• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24 
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28 
29 enum {
30 	PG_DIRECT_MAP_4K = 0,
31 	PG_DIRECT_MAP_1M,
32 	PG_DIRECT_MAP_2G,
33 	PG_DIRECT_MAP_MAX
34 };
35 
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37 
update_page_count(int level,long count)38 static inline void update_page_count(int level, long count)
39 {
40 	if (IS_ENABLED(CONFIG_PROC_FS))
41 		atomic_long_add(count, &direct_pages_count[level]);
42 }
43 
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46 
47 /*
48  * The S390 doesn't have any external MMU info: the kernel page
49  * tables contain all the necessary information.
50  */
51 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95 
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR	MODULES_VADDR
99 #define MODULES_END	MODULES_END
100 #define MODULES_LEN	(1UL << 31)
101 
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 	if (addr < (void *)MODULES_VADDR)
106 		return 0;
107 	if (addr > (void *)MODULES_END)
108 		return 0;
109 	return 1;
110 }
111 
112 /*
113  * A 64 bit pagetable entry of S390 has following format:
114  * |			 PFRA			      |0IPC|  OS  |
115  * 0000000000111111111122222222223333333333444444444455555555556666
116  * 0123456789012345678901234567890123456789012345678901234567890123
117  *
118  * I Page-Invalid Bit:    Page is not available for address-translation
119  * P Page-Protection Bit: Store access not possible for page
120  * C Change-bit override: HW is not required to set change bit
121  *
122  * A 64 bit segmenttable entry of S390 has following format:
123  * |        P-table origin                              |      TT
124  * 0000000000111111111122222222223333333333444444444455555555556666
125  * 0123456789012345678901234567890123456789012345678901234567890123
126  *
127  * I Segment-Invalid Bit:    Segment is not available for address-translation
128  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
129  * P Page-Protection Bit: Store access not possible for page
130  * TT Type 00
131  *
132  * A 64 bit region table entry of S390 has following format:
133  * |        S-table origin                             |   TF  TTTL
134  * 0000000000111111111122222222223333333333444444444455555555556666
135  * 0123456789012345678901234567890123456789012345678901234567890123
136  *
137  * I Segment-Invalid Bit:    Segment is not available for address-translation
138  * TT Type 01
139  * TF
140  * TL Table length
141  *
142  * The 64 bit regiontable origin of S390 has following format:
143  * |      region table origon                          |       DTTL
144  * 0000000000111111111122222222223333333333444444444455555555556666
145  * 0123456789012345678901234567890123456789012345678901234567890123
146  *
147  * X Space-Switch event:
148  * G Segment-Invalid Bit:
149  * P Private-Space Bit:
150  * S Storage-Alteration:
151  * R Real space
152  * TL Table-Length:
153  *
154  * A storage key has the following format:
155  * | ACC |F|R|C|0|
156  *  0   3 4 5 6 7
157  * ACC: access key
158  * F  : fetch protection bit
159  * R  : referenced bit
160  * C  : changed bit
161  */
162 
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
165 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
166 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
167 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
168 
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
171 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
172 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
173 #define _PAGE_READ	0x010		/* SW pte read bit */
174 #define _PAGE_WRITE	0x020		/* SW pte write bit */
175 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
176 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
177 
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183 
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187 
188 /*
189  * handle_pte_fault uses pte_present and pte_none to find out the pte type
190  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191  * distinguish present from not-present ptes. It is changed only with the page
192  * table lock held.
193  *
194  * The following table gives the different possible bit combinations for
195  * the pte hardware and software bits in the last 12 bits of a pte
196  * (. unassigned bit, x don't care, t swap type):
197  *
198  *				842100000000
199  *				000084210000
200  *				000000008421
201  *				.IR.uswrdy.p
202  * empty			.10.00000000
203  * swap				.11..ttttt.0
204  * prot-none, clean, old	.11.xx0000.1
205  * prot-none, clean, young	.11.xx0001.1
206  * prot-none, dirty, old	.11.xx0010.1
207  * prot-none, dirty, young	.11.xx0011.1
208  * read-only, clean, old	.11.xx0100.1
209  * read-only, clean, young	.01.xx0101.1
210  * read-only, dirty, old	.11.xx0110.1
211  * read-only, dirty, young	.01.xx0111.1
212  * read-write, clean, old	.11.xx1100.1
213  * read-write, clean, young	.01.xx1101.1
214  * read-write, dirty, old	.10.xx1110.1
215  * read-write, dirty, young	.00.xx1111.1
216  * HW-bits: R read-only, I invalid
217  * SW-bits: p present, y young, d dirty, r read, w write, s special,
218  *	    u unused, l large
219  *
220  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
221  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223  */
224 
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
227 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
228 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
230 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
231 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
232 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
233 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
234 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
235 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
236 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
237 
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
240 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
241 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
242 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
243 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
244 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
245 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
246 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
247 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
248 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
249 
250 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256 
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
258 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
