1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/types.h>
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/const.h>
9 #include <linux/kernel.h>
10
11 /*
12 * Circular doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
22
23 #define LIST_HEAD(name) \
24 struct list_head name = LIST_HEAD_INIT(name)
25
26 /**
27 * INIT_LIST_HEAD - Initialize a list_head structure
28 * @list: list_head structure to be initialized.
29 *
30 * Initializes the list_head to point to itself. If it is a list header,
31 * the result is an empty list.
32 */
INIT_LIST_HEAD(struct list_head * list)33 static inline void INIT_LIST_HEAD(struct list_head *list)
34 {
35 WRITE_ONCE(list->next, list);
36 WRITE_ONCE(list->prev, list);
37 }
38
39 #ifdef CONFIG_DEBUG_LIST
40 extern bool __list_add_valid(struct list_head *new,
41 struct list_head *prev,
42 struct list_head *next);
43 extern bool __list_del_entry_valid(struct list_head *entry);
44 #else
__list_add_valid(struct list_head * new,struct list_head * prev,struct list_head * next)45 static inline bool __list_add_valid(struct list_head *new,
46 struct list_head *prev,
47 struct list_head *next)
48 {
49 return true;
50 }
__list_del_entry_valid(struct list_head * entry)51 static inline bool __list_del_entry_valid(struct list_head *entry)
52 {
53 return true;
54 }
55 #endif
56
57 /*
58 * Insert a new entry between two known consecutive entries.
59 *
60 * This is only for internal list manipulation where we know
61 * the prev/next entries already!
62 */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)63 static inline void __list_add(struct list_head *new,
64 struct list_head *prev,
65 struct list_head *next)
66 {
67 if (!__list_add_valid(new, prev, next))
68 return;
69
70 next->prev = new;
71 new->next = next;
72 new->prev = prev;
73 WRITE_ONCE(prev->next, new);
74 }
75
76 /**
77 * list_add - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it after
80 *
81 * Insert a new entry after the specified head.
82 * This is good for implementing stacks.
83 */
list_add(struct list_head * new,struct list_head * head)84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86 __list_add(new, head, head->next);
87 }
88
89
90 /**
91 * list_add_tail - add a new entry
92 * @new: new entry to be added
93 * @head: list head to add it before
94 *
95 * Insert a new entry before the specified head.
96 * This is useful for implementing queues.
97 */
list_add_tail(struct list_head * new,struct list_head * head)98 static inline void list_add_tail(struct list_head *new, struct list_head *head)
99 {
100 __list_add(new, head->prev, head);
101 }
102
103 /*
104 * Delete a list entry by making the prev/next entries
105 * point to each other.
106 *
107 * This is only for internal list manipulation where we know
108 * the prev/next entries already!
109 */
__list_del(struct list_head * prev,struct list_head * next)110 static inline void __list_del(struct list_head * prev, struct list_head * next)
111 {
112 next->prev = prev;
113 WRITE_ONCE(prev->next, next);
114 }
115
116 /*
117 * Delete a list entry and clear the 'prev' pointer.
118 *
119 * This is a special-purpose list clearing method used in the networking code
120 * for lists allocated as per-cpu, where we don't want to incur the extra
121 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
122 * needs to check the node 'prev' pointer instead of calling list_empty().
123 */
__list_del_clearprev(struct list_head * entry)124 static inline void __list_del_clearprev(struct list_head *entry)
125 {
126 __list_del(entry->prev, entry->next);
127 entry->prev = NULL;
128 }
129
__list_del_entry(struct list_head * entry)130 static inline void __list_del_entry(struct list_head *entry)
131 {
132 if (!__list_del_entry_valid(entry))
133 return;
134
135 __list_del(entry->prev, entry->next);
136 }
137
138 /**
139 * list_del - deletes entry from list.
140 * @entry: the element to delete from the list.
141 * Note: list_empty() on entry does not return true after this, the entry is
142 * in an undefined state.
143 */
list_del(struct list_head * entry)144 static inline void list_del(struct list_head *entry)
145 {
146 __list_del_entry(entry);
147 entry->next = LIST_POISON1;
148 entry->prev = LIST_POISON2;
149 }
150
151 /**
152 * list_replace - replace old entry by new one
153 * @old : the element to be replaced
154 * @new : the new element to insert
155 *
156 * If @old was empty, it will be overwritten.
