• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/acpi.h>
42 #include <linux/phy/phy.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/usb/gadget.h>
45 #include <linux/usb/otg.h>
46 #include <linux/usb/phy.h>
47 #include "hw.h"
48 
49 /*
50  * Suggested defines for tracers:
51  * - no_printk:    Disable tracing
52  * - pr_info:      Print this info to the console
53  * - trace_printk: Print this info to trace buffer (good for verbose logging)
54  */
55 
56 #define DWC2_TRACE_SCHEDULER		no_printk
57 #define DWC2_TRACE_SCHEDULER_VB		no_printk
58 
59 /* Detailed scheduler tracing, but won't overwhelm console */
60 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
61 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
62 			     dev_name(hsotg->dev), ##__VA_ARGS__)
63 
64 /* Verbose scheduler tracing */
65 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
66 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
67 				dev_name(hsotg->dev), ##__VA_ARGS__)
68 
69 /* Maximum number of Endpoints/HostChannels */
70 #define MAX_EPS_CHANNELS	16
71 
72 /* dwc2-hsotg declarations */
73 static const char * const dwc2_hsotg_supply_names[] = {
74 	"vusb_d",               /* digital USB supply, 1.2V */
75 	"vusb_a",               /* analog USB supply, 1.1V */
76 };
77 
78 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
79 
80 /*
81  * EP0_MPS_LIMIT
82  *
83  * Unfortunately there seems to be a limit of the amount of data that can
84  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
85  * packets (which practically means 1 packet and 63 bytes of data) when the
86  * MPS is set to 64.
87  *
88  * This means if we are wanting to move >127 bytes of data, we need to
89  * split the transactions up, but just doing one packet at a time does
90  * not work (this may be an implicit DATA0 PID on first packet of the
91  * transaction) and doing 2 packets is outside the controller's limits.
92  *
93  * If we try to lower the MPS size for EP0, then no transfers work properly
94  * for EP0, and the system will fail basic enumeration. As no cause for this
95  * has currently been found, we cannot support any large IN transfers for
96  * EP0.
97  */
98 #define EP0_MPS_LIMIT   64
99 
100 struct dwc2_hsotg;
101 struct dwc2_hsotg_req;
102 
103 /**
104  * struct dwc2_hsotg_ep - driver endpoint definition.
105  * @ep: The gadget layer representation of the endpoint.
106  * @name: The driver generated name for the endpoint.
107  * @queue: Queue of requests for this endpoint.
108  * @parent: Reference back to the parent device structure.
109  * @req: The current request that the endpoint is processing. This is
110  *       used to indicate an request has been loaded onto the endpoint
111  *       and has yet to be completed (maybe due to data move, or simply
112  *       awaiting an ack from the core all the data has been completed).
113  * @debugfs: File entry for debugfs file for this endpoint.
114  * @dir_in: Set to true if this endpoint is of the IN direction, which
115  *          means that it is sending data to the Host.
116  * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
117  * @index: The index for the endpoint registers.
118  * @mc: Multi Count - number of transactions per microframe
119  * @interval: Interval for periodic endpoints, in frames or microframes.
120  * @name: The name array passed to the USB core.
121  * @halted: Set if the endpoint has been halted.
122  * @periodic: Set if this is a periodic ep, such as Interrupt
123  * @isochronous: Set if this is a isochronous ep
124  * @send_zlp: Set if we need to send a zero-length packet.
125  * @wedged: Set if ep is wedged.
126  * @desc_list_dma: The DMA address of descriptor chain currently in use.
127  * @desc_list: Pointer to descriptor DMA chain head currently in use.
128  * @desc_count: Count of entries within the DMA descriptor chain of EP.
129  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
130  * @compl_desc: index of next descriptor to be completed by xFerComplete
131  * @total_data: The total number of data bytes done.
132  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
133  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
134  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
135  * @last_load: The offset of data for the last start of request.
136  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
137  * @target_frame: Targeted frame num to setup next ISOC transfer
138  * @frame_overrun: Indicates SOF number overrun in DSTS
139  *
140  * This is the driver's state for each registered endpoint, allowing it
141  * to keep track of transactions that need doing. Each endpoint has a
142  * lock to protect the state, to try and avoid using an overall lock
143  * for the host controller as much as possible.
144  *
145  * For periodic IN endpoints, we have fifo_size and fifo_load to try
146  * and keep track of the amount of data in the periodic FIFO for each
147  * of these as we don't have a status register that tells us how much
148  * is in each of them. (note, this may actually be useless information
149  * as in shared-fifo mode periodic in acts like a single-frame packet
150  * buffer than a fifo)
151  */
152 struct dwc2_hsotg_ep {
153 	struct usb_ep           ep;
154 	struct list_head        queue;
155 	struct dwc2_hsotg       *parent;
156 	struct dwc2_hsotg_req    *req;
157 	struct dentry           *debugfs;
158 
159 	unsigned long           total_data;
160 	unsigned int            size_loaded;
161 	unsigned int            last_load;
162 	unsigned int            fifo_load;
163 	unsigned short          fifo_size;
164 	unsigned short		fifo_index;
165 
166 	unsigned char           dir_in;
167 	unsigned char           map_dir;
168 	unsigned char           index;
169 	unsigned char           mc;
170 	u16                     interval;
171 
172 	unsigned int            halted:1;
173 	unsigned int            periodic:1;
174 	unsigned int            isochronous:1;
175 	unsigned int            send_zlp:1;
176 	unsigned int            wedged:1;
177 	unsigned int            target_frame;
178 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
179 	bool			frame_overrun;
180 
181 	dma_addr_t		desc_list_dma;
182 	struct dwc2_dma_desc	*desc_list;
183 	u8			desc_count;
184 
185 	unsigned int		next_desc;
186 	unsigned int		compl_desc;
187 
188 	char                    name[10];
189 };
190 
191 /**
192  * struct dwc2_hsotg_req - data transfer request
193  * @req: The USB gadget request
194  * @queue: The list of requests for the endpoint this is queued for.
195  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
196  */
197 struct dwc2_hsotg_req {
198 	struct usb_request      req;
199 	struct list_head        queue;
200 	void *saved_req_buf;
201 };
202 
203 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
204 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
205 #define call_gadget(_hs, _entry) \
206 do { \
207 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
208 		(_hs)->driver && (_hs)->driver->_entry) { \
209 		spin_unlock(&_hs->lock); \
210 		(_hs)->driver->_entry(&(_hs)->gadget); \
211 		spin_lock(&_hs->lock); \
212 	} \
213 } while (0)
214 #else
215 #define call_gadget(_hs, _entry)	do {} while (0)
216 #endif
217 
218 struct dwc2_hsotg;
219 struct dwc2_host_chan;
220 
221 /* Device States */
222 enum dwc2_lx_state {
223 	DWC2_L0,	/* On state */
224 	DWC2_L1,	/* LPM sleep state */
225 	DWC2_L2,	/* USB suspend state */
226 	DWC2_L3,	/* Off state */
227 };
228 
229 /* Gadget ep0 states */
230 enum dwc2_ep0_state {
231 	DWC2_EP0_SETUP,
232 	DWC2_EP0_DATA_IN,
233 	DWC2_EP0_DATA_OUT,
234 	DWC2_EP0_STATUS_IN,
235 	DWC2_EP0_STATUS_OUT,
236 };
237 
238 /**
239  * struct dwc2_core_params - Parameters for configuring the core
240  *
241  * @otg_cap:            Specifies the OTG capabilities.
