1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Block data types and constants. Directly include this file only to
4 * break include dependency loop.
5 */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/device.h>
12 #include <linux/ktime.h>
13 #include <linux/android_kabi.h>
14
15 struct bio_set;
16 struct bio;
17 struct bio_integrity_payload;
18 struct page;
19 struct io_context;
20 struct cgroup_subsys_state;
21 typedef void (bio_end_io_t) (struct bio *);
22 struct bio_crypt_ctx;
23
24 struct block_device {
25 sector_t bd_start_sect;
26 struct disk_stats __percpu *bd_stats;
27 unsigned long bd_stamp;
28 bool bd_read_only; /* read-only policy */
29 dev_t bd_dev;
30 int bd_openers;
31 struct inode * bd_inode; /* will die */
32 struct super_block * bd_super;
33 void * bd_claiming;
34 struct device bd_device;
35 void * bd_holder;
36 int bd_holders;
37 bool bd_write_holder;
38 struct kobject *bd_holder_dir;
39 u8 bd_partno;
40 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */
41 struct gendisk * bd_disk;
42
43 /* The counter of freeze processes */
44 int bd_fsfreeze_count;
45 /* Mutex for freeze */
46 struct mutex bd_fsfreeze_mutex;
47 struct super_block *bd_fsfreeze_sb;
48
49 struct partition_meta_info *bd_meta_info;
50 #ifdef CONFIG_FAIL_MAKE_REQUEST
51 bool bd_make_it_fail;
52 #endif
53
54 ANDROID_KABI_RESERVE(1);
55 ANDROID_KABI_RESERVE(2);
56 ANDROID_KABI_RESERVE(3);
57 ANDROID_KABI_RESERVE(4);
58 } __randomize_layout;
59
60 #define bdev_whole(_bdev) \
61 ((_bdev)->bd_disk->part0)
62
63 #define dev_to_bdev(device) \
64 container_of((device), struct block_device, bd_device)
65
66 #define bdev_kobj(_bdev) \
67 (&((_bdev)->bd_device.kobj))
68
69 /*
70 * Block error status values. See block/blk-core:blk_errors for the details.
71 * Alpha cannot write a byte atomically, so we need to use 32-bit value.
72 */
73 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
74 typedef u32 __bitwise blk_status_t;
75 #else
76 typedef u8 __bitwise blk_status_t;
77 #endif
78 #define BLK_STS_OK 0
79 #define BLK_STS_NOTSUPP ((__force blk_status_t)1)
80 #define BLK_STS_TIMEOUT ((__force blk_status_t)2)
81 #define BLK_STS_NOSPC ((__force blk_status_t)3)
82 #define BLK_STS_TRANSPORT ((__force blk_status_t)4)
83 #define BLK_STS_TARGET ((__force blk_status_t)5)
84 #define BLK_STS_NEXUS ((__force blk_status_t)6)
85 #define BLK_STS_MEDIUM ((__force blk_status_t)7)
86 #define BLK_STS_PROTECTION ((__force blk_status_t)8)
87 #define BLK_STS_RESOURCE ((__force blk_status_t)9)
88 #define BLK_STS_IOERR ((__force blk_status_t)10)
89
90 /* hack for device mapper, don't use elsewhere: */
91 #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
92
93 #define BLK_STS_AGAIN ((__force blk_status_t)12)
94
95 /*
96 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
97 * device related resources are unavailable, but the driver can guarantee
98 * that the queue will be rerun in the future once resources become
99 * available again. This is typically the case for device specific
100 * resources that are consumed for IO. If the driver fails allocating these
101 * resources, we know that inflight (or pending) IO will free these
102 * resource upon completion.
103 *
104 * This is different from BLK_STS_RESOURCE in that it explicitly references
105 * a device specific resource. For resources of wider scope, allocation
106 * failure can happen without having pending IO. This means that we can't
107 * rely on request completions freeing these resources, as IO may not be in
108 * flight. Examples of that are kernel memory allocations, DMA mappings, or
109 * any other system wide resources.
110 */
111 #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
112
113 /*
114 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
115 * related resources are unavailable, but the driver can guarantee the queue
116 * will be rerun in the future once the resources become available again.
117 *
118 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
119 * a zone specific resource and IO to a different zone on the same device could
120 * still be served. Examples of that are zones that are write-locked, but a read
121 * to the same zone could be served.
122 */
123 #define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14)
124
125 /*
126 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
127 * path if the device returns a status indicating that too many zone resources
128 * are currently open. The same command should be successful if resubmitted
129 * after the number of open zones decreases below the device's limits, which is
130 * reported in the request_queue's max_open_zones.
