• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/ccs/ccs-reg-access.c
4  *
5  * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6  *
7  * Copyright (C) 2020 Intel Corporation
8  * Copyright (C) 2011--2012 Nokia Corporation
9  * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10  */
11 
12 #include <asm/unaligned.h>
13 
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 
17 #include "ccs.h"
18 #include "ccs-limits.h"
19 
float_to_u32_mul_1000000(struct i2c_client * client,u32 phloat)20 static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat)
21 {
22 	s32 exp;
23 	u64 man;
24 
25 	if (phloat >= 0x80000000) {
26 		dev_err(&client->dev, "this is a negative number\n");
27 		return 0;
28 	}
29 
30 	if (phloat == 0x7f800000)
31 		return ~0; /* Inf. */
32 
33 	if ((phloat & 0x7f800000) == 0x7f800000) {
34 		dev_err(&client->dev, "NaN or other special number\n");
35 		return 0;
36 	}
37 
38 	/* Valid cases begin here */
39 	if (phloat == 0)
40 		return 0; /* Valid zero */
41 
42 	if (phloat > 0x4f800000)
43 		return ~0; /* larger than 4294967295 */
44 
45 	/*
46 	 * Unbias exponent (note how phloat is now guaranteed to
47 	 * have 0 in the high bit)
48 	 */
49 	exp = ((int32_t)phloat >> 23) - 127;
50 
51 	/* Extract mantissa, add missing '1' bit and it's in MHz */
52 	man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
53 
54 	if (exp < 0)
55 		man >>= -exp;
56 	else
57 		man <<= exp;
58 
59 	man >>= 23; /* Remove mantissa bias */
60 
61 	return man & 0xffffffff;
62 }
63 
64 
65 /*
66  * Read a 8/16/32-bit i2c register.  The value is returned in 'val'.
67  * Returns zero if successful, or non-zero otherwise.
68  */
____ccs_read_addr(struct ccs_sensor * sensor,u16 reg,u16 len,u32 * val)69 static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len,
70 			     u32 *val)
71 {
72 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
73 	struct i2c_msg msg;
74 	unsigned char data_buf[sizeof(u32)] = { 0 };
75 	unsigned char offset_buf[sizeof(u16)];
76 	int r;
77 
78 	if (len > sizeof(data_buf))
79 		return -EINVAL;
80 
81 	msg.addr = client->addr;
82 	msg.flags = 0;
83 	msg.len = sizeof(offset_buf);
84 	msg.buf = offset_buf;
85 	put_unaligned_be16(reg, offset_buf);
86 
87 	r = i2c_transfer(client->adapter, &msg, 1);
88 	if (r != 1) {
89 		if (r >= 0)
90 			r = -EBUSY;
91 		goto err;
92 	}
93 
94 	msg.len = len;
95 	msg.flags = I2C_M_RD;
96 	msg.buf = &data_buf[sizeof(data_buf) - len];
97 
98 	r = i2c_transfer(client->adapter, &msg, 1);
99 	if (r != 1) {
100 		if (r >= 0)
101 			r = -EBUSY;
102 		goto err;
103 	}
104 
105 	*val = get_unaligned_be32(data_buf);
106 
107 	return 0;
108 
109 err:
110 	dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
111 
112 	return r;
113 }
114 
115 /* Read a register using 8-bit access only. */
____ccs_read_addr_8only(struct ccs_sensor * sensor,u16 reg,u16 len,u32 * val)116 static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg,
117 				   u16 len, u32 *val)
118 {
119 	unsigned int i;
120 	int rval;
121 
122 	*val = 0;
123 
124 	for (i = 0; i < len; i++) {
125 		u32 val8;
126 
127 		rval = ____ccs_read_addr(sensor, reg + i, 1, &val8);
128 		if (rval < 0)
129 			return rval;
130 		*val |= val8 << ((len - i - 1) << 3);
131 	}
132 
133 	return 0;
134 }
135 
ccs_reg_width(u32 reg)136 unsigned int ccs_reg_width(u32 reg)
137 {
138 	if (reg & CCS_FL_16BIT)
139 		return sizeof(u16);
140 	if (reg & CCS_FL_32BIT)
141 		return sizeof(u32);
142 
143 	return sizeof(u8);
144 }
145 
ireal32_to_u32_mul_1000000(struct i2c_client * client,u32 val)146 static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
147 {
148 	if (val >> 10 > U32_MAX / 15625) {
149 		dev_warn(&client->dev, "value %u overflows!\n", val);
150 		return U32_MAX;
151 	}
152 
153 	return ((val >> 10) * 15625) +
154 		(val & GENMASK(9, 0)) * 15625 / 1024;
155 }
156 
ccs_reg_conv(struct ccs_sensor * sensor,u32 reg,u32 val)157 u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
158 {
159 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
160 
161 	if (reg & CCS_FL_FLOAT_IREAL) {
162 		if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
163 		    CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
164 			val = ireal32_to_u32_mul_1000000(client, val);
165 		else
166 			val = float_to_u32_mul_1000000(client, val);
167 	} else if (reg & CCS_FL_IREAL) {
168 		val = ireal32_to_u32_mul_1000000(client, val);
169 	}
170 
171 	return val;
172 }
173 
174 /*
175  * Read a 8/16/32-bit i2c register.  The value is returned in 'val'.