242  *                       0 - HNP and SRP capable
243  *                       1 - SRP Only capable
244  *                       2 - No HNP/SRP capable (always available)
245  *                      Defaults to best available option (0, 1, then 2)
246  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
247  *                      the data FIFOs. The driver will automatically detect the
248  *                      value for this parameter if none is specified.
249  *                       0 - Slave (always available)
250  *                       1 - DMA (default, if available)
251  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
252  *                      address DMA mode or descriptor DMA mode for accessing
253  *                      the data FIFOs. The driver will automatically detect the
254  *                      value for this if none is specified.
255  *                       0 - Address DMA
256  *                       1 - Descriptor DMA (default, if available)
257  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
258  *                      address DMA mode or descriptor DMA mode for accessing
259  *                      the data FIFOs in Full Speed mode only. The driver
260  *                      will automatically detect the value for this if none is
261  *                      specified.
262  *                       0 - Address DMA
263  *                       1 - Descriptor DMA in FS (default, if available)
264  * @speed:              Specifies the maximum speed of operation in host and
265  *                      device mode. The actual speed depends on the speed of
266  *                      the attached device and the value of phy_type.
267  *                       0 - High Speed
268  *                           (default when phy_type is UTMI+ or ULPI)
269  *                       1 - Full Speed
270  *                           (default when phy_type is Full Speed)
271  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
272  *                       1 - Allow dynamic FIFO sizing (default, if available)
273  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
274  *                      are enabled for non-periodic IN endpoints in device
275  *                      mode.
276  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
277  *                      dynamic FIFO sizing is enabled
278  *                       16 to 32768
279  *                      Actual maximum value is autodetected and also
280  *                      the default.
281  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
282  *                      in host mode when dynamic FIFO sizing is enabled
283  *                       16 to 32768
284  *                      Actual maximum value is autodetected and also
285  *                      the default.
286  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
287  *                      host mode when dynamic FIFO sizing is enabled
288  *                       16 to 32768
289  *                      Actual maximum value is autodetected and also
290  *                      the default.
291  * @max_transfer_size:  The maximum transfer size supported, in bytes
292  *                       2047 to 65,535
293  *                      Actual maximum value is autodetected and also
294  *                      the default.
295  * @max_packet_count:   The maximum number of packets in a transfer
296  *                       15 to 511
297  *                      Actual maximum value is autodetected and also
298  *                      the default.
299  * @host_channels:      The number of host channel registers to use
300  *                       1 to 16
301  *                      Actual maximum value is autodetected and also
302  *                      the default.
303  * @phy_type:           Specifies the type of PHY interface to use. By default,
304  *                      the driver will automatically detect the phy_type.
305  *                       0 - Full Speed Phy
306  *                       1 - UTMI+ Phy
307  *                       2 - ULPI Phy
308  *                      Defaults to best available option (2, 1, then 0)
309  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
310  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
311  *                      ULPI phy_type, this parameter indicates the data width
312  *                      between the MAC and the ULPI Wrapper.) Also, this
313  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
314  *                      parameter was set to "8 and 16 bits", meaning that the
315  *                      core has been configured to work at either data path
316  *                      width.
317  *                       8 or 16 (default 16 if available)
318  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
319  *                      data rate. This parameter is only applicable if phy_type
320  *                      is ULPI.
321  *                       0 - single data rate ULPI interface with 8 bit wide
322  *                           data bus (default)
323  *                       1 - double data rate ULPI interface with 4 bit wide
324  *                           data bus
325  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
326  *                      external supply to drive the VBus
327  *                       0 - Internal supply (default)
328  *                       1 - External supply
329  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
330  *                      speed PHY. This parameter is only applicable if phy_type
331  *                      is FS.
332  *                       0 - No (default)
333  *                       1 - Yes
334  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
335  *                       0 - Disable (default)
336  *                       1 - Enable
337  * @acg_enable:		For enabling Active Clock Gating in the controller
338  *                       0 - No
339  *                       1 - Yes
340  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
341  *                       0 - No (default)
342  *                       1 - Yes
343  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
344  *                      when attached to a Full Speed or Low Speed device in
345  *                      host mode.
346  *                       0 - Don't support low power mode (default)
347  *                       1 - Support low power mode
348  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
349  *                      when connected to a Low Speed device in host
350  *                      mode. This parameter is applicable only if
351  *                      host_support_fs_ls_low_power is enabled.
352  *                       0 - 48 MHz
353  *                           (default when phy_type is UTMI+ or ULPI)
354  *                       1 - 6 MHz
355  *                           (default when phy_type is Full Speed)
356  * @oc_disable:		Flag to disable overcurrent condition.
357  *			0 - Allow overcurrent condition to get detected
358  *			1 - Disable overcurrent condtion to get detected
359  * @ts_dline:           Enable Term Select Dline pulsing
360  *                       0 - No (default)
361  *                       1 - Yes
362  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
363  *                       0 - No (default for core < 2.92a)
364  *                       1 - Yes (default for core >= 2.92a)
365  * @ahbcfg:             This field allows the default value of the GAHBCFG
366  *                      register to be overridden
367  *                       -1         - GAHBCFG value will be set to 0x06
368  *                                    (INCR, default)
369  *                       all others - GAHBCFG value will be overridden with
370  *                                    this value
371  *                      Not all bits can be controlled like this, the
372  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
373  *                      by the driver and are ignored in this
374  *                      configuration value.
375  * @uframe_sched:       True to enable the microframe scheduler
376  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
377  *                      Disable CONIDSTSCHNG controller interrupt in such
378  *                      case.
379  *                      0 - No (default)
380  *                      1 - Yes
381  * @power_down:         Specifies whether the controller support power_down.
382  *			If power_down is enabled, the controller will enter
383  *			power_down in both peripheral and host mode when
384  *			needed.
385  *			0 - No (default)
386  *			1 - Partial power down
387  *			2 - Hibernation
388  * @no_clock_gating:	Specifies whether to avoid clock gating feature.
389  *			0 - No (use clock gating)
390  *			1 - Yes (avoid it)
391  * @lpm:		Enable LPM support.
392  *			0 - No
393  *			1 - Yes
394  * @lpm_clock_gating:		Enable core PHY clock gating.
395  *			0 - No
396  *			1 - Yes
397  * @besl:		Enable LPM Errata support.
