1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Macros for manipulating and testing page->flags
4 */
5
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16
17 /*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages not added to the page allocator when onlining a section because
34 * they were excluded via the online_page_callback() or because they are
35 * PG_hwpoison.
36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37 * control pages, vmcoreinfo)
38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39 * not marked PG_reserved (as they might be in use by somebody else who does
40 * not respect the caching strategy).
41 * - Pages part of an offline section (struct pages of offline sections should
42 * not be trusted as they will be initialized when first onlined).
43 * - MCA pages on ia64
44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
45 * - Device memory (e.g. PMEM, DAX, HMM)
46 * Some PG_reserved pages will be excluded from the hibernation image.
47 * PG_reserved does in general not hinder anybody from dumping or swapping
48 * and is no longer required for remap_pfn_range(). ioremap might require it.
49 * Consequently, PG_reserved for a page mapped into user space can indicate
50 * the zero page, the vDSO, MMIO pages or device memory.
51 *
52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
53 * specific data (which is normally at page->private). It can be used by
54 * private allocations for its own usage.
55 *
56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58 * is set before writeback starts and cleared when it finishes.
59 *
60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
61 * while it is held.
62 *
63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64 * to become unlocked.
65 *
66 * PG_swapbacked is set when a page uses swap as a backing storage. This are
67 * usually PageAnon or shmem pages but please note that even anonymous pages
68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69 * a result of MADV_FREE).
70 *
71 * PG_uptodate tells whether the page's contents is valid. When a read
72 * completes, the page becomes uptodate, unless a disk I/O error happened.
73 *
74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75 * file-backed pagecache (see mm/vmscan.c).
76 *
77 * PG_error is set to indicate that an I/O error occurred on this page.
78 *
79 * PG_arch_1 is an architecture specific page state bit. The generic code
80 * guarantees that this bit is cleared for a page when it first is entered into
81 * the page cache.
82 *
83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
84 * data with incorrect ECC bits that triggered a machine check. Accessing is
85 * not safe since it may cause another machine check. Don't touch!
86 */
87
88 /*
89 * Don't use the pageflags directly. Use the PageFoo macros.
90 *
91 * The page flags field is split into two parts, the main flags area
92 * which extends from the low bits upwards, and the fields area which
93 * extends from the high bits downwards.
94 *
95 * | FIELD | ... | FLAGS |
96 * N-1 ^ 0
97 * (NR_PAGEFLAGS)
98 *
99 * The fields area is reserved for fields mapping zone, node (for NUMA) and
100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102 */
103 enum pageflags {
104 PG_locked, /* Page is locked. Don't touch. */
105 PG_referenced,
106 PG_uptodate,
107 PG_dirty,
108 PG_lru,
109 PG_active,
110 PG_workingset,
111 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112 PG_error,
113 PG_slab,
114 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
115 PG_arch_1,
116 PG_reserved,
117 PG_private, /* If pagecache, has fs-private data */
118 PG_private_2, /* If pagecache, has fs aux data */
119 PG_writeback, /* Page is under writeback */
120 PG_head, /* A head page */
121 PG_mappedtodisk, /* Has blocks allocated on-disk */
122 PG_reclaim, /* To be reclaimed asap */
123 PG_swapbacked, /* Page is backed by RAM/swap */
124 PG_unevictable, /* Page is "unevictable" */
125 #ifdef CONFIG_MMU
126 PG_mlocked, /* Page is vma mlocked */
127 #endif
128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
129 PG_uncached, /* Page has been mapped as uncached */
130 #endif
131 #ifdef CONFIG_MEMORY_FAILURE
132 PG_hwpoison, /* hardware poisoned page. Don't touch */
133 #endif
134 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
135 PG_young,
136 PG_idle,
137 #endif
138 #ifdef CONFIG_64BIT
139 PG_arch_2,
140 #endif
141 #ifdef CONFIG_KASAN_HW_TAGS
142 PG_skip_kasan_poison,
143 #endif
144 #ifdef CONFIG_64BIT
145 PG_oem_reserved,
146 #endif
147 __NR_PAGEFLAGS,
148
149 /* Filesystems */
150 PG_checked = PG_owner_priv_1,
151
152 /* SwapBacked */
153 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
154
155 /* Two page bits are conscripted by FS-Cache to maintain local caching
156 * state. These bits are set on pages belonging to the netfs's inodes
157 * when those inodes are being locally cached.
