1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
130
131 /**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 int err;
191 struct ubi_work *wrk;
192
193 cond_resched();
194
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
224
225 return err;
226 }
227
228 /**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265 }
266
267 /**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286 }
287
288 /**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 int pq_tail = ubi->pq_head - 1;
301
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308
309 /**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
320 {
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
324
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held
579 *
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
582 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 int vol_id, int lnum, int torture, bool nested)
585 {
586 struct ubi_work *wl_wrk;
587
588 ubi_assert(e);
589
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e->pnum, e->ec, torture);
592
593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 if (!wl_wrk)
595 return -ENOMEM;
596
597 wl_wrk->func = &erase_worker;
598 wl_wrk->e = e;
599 wl_wrk->vol_id = vol_id;
600 wl_wrk->lnum = lnum;
601 wl_wrk->torture = torture;
602
603 if (nested)
604 __schedule_ubi_work(ubi, wl_wrk);
605 else
606 schedule_ubi_work(ubi, wl_wrk);
607 return 0;
608 }
609
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
618 *
619 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 int vol_id, int lnum, int torture)
622 {
623 struct ubi_work wl_wrk;
624
625 dbg_wl("sync erase of PEB %i", e->pnum);
626
627 wl_wrk.e = e;
628 wl_wrk.vol_id = vol_id;
629 wl_wrk.lnum = lnum;
630 wl_wrk.torture = torture;
631
632 return __erase_worker(ubi, &wl_wrk);
633 }
634
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
642 *
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 int shutdown)
649 {
650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 struct ubi_wl_entry *e1, *e2;
653 struct ubi_vid_io_buf *vidb;
654 struct ubi_vid_hdr *vid_hdr;
655 int dst_leb_clean = 0;
656
657 kfree(wrk);
658 if (shutdown)
659 return 0;
660
661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 if (!vidb)
663 return -ENOMEM;
664
665 vid_hdr = ubi_get_vid_hdr(vidb);
666
667 down_read(&ubi->fm_eba_sem);
668 mutex_lock(&ubi->move_mutex);
669 spin_lock(&ubi->wl_lock);
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
672
673 if (!ubi->free.rb_node ||
674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675 /*
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
679 *
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
683 * triggered again.
684 */
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 !ubi->free.rb_node, !ubi->used.rb_node);
687 goto out_cancel;
688 }
689
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 e1 = find_anchor_wl_entry(&ubi->used);
692 if (e1 && ubi->fm_anchor &&
693 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
694 ubi->fm_do_produce_anchor = 1;
695 /*
696 * fm_anchor is no longer considered a good anchor.
697 * NULL assignment also prevents multiple wear level checks
698 * of this PEB.
699 */
700 wl_tree_add(ubi->fm_anchor, &ubi->free);
701 ubi->fm_anchor = NULL;
702 ubi->free_count++;
703 }
704
705 if (ubi->fm_do_produce_anchor) {
706 if (!e1)
707 goto out_cancel;
708 e2 = get_peb_for_wl(ubi);
709 if (!e2)
710 goto out_cancel;
711
712 self_check_in_wl_tree(ubi, e1, &ubi->used);
713 rb_erase(&e1->u.rb, &ubi->used);
714 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
715 ubi->fm_do_produce_anchor = 0;
716 } else if (!ubi->scrub.rb_node) {
717 #else
718 if (!ubi->scrub.rb_node) {
719 #endif
720 /*
721 * Now pick the least worn-out used physical eraseblock and a
722 * highly worn-out free physical eraseblock. If the erase
723 * counters differ much enough, start wear-leveling.
724 */
725 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
726 e2 = get_peb_for_wl(ubi);
727 if (!e2)
728 goto out_cancel;
729
730 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
731 dbg_wl("no WL needed: min used EC %d, max free EC %d",
732 e1->ec, e2->ec);
733
734 /* Give the unused PEB back */
735 wl_tree_add(e2, &ubi->free);
736 ubi->free_count++;
737 goto out_cancel;
738 }
739 self_check_in_wl_tree(ubi, e1, &ubi->used);
740 rb_erase(&e1->u.rb, &ubi->used);
741 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
742 e1->pnum, e1->ec, e2->pnum, e2->ec);
743 } else {
744 /* Perform scrubbing */
745 scrubbing = 1;
746 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
747 e2 = get_peb_for_wl(ubi);
748 if (!e2)
749 goto out_cancel;
750
751 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
752 rb_erase(&e1->u.rb, &ubi->scrub);
753 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
754 }
755
756 ubi->move_from = e1;
757 ubi->move_to = e2;
758 spin_unlock(&ubi->wl_lock);
759
760 /*
761 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
762 * We so far do not know which logical eraseblock our physical
763 * eraseblock (@e1) belongs to. We have to read the volume identifier
764 * header first.
765 *
766 * Note, we are protected from this PEB being unmapped and erased. The
767 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
768 * which is being moved was unmapped.
769 */
770
771 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
772 if (err && err != UBI_IO_BITFLIPS) {
773 dst_leb_clean = 1;
774 if (err == UBI_IO_FF) {
775 /*
776 * We are trying to move PEB without a VID header. UBI
777 * always write VID headers shortly after the PEB was
778 * given, so we have a situation when it has not yet
779 * had a chance to write it, because it was preempted.
780 * So add this PEB to the protection queue so far,
781 * because presumably more data will be written there
782 * (including the missing VID header), and then we'll
783 * move it.
784 */
785 dbg_wl("PEB %d has no VID header", e1->pnum);
786 protect = 1;
787 goto out_not_moved;
788 } else if (err == UBI_IO_FF_BITFLIPS) {
789 /*
790 * The same situation as %UBI_IO_FF, but bit-flips were
791 * detected. It is better to schedule this PEB for
792 * scrubbing.
793 */
794 dbg_wl("PEB %d has no VID header but has bit-flips",
795 e1->pnum);
796 scrubbing = 1;
797 goto out_not_moved;
798 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
799 /*
800 * While a full scan would detect interrupted erasures
801 * at attach time we can face them here when attached from
802 * Fastmap.