157 */
list_replace(struct list_head * old,struct list_head * new)158 static inline void list_replace(struct list_head *old,
159 struct list_head *new)
160 {
161 new->next = old->next;
162 new->next->prev = new;
163 new->prev = old->prev;
164 new->prev->next = new;
165 }
166
167 /**
168 * list_replace_init - replace old entry by new one and initialize the old one
169 * @old : the element to be replaced
170 * @new : the new element to insert
171 *
172 * If @old was empty, it will be overwritten.
173 */
list_replace_init(struct list_head * old,struct list_head * new)174 static inline void list_replace_init(struct list_head *old,
175 struct list_head *new)
176 {
177 list_replace(old, new);
178 INIT_LIST_HEAD(old);
179 }
180
181 /**
182 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
183 * @entry1: the location to place entry2
184 * @entry2: the location to place entry1
185 */
list_swap(struct list_head * entry1,struct list_head * entry2)186 static inline void list_swap(struct list_head *entry1,
187 struct list_head *entry2)
188 {
189 struct list_head *pos = entry2->prev;
190
191 list_del(entry2);
192 list_replace(entry1, entry2);
193 if (pos == entry1)
194 pos = entry2;
195 list_add(entry1, pos);
196 }
197
198 /**
199 * list_del_init - deletes entry from list and reinitialize it.
200 * @entry: the element to delete from the list.
201 */
list_del_init(struct list_head * entry)202 static inline void list_del_init(struct list_head *entry)
203 {
204 __list_del_entry(entry);
205 INIT_LIST_HEAD(entry);
206 }
207
208 /**
209 * list_move - delete from one list and add as another's head
210 * @list: the entry to move
211 * @head: the head that will precede our entry
212 */
list_move(struct list_head * list,struct list_head * head)213 static inline void list_move(struct list_head *list, struct list_head *head)
214 {
215 __list_del_entry(list);
216 list_add(list, head);
217 }
218
219 /**
220 * list_move_tail - delete from one list and add as another's tail
221 * @list: the entry to move
222 * @head: the head that will follow our entry
223 */
list_move_tail(struct list_head * list,struct list_head * head)224 static inline void list_move_tail(struct list_head *list,
225 struct list_head *head)
226 {
227 __list_del_entry(list);
228 list_add_tail(list, head);
229 }
230
231 /**
232 * list_bulk_move_tail - move a subsection of a list to its tail
233 * @head: the head that will follow our entry
234 * @first: first entry to move
235 * @last: last entry to move, can be the same as first
236 *
237 * Move all entries between @first and including @last before @head.
238 * All three entries must belong to the same linked list.
239 */
list_bulk_move_tail(struct list_head * head,struct list_head * first,struct list_head * last)240 static inline void list_bulk_move_tail(struct list_head *head,
241 struct list_head *first,
242 struct list_head *last)
243 {
244 first->prev->next = last->next;
245 last->next->prev = first->prev;
246
247 head->prev->next = first;
248 first->prev = head->prev;
249
250 last->next = head;
251 head->prev = last;
252 }
253
254 /**
255 * list_is_first -- tests whether @list is the first entry in list @head
256 * @list: the entry to test
257 * @head: the head of the list
258 */
list_is_first(const struct list_head * list,const struct list_head * head)259 static inline int list_is_first(const struct list_head *list, const struct list_head *head)
260 {
261 return list->prev == head;
262 }
263
264 /**
265 * list_is_last - tests whether @list is the last entry in list @head
266 * @list: the entry to test
267 * @head: the head of the list
268 */
list_is_last(const struct list_head * list,const struct list_head * head)269 static inline int list_is_last(const struct list_head *list, const struct list_head *head)
270 {
271 return list->next == head;
272 }
273
274 /**
275 * list_is_head - tests whether @list is the list @head
276 * @list: the entry to test
277 * @head: the head of the list
278 */
list_is_head(const struct list_head * list,const struct list_head * head)279 static inline int list_is_head(const struct list_head *list, const struct list_head *head)
280 {
281 return list == head;
282 }
283
284 /**
285 * list_empty - tests whether a list is empty
286 * @head: the list to test.
287 */
list_empty(const struct list_head * head)288 static inline int list_empty(const struct list_head *head)
289 {
290 return READ_ONCE(head->next) == head;
291 }
292
293 /**
294 * list_del_init_careful - deletes entry from list and reinitialize it.