131 */
132 #define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15)
133
134 /*
135 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
136 * path if the device returns a status indicating that too many zone resources
137 * are currently active. The same command should be successful if resubmitted
138 * after the number of active zones decreases below the device's limits, which
139 * is reported in the request_queue's max_active_zones.
140 */
141 #define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16)
142
143 /**
144 * blk_path_error - returns true if error may be path related
145 * @error: status the request was completed with
146 *
147 * Description:
148 * This classifies block error status into non-retryable errors and ones
149 * that may be successful if retried on a failover path.
150 *
151 * Return:
152 * %false - retrying failover path will not help
153 * %true - may succeed if retried
154 */
blk_path_error(blk_status_t error)155 static inline bool blk_path_error(blk_status_t error)
156 {
157 switch (error) {
158 case BLK_STS_NOTSUPP:
159 case BLK_STS_NOSPC:
160 case BLK_STS_TARGET:
161 case BLK_STS_NEXUS:
162 case BLK_STS_MEDIUM:
163 case BLK_STS_PROTECTION:
164 return false;
165 }
166
167 /* Anything else could be a path failure, so should be retried */
168 return true;
169 }
170
171 /*
172 * From most significant bit:
173 * 1 bit: reserved for other usage, see below
174 * 12 bits: original size of bio
175 * 51 bits: issue time of bio
176 */
177 #define BIO_ISSUE_RES_BITS 1
178 #define BIO_ISSUE_SIZE_BITS 12
179 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
180 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
181 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
182 #define BIO_ISSUE_SIZE_MASK \
183 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
184 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
185
186 /* Reserved bit for blk-throtl */
187 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
188
189 struct bio_issue {
190 u64 value;
191 };
192
__bio_issue_time(u64 time)193 static inline u64 __bio_issue_time(u64 time)
194 {
195 return time & BIO_ISSUE_TIME_MASK;
196 }
197
bio_issue_time(struct bio_issue * issue)198 static inline u64 bio_issue_time(struct bio_issue *issue)
199 {
200 return __bio_issue_time(issue->value);
201 }
202
bio_issue_size(struct bio_issue * issue)203 static inline sector_t bio_issue_size(struct bio_issue *issue)
204 {
205 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
206 }
207
bio_issue_init(struct bio_issue * issue,sector_t size)208 static inline void bio_issue_init(struct bio_issue *issue,
209 sector_t size)
210 {
211 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
212 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
213 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
214 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
215 }
216
217 /*
218 * main unit of I/O for the block layer and lower layers (ie drivers and
219 * stacking drivers)
220 */
221 struct bio {
222 struct bio *bi_next; /* request queue link */
223 struct block_device *bi_bdev;
224 unsigned int bi_opf; /* bottom bits REQ_OP, top bits
225 * req_flags.
226 */
227 unsigned short bi_flags; /* BIO_* below */
228 unsigned short bi_ioprio;
229 unsigned short bi_write_hint;
230 blk_status_t bi_status;
231 atomic_t __bi_remaining;
232
233 struct bvec_iter bi_iter;
234
235 bio_end_io_t *bi_end_io;
236
237 void *bi_private;
238 #ifdef CONFIG_BLK_CGROUP
239 /*
240 * Represents the association of the css and request_queue for the bio.
241 * If a bio goes direct to device, it will not have a blkg as it will
242 * not have a request_queue associated with it. The reference is put
243 * on release of the bio.
244 */
245 struct blkcg_gq *bi_blkg;
246 struct bio_issue bi_issue;
247 #ifdef CONFIG_BLK_CGROUP_IOCOST
248 u64 bi_iocost_cost;
249 #endif
250 #endif
251
252 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
253 struct bio_crypt_ctx *bi_crypt_context;
254 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
255 bool bi_skip_dm_default_key;
256 #endif
257 #endif
258
259 union {
260 #if defined(CONFIG_BLK_DEV_INTEGRITY)
261 struct bio_integrity_payload *bi_integrity; /* data integrity */
262 #endif
263 };
264
265 unsigned short bi_vcnt; /* how many bio_vec's */
266
267 /*
268 * Everything starting with bi_max_vecs will be preserved by bio_reset()
269 */
270
271 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
272
273 atomic_t __bi_cnt; /* pin count */
274
275 struct bio_vec *bi_io_vec; /* the actual vec list */
276
277 struct bio_set *bi_pool;
278
279 ANDROID_OEM_DATA(1);
280 ANDROID_KABI_RESERVE(1);
281 ANDROID_KABI_RESERVE(2);
282
283 /*
284 * We can inline a number of vecs at the end of the bio, to avoid
285 * double allocations for a small number of bio_vecs. This member
286 * MUST obviously be kept at the very end of the bio.
