1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAP_H
3 #define _LINUX_SWAP_H
4
5 #include <linux/spinlock.h>
6 #include <linux/linkage.h>
7 #include <linux/mmzone.h>
8 #include <linux/list.h>
9 #include <linux/memcontrol.h>
10 #include <linux/sched.h>
11 #include <linux/node.h>
12 #include <linux/fs.h>
13 #include <linux/pagemap.h>
14 #include <linux/atomic.h>
15 #include <linux/page-flags.h>
16 #include <uapi/linux/mempolicy.h>
17 #include <asm/page.h>
18
19 struct notifier_block;
20
21 struct bio;
22
23 struct pagevec;
24
25 #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */
26 #define SWAP_FLAG_PRIO_MASK 0x7fff
27 #define SWAP_FLAG_PRIO_SHIFT 0
28 #define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */
29 #define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */
30 #define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */
31
32 #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \
33 SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \
34 SWAP_FLAG_DISCARD_PAGES)
35 #define SWAP_BATCH 64
36
37 int kswapd (void *p);
38
current_is_kswapd(void)39 static inline int current_is_kswapd(void)
40 {
41 return current->flags & PF_KSWAPD;
42 }
43
44 /*
45 * MAX_SWAPFILES defines the maximum number of swaptypes: things which can
46 * be swapped to. The swap type and the offset into that swap type are
47 * encoded into pte's and into pgoff_t's in the swapcache. Using five bits
48 * for the type means that the maximum number of swapcache pages is 27 bits
49 * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs
50 * the type/offset into the pte as 5/27 as well.
51 */
52 #define MAX_SWAPFILES_SHIFT 5
53
54 /*
55 * Use some of the swap files numbers for other purposes. This
56 * is a convenient way to hook into the VM to trigger special
57 * actions on faults.
58 */
59
60 /*
61 * Unaddressable device memory support. See include/linux/hmm.h and
62 * Documentation/vm/hmm.rst. Short description is we need struct pages for
63 * device memory that is unaddressable (inaccessible) by CPU, so that we can
64 * migrate part of a process memory to device memory.
65 *
66 * When a page is migrated from CPU to device, we set the CPU page table entry
67 * to a special SWP_DEVICE_{READ|WRITE} entry.
68 *
69 * When a page is mapped by the device for exclusive access we set the CPU page
70 * table entries to special SWP_DEVICE_EXCLUSIVE_* entries.
71 */
72 #ifdef CONFIG_DEVICE_PRIVATE
73 #define SWP_DEVICE_NUM 4
74 #define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM)
75 #define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1)
76 #define SWP_DEVICE_EXCLUSIVE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+2)
77 #define SWP_DEVICE_EXCLUSIVE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+3)
78 #else
79 #define SWP_DEVICE_NUM 0
80 #endif
81
82 /*
83 * NUMA node memory migration support
84 */
85 #ifdef CONFIG_MIGRATION
86 #define SWP_MIGRATION_NUM 2
87 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM)
88 #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1)
89 #else
90 #define SWP_MIGRATION_NUM 0
91 #endif
92
93 /*
94 * Handling of hardware poisoned pages with memory corruption.
95 */
96 #ifdef CONFIG_MEMORY_FAILURE
97 #define SWP_HWPOISON_NUM 1
98 #define SWP_HWPOISON MAX_SWAPFILES
99 #else
100 #define SWP_HWPOISON_NUM 0
101 #endif
102
103 #define MAX_SWAPFILES \
104 ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \
105 SWP_MIGRATION_NUM - SWP_HWPOISON_NUM)
106
107 /*
108 * Magic header for a swap area. The first part of the union is
109 * what the swap magic looks like for the old (limited to 128MB)
110 * swap area format, the second part of the union adds - in the
111 * old reserved area - some extra information. Note that the first
112 * kilobyte is reserved for boot loader or disk label stuff...
113 *
114 * Having the magic at the end of the PAGE_SIZE makes detecting swap
115 * areas somewhat tricky on machines that support multiple page sizes.
116 * For 2.5 we'll probably want to move the magic to just beyond the
117 * bootbits...