803 */
804 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
805 e1->pnum);
806 erase = 1;
807 goto out_not_moved;
808 }
809
810 ubi_err(ubi, "error %d while reading VID header from PEB %d",
811 err, e1->pnum);
812 goto out_error;
813 }
814
815 vol_id = be32_to_cpu(vid_hdr->vol_id);
816 lnum = be32_to_cpu(vid_hdr->lnum);
817
818 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
819 if (err) {
820 if (err == MOVE_CANCEL_RACE) {
821 /*
822 * The LEB has not been moved because the volume is
823 * being deleted or the PEB has been put meanwhile. We
824 * should prevent this PEB from being selected for
825 * wear-leveling movement again, so put it to the
826 * protection queue.
827 */
828 protect = 1;
829 dst_leb_clean = 1;
830 goto out_not_moved;
831 }
832 if (err == MOVE_RETRY) {
833 scrubbing = 1;
834 dst_leb_clean = 1;
835 goto out_not_moved;
836 }
837 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
838 err == MOVE_TARGET_RD_ERR) {
839 /*
840 * Target PEB had bit-flips or write error - torture it.
841 */
842 torture = 1;
843 keep = 1;
844 goto out_not_moved;
845 }
846
847 if (err == MOVE_SOURCE_RD_ERR) {
848 /*
849 * An error happened while reading the source PEB. Do
850 * not switch to R/O mode in this case, and give the
851 * upper layers a possibility to recover from this,
852 * e.g. by unmapping corresponding LEB. Instead, just
853 * put this PEB to the @ubi->erroneous list to prevent
854 * UBI from trying to move it over and over again.
855 */
856 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
857 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
858 ubi->erroneous_peb_count);
859 goto out_error;
860 }
861 dst_leb_clean = 1;
862 erroneous = 1;
863 goto out_not_moved;
864 }
865
866 if (err < 0)
867 goto out_error;
868
869 ubi_assert(0);
870 }
871
872 /* The PEB has been successfully moved */
873 if (scrubbing)
874 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
875 e1->pnum, vol_id, lnum, e2->pnum);
876 ubi_free_vid_buf(vidb);
877
878 spin_lock(&ubi->wl_lock);
879 if (!ubi->move_to_put) {
880 wl_tree_add(e2, &ubi->used);
881 e2 = NULL;
882 }
883 ubi->move_from = ubi->move_to = NULL;
884 ubi->move_to_put = ubi->wl_scheduled = 0;
885 spin_unlock(&ubi->wl_lock);
886
887 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
888 if (err) {
889 if (e2) {
890 spin_lock(&ubi->wl_lock);
891 wl_entry_destroy(ubi, e2);
892 spin_unlock(&ubi->wl_lock);
893 }
894 goto out_ro;
895 }
896
897 if (e2) {
898 /*
899 * Well, the target PEB was put meanwhile, schedule it for
900 * erasure.
901 */
902 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
903 e2->pnum, vol_id, lnum);
904 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
905 if (err)
906 goto out_ro;
907 }
908
909 dbg_wl("done");
910 mutex_unlock(&ubi->move_mutex);
911 up_read(&ubi->fm_eba_sem);
912 return 0;
913
914 /*
915 * For some reasons the LEB was not moved, might be an error, might be
916 * something else. @e1 was not changed, so return it back. @e2 might
917 * have been changed, schedule it for erasure.
918 */
919 out_not_moved:
920 if (vol_id != -1)
921 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
922 e1->pnum, vol_id, lnum, e2->pnum, err);
923 else
924 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
925 e1->pnum, e2->pnum, err);
926 spin_lock(&ubi->wl_lock);
927 if (protect)
928 prot_queue_add(ubi, e1);
929 else if (erroneous) {
930 wl_tree_add(e1, &ubi->erroneous);
931 ubi->erroneous_peb_count += 1;
932 } else if (scrubbing)
933 wl_tree_add(e1, &ubi->scrub);
934 else if (keep)
935 wl_tree_add(e1, &ubi->used);
936 if (dst_leb_clean) {
937 wl_tree_add(e2, &ubi->free);
938 ubi->free_count++;
939 }
940
941 ubi_assert(!ubi->move_to_put);
942 ubi->move_from = ubi->move_to = NULL;
943 ubi->wl_scheduled = 0;
944 spin_unlock(&ubi->wl_lock);
945
946 ubi_free_vid_buf(vidb);
947 if (dst_leb_clean) {
948 ensure_wear_leveling(ubi, 1);
949 } else {
950 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
951 if (err)
952 goto out_ro;
953 }
954
955 if (erase) {
956 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
957 if (err)
958 goto out_ro;
959 }
960
961 mutex_unlock(&ubi->move_mutex);
962 up_read(&ubi->fm_eba_sem);
963 return 0;
964
965 out_error:
966 if (vol_id != -1)
967 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
968 err, e1->pnum, e2->pnum);
969 else
970 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
971 err, e1->pnum, vol_id, lnum, e2->pnum);
972 spin_lock(&ubi->wl_lock);
973 ubi->move_from = ubi->move_to = NULL;
974 ubi->move_to_put = ubi->wl_scheduled = 0;
975 wl_entry_destroy(ubi, e1);
976 wl_entry_destroy(ubi, e2);
977 spin_unlock(&ubi->wl_lock);
978
979 ubi_free_vid_buf(vidb);
980
981 out_ro:
982 ubi_ro_mode(ubi);
983 mutex_unlock(&ubi->move_mutex);
984 up_read(&ubi->fm_eba_sem);
985 ubi_assert(err != 0);
986 return err < 0 ? err : -EIO;
987
988 out_cancel:
989 ubi->wl_scheduled = 0;
990 spin_unlock(&ubi->wl_lock);
991 mutex_unlock(&ubi->move_mutex);
992 up_read(&ubi->fm_eba_sem);
993 ubi_free_vid_buf(vidb);
994 return 0;
995 }
996
997 /**
998 * ensure_wear_leveling - schedule wear-leveling if it is needed.
