• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16 #include <linux/spinlock.h>
17 
18 /* Nest IMC data structures and variables */
19 
20 /*
21  * Used to avoid races in counting the nest-pmu units during hotplug
22  * register and unregister
23  */
24 static DEFINE_MUTEX(nest_init_lock);
25 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
26 static struct imc_pmu **per_nest_pmu_arr;
27 static cpumask_t nest_imc_cpumask;
28 static struct imc_pmu_ref *nest_imc_refc;
29 static int nest_pmus;
30 
31 /* Core IMC data structures and variables */
32 
33 static cpumask_t core_imc_cpumask;
34 static struct imc_pmu_ref *core_imc_refc;
35 static struct imc_pmu *core_imc_pmu;
36 
37 /* Thread IMC data structures and variables */
38 
39 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
40 static struct imc_pmu *thread_imc_pmu;
41 static int thread_imc_mem_size;
42 
43 /* Trace IMC data structures */
44 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
45 static struct imc_pmu_ref *trace_imc_refc;
46 static int trace_imc_mem_size;
47 
48 /*
49  * Global data structure used to avoid races between thread,
50  * core and trace-imc
51  */
52 static struct imc_pmu_ref imc_global_refc = {
53 	.lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock),
54 	.id = 0,
55 	.refc = 0,
56 };
57 
imc_event_to_pmu(struct perf_event * event)58 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
59 {
60 	return container_of(event->pmu, struct imc_pmu, pmu);
61 }
62 
63 PMU_FORMAT_ATTR(event, "config:0-61");
64 PMU_FORMAT_ATTR(offset, "config:0-31");
65 PMU_FORMAT_ATTR(rvalue, "config:32");
66 PMU_FORMAT_ATTR(mode, "config:33-40");
67 static struct attribute *imc_format_attrs[] = {
68 	&format_attr_event.attr,
69 	&format_attr_offset.attr,
70 	&format_attr_rvalue.attr,
71 	&format_attr_mode.attr,
72 	NULL,
73 };
74 
75 static struct attribute_group imc_format_group = {
76 	.name = "format",
77 	.attrs = imc_format_attrs,
78 };
79 
80 /* Format attribute for imc trace-mode */
81 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
82 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
83 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
84 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
85 static struct attribute *trace_imc_format_attrs[] = {
86 	&format_attr_event.attr,
87 	&format_attr_cpmc_reserved.attr,
88 	&format_attr_cpmc_event.attr,
89 	&format_attr_cpmc_samplesel.attr,
90 	&format_attr_cpmc_load.attr,
91 	NULL,
92 };
93 
94 static struct attribute_group trace_imc_format_group = {
95 .name = "format",
96 .attrs = trace_imc_format_attrs,
97 };
98 
99 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
101 					struct device_attribute *attr,
102 					char *buf)
103 {
104 	struct pmu *pmu = dev_get_drvdata(dev);
105 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
106 	cpumask_t *active_mask;
107 
108 	switch(imc_pmu->domain){
109 	case IMC_DOMAIN_NEST:
110 		active_mask = &nest_imc_cpumask;
111 		break;
112 	case IMC_DOMAIN_CORE:
113 		active_mask = &core_imc_cpumask;
114 		break;
115 	default:
116 		return 0;
117 	}
118 
119 	return cpumap_print_to_pagebuf(true, buf, active_mask);
120 }
121 
122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
123 
124 static struct attribute *imc_pmu_cpumask_attrs[] = {
125 	&dev_attr_cpumask.attr,
126 	NULL,
127 };
128 
129 static struct attribute_group imc_pmu_cpumask_attr_group = {
130 	.attrs = imc_pmu_cpumask_attrs,
131 };
132 
133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)134 static struct attribute *device_str_attr_create(const char *name, const char *str)
135 {
136 	struct perf_pmu_events_attr *attr;
137 
138 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
139 	if (!attr)
140 		return NULL;
141 	sysfs_attr_init(&attr->attr.attr);
142 
143 	attr->event_str = str;
144 	attr->attr.attr.name = name;
145 	attr->attr.attr.mode = 0444;
146 	attr->attr.show = perf_event_sysfs_show;
147 
148 	return &attr->attr.attr;
149 }
150 
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base,struct imc_events * event)151 static int imc_parse_event(struct device_node *np, const char *scale,
152 				  const char *unit, const char *prefix,
153 				  u32 base, struct imc_events *event)
154 {
155 	const char *s;
156 	u32 reg;
157 
158 	if (of_property_read_u32(np, "reg", &reg))
159 		goto error;
160 	/* Add the base_reg value to the "reg" */
161 	event->value = base + reg;
162 
163 	if (of_property_read_string(np, "event-name", &s))
164 		goto error;
165 
166 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
167 	if (!event->name)
168 		goto error;
169 
170 	if (of_property_read_string(np, "scale", &s))
171 		s = scale;
172 
173 	if (s) {
174 		event->scale = kstrdup(s, GFP_KERNEL);
175 		if (!event->scale)
176 			goto error;
177 	}
178 
179 	if (of_property_read_string(np, "unit", &s))
180 		s = unit;
181 
182 	if (s) {
183 		event->unit = kstrdup(s, GFP_KERNEL);
184 		if (!event->unit)
185 			goto error;
186 	}
187 
188 	return 0;
189 error:
190 	kfree(event->unit);
191 	kfree(event->scale);
192 	kfree(event->name);
193 	return -EINVAL;
194 }
195 
196 /*
197  * imc_free_events: Function to cleanup the events list, having
198  * 		    "nr_entries".
199  */
imc_free_events(struct imc_events * events,int nr_entries)200 static void imc_free_events(struct imc_events *events, int nr_entries)
201 {
202 	int i;
203 
204 	/* Nothing to clean, return */
205 	if (!events)
206 		return;
207 	for (i = 0; i < nr_entries; i++) {
208 		kfree(events[i].unit);
209 		kfree(events[i].scale);
210 		kfree(events[i].name);
211 	}
212 
213 	kfree(events);
214 }
215 
216 /*
217  * update_events_in_group: Update the "events" information in an attr_group
218  *                         and assign the attr_group to the pmu "pmu".
219  */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
221 {
222 	struct attribute_group *attr_group;
223 	struct attribute **attrs, *dev_str;
224 	struct device_node *np, *pmu_events;
225 	u32 handle, base_reg;
226 	int i = 0, j = 0, ct, ret;
227 	const char *prefix, *g_scale, *g_unit;
228 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
229 
230 	if (!of_property_read_u32(node, "events", &handle))
231 		pmu_events = of_find_node_by_phandle(handle);
232 	else
233 		return 0;
234 
235 	/* Did not find any node with a given phandle */
236 	if (!pmu_events)
237 		return 0;
238 
239 	/* Get a count of number of child nodes */
240 	ct = of_get_child_count(pmu_events);
241 
242 	/* Get the event prefix */
243 	if (of_property_read_string(node, "events-prefix", &prefix))
244 		return 0;
245 
246 	/* Get a global unit and scale data if available */
247 	if (of_property_read_string(node, "scale", &g_scale))
248 		g_scale = NULL;
249 
250 	if (of_property_read_string(node, "unit", &g_unit))
251 		g_unit = NULL;
252 
253 	/* "reg" property gives out the base offset of the counters data */
254 	of_property_read_u32(node, "reg", &base_reg);
255 
256 	/* Allocate memory for the events */
257 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
258 	if (!pmu->events)
259 		return -ENOMEM;
260 
261 	ct = 0;
262 	/* Parse the events and update the struct */
263 	for_each_child_of_node(pmu_events, np) {
264 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
265 		if (!ret)
266 			ct++;
267 	}
268 
269 	/* Allocate memory for attribute group */
270 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
271 	if (!attr_group) {
272 		imc_free_events(pmu->events, ct);
273 		return -ENOMEM;
274 	}
275 
276 	/*
277 	 * Allocate memory for attributes.
