• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/file.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  Changes Copyright (C) 1994 by Florian La Roche
8  *   - Do not copy data too often around in the kernel.
9  *   - In nfs_file_read the return value of kmalloc wasn't checked.
10  *   - Put in a better version of read look-ahead buffering. Original idea
11  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
12  *
13  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
14  *
15  *  Total rewrite of read side for new NFS buffer cache.. Linus.
16  *
17  *  nfs regular file handling functions
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/stat.h>
26 #include <linux/nfs_fs.h>
27 #include <linux/nfs_mount.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <linux/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40 
41 #include "nfstrace.h"
42 
43 #define NFSDBG_FACILITY		NFSDBG_FILE
44 
45 static const struct vm_operations_struct nfs_file_vm_ops;
46 
47 /* Hack for future NFS swap support */
48 #ifndef IS_SWAPFILE
49 # define IS_SWAPFILE(inode)	(0)
50 #endif
51 
nfs_check_flags(int flags)52 int nfs_check_flags(int flags)
53 {
54 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55 		return -EINVAL;
56 
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(nfs_check_flags);
60 
61 /*
62  * Open file
63  */
64 static int
nfs_file_open(struct inode * inode,struct file * filp)65 nfs_file_open(struct inode *inode, struct file *filp)
66 {
67 	int res;
68 
69 	dprintk("NFS: open file(%pD2)\n", filp);
70 
71 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 	res = nfs_check_flags(filp->f_flags);
73 	if (res)
74 		return res;
75 
76 	res = nfs_open(inode, filp);
77 	return res;
78 }
79 
80 int
nfs_file_release(struct inode * inode,struct file * filp)81 nfs_file_release(struct inode *inode, struct file *filp)
82 {
83 	dprintk("NFS: release(%pD2)\n", filp);
84 
85 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 	nfs_file_clear_open_context(filp);
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(nfs_file_release);
90 
91 /**
92  * nfs_revalidate_file_size - Revalidate the file size
93  * @inode: pointer to inode struct
94  * @filp: pointer to struct file
95  *
96  * Revalidates the file length. This is basically a wrapper around
97  * nfs_revalidate_inode() that takes into account the fact that we may
98  * have cached writes (in which case we don't care about the server's
99  * idea of what the file length is), or O_DIRECT (in which case we
100  * shouldn't trust the cache).
101  */
nfs_revalidate_file_size(struct inode * inode,struct file * filp)102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103 {
104 	struct nfs_server *server = NFS_SERVER(inode);
105 
106 	if (filp->f_flags & O_DIRECT)
107 		goto force_reval;
108 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
109 		goto force_reval;
110 	return 0;
111 force_reval:
112 	return __nfs_revalidate_inode(server, inode);
113 }
114 
nfs_file_llseek(struct file * filp,loff_t offset,int whence)115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116 {
117 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118 			filp, offset, whence);
119 
120 	/*
121 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122 	 * the cached file length
123 	 */
124 	if (whence != SEEK_SET && whence != SEEK_CUR) {
125 		struct inode *inode = filp->f_mapping->host;
126 
127 		int retval = nfs_revalidate_file_size(inode, filp);
128 		if (retval < 0)
129 			return (loff_t)retval;
130 	}
131 
132 	return generic_file_llseek(filp, offset, whence);
133 }
134 EXPORT_SYMBOL_GPL(nfs_file_llseek);
135 
136 /*
137  * Flush all dirty pages, and check for write errors.