118 */
119 union swap_header {
120 struct {
121 char reserved[PAGE_SIZE - 10];
122 char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */
123 } magic;
124 struct {
125 char bootbits[1024]; /* Space for disklabel etc. */
126 __u32 version;
127 __u32 last_page;
128 __u32 nr_badpages;
129 unsigned char sws_uuid[16];
130 unsigned char sws_volume[16];
131 __u32 padding[117];
132 __u32 badpages[1];
133 } info;
134 };
135
136 /*
137 * current->reclaim_state points to one of these when a task is running
138 * memory reclaim
139 */
140 struct reclaim_state {
141 unsigned long reclaimed_slab;
142 #ifdef CONFIG_LRU_GEN
143 /* per-thread mm walk data */
144 struct lru_gen_mm_walk *mm_walk;
145 #endif
146 };
147
148 #ifdef __KERNEL__
149
150 struct address_space;
151 struct sysinfo;
152 struct writeback_control;
153 struct zone;
154
155 /*
156 * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of
157 * disk blocks. A list of swap extents maps the entire swapfile. (Where the
158 * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart
159 * from setup, they're handled identically.
160 *
161 * We always assume that blocks are of size PAGE_SIZE.
162 */
163 struct swap_extent {
164 struct rb_node rb_node;
165 pgoff_t start_page;
166 pgoff_t nr_pages;
167 sector_t start_block;
168 };
169
170 /*
171 * Max bad pages in the new format..
172 */
173 #define MAX_SWAP_BADPAGES \
174 ((offsetof(union swap_header, magic.magic) - \
175 offsetof(union swap_header, info.badpages)) / sizeof(int))
176
177 enum {
178 SWP_USED = (1 << 0), /* is slot in swap_info[] used? */
179 SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */
180 SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */
181 SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */
182 SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */
183 SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */
184 SWP_BLKDEV = (1 << 6), /* its a block device */
185 SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */
186 SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */
187 SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */
188 SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */
189 SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */
190 SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */
191 /* add others here before... */
192 SWP_SCANNING = (1 << 14), /* refcount in scan_swap_map */
193 };
194
195 #define SWAP_CLUSTER_MAX 32UL
196 #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX
197
198 /* Bit flag in swap_map */
199 #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */
200 #define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */
201
202 /* Special value in first swap_map */
203 #define SWAP_MAP_MAX 0x3e /* Max count */
204 #define SWAP_MAP_BAD 0x3f /* Note page is bad */
205 #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */
206
207 /* Special value in each swap_map continuation */
208 #define SWAP_CONT_MAX 0x7f /* Max count */
209
210 /*
211 * We use this to track usage of a cluster. A cluster is a block of swap disk
212 * space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All
213 * free clusters are organized into a list. We fetch an entry from the list to
214 * get a free cluster.
215 *
216 * The data field stores next cluster if the cluster is free or cluster usage
217 * counter otherwise. The flags field determines if a cluster is free. This is
218 * protected by swap_info_struct.lock.
219 */
220 struct swap_cluster_info {
221 spinlock_t lock; /*
222 * Protect swap_cluster_info fields
223 * and swap_info_struct->swap_map
224 * elements correspond to the swap
225 * cluster
226 */
227 unsigned int data:24;
228 unsigned int flags:8;
229 };
230 #define CLUSTER_FLAG_FREE 1 /* This cluster is free */
231 #define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */
232 #define CLUSTER_FLAG_HUGE 4 /* This cluster is backing a transparent huge page */
233
234 /*
235 * We assign a cluster to each CPU, so each CPU can allocate swap entry from
236 * its own cluster and swapout sequentially. The purpose is to optimize swapout
237 * throughput.
238 */
239 struct percpu_cluster {
240 struct swap_cluster_info index; /* Current cluster index */
241 unsigned int next; /* Likely next allocation offset */
242 };
243
244 struct swap_cluster_list {
245 struct swap_cluster_info head;
246 struct swap_cluster_info tail;
247 };
248
249 /*
250 * The in-memory structure used to track swap areas.