278 	 * Since we have count of events for this pmu, we also allocate
279 	 * memory for the scale and unit attribute for now.
280 	 * "ct" has the total event structs added from the events-parent node.
281 	 * So allocate three times the "ct" (this includes event, event_scale and
282 	 * event_unit).
283 	 */
284 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
285 	if (!attrs) {
286 		kfree(attr_group);
287 		imc_free_events(pmu->events, ct);
288 		return -ENOMEM;
289 	}
290 
291 	attr_group->name = "events";
292 	attr_group->attrs = attrs;
293 	do {
294 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
295 		if (!ev_val_str)
296 			continue;
297 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
298 		if (!dev_str)
299 			continue;
300 
301 		attrs[j++] = dev_str;
302 		if (pmu->events[i].scale) {
303 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
304 			if (!ev_scale_str)
305 				continue;
306 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
307 			if (!dev_str)
308 				continue;
309 
310 			attrs[j++] = dev_str;
311 		}
312 
313 		if (pmu->events[i].unit) {
314 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
315 			if (!ev_unit_str)
316 				continue;
317 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
318 			if (!dev_str)
319 				continue;
320 
321 			attrs[j++] = dev_str;
322 		}
323 	} while (++i < ct);
324 
325 	/* Save the event attribute */
326 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
327 
328 	return 0;
329 }
330 
331 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)332 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
333 {
334 	return per_cpu(local_nest_imc_refc, cpu);
335 }
336 
nest_change_cpu_context(int old_cpu,int new_cpu)337 static void nest_change_cpu_context(int old_cpu, int new_cpu)
338 {
339 	struct imc_pmu **pn = per_nest_pmu_arr;
340 
341 	if (old_cpu < 0 || new_cpu < 0)
342 		return;
343 
344 	while (*pn) {
345 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
346 		pn++;
347 	}
348 }
349 
ppc_nest_imc_cpu_offline(unsigned int cpu)350 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
351 {
352 	int nid, target = -1;
353 	const struct cpumask *l_cpumask;
354 	struct imc_pmu_ref *ref;
355 
356 	/*
357 	 * Check in the designated list for this cpu. Dont bother
358 	 * if not one of them.
359 	 */
360 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
361 		return 0;
362 
363 	/*
364 	 * Check whether nest_imc is registered. We could end up here if the
365 	 * cpuhotplug callback registration fails. i.e, callback invokes the
366 	 * offline path for all successfully registered nodes. At this stage,
367 	 * nest_imc pmu will not be registered and we should return here.
368 	 *
369 	 * We return with a zero since this is not an offline failure. And
370 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
371 	 * which in turn will call the cleanup routine.
372 	 */
373 	if (!nest_pmus)
374 		return 0;
375 
376 	/*
377 	 * Now that this cpu is one of the designated,
378 	 * find a next cpu a) which is online and b) in same chip.
379 	 */
380 	nid = cpu_to_node(cpu);
381 	l_cpumask = cpumask_of_node(nid);
382 	target = cpumask_last(l_cpumask);
383 
384 	/*
385 	 * If this(target) is the last cpu in the cpumask for this chip,
386 	 * check for any possible online cpu in the chip.
387 	 */
388 	if (unlikely(target == cpu))
389 		target = cpumask_any_but(l_cpumask, cpu);
390 
391 	/*
392 	 * Update the cpumask with the target cpu and
393 	 * migrate the context if needed
394 	 */
395 	if (target >= 0 && target < nr_cpu_ids) {
396 		cpumask_set_cpu(target, &nest_imc_cpumask);
397 		nest_change_cpu_context(cpu, target);
398 	} else {
399 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
400 				       get_hard_smp_processor_id(cpu));
401 		/*
402 		 * If this is the last cpu in this chip then, skip the reference
403 		 * count lock and make the reference count on this chip zero.
404 		 */
405 		ref = get_nest_pmu_ref(cpu);
406 		if (!ref)
407 			return -EINVAL;
408 
409 		ref->refc = 0;
410 	}
411 	return 0;
412 }
413 
ppc_nest_imc_cpu_online(unsigned int cpu)414 static int ppc_nest_imc_cpu_online(unsigned int cpu)
415 {
416 	const struct cpumask *l_cpumask;
417 	static struct cpumask tmp_mask;
418 	int res;
419 
420 	/* Get the cpumask of this node */
421 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
422 
423 	/*
424 	 * If this is not the first online CPU on this node, then
425 	 * just return.
426 	 */
427 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
428 		return 0;
429 
430 	/*
431 	 * If this is the first online cpu on this node
432 	 * disable the nest counters by making an OPAL call.
433 	 */
434 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
435 				     get_hard_smp_processor_id(cpu));
436 	if (res)
437 		return res;
438 
439 	/* Make this CPU the designated target for counter collection */
440 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
441 	return 0;
442 }
443 
nest_pmu_cpumask_init(void)444 static int nest_pmu_cpumask_init(void)
445 {
446 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
447 				 "perf/powerpc/imc:online",
448 				 ppc_nest_imc_cpu_online,
449 				 ppc_nest_imc_cpu_offline);
450 }
451 
nest_imc_counters_release(struct perf_event * event)452 static void nest_imc_counters_release(struct perf_event *event)
453 {
454 	int rc, node_id;
455 	struct imc_pmu_ref *ref;
456 
457 	if (event->cpu < 0)
458 		return;
459 
460 	node_id = cpu_to_node(event->cpu);
461 
462 	/*
463 	 * See if we need to disable the nest PMU.
464 	 * If no events are currently in use, then we have to take a
465 	 * lock to ensure that we don't race with another task doing
466 	 * enable or disable the nest counters.
467 	 */
468 	ref = get_nest_pmu_ref(event->cpu);
469 	if (!ref)
470 		return;
471 
472 	/* Take the lock for this node and then decrement the reference count */
473 	spin_lock(&ref->lock);
474 	if (ref->refc == 0) {
475 		/*
476 		 * The scenario where this is true is, when perf session is
477 		 * started, followed by offlining of all cpus in a given node.
478 		 *
479 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
480 		 * function set the ref->count to zero, if the cpu which is
481 		 * about to offline is the last cpu in a given node and make
482 		 * an OPAL call to disable the engine in that node.