398  *			0 - No
399  *			1 - Yes
400  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
401  *			0 - No
402  *			1 - Yes
403  * @hird_threshold:	Value of BESL or HIRD Threshold.
404  * @ref_clk_per:        Indicates in terms of pico seconds the period
405  *                      of ref_clk.
406  *			62500 - 16MHz
407  *                      58823 - 17MHz
408  *                      52083 - 19.2MHz
409  *			50000 - 20MHz
410  *			41666 - 24MHz
411  *			33333 - 30MHz (default)
412  *			25000 - 40MHz
413  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
414  *                      the controller should generate an interrupt if the
415  *                      device had been in L1 state until that period.
416  *                      This is used by SW to initiate Remote WakeUp in the
417  *                      controller so as to sync to the uF number from the host.
418  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
419  *			register.
420  *			0 - Deactivate the transceiver (default)
421  *			1 - Activate the transceiver
422  * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
423  *			detection using GGPIO register.
424  *			0 - Deactivate the external level detection (default)
425  *			1 - Activate the external level detection
426  * @g_dma:              Enables gadget dma usage (default: autodetect).
427  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
428  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
429  *			DWORDS from 16-32768 (default: 2048 if
430  *			possible, otherwise autodetect).
431  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
432  *			DWORDS from 16-32768 (default: 1024 if
433  *			possible, otherwise autodetect).
434  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
435  *			mode. Each value corresponds to one EP
436  *			starting from EP1 (max 15 values). Sizes are
437  *			in DWORDS with possible values from
438  *			16-32768 (default: 256, 256, 256, 256, 768,
439  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
440  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
441  *                      while full&low speed device connect. And change speed
442  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
443  *			0 - No (default)
444  *			1 - Yes
445  * @service_interval:   Enable service interval based scheduling.
446  *                      0 - No
447  *                      1 - Yes
448  *
449  * The following parameters may be specified when starting the module. These
450  * parameters define how the DWC_otg controller should be configured. A
451  * value of -1 (or any other out of range value) for any parameter means
452  * to read the value from hardware (if possible) or use the builtin
453  * default described above.
454  */
455 struct dwc2_core_params {
456 	u8 otg_cap;
457 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
458 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
459 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
460 
461 	u8 phy_type;
462 #define DWC2_PHY_TYPE_PARAM_FS		0
463 #define DWC2_PHY_TYPE_PARAM_UTMI	1
464 #define DWC2_PHY_TYPE_PARAM_ULPI	2
465 
466 	u8 speed;
467 #define DWC2_SPEED_PARAM_HIGH	0
468 #define DWC2_SPEED_PARAM_FULL	1
469 #define DWC2_SPEED_PARAM_LOW	2
470 
471 	u8 phy_utmi_width;
472 	bool phy_ulpi_ddr;
473 	bool phy_ulpi_ext_vbus;
474 	bool enable_dynamic_fifo;
475 	bool en_multiple_tx_fifo;
476 	bool i2c_enable;
477 	bool acg_enable;
478 	bool ulpi_fs_ls;
479 	bool ts_dline;
480 	bool reload_ctl;
481 	bool uframe_sched;
482 	bool external_id_pin_ctl;
483 
484 	int power_down;
485 #define DWC2_POWER_DOWN_PARAM_NONE		0
486 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
487 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
488 	bool no_clock_gating;
489 
490 	bool lpm;
491 	bool lpm_clock_gating;
492 	bool besl;
493 	bool hird_threshold_en;
494 	bool service_interval;
495 	u8 hird_threshold;
496 	bool activate_stm_fs_transceiver;
497 	bool activate_stm_id_vb_detection;
498 	bool ipg_isoc_en;
499 	u16 max_packet_count;
500 	u32 max_transfer_size;
501 	u32 ahbcfg;
502 
503 	/* GREFCLK parameters */
504 	u32 ref_clk_per;
505 	u16 sof_cnt_wkup_alert;
506 
507 	/* Host parameters */
508 	bool host_dma;
509 	bool dma_desc_enable;
510 	bool dma_desc_fs_enable;
511 	bool host_support_fs_ls_low_power;
512 	bool host_ls_low_power_phy_clk;
513 	bool oc_disable;
514 
515 	u8 host_channels;
516 	u16 host_rx_fifo_size;
517 	u16 host_nperio_tx_fifo_size;
518 	u16 host_perio_tx_fifo_size;
519 
520 	/* Gadget parameters */
521 	bool g_dma;
522 	bool g_dma_desc;
523 	u32 g_rx_fifo_size;
524 	u32 g_np_tx_fifo_size;
525 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
526 
527 	bool change_speed_quirk;
528 };
529 
530 /**
531  * struct dwc2_hw_params - Autodetected parameters.
532  *
533  * These parameters are the various parameters read from hardware
534  * registers during initialization. They typically contain the best
535  * supported or maximum value that can be configured in the
536  * corresponding dwc2_core_params value.
537  *
538  * The values that are not in dwc2_core_params are documented below.
539  *
540  * @op_mode:             Mode of Operation
541  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
542  *                       1 - SRP-Capable OTG (Host & Device)
543  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
544  *                       3 - SRP-Capable Device
545  *                       4 - Non-OTG Device
546  *                       5 - SRP-Capable Host
547  *                       6 - Non-OTG Host
548  * @arch:                Architecture
549  *                       0 - Slave only
550  *                       1 - External DMA
551  *                       2 - Internal DMA
552  * @ipg_isoc_en:        This feature indicates that the controller supports
553  *                      the worst-case scenario of Rx followed by Rx
554  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
555  *                      specification for any token following ISOC OUT token.
556  *                       0 - Don't support
557  *                       1 - Support
558  * @power_optimized:    Are power optimizations enabled?
559  * @num_dev_ep:         Number of device endpoints available
560  * @num_dev_in_eps:     Number of device IN endpoints available
561  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
562  *                       available
563  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
564  *                      Depth
565  *                       0 to 30
566  * @host_perio_tx_q_depth:
567  *                      Host Mode Periodic Request Queue Depth
568  *                       2, 4 or 8
569  * @nperio_tx_q_depth:
570  *                      Non-Periodic Request Queue Depth
571  *                       2, 4 or 8
572  * @hs_phy_type:         High-speed PHY interface type
573  *                       0 - High-speed interface not supported
574  *                       1 - UTMI+
575  *                       2 - ULPI
576  *                       3 - UTMI+ and ULPI
577  * @fs_phy_type:         Full-speed PHY interface type
578  *                       0 - Full speed interface not supported
579  *                       1 - Dedicated full speed interface
580  *                       2 - FS pins shared with UTMI+ pins
581  *                       3 - FS pins shared with ULPI pins
582  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
583  * @hibernation:	Is hibernation enabled?
