1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5 * Internal slab definitions
6 */
7
8 #ifdef CONFIG_SLOB
9 /*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20 struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31 };
32
33 #endif /* CONFIG_SLOB */
34
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49
50 /*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58 enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64 };
65
66 extern enum slab_state slab_state;
67
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 const char *name[NR_KMALLOC_TYPES];
80 unsigned int size;
81 } kmalloc_info[];
82
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93
94 #ifdef CONFIG_SLUB
95 /*
96 * Tracking user of a slab.
97 */
98 #define TRACK_ADDRS_COUNT 16
99 struct track {
100 unsigned long addr; /* Called from address */
101 #ifdef CONFIG_STACKTRACE
102 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
103 #endif
104 int cpu; /* Was running on cpu */
105 int pid; /* Pid context */
106 unsigned long when; /* When did the operation occur */
107 };
108
109 enum track_item { TRACK_ALLOC, TRACK_FREE };
110 #endif
111
112 /* Functions provided by the slab allocators */
113 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
114
115 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
116 slab_flags_t flags, unsigned int useroffset,
117 unsigned int usersize);
118 extern void create_boot_cache(struct kmem_cache *, const char *name,
119 unsigned int size, slab_flags_t flags,
120 unsigned int useroffset, unsigned int usersize);
121
122 int slab_unmergeable(struct kmem_cache *s);
123 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
124 slab_flags_t flags, const char *name, void (*ctor)(void *));
125 #ifndef CONFIG_SLOB
126 struct kmem_cache *
127 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
128 slab_flags_t flags, void (*ctor)(void *));
129
130 slab_flags_t kmem_cache_flags(unsigned int object_size,
131 slab_flags_t flags, const char *name);
132 #else
133 static inline struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))134 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
135 slab_flags_t flags, void (*ctor)(void *))
136 { return NULL; }
137
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)138 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
139 slab_flags_t flags, const char *name)
140 {
141 return flags;
142 }
143 #endif
144
145
146 /* Legal flag mask for kmem_cache_create(), for various configurations */
147 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
148 SLAB_CACHE_DMA32 | SLAB_PANIC | \
149 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
150
151 #if defined(CONFIG_DEBUG_SLAB)
152 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
153 #elif defined(CONFIG_SLUB_DEBUG)
154 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
155 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
156 #else
157 #define SLAB_DEBUG_FLAGS (0)
158 #endif
159
160 #if defined(CONFIG_SLAB)
161 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
162 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
163 SLAB_ACCOUNT)
164 #elif defined(CONFIG_SLUB)
165 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
166 SLAB_TEMPORARY | SLAB_ACCOUNT)
167 #else
168 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
169 #endif
170
171 /* Common flags available with current configuration */
172 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
173
174 /* Common flags permitted for kmem_cache_create */
175 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
176 SLAB_RED_ZONE | \
177 SLAB_POISON | \
178 SLAB_STORE_USER | \
179 SLAB_TRACE | \
180 SLAB_CONSISTENCY_CHECKS | \
181 SLAB_MEM_SPREAD | \
182 SLAB_NOLEAKTRACE | \
183 SLAB_RECLAIM_ACCOUNT | \
184 SLAB_TEMPORARY | \
185 SLAB_ACCOUNT)
186
187 bool __kmem_cache_empty(struct kmem_cache *);
188 int __kmem_cache_shutdown(struct kmem_cache *);
189 void __kmem_cache_release(struct kmem_cache *);
190 int __kmem_cache_shrink(struct kmem_cache *);
191 void slab_kmem_cache_release(struct kmem_cache *);
192
193 struct seq_file;
194 struct file;
195
196 struct slabinfo {
197 unsigned long active_objs;
198 unsigned long num_objs;
199 unsigned long active_slabs;
200 unsigned long num_slabs;
201 unsigned long shared_avail;
202 unsigned int limit;
203 unsigned int batchcount;
204 unsigned int shared;
205 unsigned int objects_per_slab;
206 unsigned int cache_order;
207 };
208
209 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
210 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
211 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
212 size_t count, loff_t *ppos);
213
214 /*
215 * Generic implementation of bulk operations
216 * These are useful for situations in which the allocator cannot
217 * perform optimizations. In that case segments of the object listed
218 * may be allocated or freed using these operations.
