• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87 
88 /*
89  * Don't use the pageflags directly.  Use the PageFoo macros.
90  *
91  * The page flags field is split into two parts, the main flags area
92  * which extends from the low bits upwards, and the fields area which
93  * extends from the high bits downwards.
94  *
95  *  | FIELD | ... | FLAGS |
96  *  N-1           ^       0
97  *               (NR_PAGEFLAGS)
98  *
99  * The fields area is reserved for fields mapping zone, node (for NUMA) and
100  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102  */
103 enum pageflags {
104 	PG_locked,		/* Page is locked. Don't touch. */
105 	PG_referenced,
106 	PG_uptodate,
107 	PG_dirty,
108 	PG_lru,
109 	PG_active,
110 	PG_workingset,
111 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112 	PG_error,
113 	PG_slab,
114 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
115 	PG_arch_1,
116 	PG_reserved,
117 	PG_private,		/* If pagecache, has fs-private data */
118 	PG_private_2,		/* If pagecache, has fs aux data */
119 	PG_writeback,		/* Page is under writeback */
120 	PG_head,		/* A head page */
121 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
122 	PG_reclaim,		/* To be reclaimed asap */
123 	PG_swapbacked,		/* Page is backed by RAM/swap */
124 	PG_unevictable,		/* Page is "unevictable"  */
125 #ifdef CONFIG_MMU
126 	PG_mlocked,		/* Page is vma mlocked */
127 #endif
128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
129 	PG_uncached,		/* Page has been mapped as uncached */
130 #endif
131 #ifdef CONFIG_MEMORY_FAILURE
132 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
133 #endif
134 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
135 	PG_young,
136 	PG_idle,
137 #endif
138 #ifdef CONFIG_64BIT
139 	PG_arch_2,
140 #endif
141 #ifdef CONFIG_KASAN_HW_TAGS
142 	PG_skip_kasan_poison,
143 #endif
144 #ifdef CONFIG_64BIT
145 	PG_oem_reserved,
146 #endif
147 	__NR_PAGEFLAGS,
148 
149 	/* Filesystems */
150 	PG_checked = PG_owner_priv_1,
151 
152 	/* SwapBacked */
153 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
154 
155 	/* Two page bits are conscripted by FS-Cache to maintain local caching
156 	 * state.  These bits are set on pages belonging to the netfs's inodes
157 	 * when those inodes are being locally cached.
158 	 */
159 	PG_fscache = PG_private_2,	/* page backed by cache */
160 
161 	/* XEN */
162 	/* Pinned in Xen as a read-only pagetable page. */
163 	PG_pinned = PG_owner_priv_1,
164 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
165 	PG_savepinned = PG_dirty,
166 	/* Has a grant mapping of another (foreign) domain's page. */
167 	PG_foreign = PG_owner_priv_1,
168 	/* Remapped by swiotlb-xen. */
169 	PG_xen_remapped = PG_owner_priv_1,
170 
171 	/* SLOB */
172 	PG_slob_free = PG_private,
173 
174 	/* Compound pages. Stored in first tail page's flags */
175 	PG_double_map = PG_workingset,
176 
177 #ifdef CONFIG_MEMORY_FAILURE
178 	/*
179 	 * Compound pages. Stored in first tail page's flags.
180 	 * Indicates that at least one subpage is hwpoisoned in the
181 	 * THP.
182 	 */
183 	PG_has_hwpoisoned = PG_mappedtodisk,
184 #endif
185 
186 	/* non-lru isolated movable page */
187 	PG_isolated = PG_reclaim,
188 
189 	/* Only valid for buddy pages. Used to track pages that are reported */
190 	PG_reported = PG_uptodate,
191 };
192 
193 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
194 
195 #ifndef __GENERATING_BOUNDS_H
196 
_compound_head(const struct page * page)197 static inline unsigned long _compound_head(const struct page *page)
198 {
199 	unsigned long head = READ_ONCE(page->compound_head);
200 
201 	if (unlikely(head & 1))
202 		return head - 1;
203 	return (unsigned long)page;
204 }
205 
206 #define compound_head(page)	((typeof(page))_compound_head(page))
207 
PageTail(struct page * page)208 static __always_inline int PageTail(struct page *page)
209 {
210 	return READ_ONCE(page->compound_head) & 1;
211 }
212 
PageCompound(struct page * page)213 static __always_inline int PageCompound(struct page *page)
214 {
215 	return test_bit(PG_head, &page->flags) || PageTail(page);
216 }
217 
218 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)219 static inline int PagePoisoned(const struct page *page)
220 {
221 	return page->flags == PAGE_POISON_PATTERN;
222 }
223 
224 #ifdef CONFIG_DEBUG_VM
225 void page_init_poison(struct page *page, size_t size);
226 #else
page_init_poison(struct page * page,size_t size)227 static inline void page_init_poison(struct page *page, size_t size)
228 {
229 }
230 #endif
231 
232 /*
233  * Page flags policies wrt compound pages
234  *
235  * PF_POISONED_CHECK
236  *     check if this struct page poisoned/uninitialized
237  *
238  * PF_ANY:
239  *     the page flag is relevant for small, head and tail pages.