584  * @utmi_phy_data_width: UTMI+ PHY data width
585  *                       0 - 8 bits
586  *                       1 - 16 bits
587  *                       2 - 8 or 16 bits
588  * @snpsid:             Value from SNPSID register
589  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
590  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
591  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
592  *                      address DMA mode or descriptor DMA mode for accessing
593  *                      the data FIFOs. The driver will automatically detect the
594  *                      value for this if none is specified.
595  *                       0 - Address DMA
596  *                       1 - Descriptor DMA (default, if available)
597  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
598  *                       1 - Allow dynamic FIFO sizing (default, if available)
599  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
600  *                      are enabled for non-periodic IN endpoints in device
601  *                      mode.
602  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
603  *                      in host mode when dynamic FIFO sizing is enabled
604  *                       16 to 32768
605  *                      Actual maximum value is autodetected and also
606  *                      the default.
607  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
608  *                      host mode when dynamic FIFO sizing is enabled
609  *                       16 to 32768
610  *                      Actual maximum value is autodetected and also
611  *                      the default.
612  * @max_transfer_size:  The maximum transfer size supported, in bytes
613  *                       2047 to 65,535
614  *                      Actual maximum value is autodetected and also
615  *                      the default.
616  * @max_packet_count:   The maximum number of packets in a transfer
617  *                       15 to 511
618  *                      Actual maximum value is autodetected and also
619  *                      the default.
620  * @host_channels:      The number of host channel registers to use
621  *                       1 to 16
622  *                      Actual maximum value is autodetected and also
623  *                      the default.
624  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
625  *			     in device mode when dynamic FIFO sizing is enabled
626  *			     16 to 32768
627  *			     Actual maximum value is autodetected and also
628  *			     the default.
629  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
630  *                      speed PHY. This parameter is only applicable if phy_type
631  *                      is FS.
632  *                       0 - No (default)
633  *                       1 - Yes
634  * @acg_enable:		For enabling Active Clock Gating in the controller
635  *                       0 - Disable
636  *                       1 - Enable
637  * @lpm_mode:		For enabling Link Power Management in the controller
638  *                       0 - Disable
639  *                       1 - Enable
640  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
641  *			FIFO sizing is enabled 16 to 32768
642  *			Actual maximum value is autodetected and also
643  *			the default.
644  * @service_interval_mode: For enabling service interval based scheduling in the
645  *                         controller.
646  *                           0 - Disable
647  *                           1 - Enable
648  */
649 struct dwc2_hw_params {
650 	unsigned op_mode:3;
651 	unsigned arch:2;
652 	unsigned dma_desc_enable:1;
653 	unsigned enable_dynamic_fifo:1;
654 	unsigned en_multiple_tx_fifo:1;
655 	unsigned rx_fifo_size:16;
656 	unsigned host_nperio_tx_fifo_size:16;
657 	unsigned dev_nperio_tx_fifo_size:16;
658 	unsigned host_perio_tx_fifo_size:16;
659 	unsigned nperio_tx_q_depth:3;
660 	unsigned host_perio_tx_q_depth:3;
661 	unsigned dev_token_q_depth:5;
662 	unsigned max_transfer_size:26;
663 	unsigned max_packet_count:11;
664 	unsigned host_channels:5;
665 	unsigned hs_phy_type:2;
666 	unsigned fs_phy_type:2;
667 	unsigned i2c_enable:1;
668 	unsigned acg_enable:1;
669 	unsigned num_dev_ep:4;
670 	unsigned num_dev_in_eps : 4;
671 	unsigned num_dev_perio_in_ep:4;
672 	unsigned total_fifo_size:16;
673 	unsigned power_optimized:1;
674 	unsigned hibernation:1;
675 	unsigned utmi_phy_data_width:2;
676 	unsigned lpm_mode:1;
677 	unsigned ipg_isoc_en:1;
678 	unsigned service_interval_mode:1;
679 	u32 snpsid;
680 	u32 dev_ep_dirs;
681 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
682 };
683 
684 /* Size of control and EP0 buffers */
685 #define DWC2_CTRL_BUFF_SIZE 8
686 
687 /**
688  * struct dwc2_gregs_backup - Holds global registers state before
689  * entering partial power down
690  * @gotgctl:		Backup of GOTGCTL register
691  * @gintmsk:		Backup of GINTMSK register
692  * @gahbcfg:		Backup of GAHBCFG register
693  * @gusbcfg:		Backup of GUSBCFG register
694  * @grxfsiz:		Backup of GRXFSIZ register
695  * @gnptxfsiz:		Backup of GNPTXFSIZ register
696  * @gi2cctl:		Backup of GI2CCTL register
697  * @glpmcfg:		Backup of GLPMCFG register
698  * @gdfifocfg:		Backup of GDFIFOCFG register
699  * @pcgcctl:		Backup of PCGCCTL register
700  * @pcgcctl1:		Backup of PCGCCTL1 register
701  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
702  * @gpwrdn:		Backup of GPWRDN register
703  * @valid:		True if registers values backuped.
704  */
705 struct dwc2_gregs_backup {
706 	u32 gotgctl;
707 	u32 gintmsk;
708 	u32 gahbcfg;
709 	u32 gusbcfg;
710 	u32 grxfsiz;
711 	u32 gnptxfsiz;
712 	u32 gi2cctl;
713 	u32 glpmcfg;
714 	u32 pcgcctl;
715 	u32 pcgcctl1;
716 	u32 gdfifocfg;
717 	u32 gpwrdn;
718 	bool valid;
719 };
720 
721 /**
722  * struct dwc2_dregs_backup - Holds device registers state before
723  * entering partial power down
724  * @dcfg:		Backup of DCFG register
725  * @dctl:		Backup of DCTL register
726  * @daintmsk:		Backup of DAINTMSK register
727  * @diepmsk:		Backup of DIEPMSK register
728  * @doepmsk:		Backup of DOEPMSK register
729  * @diepctl:		Backup of DIEPCTL register
730  * @dieptsiz:		Backup of DIEPTSIZ register
731  * @diepdma:		Backup of DIEPDMA register
732  * @doepctl:		Backup of DOEPCTL register
733  * @doeptsiz:		Backup of DOEPTSIZ register
734  * @doepdma:		Backup of DOEPDMA register
735  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
736  * @valid:      True if registers values backuped.
737  */
738 struct dwc2_dregs_backup {
739 	u32 dcfg;
740 	u32 dctl;
741 	u32 daintmsk;
742 	u32 diepmsk;
743 	u32 doepmsk;
744 	u32 diepctl[MAX_EPS_CHANNELS];
745 	u32 dieptsiz[MAX_EPS_CHANNELS];
746 	u32 diepdma[MAX_EPS_CHANNELS];
747 	u32 doepctl[MAX_EPS_CHANNELS];
748 	u32 doeptsiz[MAX_EPS_CHANNELS];
749 	u32 doepdma[MAX_EPS_CHANNELS];
750 	u32 dtxfsiz[MAX_EPS_CHANNELS];
751 	bool valid;
752 };
753 
754 /**
755  * struct dwc2_hregs_backup - Holds host registers state before
756  * entering partial power down
757  * @hcfg:		Backup of HCFG register
758  * @haintmsk:		Backup of HAINTMSK register
759  * @hcintmsk:		Backup of HCINTMSK register
760  * @hprt0:		Backup of HPTR0 register
761  * @hfir:		Backup of HFIR register
762  * @hptxfsiz:		Backup of HPTXFSIZ register
763  * @valid:      True if registers values backuped.