251 */
252 struct swap_info_struct {
253 struct percpu_ref users; /* indicate and keep swap device valid. */
254 unsigned long flags; /* SWP_USED etc: see above */
255 signed short prio; /* swap priority of this type */
256 struct plist_node list; /* entry in swap_active_head */
257 signed char type; /* strange name for an index */
258 unsigned int max; /* extent of the swap_map */
259 unsigned char *swap_map; /* vmalloc'ed array of usage counts */
260 struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */
261 struct swap_cluster_list free_clusters; /* free clusters list */
262 unsigned int lowest_bit; /* index of first free in swap_map */
263 unsigned int highest_bit; /* index of last free in swap_map */
264 unsigned int pages; /* total of usable pages of swap */
265 unsigned int inuse_pages; /* number of those currently in use */
266 unsigned int cluster_next; /* likely index for next allocation */
267 unsigned int cluster_nr; /* countdown to next cluster search */
268 unsigned int __percpu *cluster_next_cpu; /*percpu index for next allocation */
269 struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */
270 struct rb_root swap_extent_root;/* root of the swap extent rbtree */
271 struct block_device *bdev; /* swap device or bdev of swap file */
272 struct file *swap_file; /* seldom referenced */
273 unsigned int old_block_size; /* seldom referenced */
274 struct completion comp; /* seldom referenced */
275 #ifdef CONFIG_FRONTSWAP
276 unsigned long *frontswap_map; /* frontswap in-use, one bit per page */
277 atomic_t frontswap_pages; /* frontswap pages in-use counter */
278 #endif
279 spinlock_t lock; /*
280 * protect map scan related fields like
281 * swap_map, lowest_bit, highest_bit,
282 * inuse_pages, cluster_next,
283 * cluster_nr, lowest_alloc,
284 * highest_alloc, free/discard cluster
285 * list. other fields are only changed
286 * at swapon/swapoff, so are protected
287 * by swap_lock. changing flags need
288 * hold this lock and swap_lock. If
289 * both locks need hold, hold swap_lock
290 * first.
291 */
292 spinlock_t cont_lock; /*
293 * protect swap count continuation page
294 * list.
295 */
296 struct work_struct discard_work; /* discard worker */
297 struct swap_cluster_list discard_clusters; /* discard clusters list */
298 ANDROID_VENDOR_DATA(1);
299 struct plist_node avail_lists[]; /*
300 * entries in swap_avail_heads, one
301 * entry per node.
302 * Must be last as the number of the
303 * array is nr_node_ids, which is not
304 * a fixed value so have to allocate
305 * dynamically.
306 * And it has to be an array so that
307 * plist_for_each_* can work.
308 */
309 };
310
311 #ifdef CONFIG_64BIT
312 #define SWAP_RA_ORDER_CEILING 5
313 #else
314 /* Avoid stack overflow, because we need to save part of page table */
315 #define SWAP_RA_ORDER_CEILING 3
316 #define SWAP_RA_PTE_CACHE_SIZE (1 << SWAP_RA_ORDER_CEILING)
317 #endif
318
319 struct vma_swap_readahead {
320 unsigned short win;
321 unsigned short offset;
322 unsigned short nr_pte;
323 #ifdef CONFIG_64BIT
324 pte_t *ptes;
325 #else
326 pte_t ptes[SWAP_RA_PTE_CACHE_SIZE];
327 #endif
328 };
329
330 /* linux/mm/workingset.c */
331 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages);
332 void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg);
333 void workingset_refault(struct page *page, void *shadow);
334 void workingset_activation(struct page *page);
335
336 /* Only track the nodes of mappings with shadow entries */
337 void workingset_update_node(struct xa_node *node);
338 #define mapping_set_update(xas, mapping) do { \
339 if (!dax_mapping(mapping) && !shmem_mapping(mapping)) \
340 xas_set_update(xas, workingset_update_node); \
341 } while (0)
342
343 /* linux/mm/page_alloc.c */
344 extern unsigned long totalreserve_pages;
345 extern unsigned long nr_free_buffer_pages(void);
346