158 */
159 PG_fscache = PG_private_2, /* page backed by cache */
160
161 /* XEN */
162 /* Pinned in Xen as a read-only pagetable page. */
163 PG_pinned = PG_owner_priv_1,
164 /* Pinned as part of domain save (see xen_mm_pin_all()). */
165 PG_savepinned = PG_dirty,
166 /* Has a grant mapping of another (foreign) domain's page. */
167 PG_foreign = PG_owner_priv_1,
168 /* Remapped by swiotlb-xen. */
169 PG_xen_remapped = PG_owner_priv_1,
170
171 /* SLOB */
172 PG_slob_free = PG_private,
173
174 /* Compound pages. Stored in first tail page's flags */
175 PG_double_map = PG_workingset,
176
177 #ifdef CONFIG_MEMORY_FAILURE
178 /*
179 * Compound pages. Stored in first tail page's flags.
180 * Indicates that at least one subpage is hwpoisoned in the
181 * THP.
182 */
183 PG_has_hwpoisoned = PG_mappedtodisk,
184 #endif
185
186 /* non-lru isolated movable page */
187 PG_isolated = PG_reclaim,
188
189 /* Only valid for buddy pages. Used to track pages that are reported */
190 PG_reported = PG_uptodate,
191 };
192
193 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1)
194
195 #ifndef __GENERATING_BOUNDS_H
196
_compound_head(const struct page * page)197 static inline unsigned long _compound_head(const struct page *page)
198 {
199 unsigned long head = READ_ONCE(page->compound_head);
200
201 if (unlikely(head & 1))
202 return head - 1;
203 return (unsigned long)page;
204 }
205
206 #define compound_head(page) ((typeof(page))_compound_head(page))
207
PageTail(struct page * page)208 static __always_inline int PageTail(struct page *page)
209 {
210 return READ_ONCE(page->compound_head) & 1;
211 }
212
PageCompound(struct page * page)213 static __always_inline int PageCompound(struct page *page)
214 {
215 return test_bit(PG_head, &page->flags) || PageTail(page);
216 }
217
218 #define PAGE_POISON_PATTERN -1l
PagePoisoned(const struct page * page)219 static inline int PagePoisoned(const struct page *page)
220 {
221 return page->flags == PAGE_POISON_PATTERN;
222 }
223
224 #ifdef CONFIG_DEBUG_VM
225 void page_init_poison(struct page *page, size_t size);
226 #else
page_init_poison(struct page * page,size_t size)227 static inline void page_init_poison(struct page *page, size_t size)
228 {
229 }
230 #endif
231
232 /*
233 * Page flags policies wrt compound pages
234 *
235 * PF_POISONED_CHECK
236 * check if this struct page poisoned/uninitialized
237 *
238 * PF_ANY:
239 * the page flag is relevant for small, head and tail pages.
240 *
241 * PF_HEAD:
242 * for compound page all operations related to the page flag applied to
243 * head page.
244 *
245 * PF_ONLY_HEAD:
246 * for compound page, callers only ever operate on the head page.
247 *
248 * PF_NO_TAIL:
249 * modifications of the page flag must be done on small or head pages,
250 * checks can be done on tail pages too.
251 *
252 * PF_NO_COMPOUND:
253 * the page flag is not relevant for compound pages.
254 *
255 * PF_SECOND:
256 * the page flag is stored in the first tail page.
