1373 spin_unlock(&ref->lock);
1374 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1375 return -EINVAL;
1376 }
1377 }
1378 ++ref->refc;
1379 spin_unlock(&ref->lock);
1380 return 0;
1381 }
1382
trace_imc_event_read(struct perf_event * event)1383 static void trace_imc_event_read(struct perf_event *event)
1384 {
1385 return;
1386 }
1387
trace_imc_event_stop(struct perf_event * event,int flags)1388 static void trace_imc_event_stop(struct perf_event *event, int flags)
1389 {
1390 u64 local_mem = get_trace_imc_event_base_addr();
1391 dump_trace_imc_data(event);
1392 memset((void *)local_mem, 0, sizeof(u64));
1393 }
1394
trace_imc_event_start(struct perf_event * event,int flags)1395 static void trace_imc_event_start(struct perf_event *event, int flags)
1396 {
1397 return;
1398 }
1399
trace_imc_event_del(struct perf_event * event,int flags)1400 static void trace_imc_event_del(struct perf_event *event, int flags)
1401 {
1402 int core_id = smp_processor_id() / threads_per_core;
1403 struct imc_pmu_ref *ref = NULL;
1404
1405 if (trace_imc_refc)
1406 ref = &trace_imc_refc[core_id];
1407 if (!ref) {
1408 pr_debug("imc: Failed to get event reference count\n");
1409 return;
1410 }
1411
1412 spin_lock(&ref->lock);
1413 ref->refc--;
1414 if (ref->refc == 0) {
1415 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1416 get_hard_smp_processor_id(smp_processor_id()))) {
1417 spin_unlock(&ref->lock);
1418 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1419 return;
1420 }
1421 } else if (ref->refc < 0) {
1422 ref->refc = 0;
1423 }
1424 spin_unlock(&ref->lock);
1425
1426 trace_imc_event_stop(event, flags);
1427 }
1428
trace_imc_event_init(struct perf_event * event)1429 static int trace_imc_event_init(struct perf_event *event)
1430 {
1431 if (event->attr.type != event->pmu->type)
1432 return -ENOENT;
1433
1434 if (!perfmon_capable())
1435 return -EACCES;
1436
1437 /* Return if this is a couting event */
1438 if (event->attr.sample_period == 0)
1439 return -ENOENT;
1440
1441 /*
1442 * Take the global lock, and make sure
1443 * no other thread is running any core/thread imc
1444 * events
1445 */
1446 spin_lock(&imc_global_refc.lock);
1447 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1448 /*
1449 * No core/thread imc events are running in the
1450 * system, so set the refc.id to trace-imc.
1451 */
1452 imc_global_refc.id = IMC_DOMAIN_TRACE;
1453 imc_global_refc.refc++;
1454 } else {
1455 spin_unlock(&imc_global_refc.lock);
1456 return -EBUSY;
1457 }
1458 spin_unlock(&imc_global_refc.lock);
1459
1460 event->hw.idx = -1;
1461
1462 /*
1463 * There can only be a single PMU for perf_hw_context events which is assigned to
1464 * core PMU. Hence use "perf_sw_context" for trace_imc.
1465 */
1466 event->pmu->task_ctx_nr = perf_sw_context;
1467 event->destroy = reset_global_refc;
1468 return 0;
1469 }
1470
1471 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1472 static int update_pmu_ops(struct imc_pmu *pmu)
1473 {
1474 pmu->pmu.task_ctx_nr = perf_invalid_context;
1475 pmu->pmu.add = imc_event_add;
1476 pmu->pmu.del = imc_event_stop;
1477 pmu->pmu.start = imc_event_start;
1478 pmu->pmu.stop = imc_event_stop;
1479 pmu->pmu.read = imc_event_update;
1480 pmu->pmu.attr_groups = pmu->attr_groups;
1481 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1482 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1483
1484 switch (pmu->domain) {
1485 case IMC_DOMAIN_NEST:
1486 pmu->pmu.event_init = nest_imc_event_init;
1487 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1488 break;
1489 case IMC_DOMAIN_CORE:
1490 pmu->pmu.event_init = core_imc_event_init;
1491 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1492 break;
1493 case IMC_DOMAIN_THREAD:
1494 pmu->pmu.event_init = thread_imc_event_init;
1495 pmu->pmu.add = thread_imc_event_add;
1496 pmu->pmu.del = thread_imc_event_del;
1497 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1498 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1499 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1500 break;
1501 case IMC_DOMAIN_TRACE:
1502 pmu->pmu.event_init = trace_imc_event_init;
1503 pmu->pmu.add = trace_imc_event_add;
1504 pmu->pmu.del = trace_imc_event_del;
1505 pmu->pmu.start = trace_imc_event_start;
1506 pmu->pmu.stop = trace_imc_event_stop;
1507 pmu->pmu.read = trace_imc_event_read;
1508 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1509 break;
1510 default:
1511 break;
1512 }
1513
1514 return 0;
1515 }
1516
1517 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1518 static int init_nest_pmu_ref(void)
1519 {
1520 int nid, i, cpu;
1521
1522 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1523 GFP_KERNEL);
1524
1525 if (!nest_imc_refc)
1526 return -ENOMEM;
1527
1528 i = 0;
1529 for_each_node(nid) {
1530 /*
1531 * Take the lock to avoid races while tracking the number of
1532 * sessions using the chip's nest pmu units.