347 /* Definition of global_zone_page_state not available yet */
348 #define nr_free_pages() global_zone_page_state(NR_FREE_PAGES)
349
350
351 /* linux/mm/swap.c */
352 extern void lru_note_cost(struct lruvec *lruvec, bool file,
353 unsigned int nr_pages);
354 extern void lru_note_cost_page(struct page *);
355 extern void lru_cache_add(struct page *);
356 extern void mark_page_accessed(struct page *);
357
358 extern bool lru_cache_disabled(void);
359 extern void lru_cache_disable(void);
360 extern void lru_cache_enable(void);
361 extern void lru_add_drain(void);
362 extern void lru_add_drain_cpu(int cpu);
363 extern void lru_add_drain_cpu_zone(struct zone *zone);
364 extern void lru_add_drain_all(void);
365 extern void rotate_reclaimable_page(struct page *page);
366 extern void deactivate_file_page(struct page *page);
367 extern void deactivate_page(struct page *page);
368 extern void mark_page_lazyfree(struct page *page);
369 extern void swap_setup(void);
370
371 extern void lru_cache_add_inactive_or_unevictable(struct page *page,
372 struct vm_area_struct *vma);
373
374 /* linux/mm/vmscan.c */
375 extern unsigned long zone_reclaimable_pages(struct zone *zone);
376 extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
377 gfp_t gfp_mask, nodemask_t *mask);
378
379 #define MEMCG_RECLAIM_MAY_SWAP (1 << 1)
380 #define MEMCG_RECLAIM_PROACTIVE (1 << 2)
381 extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
382 unsigned long nr_pages,
383 gfp_t gfp_mask,
384 unsigned int reclaim_options);
385 extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem,
386 gfp_t gfp_mask, bool noswap,
387 pg_data_t *pgdat,
388 unsigned long *nr_scanned);
389 extern unsigned long shrink_all_memory(unsigned long nr_pages);
390 extern int vm_swappiness;
391 extern int remove_mapping(struct address_space *mapping, struct page *page);
392
393 extern unsigned long reclaim_pages(struct list_head *page_list);
394 #ifdef CONFIG_NUMA
395 extern int node_reclaim_mode;
396 extern int sysctl_min_unmapped_ratio;
397 extern int sysctl_min_slab_ratio;
398 #else
399 #define node_reclaim_mode 0
400 #endif
401
node_reclaim_enabled(void)402 static inline bool node_reclaim_enabled(void)
403 {
404 /* Is any node_reclaim_mode bit set? */
405 return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
406 }
407
408 extern void check_move_unevictable_pages(struct pagevec *pvec);
409
410 extern void kswapd_run(int nid);
411 extern void kswapd_stop(int nid);
412
413 #ifdef CONFIG_SWAP
414
415 #include <linux/blk_types.h> /* for bio_end_io_t */
416
417 /* linux/mm/page_io.c */
418 extern int swap_readpage(struct page *page, bool do_poll);
419 extern int swap_writepage(struct page *page, struct writeback_control *wbc);
420 extern void end_swap_bio_write(struct bio *bio);
421 extern int __swap_writepage(struct page *page, struct writeback_control *wbc,
422 bio_end_io_t end_write_func);
423 extern int swap_set_page_dirty(struct page *page);
424
425 int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
426 unsigned long nr_pages, sector_t start_block);
427 int generic_swapfile_activate(struct swap_info_struct *, struct file *,
428 sector_t *);
429
430 /* linux/mm/swap_state.c */
431 /* One swap address space for each 64M swap space */
432 #define SWAP_ADDRESS_SPACE_SHIFT 14
433 #define SWAP_ADDRESS_SPACE_PAGES (1 << SWAP_ADDRESS_SPACE_SHIFT)
434 extern struct address_space *swapper_spaces[];
435 #define swap_address_space(entry) \
436 (&swapper_spaces[swp_type(entry)][swp_offset(entry) \
437 >> SWAP_ADDRESS_SPACE_SHIFT])
total_swapcache_pages(void)438 static inline unsigned long total_swapcache_pages(void)
439 {
440 return global_node_page_state(NR_SWAPCACHE);
441 }
442
443 extern void show_swap_cache_info(void);
444 extern int add_to_swap(struct page *page);
445 extern void *get_shadow_from_swap_cache(swp_entry_t entry);
446 extern int add_to_swap_cache(struct page *page, swp_entry_t entry,