764  */
765 struct dwc2_hregs_backup {
766 	u32 hcfg;
767 	u32 haintmsk;
768 	u32 hcintmsk[MAX_EPS_CHANNELS];
769 	u32 hprt0;
770 	u32 hfir;
771 	u32 hptxfsiz;
772 	bool valid;
773 };
774 
775 /*
776  * Constants related to high speed periodic scheduling
777  *
778  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
779  * reservation point of view it's assumed that the schedule goes right back to
780  * the beginning after the end of the schedule.
781  *
782  * What does that mean for scheduling things with a long interval?  It means
783  * we'll reserve time for them in every possible microframe that they could
784  * ever be scheduled in.  ...but we'll still only actually schedule them as
785  * often as they were requested.
786  *
787  * We keep our schedule in a "bitmap" structure.  This simplifies having
788  * to keep track of and merge intervals: we just let the bitmap code do most
789  * of the heavy lifting.  In a way scheduling is much like memory allocation.
790  *
791  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
792  * supposed to schedule for periodic transfers).  That's according to spec.
793  *
794  * Note that though we only schedule 80% of each microframe, the bitmap that we
795  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
796  * space for each uFrame).
797  *
798  * Requirements:
799  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
800  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
801  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
802  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
803  */
804 #define DWC2_US_PER_UFRAME		125
805 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
806 
807 #define DWC2_HS_SCHEDULE_UFRAMES	8
808 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
809 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
810 
811 /*
812  * Constants related to low speed scheduling
813  *
814  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
815  * so we make up a unit called a "slice" that's worth 25us.  There are 40
816  * slices in a full frame and we can schedule 36 of those (90%) for periodic
817  * transfers.
818  *
819  * Our low speed schedule can be as short as 1 frame or could be longer.  When
820  * we only schedule 1 frame it means that we'll need to reserve a time every
821  * frame even for things that only transfer very rarely, so something that runs
822  * every 2048 frames will get time reserved in every frame.  Our low speed
823  * schedule can be longer and we'll be able to handle more overlap, but that
824  * will come at increased memory cost and increased time to schedule.
825  *
826  * Note: one other advantage of a short low speed schedule is that if we mess
827  * up and miss scheduling we can jump in and use any of the slots that we
828  * happened to reserve.
829  *
830  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
831  * the schedule.  There will be one schedule per TT.
832  *
833  * Requirements:
834  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
835  */
836 #define DWC2_US_PER_SLICE	25
837 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
838 
839 #define DWC2_ROUND_US_TO_SLICE(us) \
840 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
841 				 DWC2_US_PER_SLICE)
842 
843 #define DWC2_LS_PERIODIC_US_PER_FRAME \
844 				900
845 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
846 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
847 				 DWC2_US_PER_SLICE)
848 
849 #define DWC2_LS_SCHEDULE_FRAMES	1
850 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
851 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
852 
853 /**
854  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
855  * and periodic schedules
856  *
857  * These are common for both host and peripheral modes:
858  *
859  * @dev:                The struct device pointer
860  * @regs:		Pointer to controller regs
861  * @hw_params:          Parameters that were autodetected from the
862  *                      hardware registers
863  * @params:	Parameters that define how the core should be configured
864  * @op_state:           The operational State, during transitions (a_host=>
865  *                      a_peripheral and b_device=>b_host) this may not match
866  *                      the core, but allows the software to determine
867  *                      transitions
868  * @dr_mode:            Requested mode of operation, one of following:
869  *                      - USB_DR_MODE_PERIPHERAL
870  *                      - USB_DR_MODE_HOST
871  *                      - USB_DR_MODE_OTG
872  * @role_sw:		usb_role_switch handle
873  * @hcd_enabled:	Host mode sub-driver initialization indicator.
874  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
875  * @ll_hw_enabled:	Status of low-level hardware resources.
876  * @hibernated:		True if core is hibernated
877  * @in_ppd:		True if core is partial power down mode.
878  * @bus_suspended:	True if bus is suspended
879  * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
880  *			remote wakeup.
881  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
882  * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
883  *			suspend if we need USB to wake us up.
884  * @frame_number:       Frame number read from the core. For both device
885  *			and host modes. The value ranges are from 0
886  *			to HFNUM_MAX_FRNUM.
887  * @phy:                The otg phy transceiver structure for phy control.
888  * @uphy:               The otg phy transceiver structure for old USB phy
889  *                      control.
890  * @plat:               The platform specific configuration data. This can be
891  *                      removed once all SoCs support usb transceiver.
892  * @supplies:           Definition of USB power supplies
893  * @vbus_supply:        Regulator supplying vbus.
894  * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
895  *			supply ID and VBUS detection hardware.
896  * @lock:		Spinlock that protects all the driver data structures
897  * @priv:		Stores a pointer to the struct usb_hcd
898  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
899  *                      transfer are in process of being queued
900  * @srp_success:        Stores status of SRP request in the case of a FS PHY
901  *                      with an I2C interface
902  * @wq_otg:             Workqueue object used for handling of some interrupts
903  * @wf_otg:             Work object for handling Connector ID Status Change
904  *                      interrupt
905  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
906  * @lx_state:           Lx state of connected device
907  * @gr_backup: Backup of global registers during suspend
908  * @dr_backup: Backup of device registers during suspend
909  * @hr_backup: Backup of host registers during suspend
910  * @needs_byte_swap:		Specifies whether the opposite endianness.
911  *
912  * These are for host mode:
913  *
914  * @flags:              Flags for handling root port state changes
915  * @flags.d32:          Contain all root port flags
916  * @flags.b:            Separate root port flags from each other
917  * @flags.b.port_connect_status_change: True if root port connect status
918  *                      changed
919  * @flags.b.port_connect_status: True if device connected to root port
920  * @flags.b.port_reset_change: True if root port reset status changed
921  * @flags.b.port_enable_change: True if root port enable status changed
922  * @flags.b.port_suspend_change: True if root port suspend status changed
923  * @flags.b.port_over_current_change: True if root port over current state
924  *                       changed.
925  * @flags.b.port_l1_change: True if root port l1 status changed
926  * @flags.b.reserved:   Reserved bits of root port register
927  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
928  *                      Transfers associated with these QHs are not currently
929  *                      assigned to a host channel.
930  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
931  *                      Transfers associated with these QHs are currently
932  *                      assigned to a host channel.
933  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
934  *                      non-periodic schedule
935  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
936  *                      Transfers associated with these QHs are not currently
937  *                      assigned to a host channel.