295 * @entry: the element to delete from the list.
296 *
297 * This is the same as list_del_init(), except designed to be used
298 * together with list_empty_careful() in a way to guarantee ordering
299 * of other memory operations.
300 *
301 * Any memory operations done before a list_del_init_careful() are
302 * guaranteed to be visible after a list_empty_careful() test.
303 */
list_del_init_careful(struct list_head * entry)304 static inline void list_del_init_careful(struct list_head *entry)
305 {
306 __list_del_entry(entry);
307 WRITE_ONCE(entry->prev, entry);
308 smp_store_release(&entry->next, entry);
309 }
310
311 /**
312 * list_empty_careful - tests whether a list is empty and not being modified
313 * @head: the list to test
314 *
315 * Description:
316 * tests whether a list is empty _and_ checks that no other CPU might be
317 * in the process of modifying either member (next or prev)
318 *
319 * NOTE: using list_empty_careful() without synchronization
320 * can only be safe if the only activity that can happen
321 * to the list entry is list_del_init(). Eg. it cannot be used
322 * if another CPU could re-list_add() it.
323 */
list_empty_careful(const struct list_head * head)324 static inline int list_empty_careful(const struct list_head *head)
325 {
326 struct list_head *next = smp_load_acquire(&head->next);
327 return list_is_head(next, head) && (next == READ_ONCE(head->prev));
328 }
329
330 /**
331 * list_rotate_left - rotate the list to the left
332 * @head: the head of the list
333 */
list_rotate_left(struct list_head * head)334 static inline void list_rotate_left(struct list_head *head)
335 {
336 struct list_head *first;
337
338 if (!list_empty(head)) {
339 first = head->next;
340 list_move_tail(first, head);
341 }
342 }
343
344 /**
345 * list_rotate_to_front() - Rotate list to specific item.
346 * @list: The desired new front of the list.
347 * @head: The head of the list.
348 *
349 * Rotates list so that @list becomes the new front of the list.
350 */
list_rotate_to_front(struct list_head * list,struct list_head * head)351 static inline void list_rotate_to_front(struct list_head *list,
352 struct list_head *head)
353 {
354 /*
355 * Deletes the list head from the list denoted by @head and
356 * places it as the tail of @list, this effectively rotates the
357 * list so that @list is at the front.
358 */
359 list_move_tail(head, list);
360 }
361
362 /**
363 * list_is_singular - tests whether a list has just one entry.
364 * @head: the list to test.
365 */
list_is_singular(const struct list_head * head)366 static inline int list_is_singular(const struct list_head *head)
367 {
368 return !list_empty(head) && (head->next == head->prev);
369 }
370
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)371 static inline void __list_cut_position(struct list_head *list,
372 struct list_head *head, struct list_head *entry)
373 {
374 struct list_head *new_first = entry->next;
375 list->next = head->next;
376 list->next->prev = list;
377 list->prev = entry;
378 entry->next = list;
379 head->next = new_first;
380 new_first->prev = head;
381 }
382
383 /**
384 * list_cut_position - cut a list into two
385 * @list: a new list to add all removed entries
386 * @head: a list with entries
387 * @entry: an entry within head, could be the head itself
388 * and if so we won't cut the list
389 *
390 * This helper moves the initial part of @head, up to and
391 * including @entry, from @head to @list. You should
392 * pass on @entry an element you know is on @head. @list
393 * should be an empty list or a list you do not care about
394 * losing its data.
395 *
396 */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)397 static inline void list_cut_position(struct list_head *list,
398 struct list_head *head, struct list_head *entry)
399 {
400 if (list_empty(head))
401 return;
402 if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
403 return;
404 if (list_is_head(entry, head))
405 INIT_LIST_HEAD(list);
406 else
407 __list_cut_position(list, head, entry);
408 }
409
410 /**
411 * list_cut_before - cut a list into two, before given entry
412 * @list: a new list to add all removed entries
413 * @head: a list with entries
414 * @entry: an entry within head, could be the head itself
415 *
416 * This helper moves the initial part of @head, up to but
417 * excluding @entry, from @head to @list. You should pass
418 * in @entry an element you know is on @head. @list should
419 * be an empty list or a list you do not care about losing
420 * its data.
421 * If @entry == @head, all entries on @head are moved to
422 * @list.