260 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
261 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
262 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
263 
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266 #else
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268 #endif
269 
270 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
271 
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
277 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
278 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
279 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
280 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
282 
283 #define _SEGMENT_ENTRY		(0)
284 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
285 
286 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
291 
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297 
298 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
299 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
300 
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303 
304 #define _REGION1_SHIFT	53
305 #define _REGION2_SHIFT	42
306 #define _REGION3_SHIFT	31
307 #define _SEGMENT_SHIFT	20
308 
309 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
314 
315 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
319 
320 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
324 
325 #define PMD_SHIFT	_SEGMENT_SHIFT
326 #define PUD_SHIFT	_REGION3_SHIFT
327 #define P4D_SHIFT	_REGION2_SHIFT
328 #define PGDIR_SHIFT	_REGION1_SHIFT
329 
330 #define PMD_SIZE	_SEGMENT_SIZE
331 #define PUD_SIZE	_REGION3_SIZE
332 #define P4D_SIZE	_REGION2_SIZE
333 #define PGDIR_SIZE	_REGION1_SIZE
334 
335 #define PMD_MASK	_SEGMENT_MASK
336 #define PUD_MASK	_REGION3_MASK
337 #define P4D_MASK	_REGION2_MASK
338 #define PGDIR_MASK	_REGION1_MASK
339 
340 #define PTRS_PER_PTE	_PAGE_ENTRIES
341 #define PTRS_PER_PMD	_CRST_ENTRIES
342 #define PTRS_PER_PUD	_CRST_ENTRIES
343 #define PTRS_PER_P4D	_CRST_ENTRIES
344 #define PTRS_PER_PGD	_CRST_ENTRIES
345 
346 /*
347  * Segment table and region3 table entry encoding
348  * (R = read-only, I = invalid, y = young bit):
349  *				dy..R...I...wr
350  * prot-none, clean, old	00..1...1...00
351  * prot-none, clean, young	01..1...1...00
352  * prot-none, dirty, old	10..1...1...00
353  * prot-none, dirty, young	11..1...1...00
354  * read-only, clean, old	00..1...1...01
355  * read-only, clean, young	01..1...0...01
356  * read-only, dirty, old	10..1...1...01
357  * read-only, dirty, young	11..1...0...01
358  * read-write, clean, old	00..1...1...11
359  * read-write, clean, young	01..1...0...11
360  * read-write, dirty, old	10..0...1...11
361  * read-write, dirty, young	11..0...0...11
362  * The segment table origin is used to distinguish empty (origin==0) from
363  * read-write, old segment table entries (origin!=0)
364  * HW-bits: R read-only, I invalid
365  * SW-bits: y young, d dirty, r read, w write
366  */
367 
368 /* Page status table bits for virtualization */
369 #define PGSTE_ACC_BITS	0xf000000000000000UL
370 #define PGSTE_FP_BIT	0x0800000000000000UL
371 #define PGSTE_PCL_BIT	0x0080000000000000UL
372 #define PGSTE_HR_BIT	0x0040000000000000UL
373 #define PGSTE_HC_BIT	0x0020000000000000UL
374 #define PGSTE_GR_BIT	0x0004000000000000UL
375 #define PGSTE_GC_BIT	0x0002000000000000UL
376 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
377 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
378 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
379 
380 /* Guest Page State used for virtualization */
381 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
382 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
383 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
384 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
385 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
386 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
387 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
388 
389 /*
390  * A user page table pointer has the space-switch-event bit, the
391  * private-space-control bit and the storage-alteration-event-control
392  * bit set. A kernel page table pointer doesn't need them.
393  */
394 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 				 _ASCE_ALT_EVENT)
396 
397 /*
398  * Page protection definitions.
399  */
400 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 				 _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 				 _PAGE_INVALID | _PAGE_PROTECT)
409 
410 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 				 _PAGE_PROTECT | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 				  _PAGE_YOUNG |	_PAGE_DIRTY)
418 
419 /*
420  * On s390 the page table entry has an invalid bit and a read-only bit.
421  * Read permission implies execute permission and write permission
422  * implies read permission.
423  */
424          /*xwr*/
425 #define __P000	PAGE_NONE
426 #define __P001	PAGE_RO
427 #define __P010	PAGE_RO
428 #define __P011	PAGE_RO
429 #define __P100	PAGE_RX
430 #define __P101	PAGE_RX
431 #define __P110	PAGE_RX
432 #define __P111	PAGE_RX
433 
434 #define __S000	PAGE_NONE
435 #define __S001	PAGE_RO
436 #define __S010	PAGE_RW
437 #define __S011	PAGE_RW
438 #define __S100	PAGE_RX
439 #define __S101	PAGE_RX
440 #define __S110	PAGE_RWX
441 #define __S111	PAGE_RWX
442 
443 /*
444  * Segment entry (large page) protection definitions.
445  */
446 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
447 				 _SEGMENT_ENTRY_PROTECT)
448 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
449 				 _SEGMENT_ENTRY_READ | \
450 				 _SEGMENT_ENTRY_NOEXEC)
451 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
452 				 _SEGMENT_ENTRY_READ)
453 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
454 				 _SEGMENT_ENTRY_WRITE | \
455 				 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
457 				 _SEGMENT_ENTRY_WRITE)
458 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
459 				 _SEGMENT_ENTRY_LARGE |	\
460 				 _SEGMENT_ENTRY_READ |	\
461 				 _SEGMENT_ENTRY_WRITE | \
462 				 _SEGMENT_ENTRY_YOUNG | \
463 				 _SEGMENT_ENTRY_DIRTY | \
464 				 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
466 				 _SEGMENT_ENTRY_LARGE |	\
467 				 _SEGMENT_ENTRY_READ |	\
468 				 _SEGMENT_ENTRY_YOUNG |	\
469 				 _SEGMENT_ENTRY_PROTECT | \
470 				 _SEGMENT_ENTRY_NOEXEC)
471 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
472 				 _SEGMENT_ENTRY_LARGE |	\
473 				 _SEGMENT_ENTRY_READ |	\
474 				 _SEGMENT_ENTRY_WRITE | \
475 				 _SEGMENT_ENTRY_YOUNG |	\
476 				 _SEGMENT_ENTRY_DIRTY)
477 
478 /*
479  * Region3 entry (large page) protection definitions.