483 		 *
484 		 */
485 		spin_unlock(&ref->lock);
486 		return;
487 	}
488 	ref->refc--;
489 	if (ref->refc == 0) {
490 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
491 					    get_hard_smp_processor_id(event->cpu));
492 		if (rc) {
493 			spin_unlock(&ref->lock);
494 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
495 			return;
496 		}
497 	} else if (ref->refc < 0) {
498 		WARN(1, "nest-imc: Invalid event reference count\n");
499 		ref->refc = 0;
500 	}
501 	spin_unlock(&ref->lock);
502 }
503 
nest_imc_event_init(struct perf_event * event)504 static int nest_imc_event_init(struct perf_event *event)
505 {
506 	int chip_id, rc, node_id;
507 	u32 l_config, config = event->attr.config;
508 	struct imc_mem_info *pcni;
509 	struct imc_pmu *pmu;
510 	struct imc_pmu_ref *ref;
511 	bool flag = false;
512 
513 	if (event->attr.type != event->pmu->type)
514 		return -ENOENT;
515 
516 	/* Sampling not supported */
517 	if (event->hw.sample_period)
518 		return -EINVAL;
519 
520 	if (event->cpu < 0)
521 		return -EINVAL;
522 
523 	pmu = imc_event_to_pmu(event);
524 
525 	/* Sanity check for config (event offset) */
526 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
527 		return -EINVAL;
528 
529 	/*
530 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
531 	 * Get the base memory addresss for this cpu.
532 	 */
533 	chip_id = cpu_to_chip_id(event->cpu);
534 
535 	/* Return, if chip_id is not valid */
536 	if (chip_id < 0)
537 		return -ENODEV;
538 
539 	pcni = pmu->mem_info;
540 	do {
541 		if (pcni->id == chip_id) {
542 			flag = true;
543 			break;
544 		}
545 		pcni++;
546 	} while (pcni->vbase != 0);
547 
548 	if (!flag)
549 		return -ENODEV;
550 
551 	/*
552 	 * Add the event offset to the base address.
553 	 */
554 	l_config = config & IMC_EVENT_OFFSET_MASK;
555 	event->hw.event_base = (u64)pcni->vbase + l_config;
556 	node_id = cpu_to_node(event->cpu);
557 
558 	/*
559 	 * Get the imc_pmu_ref struct for this node.
560 	 * Take the lock and then increment the count of nest pmu events inited.
561 	 */
562 	ref = get_nest_pmu_ref(event->cpu);
563 	if (!ref)
564 		return -EINVAL;
565 
566 	spin_lock(&ref->lock);
567 	if (ref->refc == 0) {
568 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
569 					     get_hard_smp_processor_id(event->cpu));
570 		if (rc) {
571 			spin_unlock(&ref->lock);
572 			pr_err("nest-imc: Unable to start the counters for node %d\n",
573 									node_id);
574 			return rc;
575 		}
576 	}
577 	++ref->refc;
578 	spin_unlock(&ref->lock);
579 
580 	event->destroy = nest_imc_counters_release;
581 	return 0;
582 }
583 
584 /*
585  * core_imc_mem_init : Initializes memory for the current core.
586  *
587  * Uses alloc_pages_node() and uses the returned address as an argument to
588  * an opal call to configure the pdbar. The address sent as an argument is
589  * converted to physical address before the opal call is made. This is the
590  * base address at which the core imc counters are populated.
591  */
core_imc_mem_init(int cpu,int size)592 static int core_imc_mem_init(int cpu, int size)
593 {
594 	int nid, rc = 0, core_id = (cpu / threads_per_core);
595 	struct imc_mem_info *mem_info;
596 	struct page *page;
597 
598 	/*
599 	 * alloc_pages_node() will allocate memory for core in the
600 	 * local node only.
601 	 */
602 	nid = cpu_to_node(cpu);
603 	mem_info = &core_imc_pmu->mem_info[core_id];
604 	mem_info->id = core_id;
605 
606 	/* We need only vbase for core counters */
607 	page = alloc_pages_node(nid,
608 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
609 				__GFP_NOWARN, get_order(size));
610 	if (!page)
611 		return -ENOMEM;
612 	mem_info->vbase = page_address(page);
613 
614 	core_imc_refc[core_id].id = core_id;
615 	spin_lock_init(&core_imc_refc[core_id].lock);
616 
617 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
618 				__pa((void *)mem_info->vbase),
619 				get_hard_smp_processor_id(cpu));
620 	if (rc) {
621 		free_pages((u64)mem_info->vbase, get_order(size));
622 		mem_info->vbase = NULL;
623 	}
624 
625 	return rc;
626 }
627 
is_core_imc_mem_inited(int cpu)628 static bool is_core_imc_mem_inited(int cpu)
629 {
630 	struct imc_mem_info *mem_info;
631 	int core_id = (cpu / threads_per_core);
632 
633 	mem_info = &core_imc_pmu->mem_info[core_id];
634 	if (!mem_info->vbase)
635 		return false;
636 
637 	return true;
638 }
639 
ppc_core_imc_cpu_online(unsigned int cpu)640 static int ppc_core_imc_cpu_online(unsigned int cpu)
641 {
642 	const struct cpumask *l_cpumask;
643 	static struct cpumask tmp_mask;
644 	int ret = 0;
645 
646 	/* Get the cpumask for this core */
647 	l_cpumask = cpu_sibling_mask(cpu);
648 
649 	/* If a cpu for this core is already set, then, don't do anything */
650 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
651 		return 0;
652 
653 	if (!is_core_imc_mem_inited(cpu)) {
654 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
655 		if (ret) {
656 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
657 			return ret;
658 		}
659 	}
660 
661 	/* set the cpu in the mask */
662 	cpumask_set_cpu(cpu, &core_imc_cpumask);
663 	return 0;
664 }
665 
ppc_core_imc_cpu_offline(unsigned int cpu)666 static int ppc_core_imc_cpu_offline(unsigned int cpu)
667 {
668 	unsigned int core_id;
669 	int ncpu;
670 	struct imc_pmu_ref *ref;
671 
672 	/*
673 	 * clear this cpu out of the mask, if not present in the mask,
674 	 * don't bother doing anything.
675 	 */
676 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
677 		return 0;
678 
679 	/*
680 	 * Check whether core_imc is registered. We could end up here
681 	 * if the cpuhotplug callback registration fails. i.e, callback
682 	 * invokes the offline path for all sucessfully registered cpus.
683 	 * At this stage, core_imc pmu will not be registered and we
684 	 * should return here.
685 	 *
686 	 * We return with a zero since this is not an offline failure.
687 	 * And cpuhp_setup_state() returns the actual failure reason
688 	 * to the caller, which inturn will call the cleanup routine.
689 	 */
690 	if (!core_imc_pmu->pmu.event_init)
691 		return 0;
692 
693 	/* Find any online cpu in that core except the current "cpu" */
694 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
695 
696 	if (unlikely(ncpu == cpu))
697 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
698 
699 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
700 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
701 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
702 	} else {
703 		/*
704 		 * If this is the last cpu in this core then skip taking reference
705 		 * count lock for this core and directly zero "refc" for this core.
706 		 */
707 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
708 				       get_hard_smp_processor_id(cpu));
709 		core_id = cpu / threads_per_core;
710 		ref = &core_imc_refc[core_id];
711 		if (!ref)
712 			return -EINVAL;
713 
714 		ref->refc = 0;
715 		/*
716 		 * Reduce the global reference count, if this is the
717 		 * last cpu in this core and core-imc event running
718 		 * in this cpu.