423 */
list_cut_before(struct list_head * list,struct list_head * head,struct list_head * entry)424 static inline void list_cut_before(struct list_head *list,
425 struct list_head *head,
426 struct list_head *entry)
427 {
428 if (head->next == entry) {
429 INIT_LIST_HEAD(list);
430 return;
431 }
432 list->next = head->next;
433 list->next->prev = list;
434 list->prev = entry->prev;
435 list->prev->next = list;
436 head->next = entry;
437 entry->prev = head;
438 }
439
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)440 static inline void __list_splice(const struct list_head *list,
441 struct list_head *prev,
442 struct list_head *next)
443 {
444 struct list_head *first = list->next;
445 struct list_head *last = list->prev;
446
447 first->prev = prev;
448 prev->next = first;
449
450 last->next = next;
451 next->prev = last;
452 }
453
454 /**
455 * list_splice - join two lists, this is designed for stacks
456 * @list: the new list to add.
457 * @head: the place to add it in the first list.
458 */
list_splice(const struct list_head * list,struct list_head * head)459 static inline void list_splice(const struct list_head *list,
460 struct list_head *head)
461 {
462 if (!list_empty(list))
463 __list_splice(list, head, head->next);
464 }
465
466 /**
467 * list_splice_tail - join two lists, each list being a queue
468 * @list: the new list to add.
469 * @head: the place to add it in the first list.
470 */
list_splice_tail(struct list_head * list,struct list_head * head)471 static inline void list_splice_tail(struct list_head *list,
472 struct list_head *head)
473 {
474 if (!list_empty(list))
475 __list_splice(list, head->prev, head);
476 }
477
478 /**
479 * list_splice_init - join two lists and reinitialise the emptied list.
480 * @list: the new list to add.
481 * @head: the place to add it in the first list.
482 *
483 * The list at @list is reinitialised
484 */
list_splice_init(struct list_head * list,struct list_head * head)485 static inline void list_splice_init(struct list_head *list,
486 struct list_head *head)
487 {
488 if (!list_empty(list)) {
489 __list_splice(list, head, head->next);
490 INIT_LIST_HEAD(list);
491 }
492 }
493
494 /**
495 * list_splice_tail_init - join two lists and reinitialise the emptied list
496 * @list: the new list to add.
497 * @head: the place to add it in the first list.
498 *
499 * Each of the lists is a queue.
500 * The list at @list is reinitialised
501 */
list_splice_tail_init(struct list_head * list,struct list_head * head)502 static inline void list_splice_tail_init(struct list_head *list,
503 struct list_head *head)
504 {
505 if (!list_empty(list)) {
506 __list_splice(list, head->prev, head);
507 INIT_LIST_HEAD(list);
508 }
509 }
510
511 /**
512 * list_entry - get the struct for this entry
513 * @ptr: the &struct list_head pointer.
514 * @type: the type of the struct this is embedded in.
515 * @member: the name of the list_head within the struct.
516 */
517 #define list_entry(ptr, type, member) \
518 container_of(ptr, type, member)
519
520 /**
521 * list_first_entry - get the first element from a list
522 * @ptr: the list head to take the element from.
523 * @type: the type of the struct this is embedded in.
524 * @member: the name of the list_head within the struct.
525 *
526 * Note, that list is expected to be not empty.
527 */
528 #define list_first_entry(ptr, type, member) \
529 list_entry((ptr)->next, type, member)
530
531 /**
532 * list_last_entry - get the last element from a list
533 * @ptr: the list head to take the element from.
534 * @type: the type of the struct this is embedded in.
535 * @member: the name of the list_head within the struct.
536 *
537 * Note, that list is expected to be not empty.
538 */
539 #define list_last_entry(ptr, type, member) \
540 list_entry((ptr)->prev, type, member)
541
542 /**
543 * list_first_entry_or_null - get the first element from a list
544 * @ptr: the list head to take the element from.
545 * @type: the type of the struct this is embedded in.
546 * @member: the name of the list_head within the struct.
547 *
548 * Note that if the list is empty, it returns NULL.
549 */
550 #define list_first_entry_or_null(ptr, type, member) ({ \
551 struct list_head *head__ = (ptr); \
552 struct list_head *pos__ = READ_ONCE(head__->next); \
553 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
554 })
555
556 /**
557 * list_next_entry - get the next element in list
558 * @pos: the type * to cursor
559 * @member: the name of the list_head within the struct.