480  */
481 
482 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
483 				 _REGION3_ENTRY_LARGE |	 \
484 				 _REGION3_ENTRY_READ |	 \
485 				 _REGION3_ENTRY_WRITE |	 \
486 				 _REGION3_ENTRY_YOUNG |	 \
487 				 _REGION3_ENTRY_DIRTY | \
488 				 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 				   _REGION3_ENTRY_LARGE |  \
491 				   _REGION3_ENTRY_READ |   \
492 				   _REGION3_ENTRY_YOUNG |  \
493 				   _REGION_ENTRY_PROTECT | \
494 				   _REGION_ENTRY_NOEXEC)
495 
mm_p4d_folded(struct mm_struct * mm)496 static inline bool mm_p4d_folded(struct mm_struct *mm)
497 {
498 	return mm->context.asce_limit <= _REGION1_SIZE;
499 }
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
501 
mm_pud_folded(struct mm_struct * mm)502 static inline bool mm_pud_folded(struct mm_struct *mm)
503 {
504 	return mm->context.asce_limit <= _REGION2_SIZE;
505 }
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
507 
mm_pmd_folded(struct mm_struct * mm)508 static inline bool mm_pmd_folded(struct mm_struct *mm)
509 {
510 	return mm->context.asce_limit <= _REGION3_SIZE;
511 }
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
513 
mm_has_pgste(struct mm_struct * mm)514 static inline int mm_has_pgste(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_PGSTE
517 	if (unlikely(mm->context.has_pgste))
518 		return 1;
519 #endif
520 	return 0;
521 }
522 
mm_is_protected(struct mm_struct * mm)523 static inline int mm_is_protected(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_PGSTE
526 	if (unlikely(atomic_read(&mm->context.is_protected)))
527 		return 1;
528 #endif
529 	return 0;
530 }
531 
mm_alloc_pgste(struct mm_struct * mm)532 static inline int mm_alloc_pgste(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_PGSTE
535 	if (unlikely(mm->context.alloc_pgste))
536 		return 1;
537 #endif
538 	return 0;
539 }
540 
541 /*
542  * In the case that a guest uses storage keys
543  * faults should no longer be backed by zero pages
544  */
545 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)546 static inline int mm_uses_skeys(struct mm_struct *mm)
547 {
548 #ifdef CONFIG_PGSTE
549 	if (mm->context.uses_skeys)
550 		return 1;
551 #endif
552 	return 0;
553 }
554 
csp(unsigned int * ptr,unsigned int old,unsigned int new)555 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
556 {
557 	union register_pair r1 = { .even = old, .odd = new, };
558 	unsigned long address = (unsigned long)ptr | 1;
559 
560 	asm volatile(
561 		"	csp	%[r1],%[address]"
562 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
563 		: [address] "d" (address)
564 		: "cc");
565 }
566 
cspg(unsigned long * ptr,unsigned long old,unsigned long new)567 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
568 {
569 	union register_pair r1 = { .even = old, .odd = new, };
570 	unsigned long address = (unsigned long)ptr | 1;
571 
572 	asm volatile(
573 		"	.insn	rre,0xb98a0000,%[r1],%[address]"
574 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
575 		: [address] "d" (address)
576 		: "cc");
577 }
578 
579 #define CRDTE_DTT_PAGE		0x00UL
580 #define CRDTE_DTT_SEGMENT	0x10UL
581 #define CRDTE_DTT_REGION3	0x14UL
582 #define CRDTE_DTT_REGION2	0x18UL
583 #define CRDTE_DTT_REGION1	0x1cUL
584 
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)585 static inline void crdte(unsigned long old, unsigned long new,
586 			 unsigned long table, unsigned long dtt,
587 			 unsigned long address, unsigned long asce)
588 {
589 	union register_pair r1 = { .even = old, .odd = new, };
590 	union register_pair r2 = { .even = table | dtt, .odd = address, };
591 
592 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
593 		     : [r1] "+&d" (r1.pair)
594 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
595 		     : "memory", "cc");
596 }
597 
598 /*
599  * pgd/p4d/pud/pmd/pte query functions
600  */
pgd_folded(pgd_t pgd)601 static inline int pgd_folded(pgd_t pgd)
602 {
603 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
604 }
605 
pgd_present(pgd_t pgd)606 static inline int pgd_present(pgd_t pgd)
607 {
608 	if (pgd_folded(pgd))
609 		return 1;
610 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
611 }
612 
pgd_none(pgd_t pgd)613 static inline int pgd_none(pgd_t pgd)
614 {
615 	if (pgd_folded(pgd))
616 		return 0;
617 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
618 }
619 
pgd_bad(pgd_t pgd)620 static inline int pgd_bad(pgd_t pgd)
621 {
622 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
623 		return 0;
624 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
625 }
626 
pgd_pfn(pgd_t pgd)627 static inline unsigned long pgd_pfn(pgd_t pgd)
628 {
629 	unsigned long origin_mask;
630 
631 	origin_mask = _REGION_ENTRY_ORIGIN;
632 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
633 }
634 
p4d_folded(p4d_t p4d)635 static inline int p4d_folded(p4d_t p4d)
636 {
637 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
638 }
639 
p4d_present(p4d_t p4d)640 static inline int p4d_present(p4d_t p4d)
641 {
642 	if (p4d_folded(p4d))
643 		return 1;
644 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
645 }
646 
p4d_none(p4d_t p4d)647 static inline int p4d_none(p4d_t p4d)
648 {
649 	if (p4d_folded(p4d))
650 		return 0;
651 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
652 }
653 
p4d_pfn(p4d_t p4d)654 static inline unsigned long p4d_pfn(p4d_t p4d)
655 {
656 	unsigned long origin_mask;
657 
658 	origin_mask = _REGION_ENTRY_ORIGIN;
659 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
660 }
661 
pud_folded(pud_t pud)662 static inline int pud_folded(pud_t pud)
663 {
664 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
665 }
666 
pud_present(pud_t pud)667 static inline int pud_present(pud_t pud)
668 {
669 	if (pud_folded(pud))
670 		return 1;