719 		 */
720 		spin_lock(&imc_global_refc.lock);
721 		if (imc_global_refc.id == IMC_DOMAIN_CORE)
722 			imc_global_refc.refc--;
723 
724 		spin_unlock(&imc_global_refc.lock);
725 	}
726 	return 0;
727 }
728 
core_imc_pmu_cpumask_init(void)729 static int core_imc_pmu_cpumask_init(void)
730 {
731 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
732 				 "perf/powerpc/imc_core:online",
733 				 ppc_core_imc_cpu_online,
734 				 ppc_core_imc_cpu_offline);
735 }
736 
reset_global_refc(struct perf_event * event)737 static void reset_global_refc(struct perf_event *event)
738 {
739 		spin_lock(&imc_global_refc.lock);
740 		imc_global_refc.refc--;
741 
742 		/*
743 		 * If no other thread is running any
744 		 * event for this domain(thread/core/trace),
745 		 * set the global id to zero.
746 		 */
747 		if (imc_global_refc.refc <= 0) {
748 			imc_global_refc.refc = 0;
749 			imc_global_refc.id = 0;
750 		}
751 		spin_unlock(&imc_global_refc.lock);
752 }
753 
core_imc_counters_release(struct perf_event * event)754 static void core_imc_counters_release(struct perf_event *event)
755 {
756 	int rc, core_id;
757 	struct imc_pmu_ref *ref;
758 
759 	if (event->cpu < 0)
760 		return;
761 	/*
762 	 * See if we need to disable the IMC PMU.
763 	 * If no events are currently in use, then we have to take a
764 	 * lock to ensure that we don't race with another task doing
765 	 * enable or disable the core counters.
766 	 */
767 	core_id = event->cpu / threads_per_core;
768 
769 	/* Take the lock and decrement the refernce count for this core */
770 	ref = &core_imc_refc[core_id];
771 	if (!ref)
772 		return;
773 
774 	spin_lock(&ref->lock);
775 	if (ref->refc == 0) {
776 		/*
777 		 * The scenario where this is true is, when perf session is
778 		 * started, followed by offlining of all cpus in a given core.
779 		 *
780 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
781 		 * function set the ref->count to zero, if the cpu which is
782 		 * about to offline is the last cpu in a given core and make
783 		 * an OPAL call to disable the engine in that core.
784 		 *
785 		 */
786 		spin_unlock(&ref->lock);
787 		return;
788 	}
789 	ref->refc--;
790 	if (ref->refc == 0) {
791 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
792 					    get_hard_smp_processor_id(event->cpu));
793 		if (rc) {
794 			spin_unlock(&ref->lock);
795 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
796 			return;
797 		}
798 	} else if (ref->refc < 0) {
799 		WARN(1, "core-imc: Invalid event reference count\n");
800 		ref->refc = 0;
801 	}
802 	spin_unlock(&ref->lock);
803 
804 	reset_global_refc(event);
805 }
806 
core_imc_event_init(struct perf_event * event)807 static int core_imc_event_init(struct perf_event *event)
808 {
809 	int core_id, rc;
810 	u64 config = event->attr.config;
811 	struct imc_mem_info *pcmi;
812 	struct imc_pmu *pmu;
813 	struct imc_pmu_ref *ref;
814 
815 	if (event->attr.type != event->pmu->type)
816 		return -ENOENT;
817 
818 	/* Sampling not supported */
819 	if (event->hw.sample_period)
820 		return -EINVAL;
821 
822 	if (event->cpu < 0)
823 		return -EINVAL;
824 
825 	event->hw.idx = -1;
826 	pmu = imc_event_to_pmu(event);
827 
828 	/* Sanity check for config (event offset) */
829 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
830 		return -EINVAL;
831 
832 	if (!is_core_imc_mem_inited(event->cpu))
833 		return -ENODEV;
834 
835 	core_id = event->cpu / threads_per_core;
836 	pcmi = &core_imc_pmu->mem_info[core_id];
837 	if ((!pcmi->vbase))
838 		return -ENODEV;
839 
840 	ref = &core_imc_refc[core_id];
841 	if (!ref)
842 		return -EINVAL;
843 
844 	/*
845 	 * Core pmu units are enabled only when it is used.
846 	 * See if this is triggered for the first time.
847 	 * If yes, take the lock and enable the core counters.
848 	 * If not, just increment the count in core_imc_refc struct.
849 	 */
850 	spin_lock(&ref->lock);
851 	if (ref->refc == 0) {
852 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
853 					     get_hard_smp_processor_id(event->cpu));
854 		if (rc) {
855 			spin_unlock(&ref->lock);
856 			pr_err("core-imc: Unable to start the counters for core %d\n",
857 									core_id);
858 			return rc;
859 		}
860 	}
861 	++ref->refc;
862 	spin_unlock(&ref->lock);
863 
864 	/*
865 	 * Since the system can run either in accumulation or trace-mode
866 	 * of IMC at a time, core-imc events are allowed only if no other
867 	 * trace/thread imc events are enabled/monitored.
868 	 *
869 	 * Take the global lock, and check the refc.id
870 	 * to know whether any other trace/thread imc
871 	 * events are running.
872 	 */
873 	spin_lock(&imc_global_refc.lock);
874 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
875 		/*
876 		 * No other trace/thread imc events are running in
877 		 * the system, so set the refc.id to core-imc.
878 		 */
879 		imc_global_refc.id = IMC_DOMAIN_CORE;
880 		imc_global_refc.refc++;
881 	} else {
882 		spin_unlock(&imc_global_refc.lock);
883 		return -EBUSY;
884 	}
885 	spin_unlock(&imc_global_refc.lock);
886 
887 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
888 	event->destroy = core_imc_counters_release;
889 	return 0;
890 }
891 
892 /*
893  * Allocates a page of memory for each of the online cpus, and load
894  * LDBAR with 0.
895  * The physical base address of the page allocated for a cpu will be
896  * written to the LDBAR for that cpu, when the thread-imc event
897  * is added.
898  *
899  * LDBAR Register Layout:
900  *
901  *  0          4         8         12        16        20        24        28
902  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
903  *   | |       [   ]    [                   Counter Address [8:50]
904  *   | * Mode    |
905  *   |           * PB Scope
906  *   * Enable/Disable
907  *
908  *  32        36        40        44        48        52        56        60
909  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
910  *           Counter Address [8:50]              ]
911  *
912  */
thread_imc_mem_alloc(int cpu_id,int size)913 static int thread_imc_mem_alloc(int cpu_id, int size)
914 {
915 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
916 	int nid = cpu_to_node(cpu_id);
917 
918 	if (!local_mem) {
919 		struct page *page;
920 		/*
921 		 * This case could happen only once at start, since we dont
922 		 * free the memory in cpu offline path.
923 		 */
924 		page = alloc_pages_node(nid,
925 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
926 				  __GFP_NOWARN, get_order(size));
927 		if (!page)
928 			return -ENOMEM;
929 		local_mem = page_address(page);
930 
931 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
932 	}
933 
934 	mtspr(SPRN_LDBAR, 0);
935 	return 0;
936 }
937 
ppc_thread_imc_cpu_online(unsigned int cpu)938 static int ppc_thread_imc_cpu_online(unsigned int cpu)
939 {
940 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
941 }
942 
ppc_thread_imc_cpu_offline(unsigned int cpu)943 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
944 {
945 	/*
946 	 * Set the bit 0 of LDBAR to zero.
947 	 *
948 	 * If bit 0 of LDBAR is unset, it will stop posting
949 	 * the counter data to memory.
950 	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
951 	 * event_add function. So reset this bit here, to stop the updates
952 	 * to memory in the cpu_offline path.