257 */
258 #define PF_POISONED_CHECK(page) ({ \
259 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
260 page; })
261 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
262 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
263 #define PF_ONLY_HEAD(page, enforce) ({ \
264 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
265 PF_POISONED_CHECK(page); })
266 #define PF_NO_TAIL(page, enforce) ({ \
267 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
268 PF_POISONED_CHECK(compound_head(page)); })
269 #define PF_NO_COMPOUND(page, enforce) ({ \
270 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
271 PF_POISONED_CHECK(page); })
272 #define PF_SECOND(page, enforce) ({ \
273 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
274 PF_POISONED_CHECK(&page[1]); })
275
276 /*
277 * Macros to create function definitions for page flags
278 */
279 #define TESTPAGEFLAG(uname, lname, policy) \
280 static __always_inline int Page##uname(struct page *page) \
281 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
282
283 #define SETPAGEFLAG(uname, lname, policy) \
284 static __always_inline void SetPage##uname(struct page *page) \
285 { set_bit(PG_##lname, &policy(page, 1)->flags); }
286
287 #define CLEARPAGEFLAG(uname, lname, policy) \
288 static __always_inline void ClearPage##uname(struct page *page) \
289 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
290
291 #define __SETPAGEFLAG(uname, lname, policy) \
292 static __always_inline void __SetPage##uname(struct page *page) \
293 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
294
295 #define __CLEARPAGEFLAG(uname, lname, policy) \
296 static __always_inline void __ClearPage##uname(struct page *page) \
297 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
298
299 #define TESTSETFLAG(uname, lname, policy) \
300 static __always_inline int TestSetPage##uname(struct page *page) \
301 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
302
303 #define TESTCLEARFLAG(uname, lname, policy) \
304 static __always_inline int TestClearPage##uname(struct page *page) \
305 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
306
307 #define PAGEFLAG(uname, lname, policy) \
308 TESTPAGEFLAG(uname, lname, policy) \
309 SETPAGEFLAG(uname, lname, policy) \
310 CLEARPAGEFLAG(uname, lname, policy)
311
312 #define __PAGEFLAG(uname, lname, policy) \
313 TESTPAGEFLAG(uname, lname, policy) \
314 __SETPAGEFLAG(uname, lname, policy) \
315 __CLEARPAGEFLAG(uname, lname, policy)
316
317 #define TESTSCFLAG(uname, lname, policy) \
318 TESTSETFLAG(uname, lname, policy) \
319 TESTCLEARFLAG(uname, lname, policy)
320
321 #define TESTPAGEFLAG_FALSE(uname) \
322 static inline int Page##uname(const struct page *page) { return 0; }
323
324 #define SETPAGEFLAG_NOOP(uname) \
325 static inline void SetPage##uname(struct page *page) { }
326
327 #define CLEARPAGEFLAG_NOOP(uname) \
328 static inline void ClearPage##uname(struct page *page) { }
329
330 #define __CLEARPAGEFLAG_NOOP(uname) \
331 static inline void __ClearPage##uname(struct page *page) { }
332
333 #define TESTSETFLAG_FALSE(uname) \
334 static inline int TestSetPage##uname(struct page *page) { return 0; }
335
336 #define TESTCLEARFLAG_FALSE(uname) \
337 static inline int TestClearPage##uname(struct page *page) { return 0; }
338
339 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
340 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
341
342 #define TESTSCFLAG_FALSE(uname) \
343 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
344
345 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
346 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
347 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
348 PAGEFLAG(Referenced, referenced, PF_HEAD)
349 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
350 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
351 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
352 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
353 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
354 TESTCLEARFLAG(LRU, lru, PF_HEAD)
355 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
356 TESTCLEARFLAG(Active, active, PF_HEAD)
357 PAGEFLAG(Workingset, workingset, PF_HEAD)
358 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
359 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
360 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
361 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
362
363 /* Xen */
364 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
365 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
366 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
367 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)368 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
369 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
370
371 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
372 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
373 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
374 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
375 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
376 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
377
378 /*
379 * Private page markings that may be used by the filesystem that owns the page
380 * for its own purposes.
381 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
382 */
383 PAGEFLAG(Private, private, PF_ANY)
384 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
385 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
386 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
387
388 /*
389 * Only test-and-set exist for PG_writeback. The unconditional operators are
390 * risky: they bypass page accounting.