671 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
672 }
673 
pud_none(pud_t pud)674 static inline int pud_none(pud_t pud)
675 {
676 	if (pud_folded(pud))
677 		return 0;
678 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
679 }
680 
681 #define pud_leaf	pud_large
pud_large(pud_t pud)682 static inline int pud_large(pud_t pud)
683 {
684 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
685 		return 0;
686 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
687 }
688 
689 #define pmd_leaf	pmd_large
pmd_large(pmd_t pmd)690 static inline int pmd_large(pmd_t pmd)
691 {
692 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
693 }
694 
pmd_bad(pmd_t pmd)695 static inline int pmd_bad(pmd_t pmd)
696 {
697 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
698 		return 1;
699 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
700 }
701 
pud_bad(pud_t pud)702 static inline int pud_bad(pud_t pud)
703 {
704 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
705 
706 	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
707 		return 1;
708 	if (type < _REGION_ENTRY_TYPE_R3)
709 		return 0;
710 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
711 }
712 
p4d_bad(p4d_t p4d)713 static inline int p4d_bad(p4d_t p4d)
714 {
715 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
716 
717 	if (type > _REGION_ENTRY_TYPE_R2)
718 		return 1;
719 	if (type < _REGION_ENTRY_TYPE_R2)
720 		return 0;
721 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
722 }
723 
pmd_present(pmd_t pmd)724 static inline int pmd_present(pmd_t pmd)
725 {
726 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
727 }
728 
pmd_none(pmd_t pmd)729 static inline int pmd_none(pmd_t pmd)
730 {
731 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
732 }
733 
734 #define pmd_write pmd_write
pmd_write(pmd_t pmd)735 static inline int pmd_write(pmd_t pmd)
736 {
737 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
738 }
739 
740 #define pud_write pud_write
pud_write(pud_t pud)741 static inline int pud_write(pud_t pud)
742 {
743 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
744 }
745 
pmd_dirty(pmd_t pmd)746 static inline int pmd_dirty(pmd_t pmd)
747 {
748 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
749 }
750 
751 #define pmd_young pmd_young
pmd_young(pmd_t pmd)752 static inline int pmd_young(pmd_t pmd)
753 {
754 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
755 }
756 
pte_present(pte_t pte)757 static inline int pte_present(pte_t pte)
758 {
759 	/* Bit pattern: (pte & 0x001) == 0x001 */
760 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
761 }
762 
pte_none(pte_t pte)763 static inline int pte_none(pte_t pte)
764 {
765 	/* Bit pattern: pte == 0x400 */
766 	return pte_val(pte) == _PAGE_INVALID;
767 }
768 
pte_swap(pte_t pte)769 static inline int pte_swap(pte_t pte)
770 {
771 	/* Bit pattern: (pte & 0x201) == 0x200 */
772 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
773 		== _PAGE_PROTECT;
774 }
775 
pte_special(pte_t pte)776 static inline int pte_special(pte_t pte)
777 {
778 	return (pte_val(pte) & _PAGE_SPECIAL);
779 }
780 
781 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)782 static inline int pte_same(pte_t a, pte_t b)
783 {
784 	return pte_val(a) == pte_val(b);
785 }
786 
787 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)788 static inline int pte_protnone(pte_t pte)
789 {
790 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
791 }
792 
pmd_protnone(pmd_t pmd)793 static inline int pmd_protnone(pmd_t pmd)
794 {
795 	/* pmd_large(pmd) implies pmd_present(pmd) */
796 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
797 }
798 #endif
799 
pte_soft_dirty(pte_t pte)800 static inline int pte_soft_dirty(pte_t pte)
801 {
802 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
803 }
804 #define pte_swp_soft_dirty pte_soft_dirty
805 
pte_mksoft_dirty(pte_t pte)806 static inline pte_t pte_mksoft_dirty(pte_t pte)
807 {
808 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
809 	return pte;
810 }
811 #define pte_swp_mksoft_dirty pte_mksoft_dirty
812 
pte_clear_soft_dirty(pte_t pte)813 static inline pte_t pte_clear_soft_dirty(pte_t pte)
814 {
815 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
816 	return pte;
817 }
818 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
819 
pmd_soft_dirty(pmd_t pmd)820 static inline int pmd_soft_dirty(pmd_t pmd)
821 {
822 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
823 }
824 
pmd_mksoft_dirty(pmd_t pmd)825 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
826 {
827 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
828 	return pmd;
829 }
830 
pmd_clear_soft_dirty(pmd_t pmd)831 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
832 {
833 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
834 	return pmd;
835 }
836 
837 /*
838  * query functions pte_write/pte_dirty/pte_young only work if
839  * pte_present() is true. Undefined behaviour if not..
840  */
pte_write(pte_t pte)841 static inline int pte_write(pte_t pte)
842 {
843 	return (pte_val(pte) & _PAGE_WRITE) != 0;
844 }
845 
pte_dirty(pte_t pte)846 static inline int pte_dirty(pte_t pte)
847 {
848 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
849 }
850 
pte_young(pte_t pte)851 static inline int pte_young(pte_t pte)
852 {
853 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
854 }
855 
856 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)857 static inline int pte_unused(pte_t pte)
858 {
859 	return pte_val(pte) & _PAGE_UNUSED;
860 }
861 
862 /*
863  * Extract the pgprot value from the given pte while at the same time making it
864  * usable for kernel address space mappings where fault driven dirty and
865  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
866  * must not be set.