999 * @ubi: UBI device description object
1000 * @nested: set to non-zero if this function is called from UBI worker
1001 *
1002 * This function checks if it is time to start wear-leveling and schedules it
1003 * if yes. This function returns zero in case of success and a negative error
1004 * code in case of failure.
1005 */
1006 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1007 {
1008 int err = 0;
1009 struct ubi_wl_entry *e1;
1010 struct ubi_wl_entry *e2;
1011 struct ubi_work *wrk;
1012
1013 spin_lock(&ubi->wl_lock);
1014 if (ubi->wl_scheduled)
1015 /* Wear-leveling is already in the work queue */
1016 goto out_unlock;
1017
1018 /*
1019 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1020 * the WL worker has to be scheduled anyway.
1021 */
1022 if (!ubi->scrub.rb_node) {
1023 if (!ubi->used.rb_node || !ubi->free.rb_node)
1024 /* No physical eraseblocks - no deal */
1025 goto out_unlock;
1026
1027 /*
1028 * We schedule wear-leveling only if the difference between the
1029 * lowest erase counter of used physical eraseblocks and a high
1030 * erase counter of free physical eraseblocks is greater than
1031 * %UBI_WL_THRESHOLD.
1032 */
1033 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1034 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1035
1036 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1037 goto out_unlock;
1038 dbg_wl("schedule wear-leveling");
1039 } else
1040 dbg_wl("schedule scrubbing");
1041
1042 ubi->wl_scheduled = 1;
1043 spin_unlock(&ubi->wl_lock);
1044
1045 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1046 if (!wrk) {
1047 err = -ENOMEM;
1048 goto out_cancel;
1049 }
1050
1051 wrk->func = &wear_leveling_worker;
1052 if (nested)
1053 __schedule_ubi_work(ubi, wrk);
1054 else
1055 schedule_ubi_work(ubi, wrk);
1056 return err;
1057
1058 out_cancel:
1059 spin_lock(&ubi->wl_lock);
1060 ubi->wl_scheduled = 0;
1061 out_unlock:
1062 spin_unlock(&ubi->wl_lock);
1063 return err;
1064 }
1065
1066 /**
1067 * __erase_worker - physical eraseblock erase worker function.
1068 * @ubi: UBI device description object
1069 * @wl_wrk: the work object
1070 *
1071 * This function erases a physical eraseblock and perform torture testing if
1072 * needed. It also takes care about marking the physical eraseblock bad if
1073 * needed. Returns zero in case of success and a negative error code in case of
1074 * failure.
1075 */
1076 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1077 {
1078 struct ubi_wl_entry *e = wl_wrk->e;
1079 int pnum = e->pnum;
1080 int vol_id = wl_wrk->vol_id;
1081 int lnum = wl_wrk->lnum;
1082 int err, available_consumed = 0;
1083
1084 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1085 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1086
1087 err = sync_erase(ubi, e, wl_wrk->torture);
1088 if (!err) {
1089 spin_lock(&ubi->wl_lock);
1090
1091 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1092 e->pnum < UBI_FM_MAX_START) {
1093 /*
1094 * Abort anchor production, if needed it will be
1095 * enabled again in the wear leveling started below.
1096 */
1097 ubi->fm_anchor = e;
1098 ubi->fm_do_produce_anchor = 0;
1099 } else {
1100 wl_tree_add(e, &ubi->free);
1101 ubi->free_count++;
1102 }
1103
1104 spin_unlock(&ubi->wl_lock);
1105
1106 /*
1107 * One more erase operation has happened, take care about
1108 * protected physical eraseblocks.
1109 */
1110 serve_prot_queue(ubi);
1111
1112 /* And take care about wear-leveling */
1113 err = ensure_wear_leveling(ubi, 1);
1114 return err;
1115 }
1116
1117 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1118
1119 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1120 err == -EBUSY) {
1121 int err1;
1122
1123 /* Re-schedule the LEB for erasure */
1124 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1125 if (err1) {
1126 spin_lock(&ubi->wl_lock);
1127 wl_entry_destroy(ubi, e);
1128 spin_unlock(&ubi->wl_lock);
1129 err = err1;
1130 goto out_ro;
1131 }
1132 return err;
1133 }
1134
1135 spin_lock(&ubi->wl_lock);
1136 wl_entry_destroy(ubi, e);
1137 spin_unlock(&ubi->wl_lock);
1138 if (err != -EIO)
1139 /*
1140 * If this is not %-EIO, we have no idea what to do. Scheduling
1141 * this physical eraseblock for erasure again would cause
1142 * errors again and again. Well, lets switch to R/O mode.
1143 */
1144 goto out_ro;
1145
1146 /* It is %-EIO, the PEB went bad */
1147
1148 if (!ubi->bad_allowed) {
1149 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1150 goto out_ro;
1151 }
1152
1153 spin_lock(&ubi->volumes_lock);
1154 if (ubi->beb_rsvd_pebs == 0) {
1155 if (ubi->avail_pebs == 0) {
1156 spin_unlock(&ubi->volumes_lock);
1157 ubi_err(ubi, "no reserved/available physical eraseblocks");
1158 goto out_ro;
1159 }
1160 ubi->avail_pebs -= 1;
1161 available_consumed = 1;
1162 }
1163 spin_unlock(&ubi->volumes_lock);
1164
1165 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1166 err = ubi_io_mark_bad(ubi, pnum);
1167 if (err)
1168 goto out_ro;
1169
1170 spin_lock(&ubi->volumes_lock);
1171 if (ubi->beb_rsvd_pebs > 0) {
1172 if (available_consumed) {
1173 /*
1174 * The amount of reserved PEBs increased since we last
1175 * checked.