953 	 */
954 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
955 
956 	/* Reduce the refc if thread-imc event running on this cpu */
957 	spin_lock(&imc_global_refc.lock);
958 	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
959 		imc_global_refc.refc--;
960 	spin_unlock(&imc_global_refc.lock);
961 
962 	return 0;
963 }
964 
thread_imc_cpu_init(void)965 static int thread_imc_cpu_init(void)
966 {
967 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
968 			  "perf/powerpc/imc_thread:online",
969 			  ppc_thread_imc_cpu_online,
970 			  ppc_thread_imc_cpu_offline);
971 }
972 
thread_imc_event_init(struct perf_event * event)973 static int thread_imc_event_init(struct perf_event *event)
974 {
975 	u32 config = event->attr.config;
976 	struct task_struct *target;
977 	struct imc_pmu *pmu;
978 
979 	if (event->attr.type != event->pmu->type)
980 		return -ENOENT;
981 
982 	if (!perfmon_capable())
983 		return -EACCES;
984 
985 	/* Sampling not supported */
986 	if (event->hw.sample_period)
987 		return -EINVAL;
988 
989 	event->hw.idx = -1;
990 	pmu = imc_event_to_pmu(event);
991 
992 	/* Sanity check for config offset */
993 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
994 		return -EINVAL;
995 
996 	target = event->hw.target;
997 	if (!target)
998 		return -EINVAL;
999 
1000 	spin_lock(&imc_global_refc.lock);
1001 	/*
1002 	 * Check if any other trace/core imc events are running in the
1003 	 * system, if not set the global id to thread-imc.
1004 	 */
1005 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1006 		imc_global_refc.id = IMC_DOMAIN_THREAD;
1007 		imc_global_refc.refc++;
1008 	} else {
1009 		spin_unlock(&imc_global_refc.lock);
1010 		return -EBUSY;
1011 	}
1012 	spin_unlock(&imc_global_refc.lock);
1013 
1014 	event->pmu->task_ctx_nr = perf_sw_context;
1015 	event->destroy = reset_global_refc;
1016 	return 0;
1017 }
1018 
is_thread_imc_pmu(struct perf_event * event)1019 static bool is_thread_imc_pmu(struct perf_event *event)
1020 {
1021 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1022 		return true;
1023 
1024 	return false;
1025 }
1026 
get_event_base_addr(struct perf_event * event)1027 static u64 * get_event_base_addr(struct perf_event *event)
1028 {
1029 	u64 addr;
1030 
1031 	if (is_thread_imc_pmu(event)) {
1032 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1033 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1034 	}
1035 
1036 	return (u64 *)event->hw.event_base;
1037 }
1038 
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1039 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1040 				     unsigned int txn_flags)
1041 {
1042 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1043 		return;
1044 	perf_pmu_disable(pmu);
1045 }
1046 
thread_imc_pmu_cancel_txn(struct pmu * pmu)1047 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1048 {
1049 	perf_pmu_enable(pmu);
1050 }
1051 
thread_imc_pmu_commit_txn(struct pmu * pmu)1052 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1053 {
1054 	perf_pmu_enable(pmu);
1055 	return 0;
1056 }
1057 
imc_read_counter(struct perf_event * event)1058 static u64 imc_read_counter(struct perf_event *event)
1059 {
1060 	u64 *addr, data;
1061 
1062 	/*
1063 	 * In-Memory Collection (IMC) counters are free flowing counters.
1064 	 * So we take a snapshot of the counter value on enable and save it
1065 	 * to calculate the delta at later stage to present the event counter
1066 	 * value.
1067 	 */
1068 	addr = get_event_base_addr(event);
1069 	data = be64_to_cpu(READ_ONCE(*addr));
1070 	local64_set(&event->hw.prev_count, data);
1071 
1072 	return data;
1073 }
1074 
imc_event_update(struct perf_event * event)1075 static void imc_event_update(struct perf_event *event)
1076 {
1077 	u64 counter_prev, counter_new, final_count;
1078 
1079 	counter_prev = local64_read(&event->hw.prev_count);
1080 	counter_new = imc_read_counter(event);
1081 	final_count = counter_new - counter_prev;
1082 
1083 	/* Update the delta to the event count */
1084 	local64_add(final_count, &event->count);
1085 }
1086 
imc_event_start(struct perf_event * event,int flags)1087 static void imc_event_start(struct perf_event *event, int flags)
1088 {
1089 	/*
1090 	 * In Memory Counters are free flowing counters. HW or the microcode
1091 	 * keeps adding to the counter offset in memory. To get event
1092 	 * counter value, we snapshot the value here and we calculate
1093 	 * delta at later point.
1094 	 */
1095 	imc_read_counter(event);
1096 }
1097 
imc_event_stop(struct perf_event * event,int flags)1098 static void imc_event_stop(struct perf_event *event, int flags)
1099 {
1100 	/*
1101 	 * Take a snapshot and calculate the delta and update
1102 	 * the event counter values.
1103 	 */
1104 	imc_event_update(event);
1105 }
1106 
imc_event_add(struct perf_event * event,int flags)1107 static int imc_event_add(struct perf_event *event, int flags)
1108 {
1109 	if (flags & PERF_EF_START)
1110 		imc_event_start(event, flags);
1111 
1112 	return 0;
1113 }
1114 
thread_imc_event_add(struct perf_event * event,int flags)1115 static int thread_imc_event_add(struct perf_event *event, int flags)
1116 {
1117 	int core_id;
1118 	struct imc_pmu_ref *ref;
1119 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1120 
1121 	if (flags & PERF_EF_START)
1122 		imc_event_start(event, flags);
1123 
1124 	if (!is_core_imc_mem_inited(smp_processor_id()))
1125 		return -EINVAL;
1126 
1127 	core_id = smp_processor_id() / threads_per_core;
1128 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1129 	mtspr(SPRN_LDBAR, ldbar_value);
1130 
1131 	/*
1132 	 * imc pmus are enabled only when it is used.
1133 	 * See if this is triggered for the first time.
1134 	 * If yes, take the lock and enable the counters.
1135 	 * If not, just increment the count in ref count struct.
1136 	 */
1137 	ref = &core_imc_refc[core_id];
1138 	if (!ref)
1139 		return -EINVAL;
1140 
1141 	spin_lock(&ref->lock);
1142 	if (ref->refc == 0) {
1143 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1144 		    get_hard_smp_processor_id(smp_processor_id()))) {
1145 			spin_unlock(&ref->lock);
1146 			pr_err("thread-imc: Unable to start the counter\
1147 				for core %d\n", core_id);
1148 			return -EINVAL;
1149 		}
1150 	}
1151 	++ref->refc;
1152 	spin_unlock(&ref->lock);
1153 	return 0;
1154 }
1155 
thread_imc_event_del(struct perf_event * event,int flags)1156 static void thread_imc_event_del(struct perf_event *event, int flags)
1157 {
1158 
1159 	int core_id;
1160 	struct imc_pmu_ref *ref;
1161 
1162 	core_id = smp_processor_id() / threads_per_core;
1163 	ref = &core_imc_refc[core_id];
1164 	if (!ref) {
1165 		pr_debug("imc: Failed to get event reference count\n");
1166 		return;
1167 	}
1168 
1169 	spin_lock(&ref->lock);
1170 	ref->refc--;
1171 	if (ref->refc == 0) {
1172 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1173 		    get_hard_smp_processor_id(smp_processor_id()))) {
1174 			spin_unlock(&ref->lock);
1175 			pr_err("thread-imc: Unable to stop the counters\
1176 				for core %d\n", core_id);
1177 			return;
1178 		}
1179 	} else if (ref->refc < 0) {
1180 		ref->refc = 0;
1181 	}
1182 	spin_unlock(&ref->lock);
1183 
1184 	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1185 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1186 
1187 	/*
1188 	 * Take a snapshot and calculate the delta and update
1189 	 * the event counter values.