138  */
139 static int
nfs_file_flush(struct file * file,fl_owner_t id)140 nfs_file_flush(struct file *file, fl_owner_t id)
141 {
142 	struct inode	*inode = file_inode(file);
143 	errseq_t since;
144 
145 	dprintk("NFS: flush(%pD2)\n", file);
146 
147 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148 	if ((file->f_mode & FMODE_WRITE) == 0)
149 		return 0;
150 
151 	/* Flush writes to the server and return any errors */
152 	since = filemap_sample_wb_err(file->f_mapping);
153 	nfs_wb_all(inode);
154 	return filemap_check_wb_err(file->f_mapping, since);
155 }
156 
157 ssize_t
nfs_file_read(struct kiocb * iocb,struct iov_iter * to)158 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159 {
160 	struct inode *inode = file_inode(iocb->ki_filp);
161 	ssize_t result;
162 
163 	if (iocb->ki_flags & IOCB_DIRECT)
164 		return nfs_file_direct_read(iocb, to, false);
165 
166 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167 		iocb->ki_filp,
168 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169 
170 	nfs_start_io_read(inode);
171 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172 	if (!result) {
173 		result = generic_file_read_iter(iocb, to);
174 		if (result > 0)
175 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176 	}
177 	nfs_end_io_read(inode);
178 	return result;
179 }
180 EXPORT_SYMBOL_GPL(nfs_file_read);
181 
182 int
nfs_file_mmap(struct file * file,struct vm_area_struct * vma)183 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184 {
185 	struct inode *inode = file_inode(file);
186 	int	status;
187 
188 	dprintk("NFS: mmap(%pD2)\n", file);
189 
190 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
191 	 *       so we call that before revalidating the mapping
192 	 */
193 	status = generic_file_mmap(file, vma);
194 	if (!status) {
195 		vma->vm_ops = &nfs_file_vm_ops;
196 		status = nfs_revalidate_mapping(inode, file->f_mapping);
197 	}
198 	return status;
199 }
200 EXPORT_SYMBOL_GPL(nfs_file_mmap);
201 
202 /*
203  * Flush any dirty pages for this process, and check for write errors.
204  * The return status from this call provides a reliable indication of
205  * whether any write errors occurred for this process.
206  */
207 static int
nfs_file_fsync_commit(struct file * file,int datasync)208 nfs_file_fsync_commit(struct file *file, int datasync)
209 {
210 	struct inode *inode = file_inode(file);
211 	int ret, ret2;
212 
213 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214 
215 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
217 	ret2 = file_check_and_advance_wb_err(file);
218 	if (ret2 < 0)
219 		return ret2;
220 	return ret;
221 }
222 
223 int
nfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)224 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
225 {
226 	struct inode *inode = file_inode(file);
227 	struct nfs_inode *nfsi = NFS_I(inode);
228 	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
229 	long nredirtied;
230 	int ret;
231 
232 	trace_nfs_fsync_enter(inode);
233 
234 	for (;;) {
235 		ret = file_write_and_wait_range(file, start, end);
236 		if (ret != 0)
237 			break;
238 		ret = nfs_file_fsync_commit(file, datasync);
239 		if (ret != 0)
240 			break;
241 		ret = pnfs_sync_inode(inode, !!datasync);
242 		if (ret != 0)
243 			break;
244 		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
245 		if (nredirtied == save_nredirtied)
246 			break;
247 		save_nredirtied = nredirtied;
248 	}
249 
250 	trace_nfs_fsync_exit(inode, ret);
251 	return ret;
252 }
253 EXPORT_SYMBOL_GPL(nfs_file_fsync);
254 
255 /*
256  * Decide whether a read/modify/write cycle may be more efficient
257  * then a modify/write/read cycle when writing to a page in the
258  * page cache.
259  *
260  * Some pNFS layout drivers can only read/write at a certain block
261  * granularity like all block devices and therefore we must perform
262  * read/modify/write whenever a page hasn't read yet and the data
263  * to be written there is not aligned to a block boundary and/or
264  * smaller than the block size.
265  *
266  * The modify/write/read cycle may occur if a page is read before
267  * being completely filled by the writer.  In this situation, the
268  * page must be completely written to stable storage on the server
269  * before it can be refilled by reading in the page from the server.
270  * This can lead to expensive, small, FILE_SYNC mode writes being
271  * done.