560 */
561 #define list_next_entry(pos, member) \
562 list_entry((pos)->member.next, typeof(*(pos)), member)
563
564 /**
565 * list_prev_entry - get the prev element in list
566 * @pos: the type * to cursor
567 * @member: the name of the list_head within the struct.
568 */
569 #define list_prev_entry(pos, member) \
570 list_entry((pos)->member.prev, typeof(*(pos)), member)
571
572 /**
573 * list_for_each - iterate over a list
574 * @pos: the &struct list_head to use as a loop cursor.
575 * @head: the head for your list.
576 */
577 #define list_for_each(pos, head) \
578 for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
579
580 /**
581 * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
582 * @pos: the &struct list_head to use as a loop cursor.
583 * @head: the head for your list.
584 */
585 #define list_for_each_rcu(pos, head) \
586 for (pos = rcu_dereference((head)->next); \
587 !list_is_head(pos, (head)); \
588 pos = rcu_dereference(pos->next))
589
590 /**
591 * list_for_each_continue - continue iteration over a list
592 * @pos: the &struct list_head to use as a loop cursor.
593 * @head: the head for your list.
594 *
595 * Continue to iterate over a list, continuing after the current position.
596 */
597 #define list_for_each_continue(pos, head) \
598 for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
599
600 /**
601 * list_for_each_prev - iterate over a list backwards
602 * @pos: the &struct list_head to use as a loop cursor.
603 * @head: the head for your list.
604 */
605 #define list_for_each_prev(pos, head) \
606 for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
607
608 /**
609 * list_for_each_safe - iterate over a list safe against removal of list entry
610 * @pos: the &struct list_head to use as a loop cursor.
611 * @n: another &struct list_head to use as temporary storage
612 * @head: the head for your list.
613 */
614 #define list_for_each_safe(pos, n, head) \
615 for (pos = (head)->next, n = pos->next; \
616 !list_is_head(pos, (head)); \
617 pos = n, n = pos->next)
618
619 /**
620 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
621 * @pos: the &struct list_head to use as a loop cursor.
622 * @n: another &struct list_head to use as temporary storage
623 * @head: the head for your list.
624 */
625 #define list_for_each_prev_safe(pos, n, head) \
626 for (pos = (head)->prev, n = pos->prev; \
627 !list_is_head(pos, (head)); \
628 pos = n, n = pos->prev)
629
630 /**
631 * list_entry_is_head - test if the entry points to the head of the list
632 * @pos: the type * to cursor
633 * @head: the head for your list.
634 * @member: the name of the list_head within the struct.
635 */
636 #define list_entry_is_head(pos, head, member) \
637 (&pos->member == (head))
638
639 /**
640 * list_for_each_entry - iterate over list of given type
641 * @pos: the type * to use as a loop cursor.
642 * @head: the head for your list.
643 * @member: the name of the list_head within the struct.
644 */
645 #define list_for_each_entry(pos, head, member) \
646 for (pos = list_first_entry(head, typeof(*pos), member); \
647 !list_entry_is_head(pos, head, member); \
648 pos = list_next_entry(pos, member))
649
650 /**
651 * list_for_each_entry_reverse - iterate backwards over list of given type.
652 * @pos: the type * to use as a loop cursor.
653 * @head: the head for your list.
654 * @member: the name of the list_head within the struct.
655 */
656 #define list_for_each_entry_reverse(pos, head, member) \
657 for (pos = list_last_entry(head, typeof(*pos), member); \
658 !list_entry_is_head(pos, head, member); \
659 pos = list_prev_entry(pos, member))
660
661 /**
662 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
663 * @pos: the type * to use as a start point
664 * @head: the head of the list
665 * @member: the name of the list_head within the struct.
666 *
667 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
668 */
669 #define list_prepare_entry(pos, head, member) \
670 ((pos) ? : list_entry(head, typeof(*pos), member))
671
672 /**
673 * list_for_each_entry_continue - continue iteration over list of given type
674 * @pos: the type * to use as a loop cursor.
675 * @head: the head for your list.
676 * @member: the name of the list_head within the struct.
677 *
678 * Continue to iterate over list of given type, continuing after
679 * the current position.