1176 */
1177 ubi->avail_pebs += 1;
1178 available_consumed = 0;
1179 }
1180 ubi->beb_rsvd_pebs -= 1;
1181 }
1182 ubi->bad_peb_count += 1;
1183 ubi->good_peb_count -= 1;
1184 ubi_calculate_reserved(ubi);
1185 if (available_consumed)
1186 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1187 else if (ubi->beb_rsvd_pebs)
1188 ubi_msg(ubi, "%d PEBs left in the reserve",
1189 ubi->beb_rsvd_pebs);
1190 else
1191 ubi_warn(ubi, "last PEB from the reserve was used");
1192 spin_unlock(&ubi->volumes_lock);
1193
1194 return err;
1195
1196 out_ro:
1197 if (available_consumed) {
1198 spin_lock(&ubi->volumes_lock);
1199 ubi->avail_pebs += 1;
1200 spin_unlock(&ubi->volumes_lock);
1201 }
1202 ubi_ro_mode(ubi);
1203 return err;
1204 }
1205
1206 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1207 int shutdown)
1208 {
1209 int ret;
1210
1211 if (shutdown) {
1212 struct ubi_wl_entry *e = wl_wrk->e;
1213
1214 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1215 kfree(wl_wrk);
1216 wl_entry_destroy(ubi, e);
1217 return 0;
1218 }
1219
1220 ret = __erase_worker(ubi, wl_wrk);
1221 kfree(wl_wrk);
1222 return ret;
1223 }
1224
1225 /**
1226 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1227 * @ubi: UBI device description object
1228 * @vol_id: the volume ID that last used this PEB
1229 * @lnum: the last used logical eraseblock number for the PEB
1230 * @pnum: physical eraseblock to return
1231 * @torture: if this physical eraseblock has to be tortured
1232 *
1233 * This function is called to return physical eraseblock @pnum to the pool of
1234 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1235 * occurred to this @pnum and it has to be tested. This function returns zero
1236 * in case of success, and a negative error code in case of failure.
1237 */
1238 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1239 int pnum, int torture)
1240 {
1241 int err;
1242 struct ubi_wl_entry *e;
1243
1244 dbg_wl("PEB %d", pnum);
1245 ubi_assert(pnum >= 0);
1246 ubi_assert(pnum < ubi->peb_count);
1247
1248 down_read(&ubi->fm_protect);
1249
1250 retry:
1251 spin_lock(&ubi->wl_lock);
1252 e = ubi->lookuptbl[pnum];
1253 if (!e) {
1254 /*
1255 * This wl entry has been removed for some errors by other
1256 * process (eg. wear leveling worker), corresponding process
1257 * (except __erase_worker, which cannot concurrent with
1258 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1259 * just ignore this wl entry.
1260 */
1261 spin_unlock(&ubi->wl_lock);
1262 up_read(&ubi->fm_protect);
1263 return 0;
1264 }
1265 if (e == ubi->move_from) {
1266 /*
1267 * User is putting the physical eraseblock which was selected to
1268 * be moved. It will be scheduled for erasure in the
1269 * wear-leveling worker.
1270 */
1271 dbg_wl("PEB %d is being moved, wait", pnum);
1272 spin_unlock(&ubi->wl_lock);
1273
1274 /* Wait for the WL worker by taking the @ubi->move_mutex */
1275 mutex_lock(&ubi->move_mutex);
1276 mutex_unlock(&ubi->move_mutex);
1277 goto retry;
1278 } else if (e == ubi->move_to) {
1279 /*
1280 * User is putting the physical eraseblock which was selected
1281 * as the target the data is moved to. It may happen if the EBA
1282 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1283 * but the WL sub-system has not put the PEB to the "used" tree
1284 * yet, but it is about to do this. So we just set a flag which
1285 * will tell the WL worker that the PEB is not needed anymore
1286 * and should be scheduled for erasure.
1287 */
1288 dbg_wl("PEB %d is the target of data moving", pnum);
1289 ubi_assert(!ubi->move_to_put);
1290 ubi->move_to_put = 1;
1291 spin_unlock(&ubi->wl_lock);
1292 up_read(&ubi->fm_protect);
1293 return 0;
1294 } else {
1295 if (in_wl_tree(e, &ubi->used)) {
1296 self_check_in_wl_tree(ubi, e, &ubi->used);
1297 rb_erase(&e->u.rb, &ubi->used);
1298 } else if (in_wl_tree(e, &ubi->scrub)) {
1299 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1300 rb_erase(&e->u.rb, &ubi->scrub);
1301 } else if (in_wl_tree(e, &ubi->erroneous)) {
1302 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1303 rb_erase(&e->u.rb, &ubi->erroneous);
1304 ubi->erroneous_peb_count -= 1;
1305 ubi_assert(ubi->erroneous_peb_count >= 0);
1306 /* Erroneous PEBs should be tortured */
1307 torture = 1;
1308 } else {
1309 err = prot_queue_del(ubi, e->pnum);
1310 if (err) {
1311 ubi_err(ubi, "PEB %d not found", pnum);
1312 ubi_ro_mode(ubi);
1313 spin_unlock(&ubi->wl_lock);
1314 up_read(&ubi->fm_protect);
1315 return err;
1316 }
1317 }
1318 }
1319 spin_unlock(&ubi->wl_lock);
1320
1321 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1322 if (err) {
1323 spin_lock(&ubi->wl_lock);
1324 wl_tree_add(e, &ubi->used);
1325 spin_unlock(&ubi->wl_lock);
1326 }
1327
1328 up_read(&ubi->fm_protect);
1329 return err;
1330 }
1331
1332 /**
1333 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1334 * @ubi: UBI device description object
1335 * @pnum: the physical eraseblock to schedule
1336 *
1337 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1338 * needs scrubbing. This function schedules a physical eraseblock for
1339 * scrubbing which is done in background. This function returns zero in case of
1340 * success and a negative error code in case of failure.