272  *
273  * It may be more efficient to read the page first if the file is
274  * open for reading in addition to writing, the page is not marked
275  * as Uptodate, it is not dirty or waiting to be committed,
276  * indicating that it was previously allocated and then modified,
277  * that there were valid bytes of data in that range of the file,
278  * and that the new data won't completely replace the old data in
279  * that range of the file.
280  */
nfs_full_page_write(struct page * page,loff_t pos,unsigned int len)281 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
282 {
283 	unsigned int pglen = nfs_page_length(page);
284 	unsigned int offset = pos & (PAGE_SIZE - 1);
285 	unsigned int end = offset + len;
286 
287 	return !pglen || (end >= pglen && !offset);
288 }
289 
nfs_want_read_modify_write(struct file * file,struct page * page,loff_t pos,unsigned int len)290 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
291 			loff_t pos, unsigned int len)
292 {
293 	/*
294 	 * Up-to-date pages, those with ongoing or full-page write
295 	 * don't need read/modify/write
296 	 */
297 	if (PageUptodate(page) || PagePrivate(page) ||
298 	    nfs_full_page_write(page, pos, len))
299 		return false;
300 
301 	if (pnfs_ld_read_whole_page(file->f_mapping->host))
302 		return true;
303 	/* Open for reading too? */
304 	if (file->f_mode & FMODE_READ)
305 		return true;
306 	return false;
307 }
308 
309 /*
310  * This does the "real" work of the write. We must allocate and lock the
311  * page to be sent back to the generic routine, which then copies the
312  * data from user space.
313  *
314  * If the writer ends up delaying the write, the writer needs to
315  * increment the page use counts until he is done with the page.
316  */
nfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)317 static int nfs_write_begin(struct file *file, struct address_space *mapping,
318 			loff_t pos, unsigned len, unsigned flags,
319 			struct page **pagep, void **fsdata)
320 {
321 	int ret;
322 	pgoff_t index = pos >> PAGE_SHIFT;
323 	struct page *page;
324 	int once_thru = 0;
325 
326 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
327 		file, mapping->host->i_ino, len, (long long) pos);
328 
329 start:
330 	page = grab_cache_page_write_begin(mapping, index, flags);
331 	if (!page)
332 		return -ENOMEM;
333 	*pagep = page;
334 
335 	ret = nfs_flush_incompatible(file, page);
336 	if (ret) {
337 		unlock_page(page);
338 		put_page(page);
339 	} else if (!once_thru &&
340 		   nfs_want_read_modify_write(file, page, pos, len)) {
341 		once_thru = 1;
342 		ret = nfs_readpage(file, page);
343 		put_page(page);
344 		if (!ret)
345 			goto start;
346 	}
347 	return ret;
348 }
349 
nfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)350 static int nfs_write_end(struct file *file, struct address_space *mapping,
351 			loff_t pos, unsigned len, unsigned copied,
352 			struct page *page, void *fsdata)
353 {
354 	unsigned offset = pos & (PAGE_SIZE - 1);
355 	struct nfs_open_context *ctx = nfs_file_open_context(file);
356 	int status;
357 
358 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
359 		file, mapping->host->i_ino, len, (long long) pos);
360 
361 	/*
362 	 * Zero any uninitialised parts of the page, and then mark the page
363 	 * as up to date if it turns out that we're extending the file.