240  *
241  * PF_HEAD:
242  *     for compound page all operations related to the page flag applied to
243  *     head page.
244  *
245  * PF_ONLY_HEAD:
246  *     for compound page, callers only ever operate on the head page.
247  *
248  * PF_NO_TAIL:
249  *     modifications of the page flag must be done on small or head pages,
250  *     checks can be done on tail pages too.
251  *
252  * PF_NO_COMPOUND:
253  *     the page flag is not relevant for compound pages.
254  *
255  * PF_SECOND:
256  *     the page flag is stored in the first tail page.
257  */
258 #define PF_POISONED_CHECK(page) ({					\
259 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
260 		page; })
261 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
262 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
263 #define PF_ONLY_HEAD(page, enforce) ({					\
264 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
265 		PF_POISONED_CHECK(page); })
266 #define PF_NO_TAIL(page, enforce) ({					\
267 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
268 		PF_POISONED_CHECK(compound_head(page)); })
269 #define PF_NO_COMPOUND(page, enforce) ({				\
270 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
271 		PF_POISONED_CHECK(page); })
272 #define PF_SECOND(page, enforce) ({					\
273 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
274 		PF_POISONED_CHECK(&page[1]); })
275 
276 /*
277  * Macros to create function definitions for page flags
278  */
279 #define TESTPAGEFLAG(uname, lname, policy)				\
280 static __always_inline int Page##uname(struct page *page)		\
281 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
282 
283 #define SETPAGEFLAG(uname, lname, policy)				\
284 static __always_inline void SetPage##uname(struct page *page)		\
285 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
286 
287 #define CLEARPAGEFLAG(uname, lname, policy)				\
288 static __always_inline void ClearPage##uname(struct page *page)		\
289 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
290 
291 #define __SETPAGEFLAG(uname, lname, policy)				\
292 static __always_inline void __SetPage##uname(struct page *page)		\
293 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
294 
295 #define __CLEARPAGEFLAG(uname, lname, policy)				\
296 static __always_inline void __ClearPage##uname(struct page *page)	\
297 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
298 
299 #define TESTSETFLAG(uname, lname, policy)				\
300 static __always_inline int TestSetPage##uname(struct page *page)	\
301 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
302 
303 #define TESTCLEARFLAG(uname, lname, policy)				\
304 static __always_inline int TestClearPage##uname(struct page *page)	\
305 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
306 
307 #define PAGEFLAG(uname, lname, policy)					\
308 	TESTPAGEFLAG(uname, lname, policy)				\
309 	SETPAGEFLAG(uname, lname, policy)				\
310 	CLEARPAGEFLAG(uname, lname, policy)
311 
312 #define __PAGEFLAG(uname, lname, policy)				\
313 	TESTPAGEFLAG(uname, lname, policy)				\
314 	__SETPAGEFLAG(uname, lname, policy)				\
315 	__CLEARPAGEFLAG(uname, lname, policy)
316 
317 #define TESTSCFLAG(uname, lname, policy)				\
318 	TESTSETFLAG(uname, lname, policy)				\
319 	TESTCLEARFLAG(uname, lname, policy)
320 
321 #define TESTPAGEFLAG_FALSE(uname)					\
322 static inline int Page##uname(const struct page *page) { return 0; }
323 
324 #define SETPAGEFLAG_NOOP(uname)						\
325 static inline void SetPage##uname(struct page *page) {  }
326 
327 #define CLEARPAGEFLAG_NOOP(uname)					\
328 static inline void ClearPage##uname(struct page *page) {  }
329 
330 #define __CLEARPAGEFLAG_NOOP(uname)					\
331 static inline void __ClearPage##uname(struct page *page) {  }
332 
333 #define TESTSETFLAG_FALSE(uname)					\
334 static inline int TestSetPage##uname(struct page *page) { return 0; }
335 
336 #define TESTCLEARFLAG_FALSE(uname)					\
337 static inline int TestClearPage##uname(struct page *page) { return 0; }
338 
339 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
340 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
341 
342 #define TESTSCFLAG_FALSE(uname)						\
343 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
344 
345 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
346 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
347 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
348 PAGEFLAG(Referenced, referenced, PF_HEAD)
349 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
350 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
351 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
352 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
353 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
354 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
355 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
356 	TESTCLEARFLAG(Active, active, PF_HEAD)
357 PAGEFLAG(Workingset, workingset, PF_HEAD)
358 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
359 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
360 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
361 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
362 
363 /* Xen */
364 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
365 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
366 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
367 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)368 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
369 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
370 
371 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
372 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
373 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
374 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
375 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
376 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
377 
378 /*
379  * Private page markings that may be used by the filesystem that owns the page
380  * for its own purposes.