1341 */
1342 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1343 {
1344 struct ubi_wl_entry *e;
1345
1346 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1347
1348 retry:
1349 spin_lock(&ubi->wl_lock);
1350 e = ubi->lookuptbl[pnum];
1351 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1352 in_wl_tree(e, &ubi->erroneous)) {
1353 spin_unlock(&ubi->wl_lock);
1354 return 0;
1355 }
1356
1357 if (e == ubi->move_to) {
1358 /*
1359 * This physical eraseblock was used to move data to. The data
1360 * was moved but the PEB was not yet inserted to the proper
1361 * tree. We should just wait a little and let the WL worker
1362 * proceed.
1363 */
1364 spin_unlock(&ubi->wl_lock);
1365 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1366 yield();
1367 goto retry;
1368 }
1369
1370 if (in_wl_tree(e, &ubi->used)) {
1371 self_check_in_wl_tree(ubi, e, &ubi->used);
1372 rb_erase(&e->u.rb, &ubi->used);
1373 } else {
1374 int err;
1375
1376 err = prot_queue_del(ubi, e->pnum);
1377 if (err) {
1378 ubi_err(ubi, "PEB %d not found", pnum);
1379 ubi_ro_mode(ubi);
1380 spin_unlock(&ubi->wl_lock);
1381 return err;
1382 }
1383 }
1384
1385 wl_tree_add(e, &ubi->scrub);
1386 spin_unlock(&ubi->wl_lock);
1387
1388 /*
1389 * Technically scrubbing is the same as wear-leveling, so it is done
1390 * by the WL worker.
1391 */
1392 return ensure_wear_leveling(ubi, 0);
1393 }
1394
1395 /**
1396 * ubi_wl_flush - flush all pending works.
1397 * @ubi: UBI device description object
1398 * @vol_id: the volume id to flush for
1399 * @lnum: the logical eraseblock number to flush for
1400 *
1401 * This function executes all pending works for a particular volume id /
1402 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1403 * acts as a wildcard for all of the corresponding volume numbers or logical
1404 * eraseblock numbers. It returns zero in case of success and a negative error
1405 * code in case of failure.
1406 */
1407 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1408 {
1409 int err = 0;
1410 int found = 1;
1411
1412 /*
1413 * Erase while the pending works queue is not empty, but not more than
1414 * the number of currently pending works.
1415 */
1416 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1417 vol_id, lnum, ubi->works_count);
1418
1419 while (found) {
1420 struct ubi_work *wrk, *tmp;
1421 found = 0;
1422
1423 down_read(&ubi->work_sem);
1424 spin_lock(&ubi->wl_lock);
1425 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1426 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1427 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1428 list_del(&wrk->list);
1429 ubi->works_count -= 1;
1430 ubi_assert(ubi->works_count >= 0);
1431 spin_unlock(&ubi->wl_lock);
1432
1433 err = wrk->func(ubi, wrk, 0);
1434 if (err) {
1435 up_read(&ubi->work_sem);
1436 return err;
1437 }
1438
1439 spin_lock(&ubi->wl_lock);
1440 found = 1;
1441 break;
1442 }
1443 }
1444 spin_unlock(&ubi->wl_lock);
1445 up_read(&ubi->work_sem);
1446 }
1447
1448 /*
1449 * Make sure all the works which have been done in parallel are
1450 * finished.
1451 */
1452 down_write(&ubi->work_sem);
1453 up_write(&ubi->work_sem);
1454
1455 return err;
1456 }
1457
1458 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1459 {
1460 if (in_wl_tree(e, &ubi->scrub))
1461 return false;
1462 else if (in_wl_tree(e, &ubi->erroneous))
1463 return false;
1464 else if (ubi->move_from == e)
1465 return false;
1466 else if (ubi->move_to == e)
1467 return false;
1468
1469 return true;
1470 }
1471
1472 /**
1473 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1474 * @ubi: UBI device description object
1475 * @pnum: the physical eraseblock to schedule
1476 * @force: dont't read the block, assume bitflips happened and take action.
1477 *
1478 * This function reads the given eraseblock and checks if bitflips occured.
1479 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1480 * If scrubbing is forced with @force, the eraseblock is not read,
1481 * but scheduled for scrubbing right away.
1482 *
1483 * Returns:
1484 * %EINVAL, PEB is out of range
1485 * %ENOENT, PEB is no longer used by UBI
1486 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1487 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1488 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1489 * %0, no bit flips detected
1490 */
1491 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1492 {
1493 int err = 0;
1494 struct ubi_wl_entry *e;
1495
1496 if (pnum < 0 || pnum >= ubi->peb_count) {
1497 err = -EINVAL;
1498 goto out;
1499 }
1500
1501 /*
1502 * Pause all parallel work, otherwise it can happen that the
1503 * erase worker frees a wl entry under us.
1504 */
1505 down_write(&ubi->work_sem);
1506
1507 /*
1508 * Make sure that the wl entry does not change state while
1509 * inspecting it.
1510 */
1511 spin_lock(&ubi->wl_lock);
1512 e = ubi->lookuptbl[pnum];
1513 if (!e) {
1514 spin_unlock(&ubi->wl_lock);
1515 err = -ENOENT;
1516 goto out_resume;
1517 }
1518
1519 /*
1520 * Does it make sense to check this PEB?
1521 */
1522 if (!scrub_possible(ubi, e)) {
1523 spin_unlock(&ubi->wl_lock);
1524 err = -EBUSY;
1525 goto out_resume;
1526 }
1527 spin_unlock(&ubi->wl_lock);
1528
1529 if (!force) {
1530 mutex_lock(&ubi->buf_mutex);
1531 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1532 mutex_unlock(&ubi->buf_mutex);
1533 }
1534
1535 if (force || err == UBI_IO_BITFLIPS) {
1536 /*
1537 * Okay, bit flip happened, let's figure out what we can do.
1538 */
1539 spin_lock(&ubi->wl_lock);
1540
1541 /*
1542 * Recheck. We released wl_lock, UBI might have killed the
1543 * wl entry under us.