680 */
681 #define list_for_each_entry_continue(pos, head, member) \
682 for (pos = list_next_entry(pos, member); \
683 !list_entry_is_head(pos, head, member); \
684 pos = list_next_entry(pos, member))
685
686 /**
687 * list_for_each_entry_continue_reverse - iterate backwards from the given point
688 * @pos: the type * to use as a loop cursor.
689 * @head: the head for your list.
690 * @member: the name of the list_head within the struct.
691 *
692 * Start to iterate over list of given type backwards, continuing after
693 * the current position.
694 */
695 #define list_for_each_entry_continue_reverse(pos, head, member) \
696 for (pos = list_prev_entry(pos, member); \
697 !list_entry_is_head(pos, head, member); \
698 pos = list_prev_entry(pos, member))
699
700 /**
701 * list_for_each_entry_from - iterate over list of given type from the current point
702 * @pos: the type * to use as a loop cursor.
703 * @head: the head for your list.
704 * @member: the name of the list_head within the struct.
705 *
706 * Iterate over list of given type, continuing from current position.
707 */
708 #define list_for_each_entry_from(pos, head, member) \
709 for (; !list_entry_is_head(pos, head, member); \
710 pos = list_next_entry(pos, member))
711
712 /**
713 * list_for_each_entry_from_reverse - iterate backwards over list of given type
714 * from the current point
715 * @pos: the type * to use as a loop cursor.
716 * @head: the head for your list.
717 * @member: the name of the list_head within the struct.
718 *
719 * Iterate backwards over list of given type, continuing from current position.
720 */
721 #define list_for_each_entry_from_reverse(pos, head, member) \
722 for (; !list_entry_is_head(pos, head, member); \
723 pos = list_prev_entry(pos, member))
724
725 /**
726 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
727 * @pos: the type * to use as a loop cursor.
728 * @n: another type * to use as temporary storage
729 * @head: the head for your list.
730 * @member: the name of the list_head within the struct.
731 */
732 #define list_for_each_entry_safe(pos, n, head, member) \
733 for (pos = list_first_entry(head, typeof(*pos), member), \
734 n = list_next_entry(pos, member); \
735 !list_entry_is_head(pos, head, member); \
736 pos = n, n = list_next_entry(n, member))
737
738 /**
739 * list_for_each_entry_safe_continue - continue list iteration safe against removal
740 * @pos: the type * to use as a loop cursor.
741 * @n: another type * to use as temporary storage
742 * @head: the head for your list.
743 * @member: the name of the list_head within the struct.
744 *
745 * Iterate over list of given type, continuing after current point,
746 * safe against removal of list entry.
747 */
748 #define list_for_each_entry_safe_continue(pos, n, head, member) \
749 for (pos = list_next_entry(pos, member), \
750 n = list_next_entry(pos, member); \
751 !list_entry_is_head(pos, head, member); \
752 pos = n, n = list_next_entry(n, member))
753
754 /**
755 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
756 * @pos: the type * to use as a loop cursor.
757 * @n: another type * to use as temporary storage
758 * @head: the head for your list.
759 * @member: the name of the list_head within the struct.
760 *
761 * Iterate over list of given type from current point, safe against
762 * removal of list entry.
763 */
764 #define list_for_each_entry_safe_from(pos, n, head, member) \
765 for (n = list_next_entry(pos, member); \
766 !list_entry_is_head(pos, head, member); \
767 pos = n, n = list_next_entry(n, member))
768
769 /**
770 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
771 * @pos: the type * to use as a loop cursor.
772 * @n: another type * to use as temporary storage
773 * @head: the head for your list.
774 * @member: the name of the list_head within the struct.
775 *
776 * Iterate backwards over list of given type, safe against removal
777 * of list entry.
778 */
779 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
780 for (pos = list_last_entry(head, typeof(*pos), member), \
781 n = list_prev_entry(pos, member); \
782 !list_entry_is_head(pos, head, member); \
783 pos = n, n = list_prev_entry(n, member))
784
785 /**
786 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
787 * @pos: the loop cursor used in the list_for_each_entry_safe loop
788 * @n: temporary storage used in list_for_each_entry_safe
789 * @member: the name of the list_head within the struct.
790 *
791 * list_safe_reset_next is not safe to use in general if the list may be
792 * modified concurrently (eg. the lock is dropped in the loop body). An
793 * exception to this is if the cursor element (pos) is pinned in the list,
794 * and list_safe_reset_next is called after re-taking the lock and before
795 * completing the current iteration of the loop body.