447 gfp_t gfp, void **shadowp);
448 extern void __delete_from_swap_cache(struct page *page,
449 swp_entry_t entry, void *shadow);
450 extern void delete_from_swap_cache(struct page *);
451 extern void clear_shadow_from_swap_cache(int type, unsigned long begin,
452 unsigned long end);
453 extern void free_swap_cache(struct page *);
454 extern void free_page_and_swap_cache(struct page *);
455 extern void free_pages_and_swap_cache(struct page **, int);
456 extern struct page *lookup_swap_cache(swp_entry_t entry,
457 struct vm_area_struct *vma,
458 unsigned long addr);
459 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index);
460 extern struct page *read_swap_cache_async(swp_entry_t, gfp_t,
461 struct vm_area_struct *vma, unsigned long addr,
462 bool do_poll);
463 extern struct page *__read_swap_cache_async(swp_entry_t, gfp_t,
464 struct vm_area_struct *vma, unsigned long addr,
465 bool *new_page_allocated);
466 extern struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t flag,
467 struct vm_fault *vmf);
468 extern struct page *swapin_readahead(swp_entry_t entry, gfp_t flag,
469 struct vm_fault *vmf);
470
471 /* linux/mm/swapfile.c */
472 extern atomic_long_t nr_swap_pages;
473 extern long total_swap_pages;
474 extern atomic_t nr_rotate_swap;
475 extern bool has_usable_swap(void);
476
477 /* Swap 50% full? Release swapcache more aggressively.. */
vm_swap_full(void)478 static inline bool vm_swap_full(void)
479 {
480 return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages;
481 }
482
get_nr_swap_pages(void)483 static inline long get_nr_swap_pages(void)
484 {
485 return atomic_long_read(&nr_swap_pages);
486 }
487
488 extern void si_swapinfo(struct sysinfo *);
489 extern swp_entry_t get_swap_page(struct page *page);
490 extern void put_swap_page(struct page *page, swp_entry_t entry);
491 extern swp_entry_t get_swap_page_of_type(int);
492 extern int get_swap_pages(int n, swp_entry_t swp_entries[], int entry_size);
493 extern int add_swap_count_continuation(swp_entry_t, gfp_t);
494 extern void swap_shmem_alloc(swp_entry_t);
495 extern int swap_duplicate(swp_entry_t);
496 extern int swapcache_prepare(swp_entry_t);
497 extern void swap_free(swp_entry_t);
498 extern void swapcache_free_entries(swp_entry_t *entries, int n);
499 extern int free_swap_and_cache(swp_entry_t);
500 int swap_type_of(dev_t device, sector_t offset);
501 int find_first_swap(dev_t *device);
502 extern unsigned int count_swap_pages(int, int);
503 extern sector_t swapdev_block(int, pgoff_t);
504 extern int page_swapcount(struct page *);
505 extern int __swap_count(swp_entry_t entry);
506 extern int __swp_swapcount(swp_entry_t entry);
507 extern int swp_swapcount(swp_entry_t entry);
508 extern struct swap_info_struct *page_swap_info(struct page *);
509 extern struct swap_info_struct *swp_swap_info(swp_entry_t entry);
510 extern bool reuse_swap_page(struct page *, int *);
511 extern int try_to_free_swap(struct page *);
512 struct backing_dev_info;
513 extern int init_swap_address_space(unsigned int type, unsigned long nr_pages);
514 extern void exit_swap_address_space(unsigned int type);
515 extern struct swap_info_struct *get_swap_device(swp_entry_t entry);
516 sector_t swap_page_sector(struct page *page);
517
put_swap_device(struct swap_info_struct * si)518 static inline void put_swap_device(struct swap_info_struct *si)
519 {
520 percpu_ref_put(&si->users);
521 }
522
523 #else /* CONFIG_SWAP */
524
swap_readpage(struct page * page,bool do_poll)525 static inline int swap_readpage(struct page *page, bool do_poll)
526 {
527 return 0;
528 }
529
swp_swap_info(swp_entry_t entry)530 static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry)
531 {
532 return NULL;
533 }
534
get_swap_device(swp_entry_t entry)535 static inline struct swap_info_struct *get_swap_device(swp_entry_t entry)
536 {