391 */
392 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
393 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
394 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
395
396 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
397 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
398 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
399 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
400 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
401
402 #ifdef CONFIG_HIGHMEM
403 /*
404 * Must use a macro here due to header dependency issues. page_zone() is not
405 * available at this point.
406 */
407 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
408 #else
409 PAGEFLAG_FALSE(HighMem)
410 #endif
411
412 #ifdef CONFIG_SWAP
413 static __always_inline int PageSwapCache(struct page *page)
414 {
415 #ifdef CONFIG_THP_SWAP
416 page = compound_head(page);
417 #endif
418 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
419
420 }
421 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
422 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
423 #else
424 PAGEFLAG_FALSE(SwapCache)
425 #endif
426
427 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
428 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
429 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
430
431 #ifdef CONFIG_MMU
432 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
433 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
434 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
435 #else
436 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
437 TESTSCFLAG_FALSE(Mlocked)
438 #endif
439
440 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
441 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
442 #else
443 PAGEFLAG_FALSE(Uncached)
444 #endif
445
446 #ifdef CONFIG_MEMORY_FAILURE
447 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
448 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
449 #define __PG_HWPOISON (1UL << PG_hwpoison)
450 extern bool take_page_off_buddy(struct page *page);
451 #else
452 PAGEFLAG_FALSE(HWPoison)
453 #define __PG_HWPOISON 0
454 #endif
455
456 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)457 TESTPAGEFLAG(Young, young, PF_ANY)
458 SETPAGEFLAG(Young, young, PF_ANY)
459 TESTCLEARFLAG(Young, young, PF_ANY)
460 PAGEFLAG(Idle, idle, PF_ANY)
461 #endif
462
463 #ifdef CONFIG_KASAN_HW_TAGS
464 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
465 #else
466 PAGEFLAG_FALSE(SkipKASanPoison)
467 #endif
468
469 /*
470 * PageReported() is used to track reported free pages within the Buddy
471 * allocator. We can use the non-atomic version of the test and set
472 * operations as both should be shielded with the zone lock to prevent
473 * any possible races on the setting or clearing of the bit.
474 */
475 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
476
477 /*
478 * On an anonymous page mapped into a user virtual memory area,
479 * page->mapping points to its anon_vma, not to a struct address_space;
480 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
481 *
482 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
483 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
484 * bit; and then page->mapping points, not to an anon_vma, but to a private
485 * structure which KSM associates with that merged page. See ksm.h.
486 *
487 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
488 * page and then page->mapping points a struct address_space.
489 *
490 * Please note that, confusingly, "page_mapping" refers to the inode
491 * address_space which maps the page from disk; whereas "page_mapped"
492 * refers to user virtual address space into which the page is mapped.
493 */
494 #define PAGE_MAPPING_ANON 0x1
495 #define PAGE_MAPPING_MOVABLE 0x2
496 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
497 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
498
499 static __always_inline int PageMappingFlags(struct page *page)
500 {
501 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
502 }
503
PageAnon(struct page * page)504 static __always_inline int PageAnon(struct page *page)
505 {
506 page = compound_head(page);
507 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
508 }
509
__PageMovable(struct page * page)510 static __always_inline int __PageMovable(struct page *page)
511 {
512 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
513 PAGE_MAPPING_MOVABLE;
514 }
515
516 #ifdef CONFIG_KSM
517 /*
518 * A KSM page is one of those write-protected "shared pages" or "merged pages"
519 * which KSM maps into multiple mms, wherever identical anonymous page content
520 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
521 * anon_vma, but to that page's node of the stable tree.
522 */
PageKsm(struct page * page)523 static __always_inline int PageKsm(struct page *page)
524 {
525 page = compound_head(page);
526 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
527 PAGE_MAPPING_KSM;
528 }
529 #else
530 TESTPAGEFLAG_FALSE(Ksm)
531 #endif
532
533 u64 stable_page_flags(struct page *page);
534
PageUptodate(struct page * page)535 static inline int PageUptodate(struct page *page)
536 {
537 int ret;
538 page = compound_head(page);
539 ret = test_bit(PG_uptodate, &(page)->flags);
540 /*
541 * Must ensure that the data we read out of the page is loaded
542 * _after_ we've loaded page->flags to check for PageUptodate.