381  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
382  */
383 PAGEFLAG(Private, private, PF_ANY)
384 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
385 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
386 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
387 
388 /*
389  * Only test-and-set exist for PG_writeback.  The unconditional operators are
390  * risky: they bypass page accounting.
391  */
392 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
393 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
394 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
395 
396 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
397 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
398 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
399 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
400 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
401 
402 #ifdef CONFIG_HIGHMEM
403 /*
404  * Must use a macro here due to header dependency issues. page_zone() is not
405  * available at this point.
406  */
407 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
408 #else
409 PAGEFLAG_FALSE(HighMem)
410 #endif
411 
412 #ifdef CONFIG_SWAP
413 static __always_inline int PageSwapCache(struct page *page)
414 {
415 #ifdef CONFIG_THP_SWAP
416 	page = compound_head(page);
417 #endif
418 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
419 
420 }
421 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
422 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
423 #else
424 PAGEFLAG_FALSE(SwapCache)
425 #endif
426 
427 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
428 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
429 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
430 
431 #ifdef CONFIG_MMU
432 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
433 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
434 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
435 #else
436 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
437 	TESTSCFLAG_FALSE(Mlocked)
438 #endif
439 
440 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
441 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
442 #else
443 PAGEFLAG_FALSE(Uncached)
444 #endif
445 
446 #ifdef CONFIG_MEMORY_FAILURE
447 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
448 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
449 #define __PG_HWPOISON (1UL << PG_hwpoison)
450 extern bool take_page_off_buddy(struct page *page);
451 #else
452 PAGEFLAG_FALSE(HWPoison)
453 #define __PG_HWPOISON 0
454 #endif
455 
456 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)457 TESTPAGEFLAG(Young, young, PF_ANY)
458 SETPAGEFLAG(Young, young, PF_ANY)
459 TESTCLEARFLAG(Young, young, PF_ANY)
460 PAGEFLAG(Idle, idle, PF_ANY)
461 #endif
462 
463 #ifdef CONFIG_KASAN_HW_TAGS
464 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
465 #else
466 PAGEFLAG_FALSE(SkipKASanPoison)
467 #endif
468 
469 /*
470  * PageReported() is used to track reported free pages within the Buddy
471  * allocator. We can use the non-atomic version of the test and set
472  * operations as both should be shielded with the zone lock to prevent
473  * any possible races on the setting or clearing of the bit.
474  */
475 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
476 
477 /*
478  * On an anonymous page mapped into a user virtual memory area,
479  * page->mapping points to its anon_vma, not to a struct address_space;
480  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
481  *
482  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
483  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
484  * bit; and then page->mapping points, not to an anon_vma, but to a private
485  * structure which KSM associates with that merged page.  See ksm.h.
486  *
487  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
488  * page and then page->mapping points a struct address_space.
489  *
490  * Please note that, confusingly, "page_mapping" refers to the inode
491  * address_space which maps the page from disk; whereas "page_mapped"
492  * refers to user virtual address space into which the page is mapped.
