1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 #include <linux/page_pinner.h>
36 #include <linux/android_kabi.h>
37
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct file_ra_state;
42 struct user_struct;
43 struct writeback_control;
44 struct bdi_writeback;
45 struct pt_regs;
46
47 extern int sysctl_page_lock_unfairness;
48
49 void init_mm_internals(void);
50
51 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
52 extern unsigned long max_mapnr;
53
set_max_mapnr(unsigned long limit)54 static inline void set_max_mapnr(unsigned long limit)
55 {
56 max_mapnr = limit;
57 }
58 #else
set_max_mapnr(unsigned long limit)59 static inline void set_max_mapnr(unsigned long limit) { }
60 #endif
61
62 extern atomic_long_t _totalram_pages;
totalram_pages(void)63 static inline unsigned long totalram_pages(void)
64 {
65 return (unsigned long)atomic_long_read(&_totalram_pages);
66 }
67
totalram_pages_inc(void)68 static inline void totalram_pages_inc(void)
69 {
70 atomic_long_inc(&_totalram_pages);
71 }
72
totalram_pages_dec(void)73 static inline void totalram_pages_dec(void)
74 {
75 atomic_long_dec(&_totalram_pages);
76 }
77
totalram_pages_add(long count)78 static inline void totalram_pages_add(long count)
79 {
80 atomic_long_add(count, &_totalram_pages);
81 }
82
83 extern void * high_memory;
84 extern int page_cluster;
85
86 #ifdef CONFIG_SYSCTL
87 extern int sysctl_legacy_va_layout;
88 #else
89 #define sysctl_legacy_va_layout 0
90 #endif
91
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
93 extern const int mmap_rnd_bits_min;
94 extern const int mmap_rnd_bits_max;
95 extern int mmap_rnd_bits __read_mostly;
96 #endif
97 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
98 extern const int mmap_rnd_compat_bits_min;
99 extern const int mmap_rnd_compat_bits_max;
100 extern int mmap_rnd_compat_bits __read_mostly;
101 #endif
102
103 #include <asm/page.h>
104 #include <asm/processor.h>
105
106 /*
107 * Architectures that support memory tagging (assigning tags to memory regions,
108 * embedding these tags into addresses that point to these memory regions, and
109 * checking that the memory and the pointer tags match on memory accesses)
110 * redefine this macro to strip tags from pointers.
111 * It's defined as noop for architectures that don't support memory tagging.
112 */
113 #ifndef untagged_addr
114 #define untagged_addr(addr) (addr)
115 #endif
116
117 #ifndef __pa_symbol
118 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
119 #endif
120
121 #ifndef page_to_virt
122 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
123 #endif
124
125 #ifndef lm_alias
126 #define lm_alias(x) __va(__pa_symbol(x))
127 #endif
128
129 /*
130 * To prevent common memory management code establishing
131 * a zero page mapping on a read fault.
132 * This macro should be defined within <asm/pgtable.h>.
133 * s390 does this to prevent multiplexing of hardware bits
134 * related to the physical page in case of virtualization.
135 */
136 #ifndef mm_forbids_zeropage
137 #define mm_forbids_zeropage(X) (0)
138 #endif
139
140 /*
141 * On some architectures it is expensive to call memset() for small sizes.
142 * If an architecture decides to implement their own version of
143 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
144 * define their own version of this macro in <asm/pgtable.h>
145 */
146 #if BITS_PER_LONG == 64
147 /* This function must be updated when the size of struct page grows above 80
148 * or reduces below 56. The idea that compiler optimizes out switch()
149 * statement, and only leaves move/store instructions. Also the compiler can
150 * combine write statements if they are both assignments and can be reordered,
151 * this can result in several of the writes here being dropped.