867  */
pte_pgprot(pte_t pte)868 static inline pgprot_t pte_pgprot(pte_t pte)
869 {
870 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
871 
872 	if (pte_write(pte))
873 		pte_flags |= pgprot_val(PAGE_KERNEL);
874 	else
875 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
876 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
877 
878 	return __pgprot(pte_flags);
879 }
880 
881 /*
882  * pgd/pmd/pte modification functions
883  */
884 
pgd_clear(pgd_t * pgd)885 static inline void pgd_clear(pgd_t *pgd)
886 {
887 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
888 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
889 }
890 
p4d_clear(p4d_t * p4d)891 static inline void p4d_clear(p4d_t *p4d)
892 {
893 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
894 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
895 }
896 
pud_clear(pud_t * pud)897 static inline void pud_clear(pud_t *pud)
898 {
899 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
900 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
901 }
902 
pmd_clear(pmd_t * pmdp)903 static inline void pmd_clear(pmd_t *pmdp)
904 {
905 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
906 }
907 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)908 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
909 {
910 	pte_val(*ptep) = _PAGE_INVALID;
911 }
912 
913 /*
914  * The following pte modification functions only work if
915  * pte_present() is true. Undefined behaviour if not..
916  */
pte_modify(pte_t pte,pgprot_t newprot)917 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
918 {
919 	pte_val(pte) &= _PAGE_CHG_MASK;
920 	pte_val(pte) |= pgprot_val(newprot);
921 	/*
922 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
923 	 * has the invalid bit set, clear it again for readable, young pages
924 	 */
925 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
926 		pte_val(pte) &= ~_PAGE_INVALID;
927 	/*
928 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
929 	 * protection bit set, clear it again for writable, dirty pages
930 	 */
931 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
932 		pte_val(pte) &= ~_PAGE_PROTECT;
933 	return pte;
934 }
935 
pte_wrprotect(pte_t pte)936 static inline pte_t pte_wrprotect(pte_t pte)
937 {
938 	pte_val(pte) &= ~_PAGE_WRITE;
939 	pte_val(pte) |= _PAGE_PROTECT;
940 	return pte;
941 }
942 
pte_mkwrite(pte_t pte)943 static inline pte_t pte_mkwrite(pte_t pte)
944 {
945 	pte_val(pte) |= _PAGE_WRITE;
946 	if (pte_val(pte) & _PAGE_DIRTY)
947 		pte_val(pte) &= ~_PAGE_PROTECT;
948 	return pte;
949 }
950 
pte_mkclean(pte_t pte)951 static inline pte_t pte_mkclean(pte_t pte)
952 {
953 	pte_val(pte) &= ~_PAGE_DIRTY;
954 	pte_val(pte) |= _PAGE_PROTECT;
955 	return pte;
956 }
957 
pte_mkdirty(pte_t pte)958 static inline pte_t pte_mkdirty(pte_t pte)
959 {
960 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
961 	if (pte_val(pte) & _PAGE_WRITE)
962 		pte_val(pte) &= ~_PAGE_PROTECT;
963 	return pte;
964 }
965 
pte_mkold(pte_t pte)966 static inline pte_t pte_mkold(pte_t pte)
967 {
968 	pte_val(pte) &= ~_PAGE_YOUNG;
969 	pte_val(pte) |= _PAGE_INVALID;
970 	return pte;
971 }
972 
pte_mkyoung(pte_t pte)973 static inline pte_t pte_mkyoung(pte_t pte)
974 {
975 	pte_val(pte) |= _PAGE_YOUNG;
976 	if (pte_val(pte) & _PAGE_READ)
977 		pte_val(pte) &= ~_PAGE_INVALID;
978 	return pte;
979 }
980 
pte_mkspecial(pte_t pte)981 static inline pte_t pte_mkspecial(pte_t pte)
982 {
983 	pte_val(pte) |= _PAGE_SPECIAL;
984 	return pte;
985 }
986 
987 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)988 static inline pte_t pte_mkhuge(pte_t pte)
989 {
990 	pte_val(pte) |= _PAGE_LARGE;
991 	return pte;
992 }
993 #endif
994 
995 #define IPTE_GLOBAL	0
996 #define	IPTE_LOCAL	1
997 
998 #define IPTE_NODAT	0x400
999 #define IPTE_GUEST_ASCE	0x800
1000 
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1001 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1002 					unsigned long opt, unsigned long asce,
1003 					int local)
1004 {
1005 	unsigned long pto = (unsigned long) ptep;
1006 
1007 	if (__builtin_constant_p(opt) && opt == 0) {
1008 		/* Invalidation + TLB flush for the pte */
1009 		asm volatile(
1010 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1011 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1012 			  [m4] "i" (local));
1013 		return;
1014 	}
1015 
1016 	/* Invalidate ptes with options + TLB flush of the ptes */
1017 	opt = opt | (asce & _ASCE_ORIGIN);
1018 	asm volatile(
1019 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1020 		: [r2] "+a" (address), [r3] "+a" (opt)
1021 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1022 }
1023 
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1024 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1025 					      pte_t *ptep, int local)
1026 {
1027 	unsigned long pto = (unsigned long) ptep;
1028 
1029 	/* Invalidate a range of ptes + TLB flush of the ptes */
1030 	do {
1031 		asm volatile(
1032 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1033 			: [r2] "+a" (address), [r3] "+a" (nr)
1034 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1035 	} while (nr != 255);
1036 }
1037 
1038 /*
1039  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1040  * both clear the TLB for the unmapped pte. The reason is that
1041  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1042  * to modify an active pte. The sequence is
1043  *   1) ptep_get_and_clear
1044  *   2) set_pte_at
1045  *   3) flush_tlb_range
1046  * On s390 the tlb needs to get flushed with the modification of the pte
1047  * if the pte is active. The only way how this can be implemented is to
1048  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1049  * is a nop.