287 */
288 struct bio_vec bi_inline_vecs[];
289 };
290
291 #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
292 #define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT)
293
294 /*
295 * bio flags
296 */
297 enum {
298 BIO_NO_PAGE_REF, /* don't put release vec pages */
299 BIO_CLONED, /* doesn't own data */
300 BIO_BOUNCED, /* bio is a bounce bio */
301 BIO_WORKINGSET, /* contains userspace workingset pages */
302 BIO_QUIET, /* Make BIO Quiet */
303 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
304 BIO_REFFED, /* bio has elevated ->bi_cnt */
305 BIO_THROTTLED, /* This bio has already been subjected to
306 * throttling rules. Don't do it again. */
307 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
308 * of this bio. */
309 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
310 BIO_QOS_THROTTLED, /* bio went through rq_qos throttle path */
311 BIO_QOS_MERGED, /* but went through rq_qos merge path */
312 BIO_REMAPPED,
313 BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */
314 BIO_PERCPU_CACHE, /* can participate in per-cpu alloc cache */
315 BIO_FLAG_LAST
316 };
317
318 typedef __u32 __bitwise blk_mq_req_flags_t;
319
320 /*
321 * Operations and flags common to the bio and request structures.
322 * We use 8 bits for encoding the operation, and the remaining 24 for flags.
323 *
324 * The least significant bit of the operation number indicates the data
325 * transfer direction:
326 *
327 * - if the least significant bit is set transfers are TO the device
328 * - if the least significant bit is not set transfers are FROM the device
329 *
330 * If a operation does not transfer data the least significant bit has no
331 * meaning.
332 */
333 #define REQ_OP_BITS 8
334 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
335 #define REQ_FLAG_BITS 24
336
337 enum req_opf {
338 /* read sectors from the device */
339 REQ_OP_READ = 0,
340 /* write sectors to the device */
341 REQ_OP_WRITE = 1,
342 /* flush the volatile write cache */
343 REQ_OP_FLUSH = 2,
344 /* discard sectors */
345 REQ_OP_DISCARD = 3,
346 /* securely erase sectors */
347 REQ_OP_SECURE_ERASE = 5,
348 /* write the same sector many times */
349 REQ_OP_WRITE_SAME = 7,
350 /* write the zero filled sector many times */
351 REQ_OP_WRITE_ZEROES = 9,
352 /* Open a zone */
353 REQ_OP_ZONE_OPEN = 10,
354 /* Close a zone */
355 REQ_OP_ZONE_CLOSE = 11,
356 /* Transition a zone to full */
357 REQ_OP_ZONE_FINISH = 12,
358 /* write data at the current zone write pointer */
359 REQ_OP_ZONE_APPEND = 13,
360 /* reset a zone write pointer */
361 REQ_OP_ZONE_RESET = 15,
362 /* reset all the zone present on the device */
363 REQ_OP_ZONE_RESET_ALL = 17,
364
365 /* Driver private requests */
366 REQ_OP_DRV_IN = 34,
367 REQ_OP_DRV_OUT = 35,
368
369 REQ_OP_LAST,
370 };
371
372 enum req_flag_bits {
373 __REQ_FAILFAST_DEV = /* no driver retries of device errors */
374 REQ_OP_BITS,
375 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
376 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
377 __REQ_SYNC, /* request is sync (sync write or read) */
378 __REQ_META, /* metadata io request */
379 __REQ_PRIO, /* boost priority in cfq */
380 __REQ_NOMERGE, /* don't touch this for merging */
381 __REQ_IDLE, /* anticipate more IO after this one */
382 __REQ_INTEGRITY, /* I/O includes block integrity payload */
383 __REQ_FUA, /* forced unit access */
384 __REQ_PREFLUSH, /* request for cache flush */
385 __REQ_RAHEAD, /* read ahead, can fail anytime */
386 __REQ_BACKGROUND, /* background IO */
387 __REQ_NOWAIT, /* Don't wait if request will block */
388 /*
389 * When a shared kthread needs to issue a bio for a cgroup, doing
390 * so synchronously can lead to priority inversions as the kthread
391 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes
392 * submit_bio() punt the actual issuing to a dedicated per-blkcg
393 * work item to avoid such priority inversions.