543 * We can skip the barrier if the page is not uptodate, because
544 * we wouldn't be reading anything from it.
545 *
546 * See SetPageUptodate() for the other side of the story.
547 */
548 if (ret)
549 smp_rmb();
550
551 return ret;
552 }
553
__SetPageUptodate(struct page * page)554 static __always_inline void __SetPageUptodate(struct page *page)
555 {
556 VM_BUG_ON_PAGE(PageTail(page), page);
557 smp_wmb();
558 __set_bit(PG_uptodate, &page->flags);
559 }
560
SetPageUptodate(struct page * page)561 static __always_inline void SetPageUptodate(struct page *page)
562 {
563 VM_BUG_ON_PAGE(PageTail(page), page);
564 /*
565 * Memory barrier must be issued before setting the PG_uptodate bit,
566 * so that all previous stores issued in order to bring the page
567 * uptodate are actually visible before PageUptodate becomes true.
568 */
569 smp_wmb();
570 set_bit(PG_uptodate, &page->flags);
571 }
572
573 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
574
575 int test_clear_page_writeback(struct page *page);
576 int __test_set_page_writeback(struct page *page, bool keep_write);
577
578 #define test_set_page_writeback(page) \
579 __test_set_page_writeback(page, false)
580 #define test_set_page_writeback_keepwrite(page) \
581 __test_set_page_writeback(page, true)
582
set_page_writeback(struct page * page)583 static inline void set_page_writeback(struct page *page)
584 {
585 test_set_page_writeback(page);
586 }
587
set_page_writeback_keepwrite(struct page * page)588 static inline void set_page_writeback_keepwrite(struct page *page)
589 {
590 test_set_page_writeback_keepwrite(page);
591 }
592
__PAGEFLAG(Head,head,PF_ANY)593 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
594
595 static __always_inline void set_compound_head(struct page *page, struct page *head)
596 {
597 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
598 }
599
clear_compound_head(struct page * page)600 static __always_inline void clear_compound_head(struct page *page)
601 {
602 WRITE_ONCE(page->compound_head, 0);
603 }
604
605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)606 static inline void ClearPageCompound(struct page *page)
607 {
608 BUG_ON(!PageHead(page));
609 ClearPageHead(page);
610 }
611 #endif
612
613 #define PG_head_mask ((1UL << PG_head))
614
615 #ifdef CONFIG_HUGETLB_PAGE
616 int PageHuge(struct page *page);
617 int PageHeadHuge(struct page *page);
618 #else
619 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)620 TESTPAGEFLAG_FALSE(HeadHuge)
621 #endif
622
623
624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
625 /*
626 * PageHuge() only returns true for hugetlbfs pages, but not for
627 * normal or transparent huge pages.
628 *
629 * PageTransHuge() returns true for both transparent huge and
630 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
631 * called only in the core VM paths where hugetlbfs pages can't exist.
632 */
633 static inline int PageTransHuge(struct page *page)
634 {
635 VM_BUG_ON_PAGE(PageTail(page), page);
636 return PageHead(page);
637 }
638
639 /*
640 * PageTransCompound returns true for both transparent huge pages
641 * and hugetlbfs pages, so it should only be called when it's known
642 * that hugetlbfs pages aren't involved.
643 */
PageTransCompound(struct page * page)644 static inline int PageTransCompound(struct page *page)
645 {
646 return PageCompound(page);
647 }
648
649 /*
650 * PageTransTail returns true for both transparent huge pages
651 * and hugetlbfs pages, so it should only be called when it's known
652 * that hugetlbfs pages aren't involved.
653 */
PageTransTail(struct page * page)654 static inline int PageTransTail(struct page *page)
655 {
656 return PageTail(page);
657 }
658
659 /*
660 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
661 * as PMDs.