219 */
220 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
221 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
222
cache_vmstat_idx(struct kmem_cache * s)223 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
224 {
225 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
226 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
227 }
228
229 #ifdef CONFIG_SLUB_DEBUG
230 #ifdef CONFIG_SLUB_DEBUG_ON
231 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
232 #else
233 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
234 #endif
235 extern void print_tracking(struct kmem_cache *s, void *object);
236 long validate_slab_cache(struct kmem_cache *s);
237 extern unsigned long get_each_object_track(struct kmem_cache *s,
238 struct page *page, enum track_item alloc,
239 int (*fn)(const struct kmem_cache *, const void *,
240 const struct track *, void *), void *private);
__slub_debug_enabled(void)241 static inline bool __slub_debug_enabled(void)
242 {
243 return static_branch_unlikely(&slub_debug_enabled);
244 }
245 #else
print_tracking(struct kmem_cache * s,void * object)246 static inline void print_tracking(struct kmem_cache *s, void *object)
247 {
248 }
249 #ifdef CONFIG_SLUB
get_each_object_track(struct kmem_cache * s,struct page * page,enum track_item alloc,int (* fn)(const struct kmem_cache *,const void *,const struct track *,void *),void * private)250 static inline unsigned long get_each_object_track(struct kmem_cache *s,
251 struct page *page, enum track_item alloc,
252 int (*fn)(const struct kmem_cache *, const void *,
253 const struct track *, void *), void *private)
254 {
255 return 0;
256 }
257 #endif
__slub_debug_enabled(void)258 static inline bool __slub_debug_enabled(void)
259 {
260 return false;
261 }
262 #endif
263
264 /*
265 * Returns true if any of the specified slub_debug flags is enabled for the
266 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
267 * the static key.
268 */
kmem_cache_debug_flags(struct kmem_cache * s,slab_flags_t flags)269 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
270 {
271 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
272 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
273 if (__slub_debug_enabled())
274 return s->flags & flags;
275 return false;
276 }
277
278 #ifdef CONFIG_MEMCG_KMEM
279 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
280 gfp_t gfp, bool new_page);
281 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
282 enum node_stat_item idx, int nr);
283
memcg_free_page_obj_cgroups(struct page * page)284 static inline void memcg_free_page_obj_cgroups(struct page *page)
285 {
286 kfree(page_objcgs(page));
287 page->memcg_data = 0;
288 }
289
obj_full_size(struct kmem_cache * s)290 static inline size_t obj_full_size(struct kmem_cache *s)
291 {
292 /*
293 * For each accounted object there is an extra space which is used
294 * to store obj_cgroup membership. Charge it too.
295 */
296 return s->size + sizeof(struct obj_cgroup *);
297 }
298
299 /*
300 * Returns false if the allocation should fail.
301 */
memcg_slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t objects,gfp_t flags)302 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
303 struct obj_cgroup **objcgp,
304 size_t objects, gfp_t flags)
305 {
306 struct obj_cgroup *objcg;
307
308 if (!memcg_kmem_enabled())
309 return true;
310
311 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
312 return true;
313
314 objcg = get_obj_cgroup_from_current();
315 if (!objcg)
316 return true;
317
318 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
319 obj_cgroup_put(objcg);
320 return false;
321 }
322
323 *objcgp = objcg;
324 return true;
325 }
326
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)327 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
328 struct obj_cgroup *objcg,
329 gfp_t flags, size_t size,
330 void **p)
331 {
332 struct page *page;
333 unsigned long off;
334 size_t i;
335
336 if (!memcg_kmem_enabled() || !objcg)
337 return;
338
339 for (i = 0; i < size; i++) {
340 if (likely(p[i])) {
341 page = virt_to_head_page(p[i]);
342
343 if (!page_objcgs(page) &&
344 memcg_alloc_page_obj_cgroups(page, s, flags,
345 false)) {
346 obj_cgroup_uncharge(objcg, obj_full_size(s));
347 continue;
348 }
349
350 off = obj_to_index(s, page, p[i]);
351 obj_cgroup_get(objcg);
352 page_objcgs(page)[off] = objcg;
353 mod_objcg_state(objcg, page_pgdat(page),
354 cache_vmstat_idx(s), obj_full_size(s));
355 } else {
356 obj_cgroup_uncharge(objcg, obj_full_size(s));
357 }
358 }
359 obj_cgroup_put(objcg);
360 }
361
memcg_slab_free_hook(struct kmem_cache * s_orig,void ** p,int objects)362 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
363 void **p, int objects)
364 {
365 struct kmem_cache *s;
366 struct obj_cgroup **objcgs;
367 struct obj_cgroup *objcg;
368 struct page *page;
369 unsigned int off;
370 int i;
371
372 if (!memcg_kmem_enabled())
373 return;
374
375 for (i = 0; i < objects; i++) {
376 if (unlikely(!p[i]))