394 */
395 __REQ_CGROUP_PUNT,
396
397 /* command specific flags for REQ_OP_WRITE_ZEROES: */
398 __REQ_NOUNMAP, /* do not free blocks when zeroing */
399
400 __REQ_HIPRI,
401
402 /* for driver use */
403 __REQ_DRV,
404 __REQ_SWAP, /* swapping request. */
405 __REQ_NR_BITS, /* stops here */
406 };
407
408 #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
409 #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
410 #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
411 #define REQ_SYNC (1ULL << __REQ_SYNC)
412 #define REQ_META (1ULL << __REQ_META)
413 #define REQ_PRIO (1ULL << __REQ_PRIO)
414 #define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
415 #define REQ_IDLE (1ULL << __REQ_IDLE)
416 #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
417 #define REQ_FUA (1ULL << __REQ_FUA)
418 #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
419 #define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
420 #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
421 #define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
422 #define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT)
423
424 #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
425 #define REQ_HIPRI (1ULL << __REQ_HIPRI)
426
427 #define REQ_DRV (1ULL << __REQ_DRV)
428 #define REQ_SWAP (1ULL << __REQ_SWAP)
429
430 #define REQ_FAILFAST_MASK \
431 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
432
433 #define REQ_NOMERGE_FLAGS \
434 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
435
436 enum stat_group {
437 STAT_READ,
438 STAT_WRITE,
439 STAT_DISCARD,
440 STAT_FLUSH,
441
442 NR_STAT_GROUPS
443 };
444
445 #define bio_op(bio) \
446 ((bio)->bi_opf & REQ_OP_MASK)
447 #define req_op(req) \
448 ((req)->cmd_flags & REQ_OP_MASK)
449
450 /* obsolete, don't use in new code */
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)451 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
452 unsigned op_flags)
453 {
454 bio->bi_opf = op | op_flags;
455 }
456
op_is_write(unsigned int op)457 static inline bool op_is_write(unsigned int op)
458 {
459 return (op & 1);
460 }
461
462 /*
463 * Check if the bio or request is one that needs special treatment in the
464 * flush state machine.
465 */
op_is_flush(unsigned int op)466 static inline bool op_is_flush(unsigned int op)
467 {
468 return op & (REQ_FUA | REQ_PREFLUSH);
469 }
470
471 /*
472 * Reads are always treated as synchronous, as are requests with the FUA or
473 * PREFLUSH flag. Other operations may be marked as synchronous using the
474 * REQ_SYNC flag.
475 */
op_is_sync(unsigned int op)476 static inline bool op_is_sync(unsigned int op)
477 {
478 return (op & REQ_OP_MASK) == REQ_OP_READ ||
479 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
480 }
481
op_is_discard(unsigned int op)482 static inline bool op_is_discard(unsigned int op)
483 {
484 return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
485 }
486
487 /*
488 * Check if a bio or request operation is a zone management operation, with
489 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
490 * due to its different handling in the block layer and device response in
491 * case of command failure.
492 */
op_is_zone_mgmt(enum req_opf op)493 static inline bool op_is_zone_mgmt(enum req_opf op)
494 {
495 switch (op & REQ_OP_MASK) {
496 case REQ_OP_ZONE_RESET:
497 case REQ_OP_ZONE_OPEN:
498 case REQ_OP_ZONE_CLOSE:
499 case REQ_OP_ZONE_FINISH:
500 return true;
501 default:
502 return false;
503 }
504 }
505
op_stat_group(unsigned int op)506 static inline int op_stat_group(unsigned int op)
507 {
508 if (op_is_discard(op))
509 return STAT_DISCARD;
510 return op_is_write(op);
511 }
512
513 typedef unsigned int blk_qc_t;
514 #define BLK_QC_T_NONE -1U
515 #define BLK_QC_T_SHIFT 16
516 #define BLK_QC_T_INTERNAL (1U << 31)
517
blk_qc_t_valid(blk_qc_t cookie)518 static inline bool blk_qc_t_valid(blk_qc_t cookie)
519 {
520 return cookie != BLK_QC_T_NONE;
521 }
522
blk_qc_t_to_queue_num(blk_qc_t cookie)523 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
524 {
525 return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
526 }
527
blk_qc_t_to_tag(blk_qc_t cookie)528 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
529 {
530 return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
531 }
532
blk_qc_t_is_internal(blk_qc_t cookie)533 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
534 {
535 return (cookie & BLK_QC_T_INTERNAL) != 0;
536 }
537
538 struct blk_rq_stat {
539 u64 mean;
540 u64 min;
541 u64 max;
542 u32 nr_samples;
543 u64 batch;
544 };
545
546 #endif /* __LINUX_BLK_TYPES_H */
547