1533 */
1534 spin_lock_init(&nest_imc_refc[i].lock);
1535
1536 /*
1537 * Loop to init the "id" with the node_id. Variable "i" initialized to
1538 * 0 and will be used as index to the array. "i" will not go off the
1539 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1540 * nodes only.
1541 */
1542 nest_imc_refc[i++].id = nid;
1543 }
1544
1545 /*
1546 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1547 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1548 */
1549 for_each_possible_cpu(cpu) {
1550 nid = cpu_to_node(cpu);
1551 for (i = 0; i < num_possible_nodes(); i++) {
1552 if (nest_imc_refc[i].id == nid) {
1553 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1554 break;
1555 }
1556 }
1557 }
1558 return 0;
1559 }
1560
cleanup_all_core_imc_memory(void)1561 static void cleanup_all_core_imc_memory(void)
1562 {
1563 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1564 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1565 int size = core_imc_pmu->counter_mem_size;
1566
1567 /* mem_info will never be NULL */
1568 for (i = 0; i < nr_cores; i++) {
1569 if (ptr[i].vbase)
1570 free_pages((u64)ptr[i].vbase, get_order(size));
1571 }
1572
1573 kfree(ptr);
1574 kfree(core_imc_refc);
1575 }
1576
thread_imc_ldbar_disable(void * dummy)1577 static void thread_imc_ldbar_disable(void *dummy)
1578 {
1579 /*
1580 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1581 * updates to memory.
1582 */
1583 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1584 }
1585
thread_imc_disable(void)1586 void thread_imc_disable(void)
1587 {
1588 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1589 }
1590
cleanup_all_thread_imc_memory(void)1591 static void cleanup_all_thread_imc_memory(void)
1592 {
1593 int i, order = get_order(thread_imc_mem_size);
1594
1595 for_each_online_cpu(i) {
1596 if (per_cpu(thread_imc_mem, i))
1597 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1598
1599 }
1600 }
1601
cleanup_all_trace_imc_memory(void)1602 static void cleanup_all_trace_imc_memory(void)
1603 {
1604 int i, order = get_order(trace_imc_mem_size);
1605
1606 for_each_online_cpu(i) {
1607 if (per_cpu(trace_imc_mem, i))
1608 free_pages((u64)per_cpu(trace_imc_mem, i), order);
1609
1610 }
1611 kfree(trace_imc_refc);
1612 }
1613
1614 /* Function to free the attr_groups which are dynamically allocated */
imc_common_mem_free(struct imc_pmu * pmu_ptr)1615 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1616 {
1617 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1618 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1619 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1620 }
1621
1622 /*
1623 * Common function to unregister cpu hotplug callback and
1624 * free the memory.
1625 * TODO: Need to handle pmu unregistering, which will be
1626 * done in followup series.
1627 */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1628 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1629 {
1630 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1631 mutex_lock(&nest_init_lock);
1632 if (nest_pmus == 1) {
1633 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1634 kfree(nest_imc_refc);
1635 kfree(per_nest_pmu_arr);
1636 per_nest_pmu_arr = NULL;
1637 }
1638
1639 if (nest_pmus > 0)
1640 nest_pmus--;
1641 mutex_unlock(&nest_init_lock);
1642 }
1643
1644 /* Free core_imc memory */
1645 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1646 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1647 cleanup_all_core_imc_memory();
1648 }
1649
1650 /* Free thread_imc memory */
1651 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1652 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1653 cleanup_all_thread_imc_memory();
1654 }
1655
1656 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1657 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1658 cleanup_all_trace_imc_memory();
1659 }
1660 }
1661
1662 /*
1663 * Function to unregister thread-imc if core-imc
1664 * is not registered.
1665 */
unregister_thread_imc(void)1666 void unregister_thread_imc(void)
1667 {
1668 imc_common_cpuhp_mem_free(thread_imc_pmu);
1669 imc_common_mem_free(thread_imc_pmu);
1670 perf_pmu_unregister(&thread_imc_pmu->pmu);
1671 }
1672
1673 /*
1674 * imc_mem_init : Function to support memory allocation for core imc.