938  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
939  *                      list of QHs for periodic transfers that are _not_
940  *                      scheduled for the next frame. Each QH in the list has an
941  *                      interval counter that determines when it needs to be
942  *                      scheduled for execution. This scheduling mechanism
943  *                      allows only a simple calculation for periodic bandwidth
944  *                      used (i.e. must assume that all periodic transfers may
945  *                      need to execute in the same frame). However, it greatly
946  *                      simplifies scheduling and should be sufficient for the
947  *                      vast majority of OTG hosts, which need to connect to a
948  *                      small number of peripherals at one time. Items move from
949  *                      this list to periodic_sched_ready when the QH interval
950  *                      counter is 0 at SOF.
951  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
952  *                      the next frame, but have not yet been assigned to host
953  *                      channels. Items move from this list to
954  *                      periodic_sched_assigned as host channels become
955  *                      available during the current frame.
956  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
957  *                      frame that are assigned to host channels. Items move
958  *                      from this list to periodic_sched_queued as the
959  *                      transactions for the QH are queued to the DWC_otg
960  *                      controller.
961  * @periodic_sched_queued: List of periodic QHs that have been queued for
962  *                      execution. Items move from this list to either
963  *                      periodic_sched_inactive or periodic_sched_ready when the
964  *                      channel associated with the transfer is released. If the
965  *                      interval for the QH is 1, the item moves to
966  *                      periodic_sched_ready because it must be rescheduled for
967  *                      the next frame. Otherwise, the item moves to
968  *                      periodic_sched_inactive.
969  * @split_order:        List keeping track of channels doing splits, in order.
970  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
971  *                      This value is in microseconds per (micro)frame. The
972  *                      assumption is that all periodic transfers may occur in
973  *                      the same (micro)frame.
974  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
975  *                      host is in high speed mode; low speed schedules are
976  *                      stored elsewhere since we need one per TT.
977  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
978  *                      SOF enable/disable.
979  * @free_hc_list:       Free host channels in the controller. This is a list of
980  *                      struct dwc2_host_chan items.
981  * @periodic_channels:  Number of host channels assigned to periodic transfers.
982  *                      Currently assuming that there is a dedicated host
983  *                      channel for each periodic transaction and at least one
984  *                      host channel is available for non-periodic transactions.
985  * @non_periodic_channels: Number of host channels assigned to non-periodic
986  *                      transfers
987  * @available_host_channels: Number of host channels available for the
988  *			     microframe scheduler to use
989  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
990  *                      Allows accessing a host channel descriptor given the
991  *                      host channel number. This is useful in interrupt
992  *                      handlers.
993  * @status_buf:         Buffer used for data received during the status phase of
994  *                      a control transfer.
995  * @status_buf_dma:     DMA address for status_buf
996  * @start_work:         Delayed work for handling host A-cable connection
997  * @reset_work:         Delayed work for handling a port reset
998  * @phy_reset_work:     Work structure for doing a PHY reset
999  * @otg_port:           OTG port number
1000  * @frame_list:         Frame list
1001  * @frame_list_dma:     Frame list DMA address
1002  * @frame_list_sz:      Frame list size
1003  * @desc_gen_cache:     Kmem cache for generic descriptors
1004  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
1005  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1006  *
1007  * These are for peripheral mode:
1008  *
1009  * @driver:             USB gadget driver
1010  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1011  * @num_of_eps:         Number of available EPs (excluding EP0)
1012  * @debug_root:         Root directrory for debugfs.
1013  * @ep0_reply:          Request used for ep0 reply.
1014  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1015  * @ctrl_buff:          Buffer for EP0 control requests.
1016  * @ctrl_req:           Request for EP0 control packets.
1017  * @ep0_state:          EP0 control transfers state
1018  * @delayed_status:		true when gadget driver asks for delayed status
1019  * @test_mode:          USB test mode requested by the host
1020  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1021  *                      remote-wakeup signalling
1022  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1023  * @setup_desc:		EP0 setup stage desc chain pointer
1024  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1025  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1026  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1027  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1028  * @irq:		Interrupt request line number
1029  * @clk:		Pointer to otg clock
1030  * @reset:		Pointer to dwc2 reset controller
1031  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1032  * @regset:		A pointer to a struct debugfs_regset32, which contains
1033  *			a pointer to an array of register definitions, the
1034  *			array size and the base address where the register bank
1035  *			is to be found.
1036  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1037  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1038  *			defined, for missed SOFs tracking. Array holds that
1039  *			frame numbers, which not equal to last_frame_num +1
1040  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1041  *			    defined, for missed SOFs tracking.
1042  *			    If current_frame_number != last_frame_num+1
1043  *			    then last_frame_num added to this array
1044  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1045  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1046  *				0 - if missed SOFs frame numbers not dumbed
1047  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1048  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1049  *			then that fifo is used
1050  * @gadget:		Represents a usb gadget device
1051  * @connected:		Used in slave mode. True if device connected with host
1052  * @eps_in:		The IN endpoints being supplied to the gadget framework
1053  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1054  * @new_connection:	Used in host mode. True if there are new connected
1055  *			device
1056  * @enabled:		Indicates the enabling state of controller
1057  *
1058  */
1059 struct dwc2_hsotg {
1060 	struct device *dev;
1061 	void __iomem *regs;
1062 	/** Params detected from hardware */
1063 	struct dwc2_hw_params hw_params;
1064 	/** Params to actually use */
1065 	struct dwc2_core_params params;
1066 	enum usb_otg_state op_state;
1067 	enum usb_dr_mode dr_mode;
1068 	struct usb_role_switch *role_sw;
1069 	unsigned int hcd_enabled:1;
1070 	unsigned int gadget_enabled:1;
1071 	unsigned int ll_hw_enabled:1;
1072 	unsigned int hibernated:1;
1073 	unsigned int in_ppd:1;
1074 	bool bus_suspended;
1075 	unsigned int reset_phy_on_wake:1;
1076 	unsigned int need_phy_for_wake:1;
1077 	unsigned int phy_off_for_suspend:1;
1078 	u16 frame_number;
1079 
1080 	struct phy *phy;
1081 	struct usb_phy *uphy;
1082 	struct dwc2_hsotg_plat *plat;