1544 */
1545 e = ubi->lookuptbl[pnum];
1546 if (!e) {
1547 spin_unlock(&ubi->wl_lock);
1548 err = -ENOENT;
1549 goto out_resume;
1550 }
1551
1552 /*
1553 * Need to re-check state
1554 */
1555 if (!scrub_possible(ubi, e)) {
1556 spin_unlock(&ubi->wl_lock);
1557 err = -EBUSY;
1558 goto out_resume;
1559 }
1560
1561 if (in_pq(ubi, e)) {
1562 prot_queue_del(ubi, e->pnum);
1563 wl_tree_add(e, &ubi->scrub);
1564 spin_unlock(&ubi->wl_lock);
1565
1566 err = ensure_wear_leveling(ubi, 1);
1567 } else if (in_wl_tree(e, &ubi->used)) {
1568 rb_erase(&e->u.rb, &ubi->used);
1569 wl_tree_add(e, &ubi->scrub);
1570 spin_unlock(&ubi->wl_lock);
1571
1572 err = ensure_wear_leveling(ubi, 1);
1573 } else if (in_wl_tree(e, &ubi->free)) {
1574 rb_erase(&e->u.rb, &ubi->free);
1575 ubi->free_count--;
1576 spin_unlock(&ubi->wl_lock);
1577
1578 /*
1579 * This PEB is empty we can schedule it for
1580 * erasure right away. No wear leveling needed.
1581 */
1582 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1583 force ? 0 : 1, true);
1584 } else {
1585 spin_unlock(&ubi->wl_lock);
1586 err = -EAGAIN;
1587 }
1588
1589 if (!err && !force)
1590 err = -EUCLEAN;
1591 } else {
1592 err = 0;
1593 }
1594
1595 out_resume:
1596 up_write(&ubi->work_sem);
1597 out:
1598
1599 return err;
1600 }
1601
1602 /**
1603 * tree_destroy - destroy an RB-tree.
1604 * @ubi: UBI device description object
1605 * @root: the root of the tree to destroy
1606 */
1607 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1608 {
1609 struct rb_node *rb;
1610 struct ubi_wl_entry *e;
1611
1612 rb = root->rb_node;
1613 while (rb) {
1614 if (rb->rb_left)
1615 rb = rb->rb_left;
1616 else if (rb->rb_right)
1617 rb = rb->rb_right;
1618 else {
1619 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1620
1621 rb = rb_parent(rb);
1622 if (rb) {
1623 if (rb->rb_left == &e->u.rb)
1624 rb->rb_left = NULL;
1625 else
1626 rb->rb_right = NULL;
1627 }
1628
1629 wl_entry_destroy(ubi, e);
1630 }
1631 }
1632 }
1633
1634 /**
1635 * ubi_thread - UBI background thread.
1636 * @u: the UBI device description object pointer
1637 */
1638 int ubi_thread(void *u)
1639 {
1640 int failures = 0;
1641 struct ubi_device *ubi = u;
1642
1643 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1644 ubi->bgt_name, task_pid_nr(current));
1645
1646 set_freezable();
1647 for (;;) {
1648 int err;
1649
1650 if (kthread_should_stop())
1651 break;
1652
1653 if (try_to_freeze())
1654 continue;
1655
1656 spin_lock(&ubi->wl_lock);
1657 if (list_empty(&ubi->works) || ubi->ro_mode ||
1658 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1659 set_current_state(TASK_INTERRUPTIBLE);
1660 spin_unlock(&ubi->wl_lock);
1661
1662 /*
1663 * Check kthread_should_stop() after we set the task
1664 * state to guarantee that we either see the stop bit
1665 * and exit or the task state is reset to runnable such
1666 * that it's not scheduled out indefinitely and detects
1667 * the stop bit at kthread_should_stop().
1668 */
1669 if (kthread_should_stop()) {
1670 set_current_state(TASK_RUNNING);
1671 break;
1672 }
1673
1674 schedule();
1675 continue;
1676 }
1677 spin_unlock(&ubi->wl_lock);
1678
1679 err = do_work(ubi);
1680 if (err) {
1681 ubi_err(ubi, "%s: work failed with error code %d",
1682 ubi->bgt_name, err);
1683 if (failures++ > WL_MAX_FAILURES) {
1684 /*
1685 * Too many failures, disable the thread and
1686 * switch to read-only mode.
1687 */
1688 ubi_msg(ubi, "%s: %d consecutive failures",
1689 ubi->bgt_name, WL_MAX_FAILURES);
1690 ubi_ro_mode(ubi);
1691 ubi->thread_enabled = 0;
1692 continue;
1693 }
1694 } else
1695 failures = 0;
1696
1697 cond_resched();
1698 }
1699
1700 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1701 ubi->thread_enabled = 0;
1702 return 0;
1703 }
1704
1705 /**
1706 * shutdown_work - shutdown all pending works.
1707 * @ubi: UBI device description object
1708 */
1709 static void shutdown_work(struct ubi_device *ubi)
1710 {
1711 while (!list_empty(&ubi->works)) {
1712 struct ubi_work *wrk;
1713
1714 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1715 list_del(&wrk->list);
1716 wrk->func(ubi, wrk, 1);
1717 ubi->works_count -= 1;
1718 ubi_assert(ubi->works_count >= 0);
1719 }
1720 }
1721
1722 /**
1723 * erase_aeb - erase a PEB given in UBI attach info PEB
1724 * @ubi: UBI device description object
1725 * @aeb: UBI attach info PEB
1726 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1727 */
1728 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1729 {
1730 struct ubi_wl_entry *e;
1731 int err;
1732
1733 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1734 if (!e)
1735 return -ENOMEM;
1736
1737 e->pnum = aeb->pnum;
1738 e->ec = aeb->ec;
1739 ubi->lookuptbl[e->pnum] = e;
1740
1741 if (sync) {
1742 err = sync_erase(ubi, e, false);
1743 if (err)
1744 goto out_free;
1745
1746 wl_tree_add(e, &ubi->free);
1747 ubi->free_count++;
1748 } else {
1749 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1750 if (err)
1751 goto out_free;
1752 }
1753
1754 return 0;
1755
1756 out_free:
1757 wl_entry_destroy(ubi, e);
1758
1759 return err;
1760 }
1761
1762 /**
1763 * ubi_wl_init - initialize the WL sub-system using attaching information.