1050  */
1051 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1053 
1054 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1055 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1056 					    unsigned long addr, pte_t *ptep)
1057 {
1058 	pte_t pte = *ptep;
1059 
1060 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1061 	return pte_young(pte);
1062 }
1063 
1064 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1065 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1066 					 unsigned long address, pte_t *ptep)
1067 {
1068 	return ptep_test_and_clear_young(vma, address, ptep);
1069 }
1070 
1071 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1072 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1073 				       unsigned long addr, pte_t *ptep)
1074 {
1075 	pte_t res;
1076 
1077 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1078 	if (mm_is_protected(mm) && pte_present(res))
1079 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1080 	return res;
1081 }
1082 
1083 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1084 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1085 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1086 			     pte_t *, pte_t, pte_t);
1087 
1088 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1089 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1090 				     unsigned long addr, pte_t *ptep)
1091 {
1092 	pte_t res;
1093 
1094 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1095 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1096 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1097 	return res;
1098 }
1099 
1100 /*
1101  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1102  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1103  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1104  * cannot be accessed while the batched unmap is running. In this case
1105  * full==1 and a simple pte_clear is enough. See tlb.h.
1106  */
1107 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1108 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1109 					    unsigned long addr,
1110 					    pte_t *ptep, int full)
1111 {
1112 	pte_t res;
1113 
1114 	if (full) {
1115 		res = *ptep;
1116 		*ptep = __pte(_PAGE_INVALID);
1117 	} else {
1118 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1119 	}
1120 	if (mm_is_protected(mm) && pte_present(res))
1121 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1122 	return res;
1123 }
1124 
1125 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1126 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1127 				      unsigned long addr, pte_t *ptep)
1128 {
1129 	pte_t pte = *ptep;
1130 
1131 	if (pte_write(pte))
1132 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1133 }
1134 
1135 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1136 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1137 					unsigned long addr, pte_t *ptep,
1138 					pte_t entry, int dirty)
1139 {
1140 	if (pte_same(*ptep, entry))
1141 		return 0;
1142 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1143 	return 1;
1144 }
1145 
1146 /*
1147  * Additional functions to handle KVM guest page tables
1148  */
1149 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1150 		     pte_t *ptep, pte_t entry);
1151 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1152 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1153 		 pte_t *ptep, unsigned long bits);
1154 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1155 		    pte_t *ptep, int prot, unsigned long bit);
1156 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1157 		     pte_t *ptep , int reset);
1158 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1159 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1160 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1161 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1162 
1163 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1164 			    pte_t *ptep);
1165 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1166 			  unsigned char key, bool nq);
1167 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1168 			       unsigned char key, unsigned char *oldkey,
1169 			       bool nq, bool mr, bool mc);
1170 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1171 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1172 			  unsigned char *key);
1173 
1174 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1175 				unsigned long bits, unsigned long value);
1176 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1177 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1178 			unsigned long *oldpte, unsigned long *oldpgste);
1179 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1180 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1181 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1182 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1183 
1184 #define pgprot_writecombine	pgprot_writecombine
1185 pgprot_t pgprot_writecombine(pgprot_t prot);
1186 
1187 #define pgprot_writethrough	pgprot_writethrough
1188 pgprot_t pgprot_writethrough(pgprot_t prot);
1189 
1190 /*
1191  * Certain architectures need to do special things when PTEs
1192  * within a page table are directly modified.  Thus, the following
1193  * hook is made available.
1194  */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1195 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1196 			      pte_t *ptep, pte_t entry)
1197 {
1198 	if (pte_present(entry))
1199 		pte_val(entry) &= ~_PAGE_UNUSED;
1200 	if (mm_has_pgste(mm))
1201 		ptep_set_pte_at(mm, addr, ptep, entry);
1202 	else
1203 		*ptep = entry;
1204 }
1205 
1206 /*
1207  * Conversion functions: convert a page and protection to a page entry,
1208  * and a page entry and page directory to the page they refer to.
1209  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1210 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1211 {
1212 	pte_t __pte;
1213 
1214 	pte_val(__pte) = physpage | pgprot_val(pgprot);
1215 	if (!MACHINE_HAS_NX)
1216 		pte_val(__pte) &= ~_PAGE_NOEXEC;
1217 	return pte_mkyoung(__pte);
1218 }
1219 
mk_pte(struct page * page,pgprot_t pgprot)1220 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1221 {
1222 	unsigned long physpage = page_to_phys(page);
1223 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1224 
1225 	if (pte_write(__pte) && PageDirty(page))
1226 		__pte = pte_mkdirty(__pte);
1227 	return __pte;
1228 }
1229 
1230 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1231 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1232 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1233 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1234 
1235 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1236 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1237 
pmd_deref(pmd_t pmd)1238 static inline unsigned long pmd_deref(pmd_t pmd)
1239 {
1240 	unsigned long origin_mask;
1241 
1242 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1243 	if (pmd_large(pmd))
1244 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1245 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1246 }
1247 
pmd_pfn(pmd_t pmd)1248 static inline unsigned long pmd_pfn(pmd_t pmd)
1249 {
1250 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1251 }
1252 
pud_deref(pud_t pud)1253 static inline unsigned long pud_deref(pud_t pud)
1254 {
1255 	unsigned long origin_mask;
1256 
1257 	origin_mask = _REGION_ENTRY_ORIGIN;
1258 	if (pud_large(pud))
1259 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1260 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1261 }
1262 
pud_pfn(pud_t pud)1263 static inline unsigned long pud_pfn(pud_t pud)
1264 {
1265 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1266 }
1267 
1268 /*
1269  * The pgd_offset function *always* adds the index for the top-level
1270  * region/segment table. This is done to get a sequence like the
1271  * following to work:
1272  *	pgdp = pgd_offset(current->mm, addr);
1273  *	pgd = READ_ONCE(*pgdp);
1274  *	p4dp = p4d_offset(&pgd, addr);
1275  *	...