1083 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1084 	struct regulator *vbus_supply;
1085 	struct regulator *usb33d;
1086 
1087 	spinlock_t lock;
1088 	void *priv;
1089 	int     irq;
1090 	struct clk *clk;
1091 	struct reset_control *reset;
1092 	struct reset_control *reset_ecc;
1093 
1094 	unsigned int queuing_high_bandwidth:1;
1095 	unsigned int srp_success:1;
1096 
1097 	struct workqueue_struct *wq_otg;
1098 	struct work_struct wf_otg;
1099 	struct timer_list wkp_timer;
1100 	enum dwc2_lx_state lx_state;
1101 	struct dwc2_gregs_backup gr_backup;
1102 	struct dwc2_dregs_backup dr_backup;
1103 	struct dwc2_hregs_backup hr_backup;
1104 
1105 	struct dentry *debug_root;
1106 	struct debugfs_regset32 *regset;
1107 	bool needs_byte_swap;
1108 
1109 	/* DWC OTG HW Release versions */
1110 #define DWC2_CORE_REV_2_71a	0x4f54271a
1111 #define DWC2_CORE_REV_2_72a     0x4f54272a
1112 #define DWC2_CORE_REV_2_80a	0x4f54280a
1113 #define DWC2_CORE_REV_2_90a	0x4f54290a
1114 #define DWC2_CORE_REV_2_91a	0x4f54291a
1115 #define DWC2_CORE_REV_2_92a	0x4f54292a
1116 #define DWC2_CORE_REV_2_94a	0x4f54294a
1117 #define DWC2_CORE_REV_3_00a	0x4f54300a
1118 #define DWC2_CORE_REV_3_10a	0x4f54310a
1119 #define DWC2_CORE_REV_4_00a	0x4f54400a
1120 #define DWC2_CORE_REV_4_20a	0x4f54420a
1121 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1122 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1123 #define DWC2_CORE_REV_MASK	0x0000ffff
1124 
1125 	/* DWC OTG HW Core ID */
1126 #define DWC2_OTG_ID		0x4f540000
1127 #define DWC2_FS_IOT_ID		0x55310000
1128 #define DWC2_HS_IOT_ID		0x55320000
1129 
1130 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1131 	union dwc2_hcd_internal_flags {
1132 		u32 d32;
1133 		struct {
1134 			unsigned port_connect_status_change:1;
1135 			unsigned port_connect_status:1;
1136 			unsigned port_reset_change:1;
1137 			unsigned port_enable_change:1;
1138 			unsigned port_suspend_change:1;
1139 			unsigned port_over_current_change:1;
1140 			unsigned port_l1_change:1;
1141 			unsigned reserved:25;
1142 		} b;
1143 	} flags;
1144 
1145 	struct list_head non_periodic_sched_inactive;
1146 	struct list_head non_periodic_sched_waiting;
1147 	struct list_head non_periodic_sched_active;
1148 	struct list_head *non_periodic_qh_ptr;
1149 	struct list_head periodic_sched_inactive;
1150 	struct list_head periodic_sched_ready;
1151 	struct list_head periodic_sched_assigned;
1152 	struct list_head periodic_sched_queued;
1153 	struct list_head split_order;
1154 	u16 periodic_usecs;
1155 	unsigned long hs_periodic_bitmap[
1156 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1157 	u16 periodic_qh_count;
1158 	bool new_connection;
1159 
1160 	u16 last_frame_num;
1161 
1162 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1163 #define FRAME_NUM_ARRAY_SIZE 1000
1164 	u16 *frame_num_array;
1165 	u16 *last_frame_num_array;
1166 	int frame_num_idx;
1167 	int dumped_frame_num_array;
1168 #endif
1169 
1170 	struct list_head free_hc_list;
1171 	int periodic_channels;
1172 	int non_periodic_channels;
1173 	int available_host_channels;
1174 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1175 	u8 *status_buf;
1176 	dma_addr_t status_buf_dma;
1177 #define DWC2_HCD_STATUS_BUF_SIZE 64
1178 
1179 	struct delayed_work start_work;
1180 	struct delayed_work reset_work;
1181 	struct work_struct phy_reset_work;
1182 	u8 otg_port;
1183 	u32 *frame_list;
1184 	dma_addr_t frame_list_dma;
1185 	u32 frame_list_sz;
1186 	struct kmem_cache *desc_gen_cache;
1187 	struct kmem_cache *desc_hsisoc_cache;
1188 	struct kmem_cache *unaligned_cache;
1189 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1190 
1191 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1192 
1193 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1194 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1195 	/* Gadget structures */
1196 	struct usb_gadget_driver *driver;
1197 	int fifo_mem;
1198 	unsigned int dedicated_fifos:1;
1199 	unsigned char num_of_eps;
1200 	u32 fifo_map;
1201 
1202 	struct usb_request *ep0_reply;
1203 	struct usb_request *ctrl_req;
1204 	void *ep0_buff;
1205 	void *ctrl_buff;
1206 	enum dwc2_ep0_state ep0_state;
1207 	unsigned delayed_status : 1;
1208 	u8 test_mode;
1209 
1210 	dma_addr_t setup_desc_dma[2];
1211 	struct dwc2_dma_desc *setup_desc[2];
1212 	dma_addr_t ctrl_in_desc_dma;
1213 	struct dwc2_dma_desc *ctrl_in_desc;
1214 	dma_addr_t ctrl_out_desc_dma;
1215 	struct dwc2_dma_desc *ctrl_out_desc;
1216 
1217 	struct usb_gadget gadget;
1218 	unsigned int enabled:1;
1219 	unsigned int connected:1;
1220 	unsigned int remote_wakeup_allowed:1;
1221 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1222 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1223 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1224 };
1225 
1226 /* Normal architectures just use readl/write */
dwc2_readl(struct dwc2_hsotg * hsotg,u32 offset)1227 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1228 {
1229 	u32 val;
1230 
1231 	val = readl(hsotg->regs + offset);
1232 	if (hsotg->needs_byte_swap)
1233 		return swab32(val);
1234 	else
1235 		return val;
1236 }
1237 
dwc2_writel(struct dwc2_hsotg * hsotg,u32 value,u32 offset)1238 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1239 {
1240 	if (hsotg->needs_byte_swap)
1241 		writel(swab32(value), hsotg->regs + offset);
1242 	else
1243 		writel(value, hsotg->regs + offset);
1244 
1245 #ifdef DWC2_LOG_WRITES
1246 	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1247 #endif
1248 }
1249 
dwc2_readl_rep(struct dwc2_hsotg * hsotg,u32 offset,void * buffer,unsigned int count)1250 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1251 				  void *buffer, unsigned int count)
1252 {
1253 	if (count) {
1254 		u32 *buf = buffer;
1255 
1256 		do {
1257 			u32 x = dwc2_readl(hsotg, offset);
1258 			*buf++ = x;
1259 		} while (--count);
1260 	}
1261 }
1262 
dwc2_writel_rep(struct dwc2_hsotg * hsotg,u32 offset,const void * buffer,unsigned int count)1263 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1264 				   const void *buffer, unsigned int count)
1265 {
1266 	if (count) {
1267 		const u32 *buf = buffer;
1268 
1269 		do {
1270 			dwc2_writel(hsotg, *buf++, offset);
1271 		} while (--count);
1272 	}
1273 }
1274 
1275 /* Reasons for halting a host channel */
1276 enum dwc2_halt_status {
1277 	DWC2_HC_XFER_NO_HALT_STATUS,
1278 	DWC2_HC_XFER_COMPLETE,
1279 	DWC2_HC_XFER_URB_COMPLETE,
1280 	DWC2_HC_XFER_ACK,
1281 	DWC2_HC_XFER_NAK,
1282 	DWC2_HC_XFER_NYET,
1283 	DWC2_HC_XFER_STALL,
1284 	DWC2_HC_XFER_XACT_ERR,
1285 	DWC2_HC_XFER_FRAME_OVERRUN,
1286 	DWC2_HC_XFER_BABBLE_ERR,
1287 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1288 	DWC2_HC_XFER_AHB_ERR,
1289 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1290 	DWC2_HC_XFER_URB_DEQUEUE,
1291 };
1292 
1293 /* Core version information */
dwc2_is_iot(struct dwc2_hsotg * hsotg)1294 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1295 {
1296 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1297 }
1298 
dwc2_is_fs_iot(struct dwc2_hsotg * hsotg)1299 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1300 {
1301 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1302 }
1303 
dwc2_is_hs_iot(struct dwc2_hsotg * hsotg)1304 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1305 {
1306 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1307 }
1308 
1309 /*
1310  * The following functions support initialization of the core driver component
1311  * and the DWC_otg controller
1312  */
1313 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1314 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1315 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1316 				 bool restore);
1317 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1318 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1319 		int reset, int is_host);
1320 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1321 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1322 
1323 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1324 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1325 
1326 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1327 
1328 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1329 
1330 /*
1331  * Common core Functions.