377 continue;
378
379 page = virt_to_head_page(p[i]);
380 objcgs = page_objcgs_check(page);
381 if (!objcgs)
382 continue;
383
384 if (!s_orig)
385 s = page->slab_cache;
386 else
387 s = s_orig;
388
389 off = obj_to_index(s, page, p[i]);
390 objcg = objcgs[off];
391 if (!objcg)
392 continue;
393
394 objcgs[off] = NULL;
395 obj_cgroup_uncharge(objcg, obj_full_size(s));
396 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
397 -obj_full_size(s));
398 obj_cgroup_put(objcg);
399 }
400 }
401
402 #else /* CONFIG_MEMCG_KMEM */
memcg_from_slab_obj(void * ptr)403 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
404 {
405 return NULL;
406 }
407
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp,bool new_page)408 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
409 struct kmem_cache *s, gfp_t gfp,
410 bool new_page)
411 {
412 return 0;
413 }
414
memcg_free_page_obj_cgroups(struct page * page)415 static inline void memcg_free_page_obj_cgroups(struct page *page)
416 {
417 }
418
memcg_slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t objects,gfp_t flags)419 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
420 struct obj_cgroup **objcgp,
421 size_t objects, gfp_t flags)
422 {
423 return true;
424 }
425
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)426 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
427 struct obj_cgroup *objcg,
428 gfp_t flags, size_t size,
429 void **p)
430 {
431 }
432
memcg_slab_free_hook(struct kmem_cache * s,void ** p,int objects)433 static inline void memcg_slab_free_hook(struct kmem_cache *s,
434 void **p, int objects)
435 {
436 }
437 #endif /* CONFIG_MEMCG_KMEM */
438
virt_to_cache(const void * obj)439 static inline struct kmem_cache *virt_to_cache(const void *obj)
440 {
441 struct page *page;
442
443 page = virt_to_head_page(obj);
444 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
445 __func__))
446 return NULL;
447 return page->slab_cache;
448 }
449
account_slab_page(struct page * page,int order,struct kmem_cache * s,gfp_t gfp)450 static __always_inline void account_slab_page(struct page *page, int order,
451 struct kmem_cache *s,
452 gfp_t gfp)
453 {
454 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
455 memcg_alloc_page_obj_cgroups(page, s, gfp, true);
456
457 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
458 PAGE_SIZE << order);
459 }
460
unaccount_slab_page(struct page * page,int order,struct kmem_cache * s)461 static __always_inline void unaccount_slab_page(struct page *page, int order,
462 struct kmem_cache *s)
463 {
464 if (memcg_kmem_enabled())
465 memcg_free_page_obj_cgroups(page);
466
467 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
468 -(PAGE_SIZE << order));
469 }
470
cache_from_obj(struct kmem_cache * s,void * x)471 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
472 {
473 struct kmem_cache *cachep;
474
475 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
476 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
477 return s;
478
479 cachep = virt_to_cache(x);
480 if (WARN(cachep && cachep != s,
481 "%s: Wrong slab cache. %s but object is from %s\n",
482 __func__, s->name, cachep->name))
483 print_tracking(cachep, x);
484 return cachep;
485 }
486
slab_ksize(const struct kmem_cache * s)487 static inline size_t slab_ksize(const struct kmem_cache *s)
488 {
489 #ifndef CONFIG_SLUB
490 return s->object_size;
491
492 #else /* CONFIG_SLUB */
493 # ifdef CONFIG_SLUB_DEBUG
494 /*
495 * Debugging requires use of the padding between object
496 * and whatever may come after it.
497 */
498 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
499 return s->object_size;
500 # endif
501 if (s->flags & SLAB_KASAN)
502 return s->object_size;
503 /*
504 * If we have the need to store the freelist pointer
505 * back there or track user information then we can
506 * only use the space before that information.
507 */
508 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
509 return s->inuse;
510 /*
511 * Else we can use all the padding etc for the allocation
512 */
513 return s->size;
514 #endif
515 }
516
slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t size,gfp_t flags)517 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
518 struct obj_cgroup **objcgp,
519 size_t size, gfp_t flags)
520 {
521 flags &= gfp_allowed_mask;
522
523 might_alloc(flags);
524
525 if (should_failslab(s, flags))
526 return NULL;
527
528 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
529 return NULL;
530
531 return s;
532 }
533
slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p,bool init)534 static inline void slab_post_alloc_hook(struct kmem_cache *s,
535 struct obj_cgroup *objcg, gfp_t flags,
536 size_t size, void **p, bool init)
537 {
538 size_t i;
539
540 flags &= gfp_allowed_mask;
541
542 /*
543 * As memory initialization might be integrated into KASAN,
544 * kasan_slab_alloc and initialization memset must be
545 * kept together to avoid discrepancies in behavior.