796 */
797 #define list_safe_reset_next(pos, n, member) \
798 n = list_next_entry(pos, member)
799
800 /*
801 * Double linked lists with a single pointer list head.
802 * Mostly useful for hash tables where the two pointer list head is
803 * too wasteful.
804 * You lose the ability to access the tail in O(1).
805 */
806
807 #define HLIST_HEAD_INIT { .first = NULL }
808 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
809 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)810 static inline void INIT_HLIST_NODE(struct hlist_node *h)
811 {
812 h->next = NULL;
813 h->pprev = NULL;
814 }
815
816 /**
817 * hlist_unhashed - Has node been removed from list and reinitialized?
818 * @h: Node to be checked
819 *
820 * Not that not all removal functions will leave a node in unhashed
821 * state. For example, hlist_nulls_del_init_rcu() does leave the
822 * node in unhashed state, but hlist_nulls_del() does not.
823 */
hlist_unhashed(const struct hlist_node * h)824 static inline int hlist_unhashed(const struct hlist_node *h)
825 {
826 return !h->pprev;
827 }
828
829 /**
830 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
831 * @h: Node to be checked
832 *
833 * This variant of hlist_unhashed() must be used in lockless contexts
834 * to avoid potential load-tearing. The READ_ONCE() is paired with the
835 * various WRITE_ONCE() in hlist helpers that are defined below.
836 */
hlist_unhashed_lockless(const struct hlist_node * h)837 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
838 {
839 return !READ_ONCE(h->pprev);
840 }
841
842 /**
843 * hlist_empty - Is the specified hlist_head structure an empty hlist?
844 * @h: Structure to check.
845 */
hlist_empty(const struct hlist_head * h)846 static inline int hlist_empty(const struct hlist_head *h)
847 {
848 return !READ_ONCE(h->first);
849 }
850
__hlist_del(struct hlist_node * n)851 static inline void __hlist_del(struct hlist_node *n)
852 {
853 struct hlist_node *next = n->next;
854 struct hlist_node **pprev = n->pprev;
855
856 WRITE_ONCE(*pprev, next);
857 if (next)
858 WRITE_ONCE(next->pprev, pprev);
859 }
860
861 /**
862 * hlist_del - Delete the specified hlist_node from its list
863 * @n: Node to delete.
864 *
865 * Note that this function leaves the node in hashed state. Use
866 * hlist_del_init() or similar instead to unhash @n.
867 */
hlist_del(struct hlist_node * n)868 static inline void hlist_del(struct hlist_node *n)
869 {
870 __hlist_del(n);
871 n->next = LIST_POISON1;
872 n->pprev = LIST_POISON2;
873 }
874
875 /**
876 * hlist_del_init - Delete the specified hlist_node from its list and initialize
877 * @n: Node to delete.
878 *
879 * Note that this function leaves the node in unhashed state.
880 */
hlist_del_init(struct hlist_node * n)881 static inline void hlist_del_init(struct hlist_node *n)
882 {
883 if (!hlist_unhashed(n)) {
884 __hlist_del(n);
885 INIT_HLIST_NODE(n);
886 }
887 }
888
889 /**
890 * hlist_add_head - add a new entry at the beginning of the hlist
891 * @n: new entry to be added
892 * @h: hlist head to add it after
893 *
894 * Insert a new entry after the specified head.
895 * This is good for implementing stacks.