1190 	 */
1191 	imc_event_update(event);
1192 }
1193 
1194 /*
1195  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1196  */
trace_imc_mem_alloc(int cpu_id,int size)1197 static int trace_imc_mem_alloc(int cpu_id, int size)
1198 {
1199 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1200 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1201 	int core_id = (cpu_id / threads_per_core);
1202 
1203 	if (!local_mem) {
1204 		struct page *page;
1205 
1206 		page = alloc_pages_node(phys_id,
1207 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1208 				__GFP_NOWARN, get_order(size));
1209 		if (!page)
1210 			return -ENOMEM;
1211 		local_mem = page_address(page);
1212 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1213 
1214 		/* Initialise the counters for trace mode */
1215 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1216 					    get_hard_smp_processor_id(cpu_id));
1217 		if (rc) {
1218 			pr_info("IMC:opal init failed for trace imc\n");
1219 			return rc;
1220 		}
1221 	}
1222 
1223 	trace_imc_refc[core_id].id = core_id;
1224 	spin_lock_init(&trace_imc_refc[core_id].lock);
1225 
1226 	mtspr(SPRN_LDBAR, 0);
1227 	return 0;
1228 }
1229 
ppc_trace_imc_cpu_online(unsigned int cpu)1230 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1231 {
1232 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1233 }
1234 
ppc_trace_imc_cpu_offline(unsigned int cpu)1235 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1236 {
1237 	/*
1238 	 * No need to set bit 0 of LDBAR to zero, as
1239 	 * it is set to zero for imc trace-mode
1240 	 *
1241 	 * Reduce the refc if any trace-imc event running
1242 	 * on this cpu.
1243 	 */
1244 	spin_lock(&imc_global_refc.lock);
1245 	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1246 		imc_global_refc.refc--;
1247 	spin_unlock(&imc_global_refc.lock);
1248 
1249 	return 0;
1250 }
1251 
trace_imc_cpu_init(void)1252 static int trace_imc_cpu_init(void)
1253 {
1254 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1255 			  "perf/powerpc/imc_trace:online",
1256 			  ppc_trace_imc_cpu_online,
1257 			  ppc_trace_imc_cpu_offline);
1258 }
1259 
get_trace_imc_event_base_addr(void)1260 static u64 get_trace_imc_event_base_addr(void)
1261 {
1262 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1263 }
1264 
1265 /*
1266  * Function to parse trace-imc data obtained
1267  * and to prepare the perf sample.
1268  */
trace_imc_prepare_sample(struct trace_imc_data * mem,struct perf_sample_data * data,u64 * prev_tb,struct perf_event_header * header,struct perf_event * event)1269 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1270 				    struct perf_sample_data *data,
1271 				    u64 *prev_tb,
1272 				    struct perf_event_header *header,
1273 				    struct perf_event *event)
1274 {
1275 	/* Sanity checks for a valid record */
1276 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1277 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1278 	else
1279 		return -EINVAL;
1280 
1281 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1282 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1283 		return -EINVAL;
1284 
1285 	/* Prepare perf sample */
1286 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1287 	data->period = event->hw.last_period;
1288 
1289 	header->type = PERF_RECORD_SAMPLE;
1290 	header->size = sizeof(*header) + event->header_size;
1291 	header->misc = 0;
1292 
1293 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1294 		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1295 		case 0:/* when MSR HV and PR not set in the trace-record */
1296 			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1297 			break;
1298 		case 1: /* MSR HV is 0 and PR is 1 */
1299 			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1300 			break;
1301 		case 2: /* MSR HV is 1 and PR is 0 */
1302 			header->misc |= PERF_RECORD_MISC_KERNEL;
1303 			break;
1304 		case 3: /* MSR HV is 1 and PR is 1 */
1305 			header->misc |= PERF_RECORD_MISC_USER;
1306 			break;
1307 		default:
1308 			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1309 			break;
1310 		}
1311 	} else {
1312 		if (is_kernel_addr(data->ip))
1313 			header->misc |= PERF_RECORD_MISC_KERNEL;
1314 		else
1315 			header->misc |= PERF_RECORD_MISC_USER;
1316 	}
1317 	perf_event_header__init_id(header, data, event);
1318 
1319 	return 0;
1320 }
1321 
dump_trace_imc_data(struct perf_event * event)1322 static void dump_trace_imc_data(struct perf_event *event)
1323 {
1324 	struct trace_imc_data *mem;
1325 	int i, ret;
1326 	u64 prev_tb = 0;
1327 
1328 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1329 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1330 		i++, mem++) {
1331 		struct perf_sample_data data;
1332 		struct perf_event_header header;
1333 
1334 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1335 		if (ret) /* Exit, if not a valid record */
1336 			break;
1337 		else {
1338 			/* If this is a valid record, create the sample */
1339 			struct perf_output_handle handle;
1340 
1341 			if (perf_output_begin(&handle, &data, event, header.size))
1342 				return;
1343 
1344 			perf_output_sample(&handle, &header, &data, event);
1345 			perf_output_end(&handle);
1346 		}
1347 	}
1348 }
1349 
trace_imc_event_add(struct perf_event * event,int flags)1350 static int trace_imc_event_add(struct perf_event *event, int flags)
1351 {
1352 	int core_id = smp_processor_id() / threads_per_core;
1353 	struct imc_pmu_ref *ref = NULL;
1354 	u64 local_mem, ldbar_value;
1355 
1356 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1357 	local_mem = get_trace_imc_event_base_addr();
1358 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1359 
1360 	/* trace-imc reference count */
1361 	if (trace_imc_refc)
1362 		ref = &trace_imc_refc[core_id];
1363 	if (!ref) {
1364 		pr_debug("imc: Failed to get the event reference count\n");
1365 		return -EINVAL;
1366 	}
1367 
1368 	mtspr(SPRN_LDBAR, ldbar_value);
1369 	spin_lock(&ref->lock);
1370 	if (ref->refc == 0) {
1371 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1372 				get_hard_smp_processor_id(smp_processor_id()))) {
1373 			spin_unlock(&ref->lock);
1374 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1375 			return -EINVAL;
1376 		}
1377 	}
1378 	++ref->refc;
1379 	spin_unlock(&ref->lock);
1380 	return 0;
1381 }
1382 
trace_imc_event_read(struct perf_event * event)1383 static void trace_imc_event_read(struct perf_event *event)
1384 {
1385 	return;
1386 }
1387 
trace_imc_event_stop(struct perf_event * event,int flags)1388 static void trace_imc_event_stop(struct perf_event *event, int flags)
1389 {
1390 	u64 local_mem = get_trace_imc_event_base_addr();
1391 	dump_trace_imc_data(event);
1392 	memset((void *)local_mem, 0, sizeof(u64));
1393 }
1394 
trace_imc_event_start(struct perf_event * event,int flags)1395 static void trace_imc_event_start(struct perf_event *event, int flags)
1396 {
1397 	return;
1398 }
1399 
trace_imc_event_del(struct perf_event * event,int flags)1400 static void trace_imc_event_del(struct perf_event *event, int flags)
1401 {
1402 	int core_id = smp_processor_id() / threads_per_core;
1403 	struct imc_pmu_ref *ref = NULL;
1404 
1405 	if (trace_imc_refc)
1406 		ref = &trace_imc_refc[core_id];
1407 	if (!ref) {
1408 		pr_debug("imc: Failed to get event reference count\n");
1409 		return;
1410 	}
1411 
1412 	spin_lock(&ref->lock);
1413 	ref->refc--;
1414 	if (ref->refc == 0) {
1415 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1416 				get_hard_smp_processor_id(smp_processor_id()))) {
1417 			spin_unlock(&ref->lock);
1418 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1419 			return;
1420 		}
1421 	} else if (ref->refc < 0) {
1422 		ref->refc = 0;
1423 	}
1424 	spin_unlock(&ref->lock);
1425 
1426 	trace_imc_event_stop(event, flags);
1427 }
1428 
trace_imc_event_init(struct perf_event * event)1429 static int trace_imc_event_init(struct perf_event *event)
1430 {
1431 	if (event->attr.type != event->pmu->type)
1432 		return -ENOENT;
1433 
1434 	if (!perfmon_capable())
1435 		return -EACCES;
1436 
1437 	/* Return if this is a couting event */
1438 	if (event->attr.sample_period == 0)
1439 		return -ENOENT;
1440 
1441 	/*
1442 	 * Take the global lock, and make sure
1443 	 * no other thread is running any core/thread imc
1444 	 * events
1445 	 */
1446 	spin_lock(&imc_global_refc.lock);
1447 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1448 		/*
1449 		 * No core/thread imc events are running in the
1450 		 * system, so set the refc.id to trace-imc.