1332  * The following functions support managing the DWC_otg controller in either
1333  * device or host mode.
1334  */
1335 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1336 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1337 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1338 
1339 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1340 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1341 
1342 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1343 			     int is_host);
1344 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1345 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1346 
1347 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1348 
1349 /* This function should be called on every hardware interrupt. */
1350 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1351 
1352 /* The device ID match table */
1353 extern const struct of_device_id dwc2_of_match_table[];
1354 extern const struct acpi_device_id dwc2_acpi_match[];
1355 
1356 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1357 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1358 
1359 /* Common polling functions */
1360 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1361 			    u32 timeout);
1362 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1363 			      u32 timeout);
1364 /* Parameters */
1365 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1366 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1367 
1368 /*
1369  * The following functions check the controller's OTG operation mode
1370  * capability (GHWCFG2.OTG_MODE).
1371  *
1372  * These functions can be used before the internal hsotg->hw_params
1373  * are read in and cached so they always read directly from the
1374  * GHWCFG2 register.
1375  */
1376 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1377 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1378 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1379 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1380 
1381 /*
1382  * Returns the mode of operation, host or device
1383  */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)1384 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1385 {
1386 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1387 }
1388 
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)1389 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1390 {
1391 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1392 }
1393 
1394 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1395 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1396 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1397 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1398 
1399 /*
1400  * Dump core registers and SPRAM
1401  */
1402 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1403 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1404 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1405 
1406 /* Gadget defines */
1407 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1408 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1409 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1410 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1411 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1412 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1413 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1414 				       bool reset);
1415 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1416 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1417 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1418 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1419 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1420 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1421 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1422 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1423 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1424 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1425 				 int rem_wakeup, int reset);
1426 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1427 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1428 					bool restore);
1429 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1430 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1431 				   int rem_wakeup);
1432 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1433 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1434 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1435 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1436 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
dwc2_clear_fifo_map(struct dwc2_hsotg * hsotg)1437 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1438 { hsotg->fifo_map = 0; }
1439 #else
dwc2_hsotg_remove(struct dwc2_hsotg * dwc2)1440 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1441 { return 0; }
dwc2_hsotg_suspend(struct dwc2_hsotg * dwc2)1442 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1443 { return 0; }
dwc2_hsotg_resume(struct dwc2_hsotg * dwc2)1444 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1445 { return 0; }
dwc2_gadget_init(struct dwc2_hsotg * hsotg)1446 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1447 { return 0; }
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * dwc2,bool reset)1448 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1449 						     bool reset) {}
dwc2_hsotg_core_disconnect(struct dwc2_hsotg * hsotg)1450 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)1451 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_disconnect(struct dwc2_hsotg * dwc2)1452 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1453 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1454 					   int testmode)
1455 { return 0; }
1456 #define dwc2_is_device_connected(hsotg) (0)
1457 #define dwc2_is_device_enabled(hsotg) (0)
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)1458 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1459 { return 0; }
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)1460 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1461 						int remote_wakeup)
1462 { return 0; }
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)1463 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1464 { return 0; }
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1465 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1466 					       int rem_wakeup, int reset)
1467 { return 0; }
dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg * hsotg)1468 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1469 { return 0; }
dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg * hsotg,bool restore)1470 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1471 						      bool restore)
1472 { return 0; }
dwc2_gadget_enter_clock_gating(struct dwc2_hsotg * hsotg)1473 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
dwc2_gadget_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)1474 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1475 						 int rem_wakeup) {}
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)1476 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1477 { return 0; }
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)1478 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1479 { return 0; }
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)1480 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1481 { return 0; }
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)1482 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
dwc2_gadget_program_ref_clk(struct dwc2_hsotg * hsotg)1483 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
dwc2_clear_fifo_map(struct dwc2_hsotg * hsotg)1484 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1485 #endif
1486 
1487 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1488 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1489 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1490 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1491 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1492 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1493 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1494 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1495 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1496 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1497 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1498 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1499 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1500 			       int rem_wakeup, int reset);
1501 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1502 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1503 				      int rem_wakeup, bool restore);
1504 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1505 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1506 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1507 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1508 { schedule_work(&hsotg->phy_reset_work); }
1509 #else
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)1510 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1511 { return 0; }
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)1512 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1513 						   int us)
1514 { return 0; }
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1515 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1516 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1517 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)1518 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)1519 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1520 { return 0; }
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)1521 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1522 { return 0; }
dwc2_port_resume(struct dwc2_hsotg * hsotg)1523 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1524 { return 0; }
dwc2_hcd_init(struct dwc2_hsotg * hsotg)1525 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1526 { return 0; }
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)1527 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1528 { return 0; }
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)1529 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1530 { return 0; }
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)1531 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1532 { return 0; }
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1533 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1534 					     int rem_wakeup, int reset)
1535 { return 0; }
dwc2_host_enter_partial_power_down(struct dwc2_hsotg * hsotg)1536 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1537 { return 0; }
dwc2_host_exit_partial_power_down(struct dwc2_hsotg * hsotg,int rem_wakeup,bool restore)1538 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1539 						    int rem_wakeup, bool restore)
1540 { return 0; }
dwc2_host_enter_clock_gating(struct dwc2_hsotg * hsotg)1541 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
dwc2_host_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)1542 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1543 					       int rem_wakeup) {}
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)1544 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1545 { return false; }
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1546 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1547 
1548 #endif
1549 
1550 #endif /* __DWC2_CORE_H__ */
1551