896 */
hlist_add_head(struct hlist_node * n,struct hlist_head * h)897 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
898 {
899 struct hlist_node *first = h->first;
900 WRITE_ONCE(n->next, first);
901 if (first)
902 WRITE_ONCE(first->pprev, &n->next);
903 WRITE_ONCE(h->first, n);
904 WRITE_ONCE(n->pprev, &h->first);
905 }
906
907 /**
908 * hlist_add_before - add a new entry before the one specified
909 * @n: new entry to be added
910 * @next: hlist node to add it before, which must be non-NULL
911 */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)912 static inline void hlist_add_before(struct hlist_node *n,
913 struct hlist_node *next)
914 {
915 WRITE_ONCE(n->pprev, next->pprev);
916 WRITE_ONCE(n->next, next);
917 WRITE_ONCE(next->pprev, &n->next);
918 WRITE_ONCE(*(n->pprev), n);
919 }
920
921 /**
922 * hlist_add_behind - add a new entry after the one specified
923 * @n: new entry to be added
924 * @prev: hlist node to add it after, which must be non-NULL
925 */
hlist_add_behind(struct hlist_node * n,struct hlist_node * prev)926 static inline void hlist_add_behind(struct hlist_node *n,
927 struct hlist_node *prev)
928 {
929 WRITE_ONCE(n->next, prev->next);
930 WRITE_ONCE(prev->next, n);
931 WRITE_ONCE(n->pprev, &prev->next);
932
933 if (n->next)
934 WRITE_ONCE(n->next->pprev, &n->next);
935 }
936
937 /**
938 * hlist_add_fake - create a fake hlist consisting of a single headless node
939 * @n: Node to make a fake list out of
940 *
941 * This makes @n appear to be its own predecessor on a headless hlist.
942 * The point of this is to allow things like hlist_del() to work correctly
943 * in cases where there is no list.
944 */
hlist_add_fake(struct hlist_node * n)945 static inline void hlist_add_fake(struct hlist_node *n)
946 {
947 n->pprev = &n->next;
948 }
949
950 /**
951 * hlist_fake: Is this node a fake hlist?
952 * @h: Node to check for being a self-referential fake hlist.
953 */
hlist_fake(struct hlist_node * h)954 static inline bool hlist_fake(struct hlist_node *h)
955 {
956 return h->pprev == &h->next;
957 }
958
959 /**
960 * hlist_is_singular_node - is node the only element of the specified hlist?
961 * @n: Node to check for singularity.
962 * @h: Header for potentially singular list.
963 *
964 * Check whether the node is the only node of the head without
965 * accessing head, thus avoiding unnecessary cache misses.
966 */
967 static inline bool
hlist_is_singular_node(struct hlist_node * n,struct hlist_head * h)968 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
969 {
970 return !n->next && n->pprev == &h->first;
971 }
972
973 /**
974 * hlist_move_list - Move an hlist
975 * @old: hlist_head for old list.
976 * @new: hlist_head for new list.
977 *
978 * Move a list from one list head to another. Fixup the pprev
979 * reference of the first entry if it exists.
980 */
hlist_move_list(struct hlist_head * old,struct hlist_head * new)981 static inline void hlist_move_list(struct hlist_head *old,
982 struct hlist_head *new)
983 {
984 new->first = old->first;
985 if (new->first)
986 new->first->pprev = &new->first;
987 old->first = NULL;
988 }
989
990 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
991
992 #define hlist_for_each(pos, head) \
993 for (pos = (head)->first; pos ; pos = pos->next)
994
995 #define hlist_for_each_safe(pos, n, head) \
996 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
997 pos = n)
998
999 #define hlist_entry_safe(ptr, type, member) \
1000 ({ typeof(ptr) ____ptr = (ptr); \
1001 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1002 })
1003
1004 /**
1005 * hlist_for_each_entry - iterate over list of given type
1006 * @pos: the type * to use as a loop cursor.
1007 * @head: the head for your list.
1008 * @member: the name of the hlist_node within the struct.
1009 */
1010 #define hlist_for_each_entry(pos, head, member) \
1011 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1012 pos; \
1013 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1014
1015 /**
1016 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1017 * @pos: the type * to use as a loop cursor.
1018 * @member: the name of the hlist_node within the struct.
1019 */
1020 #define hlist_for_each_entry_continue(pos, member) \
1021 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1022 pos; \
1023 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1024
1025 /**
1026 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1027 * @pos: the type * to use as a loop cursor.
1028 * @member: the name of the hlist_node within the struct.
1029 */
1030 #define hlist_for_each_entry_from(pos, member) \
1031 for (; pos; \
1032 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1033
1034 /**
1035 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1036 * @pos: the type * to use as a loop cursor.
1037 * @n: a &struct hlist_node to use as temporary storage
1038 * @head: the head for your list.
1039 * @member: the name of the hlist_node within the struct.
1040 */
1041 #define hlist_for_each_entry_safe(pos, n, head, member) \
1042 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1043 pos && ({ n = pos->member.next; 1; }); \
1044 pos = hlist_entry_safe(n, typeof(*pos), member))
1045
1046 #endif
1047