1276  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1277  * only add an index if they dereferenced the pointer.
1278  */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1279 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1280 {
1281 	unsigned long rste;
1282 	unsigned int shift;
1283 
1284 	/* Get the first entry of the top level table */
1285 	rste = pgd_val(*pgd);
1286 	/* Pick up the shift from the table type of the first entry */
1287 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1288 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1289 }
1290 
1291 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1292 
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1293 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1294 {
1295 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1296 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1297 	return (p4d_t *) pgdp;
1298 }
1299 #define p4d_offset_lockless p4d_offset_lockless
1300 
p4d_offset(pgd_t * pgdp,unsigned long address)1301 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1302 {
1303 	return p4d_offset_lockless(pgdp, *pgdp, address);
1304 }
1305 
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1306 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1307 {
1308 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1309 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1310 	return (pud_t *) p4dp;
1311 }
1312 #define pud_offset_lockless pud_offset_lockless
1313 
pud_offset(p4d_t * p4dp,unsigned long address)1314 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1315 {
1316 	return pud_offset_lockless(p4dp, *p4dp, address);
1317 }
1318 #define pud_offset pud_offset
1319 
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1320 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1321 {
1322 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1323 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1324 	return (pmd_t *) pudp;
1325 }
1326 #define pmd_offset_lockless pmd_offset_lockless
1327 
pmd_offset(pud_t * pudp,unsigned long address)1328 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1329 {
1330 	return pmd_offset_lockless(pudp, *pudp, address);
1331 }
1332 #define pmd_offset pmd_offset
1333 
pmd_page_vaddr(pmd_t pmd)1334 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1335 {
1336 	return (unsigned long) pmd_deref(pmd);
1337 }
1338 
gup_fast_permitted(unsigned long start,unsigned long end)1339 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1340 {
1341 	return end <= current->mm->context.asce_limit;
1342 }
1343 #define gup_fast_permitted gup_fast_permitted
1344 
1345 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1346 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1347 #define pte_page(x) pfn_to_page(pte_pfn(x))
1348 
1349 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1350 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1351 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1352 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1353 
pmd_wrprotect(pmd_t pmd)1354 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1355 {
1356 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1357 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1358 	return pmd;
1359 }
1360 
pmd_mkwrite(pmd_t pmd)1361 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1362 {
1363 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1364 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1365 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1366 	return pmd;
1367 }
1368 
pmd_mkclean(pmd_t pmd)1369 static inline pmd_t pmd_mkclean(pmd_t pmd)
1370 {
1371 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1372 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1373 	return pmd;
1374 }
1375 
pmd_mkdirty(pmd_t pmd)1376 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1377 {
1378 	pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1379 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1380 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1381 	return pmd;
1382 }
1383 
pud_wrprotect(pud_t pud)1384 static inline pud_t pud_wrprotect(pud_t pud)
1385 {
1386 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1387 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1388 	return pud;
1389 }
1390 
pud_mkwrite(pud_t pud)1391 static inline pud_t pud_mkwrite(pud_t pud)
1392 {
1393 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1394 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1395 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1396 	return pud;
1397 }
1398 
pud_mkclean(pud_t pud)1399 static inline pud_t pud_mkclean(pud_t pud)
1400 {
1401 	pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1402 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1403 	return pud;
1404 }
1405 
pud_mkdirty(pud_t pud)1406 static inline pud_t pud_mkdirty(pud_t pud)
1407 {
1408 	pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1409 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1410 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1411 	return pud;
1412 }
1413 
1414 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1415 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1416 {
1417 	/*
1418 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1419 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1420 	 */
1421 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1422 		return pgprot_val(SEGMENT_NONE);
1423 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1424 		return pgprot_val(SEGMENT_RO);
1425 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1426 		return pgprot_val(SEGMENT_RX);
1427 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1428 		return pgprot_val(SEGMENT_RW);
1429 	return pgprot_val(SEGMENT_RWX);
1430 }
1431 
pmd_mkyoung(pmd_t pmd)1432 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1433 {
1434 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1435 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1436 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1437 	return pmd;
1438 }
1439 
pmd_mkold(pmd_t pmd)1440 static inline pmd_t pmd_mkold(pmd_t pmd)
1441 {
1442 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1443 	pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1444 	return pmd;
1445 }
1446 
pmd_modify(pmd_t pmd,pgprot_t newprot)1447 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1448 {
1449 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1450 		_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1451 		_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1452 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1453 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1454 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1455 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1456 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1457 	return pmd;
1458 }
1459 
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1460 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1461 {
1462 	pmd_t __pmd;
1463 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1464 	return __pmd;
1465 }
1466 
1467 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1468 
__pmdp_csp(pmd_t * pmdp)1469 static inline void __pmdp_csp(pmd_t *pmdp)
1470 {
1471 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1472 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1473 }
1474 
1475 #define IDTE_GLOBAL	0
1476 #define IDTE_LOCAL	1
1477 
1478 #define IDTE_PTOA	0x0800
1479 #define IDTE_NODAT	0x1000
1480 #define IDTE_GUEST_ASCE	0x2000
1481 
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1482 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1483 					unsigned long opt, unsigned long asce,
1484 					int local)
1485 {
1486 	unsigned long sto;
1487 
1488 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1489 	if (__builtin_constant_p(opt) && opt == 0) {
1490 		/* flush without guest asce */
1491 		asm volatile(
1492 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1493 			: "+m" (*pmdp)
1494 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1495 			  [m4] "i" (local)
1496 			: "cc" );
1497 	} else {