662 *
663 * This is required for optimization of rmap operations for THP: we can postpone
664 * per small page mapcount accounting (and its overhead from atomic operations)
665 * until the first PMD split.
666 *
667 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
668 * by one. This reference will go away with last compound_mapcount.
669 *
670 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
671 */
PAGEFLAG(DoubleMap,double_map,PF_SECOND)672 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
673 TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
674 #else
675 TESTPAGEFLAG_FALSE(TransHuge)
676 TESTPAGEFLAG_FALSE(TransCompound)
677 TESTPAGEFLAG_FALSE(TransCompoundMap)
678 TESTPAGEFLAG_FALSE(TransTail)
679 PAGEFLAG_FALSE(DoubleMap)
680 TESTSCFLAG_FALSE(DoubleMap)
681 #endif
682
683 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
684 /*
685 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
686 * compound page.
687 *
688 * This flag is set by hwpoison handler. Cleared by THP split or free page.
689 */
690 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
691 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
692 #else
693 PAGEFLAG_FALSE(HasHWPoisoned)
694 TESTSCFLAG_FALSE(HasHWPoisoned)
695 #endif
696
697 /*
698 * Check if a page is currently marked HWPoisoned. Note that this check is
699 * best effort only and inherently racy: there is no way to synchronize with
700 * failing hardware.
701 */
702 static inline bool is_page_hwpoison(struct page *page)
703 {
704 if (PageHWPoison(page))
705 return true;
706 return PageHuge(page) && PageHWPoison(compound_head(page));
707 }
708
709 /*
710 * For pages that are never mapped to userspace (and aren't PageSlab),
711 * page_type may be used. Because it is initialised to -1, we invert the
712 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
713 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
714 * low bits so that an underflow or overflow of page_mapcount() won't be
715 * mistaken for a page type value.
716 */
717
718 #define PAGE_TYPE_BASE 0xf0000000
719 /* Reserve 0x0000007f to catch underflows of page_mapcount */
720 #define PAGE_MAPCOUNT_RESERVE -128
721 #define PG_buddy 0x00000080
722 #define PG_offline 0x00000100
723 #define PG_table 0x00000200
724 #define PG_guard 0x00000400
725
726 #define PageType(page, flag) \
727 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
728
page_has_type(struct page * page)729 static inline int page_has_type(struct page *page)
730 {
731 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
732 }
733
734 #define PAGE_TYPE_OPS(uname, lname) \
735 static __always_inline int Page##uname(struct page *page) \
736 { \
737 return PageType(page, PG_##lname); \
738 } \
739 static __always_inline void __SetPage##uname(struct page *page) \
740 { \
741 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
742 page->page_type &= ~PG_##lname; \
743 } \
744 static __always_inline void __ClearPage##uname(struct page *page) \
745 { \
746 VM_BUG_ON_PAGE(!Page##uname(page), page); \
747 page->page_type |= PG_##lname; \
748 }
749
750 /*
751 * PageBuddy() indicates that the page is free and in the buddy system
752 * (see mm/page_alloc.c).
753 */
754 PAGE_TYPE_OPS(Buddy, buddy)
755
756 /*
757 * PageOffline() indicates that the page is logically offline although the
758 * containing section is online. (e.g. inflated in a balloon driver or
759 * not onlined when onlining the section).
760 * The content of these pages is effectively stale. Such pages should not
761 * be touched (read/write/dump/save) except by their owner.
762 *
763 * If a driver wants to allow to offline unmovable PageOffline() pages without
764 * putting them back to the buddy, it can do so via the memory notifier by
765 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
766 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
767 * pages (now with a reference count of zero) are treated like free pages,
768 * allowing the containing memory block to get offlined. A driver that
769 * relies on this feature is aware that re-onlining the memory block will
770 * require to re-set the pages PageOffline() and not giving them to the
771 * buddy via online_page_callback_t.
772 *
773 * There are drivers that mark a page PageOffline() and expect there won't be
774 * any further access to page content. PFN walkers that read content of random
775 * pages should check PageOffline() and synchronize with such drivers using
776 * page_offline_freeze()/page_offline_thaw().