493  */
494 #define PAGE_MAPPING_ANON	0x1
495 #define PAGE_MAPPING_MOVABLE	0x2
496 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
497 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
498 
499 static __always_inline int PageMappingFlags(struct page *page)
500 {
501 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
502 }
503 
PageAnon(struct page * page)504 static __always_inline int PageAnon(struct page *page)
505 {
506 	page = compound_head(page);
507 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
508 }
509 
__PageMovable(struct page * page)510 static __always_inline int __PageMovable(struct page *page)
511 {
512 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
513 				PAGE_MAPPING_MOVABLE;
514 }
515 
516 #ifdef CONFIG_KSM
517 /*
518  * A KSM page is one of those write-protected "shared pages" or "merged pages"
519  * which KSM maps into multiple mms, wherever identical anonymous page content
520  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
521  * anon_vma, but to that page's node of the stable tree.
522  */
PageKsm(struct page * page)523 static __always_inline int PageKsm(struct page *page)
524 {
525 	page = compound_head(page);
526 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
527 				PAGE_MAPPING_KSM;
528 }
529 #else
530 TESTPAGEFLAG_FALSE(Ksm)
531 #endif
532 
533 u64 stable_page_flags(struct page *page);
534 
PageUptodate(struct page * page)535 static inline int PageUptodate(struct page *page)
536 {
537 	int ret;
538 	page = compound_head(page);
539 	ret = test_bit(PG_uptodate, &(page)->flags);
540 	/*
541 	 * Must ensure that the data we read out of the page is loaded
542 	 * _after_ we've loaded page->flags to check for PageUptodate.
543 	 * We can skip the barrier if the page is not uptodate, because
544 	 * we wouldn't be reading anything from it.
545 	 *
546 	 * See SetPageUptodate() for the other side of the story.
547 	 */
548 	if (ret)
549 		smp_rmb();
550 
551 	return ret;
552 }
553 
__SetPageUptodate(struct page * page)554 static __always_inline void __SetPageUptodate(struct page *page)
555 {
556 	VM_BUG_ON_PAGE(PageTail(page), page);
557 	smp_wmb();
558 	__set_bit(PG_uptodate, &page->flags);
559 }
560 
SetPageUptodate(struct page * page)561 static __always_inline void SetPageUptodate(struct page *page)
562 {
563 	VM_BUG_ON_PAGE(PageTail(page), page);
564 	/*
565 	 * Memory barrier must be issued before setting the PG_uptodate bit,
566 	 * so that all previous stores issued in order to bring the page
567 	 * uptodate are actually visible before PageUptodate becomes true.
568 	 */
569 	smp_wmb();
570 	set_bit(PG_uptodate, &page->flags);
571 }
572 
573 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
574 
575 int test_clear_page_writeback(struct page *page);
576 int __test_set_page_writeback(struct page *page, bool keep_write);
577 
578 #define test_set_page_writeback(page)			\
579 	__test_set_page_writeback(page, false)
580 #define test_set_page_writeback_keepwrite(page)	\
581 	__test_set_page_writeback(page, true)
582 
set_page_writeback(struct page * page)583 static inline void set_page_writeback(struct page *page)
584 {
585 	test_set_page_writeback(page);
586 }
587 
set_page_writeback_keepwrite(struct page * page)588 static inline void set_page_writeback_keepwrite(struct page *page)
589 {
590 	test_set_page_writeback_keepwrite(page);
591 }
592 
__PAGEFLAG(Head,head,PF_ANY)593 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
594 
595 static __always_inline void set_compound_head(struct page *page, struct page *head)
596 {
597 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
598 }
599 
clear_compound_head(struct page * page)600 static __always_inline void clear_compound_head(struct page *page)
601 {
602 	WRITE_ONCE(page->compound_head, 0);
603 }
604 
605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)606 static inline void ClearPageCompound(struct page *page)
607 {
608 	BUG_ON(!PageHead(page));
609 	ClearPageHead(page);
610 }
611 #endif
612 
613 #define PG_head_mask ((1UL << PG_head))
614 
615 #ifdef CONFIG_HUGETLB_PAGE
616 int PageHuge(struct page *page);
617 int PageHeadHuge(struct page *page);
618 #else
619 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)620 TESTPAGEFLAG_FALSE(HeadHuge)
621 #endif
622 
623 
624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
625 /*
626  * PageHuge() only returns true for hugetlbfs pages, but not for
627  * normal or transparent huge pages.
628  *
629  * PageTransHuge() returns true for both transparent huge and
630  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
631  * called only in the core VM paths where hugetlbfs pages can't exist.