364 	 */
365 	if (!PageUptodate(page)) {
366 		unsigned pglen = nfs_page_length(page);
367 		unsigned end = offset + copied;
368 
369 		if (pglen == 0) {
370 			zero_user_segments(page, 0, offset,
371 					end, PAGE_SIZE);
372 			SetPageUptodate(page);
373 		} else if (end >= pglen) {
374 			zero_user_segment(page, end, PAGE_SIZE);
375 			if (offset == 0)
376 				SetPageUptodate(page);
377 		} else
378 			zero_user_segment(page, pglen, PAGE_SIZE);
379 	}
380 
381 	status = nfs_updatepage(file, page, offset, copied);
382 
383 	unlock_page(page);
384 	put_page(page);
385 
386 	if (status < 0)
387 		return status;
388 	NFS_I(mapping->host)->write_io += copied;
389 
390 	if (nfs_ctx_key_to_expire(ctx, mapping->host))
391 		nfs_wb_all(mapping->host);
392 
393 	return copied;
394 }
395 
396 /*
397  * Partially or wholly invalidate a page
398  * - Release the private state associated with a page if undergoing complete
399  *   page invalidation
400  * - Called if either PG_private or PG_fscache is set on the page
401  * - Caller holds page lock
402  */
nfs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)403 static void nfs_invalidate_page(struct page *page, unsigned int offset,
404 				unsigned int length)
405 {
406 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
407 		 page, offset, length);
408 
409 	if (offset != 0 || length < PAGE_SIZE)
410 		return;
411 	/* Cancel any unstarted writes on this page */
412 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
413 
414 	nfs_fscache_invalidate_page(page, page->mapping->host);
415 }
416 
417 /*
418  * Attempt to release the private state associated with a page
419  * - Called if either PG_private or PG_fscache is set on the page
420  * - Caller holds page lock
421  * - Return true (may release page) or false (may not)
422  */
nfs_release_page(struct page * page,gfp_t gfp)423 static int nfs_release_page(struct page *page, gfp_t gfp)
424 {
425 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
426 
427 	/* If PagePrivate() is set, then the page is not freeable */
428 	if (PagePrivate(page))
429 		return 0;
430 	return nfs_fscache_release_page(page, gfp);
431 }
432 
nfs_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)433 static void nfs_check_dirty_writeback(struct page *page,
434 				bool *dirty, bool *writeback)
435 {
436 	struct nfs_inode *nfsi;
437 	struct address_space *mapping = page_file_mapping(page);
438 
439 	if (!mapping || PageSwapCache(page))
440 		return;
441 
442 	/*
443 	 * Check if an unstable page is currently being committed and
444 	 * if so, have the VM treat it as if the page is under writeback
445 	 * so it will not block due to pages that will shortly be freeable.
446 	 */
447 	nfsi = NFS_I(mapping->host);
448 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
449 		*writeback = true;
450 		return;
451 	}
452 
453 	/*
454 	 * If PagePrivate() is set, then the page is not freeable and as the
455 	 * inode is not being committed, it's not going to be cleaned in the
456 	 * near future so treat it as dirty
457 	 */
458 	if (PagePrivate(page))
459 		*dirty = true;
460 }
461 
462 /*
463  * Attempt to clear the private state associated with a page when an error
464  * occurs that requires the cached contents of an inode to be written back or
465  * destroyed
466  * - Called if either PG_private or fscache is set on the page
467  * - Caller holds page lock
468  * - Return 0 if successful, -error otherwise
469  */
nfs_launder_page(struct page * page)470 static int nfs_launder_page(struct page *page)
471 {
472 	struct inode *inode = page_file_mapping(page)->host;
473 	struct nfs_inode *nfsi = NFS_I(inode);
474 
475 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
476 		inode->i_ino, (long long)page_offset(page));
477 
478 	nfs_fscache_wait_on_page_write(nfsi, page);
479 	return nfs_wb_page(inode, page);
480 }
481 
nfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)482 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
483 						sector_t *span)
484 {
485 	unsigned long blocks;
486 	long long isize;
487 	struct inode *inode = file_inode(file);
488 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