176  * Returns zero if successful, or non-zero otherwise.
177  */
__ccs_read_addr(struct ccs_sensor * sensor,u32 reg,u32 * val,bool only8,bool conv)178 static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
179 			   bool only8, bool conv)
180 {
181 	unsigned int len = ccs_reg_width(reg);
182 	int rval;
183 
184 	if (!only8)
185 		rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val);
186 	else
187 		rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len,
188 					       val);
189 	if (rval < 0)
190 		return rval;
191 
192 	if (!conv)
193 		return 0;
194 
195 	*val = ccs_reg_conv(sensor, reg, *val);
196 
197 	return 0;
198 }
199 
__ccs_read_data(struct ccs_reg * regs,size_t num_regs,u32 reg,u32 * val)200 static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs,
201 			   u32 reg, u32 *val)
202 {
203 	unsigned int width = ccs_reg_width(reg);
204 	size_t i;
205 
206 	for (i = 0; i < num_regs; i++, regs++) {
207 		u8 *data;
208 
209 		if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
210 			continue;
211 
212 		if (regs->addr > CCS_REG_ADDR(reg))
213 			break;
214 
215 		data = &regs->value[CCS_REG_ADDR(reg) - regs->addr];
216 
217 		switch (width) {
218 		case sizeof(u8):
219 			*val = *data;
220 			break;
221 		case sizeof(u16):
222 			*val = get_unaligned_be16(data);
223 			break;
224 		case sizeof(u32):
225 			*val = get_unaligned_be32(data);
226 			break;
227 		default:
228 			WARN_ON(1);
229 			return -EINVAL;
230 		}
231 
232 		return 0;
233 	}
234 
235 	return -ENOENT;
236 }
237 
ccs_read_data(struct ccs_sensor * sensor,u32 reg,u32 * val)238 static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val)
239 {
240 	if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs,
241 			     sensor->sdata.num_sensor_read_only_regs,
242 			     reg, val))
243 		return 0;
244 
245 	return __ccs_read_data(sensor->mdata.module_read_only_regs,
246 			       sensor->mdata.num_module_read_only_regs,
247 			       reg, val);
248 }
249 
ccs_read_addr_raw(struct ccs_sensor * sensor,u32 reg,u32 * val,bool force8,bool quirk,bool conv,bool data)250 static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
251 			     bool force8, bool quirk, bool conv, bool data)
252 {
253 	int rval;
254 
255 	if (data) {
256 		rval = ccs_read_data(sensor, reg, val);
257 		if (!rval)
258 			return 0;
259 	}
260 
261 	if (quirk) {
262 		*val = 0;
263 		rval = ccs_call_quirk(sensor, reg_access, false, &reg, val);
264 		if (rval == -ENOIOCTLCMD)
265 			return 0;
266 		if (rval < 0)
267 			return rval;
268 
269 		if (force8)
270 			return __ccs_read_addr(sensor, reg, val, true, conv);
271 	}
272 
273 	return __ccs_read_addr(sensor, reg, val,
274 			       ccs_needs_quirk(sensor,
275 					       CCS_QUIRK_FLAG_8BIT_READ_ONLY),
276 			       conv);
277 }
278 
ccs_read_addr(struct ccs_sensor * sensor,u32 reg,u32 * val)279 int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
280 {
281 	return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
282 }
283 
ccs_read_addr_8only(struct ccs_sensor * sensor,u32 reg,u32 * val)284 int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
285 {
286 	return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
287 }
288 
ccs_read_addr_noconv(struct ccs_sensor * sensor,u32 reg,u32 * val)289 int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
290 {
291 	return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
292 }
293 
ccs_write_retry(struct i2c_client * client,struct i2c_msg * msg)294 static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg)
295 {
296 	unsigned int retries;
297 	int r;
298 
299 	for (retries = 0; retries < 10; retries++) {
300 		/*
301 		 * Due to unknown reason sensor stops responding. This
302 		 * loop is a temporaty solution until the root cause
303 		 * is found.