1451 		 */
1452 		imc_global_refc.id = IMC_DOMAIN_TRACE;
1453 		imc_global_refc.refc++;
1454 	} else {
1455 		spin_unlock(&imc_global_refc.lock);
1456 		return -EBUSY;
1457 	}
1458 	spin_unlock(&imc_global_refc.lock);
1459 
1460 	event->hw.idx = -1;
1461 
1462 	/*
1463 	 * There can only be a single PMU for perf_hw_context events which is assigned to
1464 	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1465 	 */
1466 	event->pmu->task_ctx_nr = perf_sw_context;
1467 	event->destroy = reset_global_refc;
1468 	return 0;
1469 }
1470 
1471 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1472 static int update_pmu_ops(struct imc_pmu *pmu)
1473 {
1474 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1475 	pmu->pmu.add = imc_event_add;
1476 	pmu->pmu.del = imc_event_stop;
1477 	pmu->pmu.start = imc_event_start;
1478 	pmu->pmu.stop = imc_event_stop;
1479 	pmu->pmu.read = imc_event_update;
1480 	pmu->pmu.attr_groups = pmu->attr_groups;
1481 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1482 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1483 
1484 	switch (pmu->domain) {
1485 	case IMC_DOMAIN_NEST:
1486 		pmu->pmu.event_init = nest_imc_event_init;
1487 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1488 		break;
1489 	case IMC_DOMAIN_CORE:
1490 		pmu->pmu.event_init = core_imc_event_init;
1491 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1492 		break;
1493 	case IMC_DOMAIN_THREAD:
1494 		pmu->pmu.event_init = thread_imc_event_init;
1495 		pmu->pmu.add = thread_imc_event_add;
1496 		pmu->pmu.del = thread_imc_event_del;
1497 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1498 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1499 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1500 		break;
1501 	case IMC_DOMAIN_TRACE:
1502 		pmu->pmu.event_init = trace_imc_event_init;
1503 		pmu->pmu.add = trace_imc_event_add;
1504 		pmu->pmu.del = trace_imc_event_del;
1505 		pmu->pmu.start = trace_imc_event_start;
1506 		pmu->pmu.stop = trace_imc_event_stop;
1507 		pmu->pmu.read = trace_imc_event_read;
1508 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1509 		break;
1510 	default:
1511 		break;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1518 static int init_nest_pmu_ref(void)
1519 {
1520 	int nid, i, cpu;
1521 
1522 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1523 								GFP_KERNEL);
1524 
1525 	if (!nest_imc_refc)
1526 		return -ENOMEM;
1527 
1528 	i = 0;
1529 	for_each_node(nid) {
1530 		/*
1531 		 * Take the lock to avoid races while tracking the number of
1532 		 * sessions using the chip's nest pmu units.
1533 		 */
1534 		spin_lock_init(&nest_imc_refc[i].lock);
1535 
1536 		/*
1537 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1538 		 * 0 and will be used as index to the array. "i" will not go off the
1539 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1540 		 * nodes only.
1541 		 */
1542 		nest_imc_refc[i++].id = nid;
1543 	}
1544 
1545 	/*
1546 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1547 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1548 	 */
1549 	for_each_possible_cpu(cpu) {
1550 		nid = cpu_to_node(cpu);
1551 		for (i = 0; i < num_possible_nodes(); i++) {
1552 			if (nest_imc_refc[i].id == nid) {
1553 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1554 				break;
1555 			}
1556 		}
1557 	}
1558 	return 0;
1559 }
1560 
cleanup_all_core_imc_memory(void)1561 static void cleanup_all_core_imc_memory(void)
1562 {
1563 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1564 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1565 	int size = core_imc_pmu->counter_mem_size;
1566 
1567 	/* mem_info will never be NULL */
1568 	for (i = 0; i < nr_cores; i++) {
1569 		if (ptr[i].vbase)
1570 			free_pages((u64)ptr[i].vbase, get_order(size));
1571 	}
1572 
1573 	kfree(ptr);
1574 	kfree(core_imc_refc);
1575 }
1576 
thread_imc_ldbar_disable(void * dummy)1577 static void thread_imc_ldbar_disable(void *dummy)
1578 {
1579 	/*
1580 	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1581 	 * updates to memory.
1582 	 */
1583 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1584 }
1585 
thread_imc_disable(void)1586 void thread_imc_disable(void)
1587 {
1588 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1589 }
1590 
cleanup_all_thread_imc_memory(void)1591 static void cleanup_all_thread_imc_memory(void)
1592 {
1593 	int i, order = get_order(thread_imc_mem_size);
1594 
1595 	for_each_online_cpu(i) {
1596 		if (per_cpu(thread_imc_mem, i))
1597 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1598 
1599 	}
1600 }
1601 
cleanup_all_trace_imc_memory(void)1602 static void cleanup_all_trace_imc_memory(void)
1603 {
1604 	int i, order = get_order(trace_imc_mem_size);
1605 
1606 	for_each_online_cpu(i) {
1607 		if (per_cpu(trace_imc_mem, i))
1608 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1609 
1610 	}
1611 	kfree(trace_imc_refc);
1612 }
1613 
1614 /* Function to free the attr_groups which are dynamically allocated */
imc_common_mem_free(struct imc_pmu * pmu_ptr)1615 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1616 {
1617 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1618 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1619 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1620 }
1621 
1622 /*
1623  * Common function to unregister cpu hotplug callback and
1624  * free the memory.
1625  * TODO: Need to handle pmu unregistering, which will be
1626  * done in followup series.