489 	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
490 
491 	spin_lock(&inode->i_lock);
492 	blocks = inode->i_blocks;
493 	isize = inode->i_size;
494 	spin_unlock(&inode->i_lock);
495 	if (blocks*512 < isize) {
496 		pr_warn("swap activate: swapfile has holes\n");
497 		return -EINVAL;
498 	}
499 
500 	*span = sis->pages;
501 
502 
503 	if (cl->rpc_ops->enable_swap)
504 		cl->rpc_ops->enable_swap(inode);
505 
506 	return rpc_clnt_swap_activate(clnt);
507 }
508 
nfs_swap_deactivate(struct file * file)509 static void nfs_swap_deactivate(struct file *file)
510 {
511 	struct inode *inode = file_inode(file);
512 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
513 	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
514 
515 	rpc_clnt_swap_deactivate(clnt);
516 	if (cl->rpc_ops->disable_swap)
517 		cl->rpc_ops->disable_swap(file_inode(file));
518 }
519 
520 const struct address_space_operations nfs_file_aops = {
521 	.readpage = nfs_readpage,
522 	.readpages = nfs_readpages,
523 	.set_page_dirty = __set_page_dirty_nobuffers,
524 	.writepage = nfs_writepage,
525 	.writepages = nfs_writepages,
526 	.write_begin = nfs_write_begin,
527 	.write_end = nfs_write_end,
528 	.invalidatepage = nfs_invalidate_page,
529 	.releasepage = nfs_release_page,
530 	.direct_IO = nfs_direct_IO,
531 #ifdef CONFIG_MIGRATION
532 	.migratepage = nfs_migrate_page,
533 #endif
534 	.launder_page = nfs_launder_page,
535 	.is_dirty_writeback = nfs_check_dirty_writeback,
536 	.error_remove_page = generic_error_remove_page,
537 	.swap_activate = nfs_swap_activate,
538 	.swap_deactivate = nfs_swap_deactivate,
539 };
540 
541 /*
542  * Notification that a PTE pointing to an NFS page is about to be made
543  * writable, implying that someone is about to modify the page through a
544  * shared-writable mapping
545  */
nfs_vm_page_mkwrite(struct vm_fault * vmf)546 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
547 {
548 	struct page *page = vmf->page;
549 	struct file *filp = vmf->vma->vm_file;
550 	struct inode *inode = file_inode(filp);
551 	unsigned pagelen;
552 	vm_fault_t ret = VM_FAULT_NOPAGE;
553 	struct address_space *mapping;
554 
555 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
556 		filp, filp->f_mapping->host->i_ino,
557 		(long long)page_offset(page));
558 
559 	sb_start_pagefault(inode->i_sb);
560 
561 	/* make sure the cache has finished storing the page */
562 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
563 
564 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
565 			nfs_wait_bit_killable, TASK_KILLABLE);
566 
567 	lock_page(page);
568 	mapping = page_file_mapping(page);
569 	if (mapping != inode->i_mapping)
570 		goto out_unlock;
571 
572 	wait_on_page_writeback(page);
573 
574 	pagelen = nfs_page_length(page);
575 	if (pagelen == 0)
576 		goto out_unlock;
577 
578 	ret = VM_FAULT_LOCKED;
579 	if (nfs_flush_incompatible(filp, page) == 0 &&
580 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
581 		goto out;
582 
583 	ret = VM_FAULT_SIGBUS;
584 out_unlock:
585 	unlock_page(page);
586 out:
587 	sb_end_pagefault(inode->i_sb);
588 	return ret;
589 }
590 
591 static const struct vm_operations_struct nfs_file_vm_ops = {
592 	.fault = filemap_fault,
593 	.map_pages = filemap_map_pages,
594 	.page_mkwrite = nfs_vm_page_mkwrite,
595 	.speculative = true,
596 };
597 
nfs_file_write(struct kiocb * iocb,struct iov_iter * from)598 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
599 {
600 	struct file *file = iocb->ki_filp;
601 	struct inode *inode = file_inode(file);
602 	unsigned int mntflags = NFS_SERVER(inode)->flags;
603 	ssize_t result, written;
604 	errseq_t since;
605 	int error;
606 
607 	result = nfs_key_timeout_notify(file, inode);
608 	if (result)
609 		return result;
610 
611 	if (iocb->ki_flags & IOCB_DIRECT)
612 		return nfs_file_direct_write(iocb, from, false);
613 
614 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
615 		file, iov_iter_count(from), (long long) iocb->ki_pos);
616 
617 	if (IS_SWAPFILE(inode))
618 		goto out_swapfile;
619 	/*
620 	 * O_APPEND implies that we must revalidate the file length.