537 return NULL;
538 }
539
put_swap_device(struct swap_info_struct * si)540 static inline void put_swap_device(struct swap_info_struct *si)
541 {
542 }
543
swap_address_space(swp_entry_t entry)544 static inline struct address_space *swap_address_space(swp_entry_t entry)
545 {
546 return NULL;
547 }
548
549 #define get_nr_swap_pages() 0L
550 #define total_swap_pages 0L
551 #define total_swapcache_pages() 0UL
552 #define vm_swap_full() 0
553
554 #define si_swapinfo(val) \
555 do { (val)->freeswap = (val)->totalswap = 0; } while (0)
556 /* only sparc can not include linux/pagemap.h in this file
557 * so leave put_page and release_pages undeclared... */
558 #define free_page_and_swap_cache(page) \
559 put_page(page)
560 #define free_pages_and_swap_cache(pages, nr) \
561 release_pages((pages), (nr));
562
free_swap_cache(struct page * page)563 static inline void free_swap_cache(struct page *page)
564 {
565 }
566
show_swap_cache_info(void)567 static inline void show_swap_cache_info(void)
568 {
569 }
570
571 /* used to sanity check ptes in zap_pte_range when CONFIG_SWAP=0 */
572 #define free_swap_and_cache(e) is_pfn_swap_entry(e)
573
add_swap_count_continuation(swp_entry_t swp,gfp_t gfp_mask)574 static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask)
575 {
576 return 0;
577 }
578
swap_shmem_alloc(swp_entry_t swp)579 static inline void swap_shmem_alloc(swp_entry_t swp)
580 {
581 }
582
swap_duplicate(swp_entry_t swp)583 static inline int swap_duplicate(swp_entry_t swp)
584 {
585 return 0;
586 }
587
swap_free(swp_entry_t swp)588 static inline void swap_free(swp_entry_t swp)
589 {
590 }
591
put_swap_page(struct page * page,swp_entry_t swp)592 static inline void put_swap_page(struct page *page, swp_entry_t swp)
593 {
594 }
595
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)596 static inline struct page *swap_cluster_readahead(swp_entry_t entry,
597 gfp_t gfp_mask, struct vm_fault *vmf)
598 {
599 return NULL;
600 }
601
swapin_readahead(swp_entry_t swp,gfp_t gfp_mask,struct vm_fault * vmf)602 static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask,
603 struct vm_fault *vmf)
604 {
605 return NULL;
606 }
607
swap_writepage(struct page * p,struct writeback_control * wbc)608 static inline int swap_writepage(struct page *p, struct writeback_control *wbc)
609 {
610 return 0;
611 }
612
lookup_swap_cache(swp_entry_t swp,struct vm_area_struct * vma,unsigned long addr)613 static inline struct page *lookup_swap_cache(swp_entry_t swp,
614 struct vm_area_struct *vma,
615 unsigned long addr)
616 {
617 return NULL;
618 }
619
620 static inline
find_get_incore_page(struct address_space * mapping,pgoff_t index)621 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
622 {
623 return find_get_page(mapping, index);
624 }
625
add_to_swap(struct page * page)626 static inline int add_to_swap(struct page *page)
627 {
628 return 0;
629 }
630
get_shadow_from_swap_cache(swp_entry_t entry)631 static inline void *get_shadow_from_swap_cache(swp_entry_t entry)
632 {
633 return NULL;
634 }
635
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp_mask,void ** shadowp)636 static inline int add_to_swap_cache(struct page *page, swp_entry_t entry,
637 gfp_t gfp_mask, void **shadowp)
638 {
639 return -1;
640 }
641
__delete_from_swap_cache(struct page * page,swp_entry_t entry,void * shadow)642 static inline void __delete_from_swap_cache(struct page *page,
643 swp_entry_t entry, void *shadow)
644 {
645 }
646
delete_from_swap_cache(struct page * page)647 static inline void delete_from_swap_cache(struct page *page)
648 {
649 }
650
clear_shadow_from_swap_cache(int type,unsigned long begin,unsigned long end)651 static inline void clear_shadow_from_swap_cache(int type, unsigned long begin,
652 unsigned long end)
653 {
654 }
655
page_swapcount(struct page * page)656 static inline int page_swapcount(struct page *page)
657 {
658 return 0;