777 */
778 PAGE_TYPE_OPS(Offline, offline)
779
780 extern void page_offline_freeze(void);
781 extern void page_offline_thaw(void);
782 extern void page_offline_begin(void);
783 extern void page_offline_end(void);
784
785 /*
786 * Marks pages in use as page tables.
787 */
788 PAGE_TYPE_OPS(Table, table)
789
790 /*
791 * Marks guardpages used with debug_pagealloc.
792 */
793 PAGE_TYPE_OPS(Guard, guard)
794
795 extern bool is_free_buddy_page(struct page *page);
796
797 PAGEFLAG(Isolated, isolated, PF_ANY);
798
799 /*
800 * If network-based swap is enabled, sl*b must keep track of whether pages
801 * were allocated from pfmemalloc reserves.
802 */
PageSlabPfmemalloc(struct page * page)803 static inline int PageSlabPfmemalloc(struct page *page)
804 {
805 VM_BUG_ON_PAGE(!PageSlab(page), page);
806 return PageActive(page);
807 }
808
809 /*
810 * A version of PageSlabPfmemalloc() for opportunistic checks where the page
811 * might have been freed under us and not be a PageSlab anymore.
812 */
__PageSlabPfmemalloc(struct page * page)813 static inline int __PageSlabPfmemalloc(struct page *page)
814 {
815 return PageActive(page);
816 }
817
SetPageSlabPfmemalloc(struct page * page)818 static inline void SetPageSlabPfmemalloc(struct page *page)
819 {
820 VM_BUG_ON_PAGE(!PageSlab(page), page);
821 SetPageActive(page);
822 }
823
__ClearPageSlabPfmemalloc(struct page * page)824 static inline void __ClearPageSlabPfmemalloc(struct page *page)
825 {
826 VM_BUG_ON_PAGE(!PageSlab(page), page);
827 __ClearPageActive(page);
828 }
829
ClearPageSlabPfmemalloc(struct page * page)830 static inline void ClearPageSlabPfmemalloc(struct page *page)
831 {
832 VM_BUG_ON_PAGE(!PageSlab(page), page);
833 ClearPageActive(page);
834 }
835
836 #ifdef CONFIG_MMU
837 #define __PG_MLOCKED (1UL << PG_mlocked)
838 #else
839 #define __PG_MLOCKED 0
840 #endif
841
842 /*
843 * Flags checked when a page is freed. Pages being freed should not have
844 * these flags set. If they are, there is a problem.
845 */
846 #define PAGE_FLAGS_CHECK_AT_FREE \
847 (1UL << PG_lru | 1UL << PG_locked | \
848 1UL << PG_private | 1UL << PG_private_2 | \
849 1UL << PG_writeback | 1UL << PG_reserved | \
850 1UL << PG_slab | 1UL << PG_active | \
851 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK)
852
853 /*
854 * Flags checked when a page is prepped for return by the page allocator.
855 * Pages being prepped should not have these flags set. If they are set,
856 * there has been a kernel bug or struct page corruption.
857 *
858 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
859 * alloc-free cycle to prevent from reusing the page.
860 */
861 #define PAGE_FLAGS_CHECK_AT_PREP \
862 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
863
864 #define PAGE_FLAGS_PRIVATE \
865 (1UL << PG_private | 1UL << PG_private_2)
866 /**
867 * page_has_private - Determine if page has private stuff
868 * @page: The page to be checked
869 *
870 * Determine if a page has private stuff, indicating that release routines
871 * should be invoked upon it.
872 */
page_has_private(struct page * page)873 static inline int page_has_private(struct page *page)
874 {
875 return !!(page->flags & PAGE_FLAGS_PRIVATE);
876 }
877
878 #undef PF_ANY
879 #undef PF_HEAD
880 #undef PF_ONLY_HEAD
881 #undef PF_NO_TAIL
882 #undef PF_NO_COMPOUND
883 #undef PF_SECOND
884 #endif /* !__GENERATING_BOUNDS_H */
885
886 #endif /* PAGE_FLAGS_H */
887