1675 */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1676 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1677 int pmu_index)
1678 {
1679 const char *s;
1680 int nr_cores, cpu, res = -ENOMEM;
1681
1682 if (of_property_read_string(parent, "name", &s))
1683 return -ENODEV;
1684
1685 switch (pmu_ptr->domain) {
1686 case IMC_DOMAIN_NEST:
1687 /* Update the pmu name */
1688 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1689 if (!pmu_ptr->pmu.name)
1690 goto err;
1691
1692 /* Needed for hotplug/migration */
1693 if (!per_nest_pmu_arr) {
1694 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1695 sizeof(struct imc_pmu *),
1696 GFP_KERNEL);
1697 if (!per_nest_pmu_arr)
1698 goto err;
1699 }
1700 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1701 break;
1702 case IMC_DOMAIN_CORE:
1703 /* Update the pmu name */
1704 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1705 if (!pmu_ptr->pmu.name)
1706 goto err;
1707
1708 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1709 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1710 GFP_KERNEL);
1711
1712 if (!pmu_ptr->mem_info)
1713 goto err;
1714
1715 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1716 GFP_KERNEL);
1717
1718 if (!core_imc_refc) {
1719 kfree(pmu_ptr->mem_info);
1720 goto err;
1721 }
1722
1723 core_imc_pmu = pmu_ptr;
1724 break;
1725 case IMC_DOMAIN_THREAD:
1726 /* Update the pmu name */
1727 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1728 if (!pmu_ptr->pmu.name)
1729 goto err;
1730
1731 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1732 for_each_online_cpu(cpu) {
1733 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1734 if (res) {
1735 cleanup_all_thread_imc_memory();
1736 goto err;
1737 }
1738 }
1739
1740 thread_imc_pmu = pmu_ptr;
1741 break;
1742 case IMC_DOMAIN_TRACE:
1743 /* Update the pmu name */
1744 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1745 if (!pmu_ptr->pmu.name)
1746 return -ENOMEM;
1747
1748 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1749 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1750 GFP_KERNEL);
1751 if (!trace_imc_refc)
1752 return -ENOMEM;
1753
1754 trace_imc_mem_size = pmu_ptr->counter_mem_size;
1755 for_each_online_cpu(cpu) {
1756 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1757 if (res) {
1758 cleanup_all_trace_imc_memory();
1759 goto err;
1760 }
1761 }
1762 break;
1763 default:
1764 return -EINVAL;
1765 }
1766
1767 return 0;
1768 err:
1769 return res;
1770 }
1771
1772 /*
1773 * init_imc_pmu : Setup and register the IMC pmu device.
1774 *
1775 * @parent: Device tree unit node
1776 * @pmu_ptr: memory allocated for this pmu
1777 * @pmu_idx: Count of nest pmc registered
1778 *
1779 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1780 * Handles failure cases and accordingly frees memory.
1781 */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1782 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1783 {
1784 int ret;
1785
1786 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1787 if (ret)
1788 goto err_free_mem;
1789
1790 switch (pmu_ptr->domain) {
1791 case IMC_DOMAIN_NEST:
1792 /*
1793 * Nest imc pmu need only one cpu per chip, we initialize the
1794 * cpumask for the first nest imc pmu and use the same for the
1795 * rest. To handle the cpuhotplug callback unregister, we track
1796 * the number of nest pmus in "nest_pmus".
1797 */
1798 mutex_lock(&nest_init_lock);
1799 if (nest_pmus == 0) {
1800 ret = init_nest_pmu_ref();
1801 if (ret) {
1802 mutex_unlock(&nest_init_lock);
1803 kfree(per_nest_pmu_arr);
1804 per_nest_pmu_arr = NULL;
1805 goto err_free_mem;
1806 }
1807 /* Register for cpu hotplug notification. */
1808 ret = nest_pmu_cpumask_init();
1809 if (ret) {
1810 mutex_unlock(&nest_init_lock);
1811 kfree(nest_imc_refc);
1812 kfree(per_nest_pmu_arr);
1813 per_nest_pmu_arr = NULL;
1814 goto err_free_mem;
1815 }
1816 }
1817 nest_pmus++;
1818 mutex_unlock(&nest_init_lock);
1819 break;
1820 case IMC_DOMAIN_CORE:
1821 ret = core_imc_pmu_cpumask_init();
1822 if (ret) {
1823 cleanup_all_core_imc_memory();
1824 goto err_free_mem;
1825 }
1826
1827 break;
1828 case IMC_DOMAIN_THREAD:
1829 ret = thread_imc_cpu_init();
1830 if (ret) {
1831 cleanup_all_thread_imc_memory();
1832 goto err_free_mem;
1833 }
1834
1835 break;
1836 case IMC_DOMAIN_TRACE:
1837 ret = trace_imc_cpu_init();
1838 if (ret) {
1839 cleanup_all_trace_imc_memory();
1840 goto err_free_mem;
1841 }
1842
1843 break;
1844 default:
1845 return -EINVAL; /* Unknown domain */
1846 }
1847
1848 ret = update_events_in_group(parent, pmu_ptr);
1849 if (ret)
1850 goto err_free_cpuhp_mem;
1851
1852 ret = update_pmu_ops(pmu_ptr);
1853 if (ret)
1854 goto err_free_cpuhp_mem;
1855
1856 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1857 if (ret)
1858 goto err_free_cpuhp_mem;
1859
1860 pr_debug("%s performance monitor hardware support registered\n",
1861 pmu_ptr->pmu.name);
1862
1863 return 0;
1864
1865 err_free_cpuhp_mem:
1866 imc_common_cpuhp_mem_free(pmu_ptr);
1867 err_free_mem:
1868 imc_common_mem_free(pmu_ptr);
1869 return ret;
1870 }
1871