1764 * @ubi: UBI device description object
1765 * @ai: attaching information
1766 *
1767 * This function returns zero in case of success, and a negative error code in
1768 * case of failure.
1769 */
1770 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1771 {
1772 int err, i, reserved_pebs, found_pebs = 0;
1773 struct rb_node *rb1, *rb2;
1774 struct ubi_ainf_volume *av;
1775 struct ubi_ainf_peb *aeb, *tmp;
1776 struct ubi_wl_entry *e;
1777
1778 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1779 spin_lock_init(&ubi->wl_lock);
1780 mutex_init(&ubi->move_mutex);
1781 init_rwsem(&ubi->work_sem);
1782 ubi->max_ec = ai->max_ec;
1783 INIT_LIST_HEAD(&ubi->works);
1784
1785 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1786
1787 err = -ENOMEM;
1788 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1789 if (!ubi->lookuptbl)
1790 return err;
1791
1792 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1793 INIT_LIST_HEAD(&ubi->pq[i]);
1794 ubi->pq_head = 0;
1795
1796 ubi->free_count = 0;
1797 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1798 cond_resched();
1799
1800 err = erase_aeb(ubi, aeb, false);
1801 if (err)
1802 goto out_free;
1803
1804 found_pebs++;
1805 }
1806
1807 list_for_each_entry(aeb, &ai->free, u.list) {
1808 cond_resched();
1809
1810 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1811 if (!e) {
1812 err = -ENOMEM;
1813 goto out_free;
1814 }
1815
1816 e->pnum = aeb->pnum;
1817 e->ec = aeb->ec;
1818 ubi_assert(e->ec >= 0);
1819
1820 wl_tree_add(e, &ubi->free);
1821 ubi->free_count++;
1822
1823 ubi->lookuptbl[e->pnum] = e;
1824
1825 found_pebs++;
1826 }
1827
1828 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1829 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1830 cond_resched();
1831
1832 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833 if (!e) {
1834 err = -ENOMEM;
1835 goto out_free;
1836 }
1837
1838 e->pnum = aeb->pnum;
1839 e->ec = aeb->ec;
1840 ubi->lookuptbl[e->pnum] = e;
1841
1842 if (!aeb->scrub) {
1843 dbg_wl("add PEB %d EC %d to the used tree",
1844 e->pnum, e->ec);
1845 wl_tree_add(e, &ubi->used);
1846 } else {
1847 dbg_wl("add PEB %d EC %d to the scrub tree",
1848 e->pnum, e->ec);
1849 wl_tree_add(e, &ubi->scrub);
1850 }
1851
1852 found_pebs++;
1853 }
1854 }
1855
1856 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1857 cond_resched();
1858
1859 e = ubi_find_fm_block(ubi, aeb->pnum);
1860
1861 if (e) {
1862 ubi_assert(!ubi->lookuptbl[e->pnum]);
1863 ubi->lookuptbl[e->pnum] = e;
1864 } else {
1865 bool sync = false;
1866
1867 /*
1868 * Usually old Fastmap PEBs are scheduled for erasure
1869 * and we don't have to care about them but if we face
1870 * an power cut before scheduling them we need to
1871 * take care of them here.
1872 */
1873 if (ubi->lookuptbl[aeb->pnum])
1874 continue;
1875
1876 /*
1877 * The fastmap update code might not find a free PEB for
1878 * writing the fastmap anchor to and then reuses the
1879 * current fastmap anchor PEB. When this PEB gets erased
1880 * and a power cut happens before it is written again we
1881 * must make sure that the fastmap attach code doesn't
1882 * find any outdated fastmap anchors, hence we erase the
1883 * outdated fastmap anchor PEBs synchronously here.
1884 */
1885 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1886 sync = true;
1887
1888 err = erase_aeb(ubi, aeb, sync);
1889 if (err)
1890 goto out_free;
1891 }
1892
1893 found_pebs++;
1894 }
1895
1896 dbg_wl("found %i PEBs", found_pebs);
1897
1898 ubi_assert(ubi->good_peb_count == found_pebs);
1899
1900 reserved_pebs = WL_RESERVED_PEBS;
1901 ubi_fastmap_init(ubi, &reserved_pebs);
1902
1903 if (ubi->avail_pebs < reserved_pebs) {
1904 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1905 ubi->avail_pebs, reserved_pebs);
1906 if (ubi->corr_peb_count)
1907 ubi_err(ubi, "%d PEBs are corrupted and not used",
1908 ubi->corr_peb_count);
1909 err = -ENOSPC;
1910 goto out_free;
1911 }
1912 ubi->avail_pebs -= reserved_pebs;
1913 ubi->rsvd_pebs += reserved_pebs;
1914
1915 /* Schedule wear-leveling if needed */
1916 err = ensure_wear_leveling(ubi, 0);
1917 if (err)
1918 goto out_free;
1919
1920 #ifdef CONFIG_MTD_UBI_FASTMAP
1921 if (!ubi->ro_mode && !ubi->fm_disabled)
1922 ubi_ensure_anchor_pebs(ubi);
1923 #endif
1924 return 0;
1925
1926 out_free:
1927 shutdown_work(ubi);
1928 tree_destroy(ubi, &ubi->used);
1929 tree_destroy(ubi, &ubi->free);
1930 tree_destroy(ubi, &ubi->scrub);
1931 kfree(ubi->lookuptbl);
1932 return err;
1933 }
1934
1935 /**
1936 * protection_queue_destroy - destroy the protection queue.
1937 * @ubi: UBI device description object
1938 */
1939 static void protection_queue_destroy(struct ubi_device *ubi)
1940 {
1941 int i;
1942 struct ubi_wl_entry *e, *tmp;
1943
1944 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1945 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1946 list_del(&e->u.list);
1947 wl_entry_destroy(ubi, e);
1948 }
1949 }
1950 }
1951
1952 /**
1953 * ubi_wl_close - close the wear-leveling sub-system.