621 	 */
622 	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
623 		result = nfs_revalidate_file_size(inode, file);
624 		if (result)
625 			return result;
626 	}
627 
628 	nfs_clear_invalid_mapping(file->f_mapping);
629 
630 	since = filemap_sample_wb_err(file->f_mapping);
631 	nfs_start_io_write(inode);
632 	result = generic_write_checks(iocb, from);
633 	if (result > 0) {
634 		current->backing_dev_info = inode_to_bdi(inode);
635 		result = generic_perform_write(file, from, iocb->ki_pos);
636 		current->backing_dev_info = NULL;
637 	}
638 	nfs_end_io_write(inode);
639 	if (result <= 0)
640 		goto out;
641 
642 	written = result;
643 	iocb->ki_pos += written;
644 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
645 
646 	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
647 		result = filemap_fdatawrite_range(file->f_mapping,
648 						  iocb->ki_pos - written,
649 						  iocb->ki_pos - 1);
650 		if (result < 0)
651 			goto out;
652 	}
653 	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
654 		result = filemap_fdatawait_range(file->f_mapping,
655 						 iocb->ki_pos - written,
656 						 iocb->ki_pos - 1);
657 		if (result < 0)
658 			goto out;
659 	}
660 	result = generic_write_sync(iocb, written);
661 	if (result < 0)
662 		return result;
663 
664 out:
665 	/* Return error values */
666 	error = filemap_check_wb_err(file->f_mapping, since);
667 	switch (error) {
668 	default:
669 		break;
670 	case -EDQUOT:
671 	case -EFBIG:
672 	case -ENOSPC:
673 		nfs_wb_all(inode);
674 		error = file_check_and_advance_wb_err(file);
675 		if (error < 0)
676 			result = error;
677 	}
678 	return result;
679 
680 out_swapfile:
681 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
682 	return -ETXTBSY;
683 }
684 EXPORT_SYMBOL_GPL(nfs_file_write);
685 
686 static int
do_getlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)687 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
688 {
689 	struct inode *inode = filp->f_mapping->host;
690 	int status = 0;
691 	unsigned int saved_type = fl->fl_type;
692 
693 	/* Try local locking first */
694 	posix_test_lock(filp, fl);
695 	if (fl->fl_type != F_UNLCK) {
696 		/* found a conflict */
697 		goto out;
698 	}
699 	fl->fl_type = saved_type;
700 
701 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
702 		goto out_noconflict;
703 
704 	if (is_local)
705 		goto out_noconflict;
706 
707 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
708 out:
709 	return status;
710 out_noconflict:
711 	fl->fl_type = F_UNLCK;
712 	goto out;
713 }
714 
715 static int
do_unlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)716 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
717 {
718 	struct inode *inode = filp->f_mapping->host;
719 	struct nfs_lock_context *l_ctx;
720 	int status;
721 
722 	/*
723 	 * Flush all pending writes before doing anything
724 	 * with locks..
725 	 */
726 	nfs_wb_all(inode);
727 
728 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
729 	if (!IS_ERR(l_ctx)) {
730 		status = nfs_iocounter_wait(l_ctx);
731 		nfs_put_lock_context(l_ctx);
732 		/*  NOTE: special case
733 		 * 	If we're signalled while cleaning up locks on process exit, we
734 		 * 	still need to complete the unlock.
735 		 */
736 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
737 			return status;
738 	}
739 
740 	/*
741 	 * Use local locking if mounted with "-onolock" or with appropriate
742 	 * "-olocal_lock="
743 	 */
744 	if (!is_local)
745 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
746 	else
747 		status = locks_lock_file_wait(filp, fl);
748 	return status;
749 }
750 
751 static int
do_setlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)752 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
753 {
754 	struct inode *inode = filp->f_mapping->host;
755 	int status;
756 
757 	/*
758 	 * Flush all pending writes before doing anything
759 	 * with locks..