1627  */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1628 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1629 {
1630 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1631 		mutex_lock(&nest_init_lock);
1632 		if (nest_pmus == 1) {
1633 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1634 			kfree(nest_imc_refc);
1635 			kfree(per_nest_pmu_arr);
1636 			per_nest_pmu_arr = NULL;
1637 		}
1638 
1639 		if (nest_pmus > 0)
1640 			nest_pmus--;
1641 		mutex_unlock(&nest_init_lock);
1642 	}
1643 
1644 	/* Free core_imc memory */
1645 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1646 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1647 		cleanup_all_core_imc_memory();
1648 	}
1649 
1650 	/* Free thread_imc memory */
1651 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1652 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1653 		cleanup_all_thread_imc_memory();
1654 	}
1655 
1656 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1657 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1658 		cleanup_all_trace_imc_memory();
1659 	}
1660 }
1661 
1662 /*
1663  * Function to unregister thread-imc if core-imc
1664  * is not registered.
1665  */
unregister_thread_imc(void)1666 void unregister_thread_imc(void)
1667 {
1668 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1669 	imc_common_mem_free(thread_imc_pmu);
1670 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1671 }
1672 
1673 /*
1674  * imc_mem_init : Function to support memory allocation for core imc.
1675  */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1676 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1677 								int pmu_index)
1678 {
1679 	const char *s;
1680 	int nr_cores, cpu, res = -ENOMEM;
1681 
1682 	if (of_property_read_string(parent, "name", &s))
1683 		return -ENODEV;
1684 
1685 	switch (pmu_ptr->domain) {
1686 	case IMC_DOMAIN_NEST:
1687 		/* Update the pmu name */
1688 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1689 		if (!pmu_ptr->pmu.name)
1690 			goto err;
1691 
1692 		/* Needed for hotplug/migration */
1693 		if (!per_nest_pmu_arr) {
1694 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1695 						sizeof(struct imc_pmu *),
1696 						GFP_KERNEL);
1697 			if (!per_nest_pmu_arr)
1698 				goto err;
1699 		}
1700 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1701 		break;
1702 	case IMC_DOMAIN_CORE:
1703 		/* Update the pmu name */
1704 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1705 		if (!pmu_ptr->pmu.name)
1706 			goto err;
1707 
1708 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1709 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1710 								GFP_KERNEL);
1711 
1712 		if (!pmu_ptr->mem_info)
1713 			goto err;
1714 
1715 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1716 								GFP_KERNEL);
1717 
1718 		if (!core_imc_refc) {
1719 			kfree(pmu_ptr->mem_info);
1720 			goto err;
1721 		}
1722 
1723 		core_imc_pmu = pmu_ptr;
1724 		break;
1725 	case IMC_DOMAIN_THREAD:
1726 		/* Update the pmu name */
1727 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1728 		if (!pmu_ptr->pmu.name)
1729 			goto err;
1730 
1731 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1732 		for_each_online_cpu(cpu) {
1733 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1734 			if (res) {
1735 				cleanup_all_thread_imc_memory();
1736 				goto err;
1737 			}
1738 		}
1739 
1740 		thread_imc_pmu = pmu_ptr;
1741 		break;
1742 	case IMC_DOMAIN_TRACE:
1743 		/* Update the pmu name */
1744 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1745 		if (!pmu_ptr->pmu.name)
1746 			return -ENOMEM;
1747 
1748 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1749 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1750 								GFP_KERNEL);
1751 		if (!trace_imc_refc)
1752 			return -ENOMEM;
1753 
1754 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1755 		for_each_online_cpu(cpu) {
1756 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1757 			if (res) {
1758 				cleanup_all_trace_imc_memory();
1759 				goto err;
1760 			}
1761 		}
1762 		break;
1763 	default:
1764 		return -EINVAL;
1765 	}
1766 
1767 	return 0;
1768 err:
1769 	return res;
1770 }
1771 
1772 /*
1773  * init_imc_pmu : Setup and register the IMC pmu device.
1774  *
1775  * @parent:	Device tree unit node
1776  * @pmu_ptr:	memory allocated for this pmu
1777  * @pmu_idx:	Count of nest pmc registered
1778  *
1779  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1780  * Handles failure cases and accordingly frees memory.
1781  */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1782 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1783 {
1784 	int ret;
1785 
1786 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1787 	if (ret)
1788 		goto err_free_mem;
1789 
1790 	switch (pmu_ptr->domain) {
1791 	case IMC_DOMAIN_NEST:
1792 		/*
1793 		* Nest imc pmu need only one cpu per chip, we initialize the
1794 		* cpumask for the first nest imc pmu and use the same for the
1795 		* rest. To handle the cpuhotplug callback unregister, we track
1796 		* the number of nest pmus in "nest_pmus".
1797 		*/
1798 		mutex_lock(&nest_init_lock);
1799 		if (nest_pmus == 0) {
1800 			ret = init_nest_pmu_ref();
1801 			if (ret) {
1802 				mutex_unlock(&nest_init_lock);
1803 				kfree(per_nest_pmu_arr);
1804 				per_nest_pmu_arr = NULL;
1805 				goto err_free_mem;
1806 			}
1807 			/* Register for cpu hotplug notification. */
1808 			ret = nest_pmu_cpumask_init();
1809 			if (ret) {
1810 				mutex_unlock(&nest_init_lock);
1811 				kfree(nest_imc_refc);
1812 				kfree(per_nest_pmu_arr);
1813 				per_nest_pmu_arr = NULL;
1814 				goto err_free_mem;
1815 			}
1816 		}
1817 		nest_pmus++;
1818 		mutex_unlock(&nest_init_lock);
1819 		break;
1820 	case IMC_DOMAIN_CORE:
1821 		ret = core_imc_pmu_cpumask_init();
1822 		if (ret) {
1823 			cleanup_all_core_imc_memory();
1824 			goto err_free_mem;
1825 		}
1826 
1827 		break;
1828 	case IMC_DOMAIN_THREAD:
1829 		ret = thread_imc_cpu_init();
1830 		if (ret) {
1831 			cleanup_all_thread_imc_memory();
1832 			goto err_free_mem;
1833 		}
1834 
1835 		break;
1836 	case IMC_DOMAIN_TRACE:
1837 		ret = trace_imc_cpu_init();
1838 		if (ret) {
1839 			cleanup_all_trace_imc_memory();
1840 			goto err_free_mem;
1841 		}
1842 
1843 		break;
1844 	default:
1845 		return  -EINVAL;	/* Unknown domain */
1846 	}
1847 
1848 	ret = update_events_in_group(parent, pmu_ptr);
1849 	if (ret)
1850 		goto err_free_cpuhp_mem;
1851 
1852 	ret = update_pmu_ops(pmu_ptr);
1853 	if (ret)
1854 		goto err_free_cpuhp_mem;
1855 
1856 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1857 	if (ret)
1858 		goto err_free_cpuhp_mem;
1859 
1860 	pr_debug("%s performance monitor hardware support registered\n",
1861 							pmu_ptr->pmu.name);
1862 
1863 	return 0;
1864 
1865 err_free_cpuhp_mem:
1866 	imc_common_cpuhp_mem_free(pmu_ptr);
1867 err_free_mem:
1868 	imc_common_mem_free(pmu_ptr);
1869 	return ret;
1870 }
1871