1954 * @ubi: UBI device description object
1955 */
1956 void ubi_wl_close(struct ubi_device *ubi)
1957 {
1958 dbg_wl("close the WL sub-system");
1959 ubi_fastmap_close(ubi);
1960 shutdown_work(ubi);
1961 protection_queue_destroy(ubi);
1962 tree_destroy(ubi, &ubi->used);
1963 tree_destroy(ubi, &ubi->erroneous);
1964 tree_destroy(ubi, &ubi->free);
1965 tree_destroy(ubi, &ubi->scrub);
1966 kfree(ubi->lookuptbl);
1967 }
1968
1969 /**
1970 * self_check_ec - make sure that the erase counter of a PEB is correct.
1971 * @ubi: UBI device description object
1972 * @pnum: the physical eraseblock number to check
1973 * @ec: the erase counter to check
1974 *
1975 * This function returns zero if the erase counter of physical eraseblock @pnum
1976 * is equivalent to @ec, and a negative error code if not or if an error
1977 * occurred.
1978 */
1979 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1980 {
1981 int err;
1982 long long read_ec;
1983 struct ubi_ec_hdr *ec_hdr;
1984
1985 if (!ubi_dbg_chk_gen(ubi))
1986 return 0;
1987
1988 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1989 if (!ec_hdr)
1990 return -ENOMEM;
1991
1992 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1993 if (err && err != UBI_IO_BITFLIPS) {
1994 /* The header does not have to exist */
1995 err = 0;
1996 goto out_free;
1997 }
1998
1999 read_ec = be64_to_cpu(ec_hdr->ec);
2000 if (ec != read_ec && read_ec - ec > 1) {
2001 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2002 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2003 dump_stack();
2004 err = 1;
2005 } else
2006 err = 0;
2007
2008 out_free:
2009 kfree(ec_hdr);
2010 return err;
2011 }
2012
2013 /**
2014 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2015 * @ubi: UBI device description object
2016 * @e: the wear-leveling entry to check
2017 * @root: the root of the tree
2018 *
2019 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2020 * is not.
2021 */
2022 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2023 struct ubi_wl_entry *e, struct rb_root *root)
2024 {
2025 if (!ubi_dbg_chk_gen(ubi))
2026 return 0;
2027
2028 if (in_wl_tree(e, root))
2029 return 0;
2030
2031 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2032 e->pnum, e->ec, root);
2033 dump_stack();
2034 return -EINVAL;
2035 }
2036
2037 /**
2038 * self_check_in_pq - check if wear-leveling entry is in the protection
2039 * queue.
2040 * @ubi: UBI device description object
2041 * @e: the wear-leveling entry to check
2042 *
2043 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2044 */
2045 static int self_check_in_pq(const struct ubi_device *ubi,
2046 struct ubi_wl_entry *e)
2047 {
2048 if (!ubi_dbg_chk_gen(ubi))
2049 return 0;
2050
2051 if (in_pq(ubi, e))
2052 return 0;
2053
2054 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2055 e->pnum, e->ec);
2056 dump_stack();
2057 return -EINVAL;
2058 }
2059 #ifndef CONFIG_MTD_UBI_FASTMAP
2060 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2061 {
2062 struct ubi_wl_entry *e;
2063
2064 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2065 self_check_in_wl_tree(ubi, e, &ubi->free);
2066 ubi->free_count--;
2067 ubi_assert(ubi->free_count >= 0);
2068 rb_erase(&e->u.rb, &ubi->free);
2069
2070 return e;
2071 }
2072
2073 /**
2074 * produce_free_peb - produce a free physical eraseblock.
2075 * @ubi: UBI device description object
2076 *
2077 * This function tries to make a free PEB by means of synchronous execution of
2078 * pending works. This may be needed if, for example the background thread is
2079 * disabled. Returns zero in case of success and a negative error code in case
2080 * of failure.
2081 */
2082 static int produce_free_peb(struct ubi_device *ubi)
2083 {
2084 int err;
2085
2086 while (!ubi->free.rb_node && ubi->works_count) {
2087 spin_unlock(&ubi->wl_lock);
2088
2089 dbg_wl("do one work synchronously");
2090 err = do_work(ubi);
2091
2092 spin_lock(&ubi->wl_lock);
2093 if (err)
2094 return err;
2095 }
2096
2097 return 0;
2098 }
2099
2100 /**
2101 * ubi_wl_get_peb - get a physical eraseblock.
2102 * @ubi: UBI device description object
2103 *
2104 * This function returns a physical eraseblock in case of success and a
2105 * negative error code in case of failure.
2106 * Returns with ubi->fm_eba_sem held in read mode!
2107 */
2108 int ubi_wl_get_peb(struct ubi_device *ubi)
2109 {
2110 int err;
2111 struct ubi_wl_entry *e;
2112
2113 retry:
2114 down_read(&ubi->fm_eba_sem);
2115 spin_lock(&ubi->wl_lock);
2116 if (!ubi->free.rb_node) {
2117 if (ubi->works_count == 0) {
2118 ubi_err(ubi, "no free eraseblocks");
2119 ubi_assert(list_empty(&ubi->works));
2120 spin_unlock(&ubi->wl_lock);
2121 return -ENOSPC;
2122 }
2123
2124 err = produce_free_peb(ubi);
2125 if (err < 0) {
2126 spin_unlock(&ubi->wl_lock);
2127 return err;
2128 }
2129 spin_unlock(&ubi->wl_lock);
2130 up_read(&ubi->fm_eba_sem);
2131 goto retry;
2132
2133 }
2134 e = wl_get_wle(ubi);
2135 prot_queue_add(ubi, e);
2136 spin_unlock(&ubi->wl_lock);
2137
2138 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2139 ubi->peb_size - ubi->vid_hdr_aloffset);
2140 if (err) {
2141 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2142 return err;
2143 }
2144
2145 return e->pnum;
2146 }
2147 #else
2148 #include "fastmap-wl.c"
2149 #endif
2150