632  */
633 static inline int PageTransHuge(struct page *page)
634 {
635 	VM_BUG_ON_PAGE(PageTail(page), page);
636 	return PageHead(page);
637 }
638 
639 /*
640  * PageTransCompound returns true for both transparent huge pages
641  * and hugetlbfs pages, so it should only be called when it's known
642  * that hugetlbfs pages aren't involved.
643  */
PageTransCompound(struct page * page)644 static inline int PageTransCompound(struct page *page)
645 {
646 	return PageCompound(page);
647 }
648 
649 /*
650  * PageTransTail returns true for both transparent huge pages
651  * and hugetlbfs pages, so it should only be called when it's known
652  * that hugetlbfs pages aren't involved.
653  */
PageTransTail(struct page * page)654 static inline int PageTransTail(struct page *page)
655 {
656 	return PageTail(page);
657 }
658 
659 /*
660  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
661  * as PMDs.
662  *
663  * This is required for optimization of rmap operations for THP: we can postpone
664  * per small page mapcount accounting (and its overhead from atomic operations)
665  * until the first PMD split.
666  *
667  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
668  * by one. This reference will go away with last compound_mapcount.
669  *
670  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
671  */
PAGEFLAG(DoubleMap,double_map,PF_SECOND)672 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
673 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
674 #else
675 TESTPAGEFLAG_FALSE(TransHuge)
676 TESTPAGEFLAG_FALSE(TransCompound)
677 TESTPAGEFLAG_FALSE(TransCompoundMap)
678 TESTPAGEFLAG_FALSE(TransTail)
679 PAGEFLAG_FALSE(DoubleMap)
680 	TESTSCFLAG_FALSE(DoubleMap)
681 #endif
682 
683 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
684 /*
685  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
686  * compound page.
687  *
688  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
689  */
690 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
691 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
692 #else
693 PAGEFLAG_FALSE(HasHWPoisoned)
694 	TESTSCFLAG_FALSE(HasHWPoisoned)
695 #endif
696 
697 /*
698  * Check if a page is currently marked HWPoisoned. Note that this check is
699  * best effort only and inherently racy: there is no way to synchronize with
700  * failing hardware.
701  */
702 static inline bool is_page_hwpoison(struct page *page)
703 {
704 	if (PageHWPoison(page))
705 		return true;
706 	return PageHuge(page) && PageHWPoison(compound_head(page));
707 }
708 
709 /*
710  * For pages that are never mapped to userspace (and aren't PageSlab),
711  * page_type may be used.  Because it is initialised to -1, we invert the
712  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
713  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
714  * low bits so that an underflow or overflow of page_mapcount() won't be
715  * mistaken for a page type value.
716  */
717 
718 #define PAGE_TYPE_BASE	0xf0000000
719 /* Reserve		0x0000007f to catch underflows of page_mapcount */
720 #define PAGE_MAPCOUNT_RESERVE	-128
721 #define PG_buddy	0x00000080
722 #define PG_offline	0x00000100
723 #define PG_table	0x00000200
724 #define PG_guard	0x00000400
725 
726 #define PageType(page, flag)						\
727 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
728 
page_has_type(struct page * page)729 static inline int page_has_type(struct page *page)
730 {
731 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
732 }
733 
734 #define PAGE_TYPE_OPS(uname, lname)					\
735 static __always_inline int Page##uname(struct page *page)		\
736 {									\
737 	return PageType(page, PG_##lname);				\
738 }									\
739 static __always_inline void __SetPage##uname(struct page *page)		\
740 {									\
741 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
742 	page->page_type &= ~PG_##lname;					\
743 }									\
744 static __always_inline void __ClearPage##uname(struct page *page)	\
745 {									\
746 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
747 	page->page_type |= PG_##lname;					\
748 }
749 
750 /*
751  * PageBuddy() indicates that the page is free and in the buddy system
752  * (see mm/page_alloc.c).
753  */
754 PAGE_TYPE_OPS(Buddy, buddy)
755 
756 /*
757  * PageOffline() indicates that the page is logically offline although the
758  * containing section is online. (e.g. inflated in a balloon driver or
759  * not onlined when onlining the section).
760  * The content of these pages is effectively stale. Such pages should not
761  * be touched (read/write/dump/save) except by their owner.
762  *
763  * If a driver wants to allow to offline unmovable PageOffline() pages without
764  * putting them back to the buddy, it can do so via the memory notifier by
765  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
766  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
767  * pages (now with a reference count of zero) are treated like free pages,
768  * allowing the containing memory block to get offlined. A driver that
769  * relies on this feature is aware that re-onlining the memory block will
770  * require to re-set the pages PageOffline() and not giving them to the
771  * buddy via online_page_callback_t.