304 		 */
305 		r = i2c_transfer(client->adapter, msg, 1);
306 		if (r != 1) {
307 			usleep_range(1000, 2000);
308 			continue;
309 		}
310 
311 		if (retries)
312 			dev_err(&client->dev,
313 				"sensor i2c stall encountered. retries: %d\n",
314 				retries);
315 		return 0;
316 	}
317 
318 	return r;
319 }
320 
ccs_write_addr_no_quirk(struct ccs_sensor * sensor,u32 reg,u32 val)321 int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val)
322 {
323 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
324 	struct i2c_msg msg;
325 	unsigned char data[6];
326 	unsigned int len = ccs_reg_width(reg);
327 	int r;
328 
329 	if (len > sizeof(data) - 2)
330 		return -EINVAL;
331 
332 	msg.addr = client->addr;
333 	msg.flags = 0; /* Write */
334 	msg.len = 2 + len;
335 	msg.buf = data;
336 
337 	put_unaligned_be16(CCS_REG_ADDR(reg), data);
338 	put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2);
339 
340 	dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n",
341 		CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1,
342 		ccs_reg_width(reg) << 1, val, val);
343 
344 	r = ccs_write_retry(client, &msg);
345 	if (r)
346 		dev_err(&client->dev,
347 			"wrote 0x%x to offset 0x%x error %d\n", val,
348 			CCS_REG_ADDR(reg), r);
349 
350 	return r;
351 }
352 
353 /*
354  * Write to a 8/16-bit register.
355  * Returns zero if successful, or non-zero otherwise.
356  */
ccs_write_addr(struct ccs_sensor * sensor,u32 reg,u32 val)357 int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
358 {
359 	int rval;
360 
361 	rval = ccs_call_quirk(sensor, reg_access, true, &reg, &val);
362 	if (rval == -ENOIOCTLCMD)
363 		return 0;
364 	if (rval < 0)
365 		return rval;
366 
367 	return ccs_write_addr_no_quirk(sensor, reg, val);
368 }
369 
370 #define MAX_WRITE_LEN	32U
371 
ccs_write_data_regs(struct ccs_sensor * sensor,struct ccs_reg * regs,size_t num_regs)372 int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
373 			size_t num_regs)
374 {
375 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
376 	unsigned char buf[2 + MAX_WRITE_LEN];
377 	struct i2c_msg msg = {
378 		.addr = client->addr,
379 		.buf = buf,
380 	};
381 	size_t i;
382 
383 	for (i = 0; i < num_regs; i++, regs++) {
384 		unsigned char *regdata = regs->value;
385 		unsigned int j;
386 
387 		for (j = 0; j < regs->len;
388 		     j += msg.len - 2, regdata += msg.len - 2) {
389 			char printbuf[(MAX_WRITE_LEN << 1) +
390 				      1 /* \0 */] = { 0 };
391 			int rval;
392 
393 			msg.len = min(regs->len - j, MAX_WRITE_LEN);
394 
395 			bin2hex(printbuf, regdata, msg.len);
396 			dev_dbg(&client->dev,
397 				"writing msr reg 0x%4.4x value 0x%s\n",
398 				regs->addr + j, printbuf);
399 
400 			put_unaligned_be16(regs->addr + j, buf);
401 			memcpy(buf + 2, regdata, msg.len);
402 
403 			msg.len += 2;
404 
405 			rval = ccs_write_retry(client, &msg);
406 			if (rval) {
407 				dev_err(&client->dev,
408 					"error writing %u octets to address 0x%4.4x\n",
409 					msg.len, regs->addr + j);
410 				return rval;
411 			}
412 		}
413 	}
414 
415 	return 0;
416 }
417