546 *
547 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
548 */
549 for (i = 0; i < size; i++) {
550 p[i] = kasan_slab_alloc(s, p[i], flags, init);
551 if (p[i] && init && !kasan_has_integrated_init())
552 memset(p[i], 0, s->object_size);
553 kmemleak_alloc_recursive(p[i], s->object_size, 1,
554 s->flags, flags);
555 }
556
557 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
558 }
559
560 #ifndef CONFIG_SLOB
561 /*
562 * The slab lists for all objects.
563 */
564 struct kmem_cache_node {
565 spinlock_t list_lock;
566
567 #ifdef CONFIG_SLAB
568 struct list_head slabs_partial; /* partial list first, better asm code */
569 struct list_head slabs_full;
570 struct list_head slabs_free;
571 unsigned long total_slabs; /* length of all slab lists */
572 unsigned long free_slabs; /* length of free slab list only */
573 unsigned long free_objects;
574 unsigned int free_limit;
575 unsigned int colour_next; /* Per-node cache coloring */
576 struct array_cache *shared; /* shared per node */
577 struct alien_cache **alien; /* on other nodes */
578 unsigned long next_reap; /* updated without locking */
579 int free_touched; /* updated without locking */
580 #endif
581
582 #ifdef CONFIG_SLUB
583 unsigned long nr_partial;
584 struct list_head partial;
585 #ifdef CONFIG_SLUB_DEBUG
586 atomic_long_t nr_slabs;
587 atomic_long_t total_objects;
588 struct list_head full;
589 #endif
590 #endif
591
592 };
593
get_node(struct kmem_cache * s,int node)594 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
595 {
596 return s->node[node];
597 }
598
599 /*
600 * Iterator over all nodes. The body will be executed for each node that has
601 * a kmem_cache_node structure allocated (which is true for all online nodes)
602 */
603 #define for_each_kmem_cache_node(__s, __node, __n) \
604 for (__node = 0; __node < nr_node_ids; __node++) \
605 if ((__n = get_node(__s, __node)))
606
607 #endif
608
609 void *slab_start(struct seq_file *m, loff_t *pos);
610 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
611 void slab_stop(struct seq_file *m, void *p);
612 int memcg_slab_show(struct seq_file *m, void *p);
613
614 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
615 void dump_unreclaimable_slab(void);
616 #else
dump_unreclaimable_slab(void)617 static inline void dump_unreclaimable_slab(void)
618 {
619 }
620 #endif
621
622 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
623
624 #ifdef CONFIG_SLAB_FREELIST_RANDOM
625 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
626 gfp_t gfp);
627 void cache_random_seq_destroy(struct kmem_cache *cachep);
628 #else
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)629 static inline int cache_random_seq_create(struct kmem_cache *cachep,
630 unsigned int count, gfp_t gfp)
631 {
632 return 0;
633 }
cache_random_seq_destroy(struct kmem_cache * cachep)634 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
636
slab_want_init_on_alloc(gfp_t flags,struct kmem_cache * c)637 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
638 {
639 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
640 &init_on_alloc)) {
641 if (c->ctor)
642 return false;
643 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
644 return flags & __GFP_ZERO;
645 return true;
646 }
647 return flags & __GFP_ZERO;
648 }
649
slab_want_init_on_free(struct kmem_cache * c)650 static inline bool slab_want_init_on_free(struct kmem_cache *c)
651 {
652 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
653 &init_on_free))
654 return !(c->ctor ||
655 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
656 return false;
657 }
658
659 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
660 void debugfs_slab_release(struct kmem_cache *);
661 #else
debugfs_slab_release(struct kmem_cache * s)662 static inline void debugfs_slab_release(struct kmem_cache *s) { }
663 #endif
664
665 #ifdef CONFIG_PRINTK
666 #define KS_ADDRS_COUNT 16
667 struct kmem_obj_info {
668 void *kp_ptr;
669 struct page *kp_page;
670 void *kp_objp;
671 unsigned long kp_data_offset;
672 struct kmem_cache *kp_slab_cache;
673 void *kp_ret;
674 void *kp_stack[KS_ADDRS_COUNT];
675 void *kp_free_stack[KS_ADDRS_COUNT];
676 };
677 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
678 #endif
679
680 #endif /* MM_SLAB_H */
681