760 	 */
761 	status = nfs_sync_mapping(filp->f_mapping);
762 	if (status != 0)
763 		goto out;
764 
765 	/*
766 	 * Use local locking if mounted with "-onolock" or with appropriate
767 	 * "-olocal_lock="
768 	 */
769 	if (!is_local)
770 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
771 	else
772 		status = locks_lock_file_wait(filp, fl);
773 	if (status < 0)
774 		goto out;
775 
776 	/*
777 	 * Invalidate cache to prevent missing any changes.  If
778 	 * the file is mapped, clear the page cache as well so
779 	 * those mappings will be loaded.
780 	 *
781 	 * This makes locking act as a cache coherency point.
782 	 */
783 	nfs_sync_mapping(filp->f_mapping);
784 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
785 		nfs_zap_caches(inode);
786 		if (mapping_mapped(filp->f_mapping))
787 			nfs_revalidate_mapping(inode, filp->f_mapping);
788 	}
789 out:
790 	return status;
791 }
792 
793 /*
794  * Lock a (portion of) a file
795  */
nfs_lock(struct file * filp,int cmd,struct file_lock * fl)796 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
797 {
798 	struct inode *inode = filp->f_mapping->host;
799 	int ret = -ENOLCK;
800 	int is_local = 0;
801 
802 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
803 			filp, fl->fl_type, fl->fl_flags,
804 			(long long)fl->fl_start, (long long)fl->fl_end);
805 
806 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
807 
808 	if (fl->fl_flags & FL_RECLAIM)
809 		return -ENOGRACE;
810 
811 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
812 		is_local = 1;
813 
814 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
815 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
816 		if (ret < 0)
817 			goto out_err;
818 	}
819 
820 	if (IS_GETLK(cmd))
821 		ret = do_getlk(filp, cmd, fl, is_local);
822 	else if (fl->fl_type == F_UNLCK)
823 		ret = do_unlk(filp, cmd, fl, is_local);
824 	else
825 		ret = do_setlk(filp, cmd, fl, is_local);
826 out_err:
827 	return ret;
828 }
829 EXPORT_SYMBOL_GPL(nfs_lock);
830 
831 /*
832  * Lock a (portion of) a file
833  */
nfs_flock(struct file * filp,int cmd,struct file_lock * fl)834 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
835 {
836 	struct inode *inode = filp->f_mapping->host;
837 	int is_local = 0;
838 
839 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
840 			filp, fl->fl_type, fl->fl_flags);
841 
842 	if (!(fl->fl_flags & FL_FLOCK))
843 		return -ENOLCK;
844 
845 	/*
846 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
847 	 * any standard. In principle we might be able to support LOCK_MAND
848 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
849 	 * NFS code is not set up for it.
850 	 */
851 	if (fl->fl_type & LOCK_MAND)
852 		return -EINVAL;
853 
854 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
855 		is_local = 1;
856 
857 	/* We're simulating flock() locks using posix locks on the server */
858 	if (fl->fl_type == F_UNLCK)
859 		return do_unlk(filp, cmd, fl, is_local);
860 	return do_setlk(filp, cmd, fl, is_local);
861 }
862 EXPORT_SYMBOL_GPL(nfs_flock);
863 
864 const struct file_operations nfs_file_operations = {
865 	.llseek		= nfs_file_llseek,
866 	.read_iter	= nfs_file_read,
867 	.write_iter	= nfs_file_write,
868 	.mmap		= nfs_file_mmap,
869 	.open		= nfs_file_open,
870 	.flush		= nfs_file_flush,
871 	.release	= nfs_file_release,
872 	.fsync		= nfs_file_fsync,
873 	.lock		= nfs_lock,
874 	.flock		= nfs_flock,
875 	.splice_read	= generic_file_splice_read,
876 	.splice_write	= iter_file_splice_write,
877 	.check_flags	= nfs_check_flags,
878 	.setlease	= simple_nosetlease,
879 };
880 EXPORT_SYMBOL_GPL(nfs_file_operations);
881