1498 		/* flush with guest asce */
1499 		asm volatile(
1500 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1501 			: "+m" (*pmdp)
1502 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1503 			  [r3] "a" (asce), [m4] "i" (local)
1504 			: "cc" );
1505 	}
1506 }
1507 
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1508 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1509 					unsigned long opt, unsigned long asce,
1510 					int local)
1511 {
1512 	unsigned long r3o;
1513 
1514 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1515 	r3o |= _ASCE_TYPE_REGION3;
1516 	if (__builtin_constant_p(opt) && opt == 0) {
1517 		/* flush without guest asce */
1518 		asm volatile(
1519 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1520 			: "+m" (*pudp)
1521 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1522 			  [m4] "i" (local)
1523 			: "cc");
1524 	} else {
1525 		/* flush with guest asce */
1526 		asm volatile(
1527 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1528 			: "+m" (*pudp)
1529 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1530 			  [r3] "a" (asce), [m4] "i" (local)
1531 			: "cc" );
1532 	}
1533 }
1534 
1535 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1536 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1537 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1538 
1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540 
1541 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1542 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1543 				pgtable_t pgtable);
1544 
1545 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1546 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1547 
1548 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1549 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1550 					unsigned long addr, pmd_t *pmdp,
1551 					pmd_t entry, int dirty)
1552 {
1553 	VM_BUG_ON(addr & ~HPAGE_MASK);
1554 
1555 	entry = pmd_mkyoung(entry);
1556 	if (dirty)
1557 		entry = pmd_mkdirty(entry);
1558 	if (pmd_val(*pmdp) == pmd_val(entry))
1559 		return 0;
1560 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1561 	return 1;
1562 }
1563 
1564 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1565 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1566 					    unsigned long addr, pmd_t *pmdp)
1567 {
1568 	pmd_t pmd = *pmdp;
1569 
1570 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1571 	return pmd_young(pmd);
1572 }
1573 
1574 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1575 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1576 					 unsigned long addr, pmd_t *pmdp)
1577 {
1578 	VM_BUG_ON(addr & ~HPAGE_MASK);
1579 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1580 }
1581 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1582 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1583 			      pmd_t *pmdp, pmd_t entry)
1584 {
1585 	if (!MACHINE_HAS_NX)
1586 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1587 	*pmdp = entry;
1588 }
1589 
pmd_mkhuge(pmd_t pmd)1590 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1591 {
1592 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1593 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1594 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1595 	return pmd;
1596 }
1597 
1598 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1599 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1600 					    unsigned long addr, pmd_t *pmdp)
1601 {
1602 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1603 }
1604 
1605 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1606 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1607 						 unsigned long addr,
1608 						 pmd_t *pmdp, int full)
1609 {
1610 	if (full) {
1611 		pmd_t pmd = *pmdp;
1612 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1613 		return pmd;
1614 	}
1615 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1616 }
1617 
1618 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1619 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1620 					  unsigned long addr, pmd_t *pmdp)
1621 {
1622 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1623 }
1624 
1625 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1626 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1627 				   unsigned long addr, pmd_t *pmdp)
1628 {
1629 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1630 
1631 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1632 }
1633 
1634 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1635 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1636 				      unsigned long addr, pmd_t *pmdp)
1637 {
1638 	pmd_t pmd = *pmdp;
1639 
1640 	if (pmd_write(pmd))
1641 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1642 }
1643 
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1644 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1645 					unsigned long address,
1646 					pmd_t *pmdp)
1647 {
1648 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1649 }
1650 #define pmdp_collapse_flush pmdp_collapse_flush
1651 
1652 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1653 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1654 
pmd_trans_huge(pmd_t pmd)1655 static inline int pmd_trans_huge(pmd_t pmd)
1656 {
1657 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1658 }
1659 
1660 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1661 static inline int has_transparent_hugepage(void)
1662 {
1663 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1664 }
1665 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1666 
1667 /*
1668  * 64 bit swap entry format:
1669  * A page-table entry has some bits we have to treat in a special way.
1670  * Bits 52 and bit 55 have to be zero, otherwise a specification
1671  * exception will occur instead of a page translation exception. The
1672  * specification exception has the bad habit not to store necessary
1673  * information in the lowcore.
1674  * Bits 54 and 63 are used to indicate the page type.
1675  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1676  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1677  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1678  * for the offset.
1679  * |			  offset			|01100|type |00|
1680  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1681  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1682  */
1683 
1684 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1685 #define __SWP_OFFSET_SHIFT	12
1686 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1687 #define __SWP_TYPE_SHIFT	2
1688 
mk_swap_pte(unsigned long type,unsigned long offset)1689 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1690 {
1691 	pte_t pte;
1692 
1693 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1694 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1695 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1696 	return pte;
1697 }
1698 
__swp_type(swp_entry_t entry)1699 static inline unsigned long __swp_type(swp_entry_t entry)
1700 {
1701 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1702 }
1703 
__swp_offset(swp_entry_t entry)1704 static inline unsigned long __swp_offset(swp_entry_t entry)
1705 {
1706 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1707 }
1708 
__swp_entry(unsigned long type,unsigned long offset)1709 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1710 {
1711 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1712 }
1713 
1714 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1715 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1716 
1717 #define kern_addr_valid(addr)   (1)
1718 
1719 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1720 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1721 extern int s390_enable_sie(void);
1722 extern int s390_enable_skey(void);
1723 extern void s390_reset_cmma(struct mm_struct *mm);
1724 
1725 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1726 #define HAVE_ARCH_UNMAPPED_AREA
1727 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1728 
1729 #define pmd_pgtable(pmd) \
1730 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1731 
1732 #endif /* _S390_PAGE_H */
1733