772  *
773  * There are drivers that mark a page PageOffline() and expect there won't be
774  * any further access to page content. PFN walkers that read content of random
775  * pages should check PageOffline() and synchronize with such drivers using
776  * page_offline_freeze()/page_offline_thaw().
777  */
778 PAGE_TYPE_OPS(Offline, offline)
779 
780 extern void page_offline_freeze(void);
781 extern void page_offline_thaw(void);
782 extern void page_offline_begin(void);
783 extern void page_offline_end(void);
784 
785 /*
786  * Marks pages in use as page tables.
787  */
788 PAGE_TYPE_OPS(Table, table)
789 
790 /*
791  * Marks guardpages used with debug_pagealloc.
792  */
793 PAGE_TYPE_OPS(Guard, guard)
794 
795 extern bool is_free_buddy_page(struct page *page);
796 
797 PAGEFLAG(Isolated, isolated, PF_ANY);
798 
799 /*
800  * If network-based swap is enabled, sl*b must keep track of whether pages
801  * were allocated from pfmemalloc reserves.
802  */
PageSlabPfmemalloc(struct page * page)803 static inline int PageSlabPfmemalloc(struct page *page)
804 {
805 	VM_BUG_ON_PAGE(!PageSlab(page), page);
806 	return PageActive(page);
807 }
808 
809 /*
810  * A version of PageSlabPfmemalloc() for opportunistic checks where the page
811  * might have been freed under us and not be a PageSlab anymore.
812  */
__PageSlabPfmemalloc(struct page * page)813 static inline int __PageSlabPfmemalloc(struct page *page)
814 {
815 	return PageActive(page);
816 }
817 
SetPageSlabPfmemalloc(struct page * page)818 static inline void SetPageSlabPfmemalloc(struct page *page)
819 {
820 	VM_BUG_ON_PAGE(!PageSlab(page), page);
821 	SetPageActive(page);
822 }
823 
__ClearPageSlabPfmemalloc(struct page * page)824 static inline void __ClearPageSlabPfmemalloc(struct page *page)
825 {
826 	VM_BUG_ON_PAGE(!PageSlab(page), page);
827 	__ClearPageActive(page);
828 }
829 
ClearPageSlabPfmemalloc(struct page * page)830 static inline void ClearPageSlabPfmemalloc(struct page *page)
831 {
832 	VM_BUG_ON_PAGE(!PageSlab(page), page);
833 	ClearPageActive(page);
834 }
835 
836 #ifdef CONFIG_MMU
837 #define __PG_MLOCKED		(1UL << PG_mlocked)
838 #else
839 #define __PG_MLOCKED		0
840 #endif
841 
842 /*
843  * Flags checked when a page is freed.  Pages being freed should not have
844  * these flags set.  If they are, there is a problem.
845  */
846 #define PAGE_FLAGS_CHECK_AT_FREE				\
847 	(1UL << PG_lru		| 1UL << PG_locked	|	\
848 	 1UL << PG_private	| 1UL << PG_private_2	|	\
849 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
850 	 1UL << PG_slab		| 1UL << PG_active 	|	\
851 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
852 
853 /*
854  * Flags checked when a page is prepped for return by the page allocator.
855  * Pages being prepped should not have these flags set.  If they are set,
856  * there has been a kernel bug or struct page corruption.
857  *
858  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
859  * alloc-free cycle to prevent from reusing the page.
860  */
861 #define PAGE_FLAGS_CHECK_AT_PREP	\
862 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
863 
864 #define PAGE_FLAGS_PRIVATE				\
865 	(1UL << PG_private | 1UL << PG_private_2)
866 /**
867  * page_has_private - Determine if page has private stuff
868  * @page: The page to be checked
869  *
870  * Determine if a page has private stuff, indicating that release routines
871  * should be invoked upon it.
872  */
page_has_private(struct page * page)873 static inline int page_has_private(struct page *page)
874 {
875 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
876 }
877 
878 #undef PF_ANY
879 #undef PF_HEAD
880 #undef PF_ONLY_HEAD
881 #undef PF_NO_TAIL
882 #undef PF_NO_COMPOUND
883 #undef PF_SECOND
884 #endif /* !__GENERATING_BOUNDS_H */
885 
886 #endif	/* PAGE_FLAGS_H */
887