659 }
660
__swap_count(swp_entry_t entry)661 static inline int __swap_count(swp_entry_t entry)
662 {
663 return 0;
664 }
665
__swp_swapcount(swp_entry_t entry)666 static inline int __swp_swapcount(swp_entry_t entry)
667 {
668 return 0;
669 }
670
swp_swapcount(swp_entry_t entry)671 static inline int swp_swapcount(swp_entry_t entry)
672 {
673 return 0;
674 }
675
676 #define reuse_swap_page(page, total_map_swapcount) \
677 (page_trans_huge_mapcount(page, total_map_swapcount) == 1)
678
try_to_free_swap(struct page * page)679 static inline int try_to_free_swap(struct page *page)
680 {
681 return 0;
682 }
683
get_swap_page(struct page * page)684 static inline swp_entry_t get_swap_page(struct page *page)
685 {
686 swp_entry_t entry;
687 entry.val = 0;
688 return entry;
689 }
690
691 #endif /* CONFIG_SWAP */
692
693 #ifdef CONFIG_THP_SWAP
694 extern int split_swap_cluster(swp_entry_t entry);
695 #else
split_swap_cluster(swp_entry_t entry)696 static inline int split_swap_cluster(swp_entry_t entry)
697 {
698 return 0;
699 }
700 #endif
701
702 #ifdef CONFIG_MEMCG
mem_cgroup_swappiness(struct mem_cgroup * memcg)703 static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg)
704 {
705 /* Cgroup2 doesn't have per-cgroup swappiness */
706 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
707 return vm_swappiness;
708
709 /* root ? */
710 if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg))
711 return vm_swappiness;
712
713 return memcg->swappiness;
714 }
715 #else
mem_cgroup_swappiness(struct mem_cgroup * mem)716 static inline int mem_cgroup_swappiness(struct mem_cgroup *mem)
717 {
718 return vm_swappiness;
719 }
720 #endif
721
722 #if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
723 extern void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask);
cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)724 static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
725 {
726 if (mem_cgroup_disabled())
727 return;
728 __cgroup_throttle_swaprate(page, gfp_mask);
729 }
730 #else
cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)731 static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
732 {
733 }
734 #endif
735
736 #ifdef CONFIG_MEMCG_SWAP
737 extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry);
738 extern int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry);
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)739 static inline int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
740 {
741 if (mem_cgroup_disabled())
742 return 0;
743 return __mem_cgroup_try_charge_swap(page, entry);
744 }
745
746 extern void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages);
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)747 static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
748 {
749 if (mem_cgroup_disabled())
750 return;
751 __mem_cgroup_uncharge_swap(entry, nr_pages);
752 }
753
754 extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg);
755 extern bool mem_cgroup_swap_full(struct page *page);
756 #else
mem_cgroup_swapout(struct page * page,swp_entry_t entry)757 static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
758 {
759 }
760
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)761 static inline int mem_cgroup_try_charge_swap(struct page *page,
762 swp_entry_t entry)
763 {
764 return 0;
765 }
766
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)767 static inline void mem_cgroup_uncharge_swap(swp_entry_t entry,
768 unsigned int nr_pages)
769 {
770 }
771
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)772 static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
773 {
774 return get_nr_swap_pages();
775 }
776
mem_cgroup_swap_full(struct page * page)777 static inline bool mem_cgroup_swap_full(struct page *page)
778 {
779 return vm_swap_full();
780 }
781 #endif
782
783 #endif /* __KERNEL__*/
784 #endif /* _LINUX_SWAP_H */
785