152 */
153 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)154 static inline void __mm_zero_struct_page(struct page *page)
155 {
156 unsigned long *_pp = (void *)page;
157
158 /* Check that struct page is either 56, 64, 72, or 80 bytes */
159 BUILD_BUG_ON(sizeof(struct page) & 7);
160 BUILD_BUG_ON(sizeof(struct page) < 56);
161 BUILD_BUG_ON(sizeof(struct page) > 80);
162
163 switch (sizeof(struct page)) {
164 case 80:
165 _pp[9] = 0;
166 fallthrough;
167 case 72:
168 _pp[8] = 0;
169 fallthrough;
170 case 64:
171 _pp[7] = 0;
172 fallthrough;
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182 }
183 #else
184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186
187 /*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203 #define MAPCOUNT_ELF_CORE_MARGIN (5)
204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206 extern int sysctl_max_map_count;
207
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210
211 extern int sysctl_overcommit_memory;
212 extern int sysctl_overcommit_ratio;
213 extern unsigned long sysctl_overcommit_kbytes;
214
215 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
220 loff_t *);
221 /*
222 * Any attempt to mark this function as static leads to build failure
223 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
224 * is referred to by BPF code. This must be visible for error injection.
225 */
226 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
227 pgoff_t index, gfp_t gfp, void **shadowp);
228
229 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
230 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
231 #else
232 #define nth_page(page,n) ((page) + (n))
233 #endif
234
235 /* to align the pointer to the (next) page boundary */
236 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
237
238 /* to align the pointer to the (prev) page boundary */
239 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
240
241 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
242 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
243
244 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
245
246 void setup_initial_init_mm(void *start_code, void *end_code,
247 void *end_data, void *brk);
248
249 /*
250 * Linux kernel virtual memory manager primitives.
251 * The idea being to have a "virtual" mm in the same way
252 * we have a virtual fs - giving a cleaner interface to the
253 * mm details, and allowing different kinds of memory mappings
254 * (from shared memory to executable loading to arbitrary
255 * mmap() functions).
256 */
257
258 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
259 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
260 void vm_area_free_no_check(struct vm_area_struct *);
261 void vm_area_free(struct vm_area_struct *);
262
263 #ifndef CONFIG_MMU
264 extern struct rb_root nommu_region_tree;
265 extern struct rw_semaphore nommu_region_sem;
266
267 extern unsigned int kobjsize(const void *objp);
268 #endif
269
270 /*
271 * vm_flags in vm_area_struct, see mm_types.h.
272 * When changing, update also include/trace/events/mmflags.h
273 */
274 #define VM_NONE 0x00000000
275
276 #define VM_READ 0x00000001 /* currently active flags */
277 #define VM_WRITE 0x00000002
278 #define VM_EXEC 0x00000004
279 #define VM_SHARED 0x00000008
280
281 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
282 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
283 #define VM_MAYWRITE 0x00000020
284 #define VM_MAYEXEC 0x00000040
285 #define VM_MAYSHARE 0x00000080
286
287 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
289 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
290 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
291
292 #define VM_LOCKED 0x00002000
293 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
294
295 /* Used by sys_madvise() */
296 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
297 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
298
299 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
300 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
301 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
302 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
303 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
304 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
305 #define VM_SYNC 0x00800000 /* Synchronous page faults */
306 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
307 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
308 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
309
310 #ifdef CONFIG_MEM_SOFT_DIRTY
311 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
312 #else
313 # define VM_SOFTDIRTY 0
314 #endif
315
316 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
317 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
318 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
319 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
320
321 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
322 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
328 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
329 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
330 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
331 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
332 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
333
334 #ifdef CONFIG_ARCH_HAS_PKEYS
335 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
336 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
337 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
338 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
339 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
340 #ifdef CONFIG_PPC
341 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
342 #else
343 # define VM_PKEY_BIT4 0
344 #endif
345 #endif /* CONFIG_ARCH_HAS_PKEYS */
346
347 #if defined(CONFIG_X86)
348 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
349 #elif defined(CONFIG_PPC)
350 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
351 #elif defined(CONFIG_PARISC)
352 # define VM_GROWSUP VM_ARCH_1
353 #elif defined(CONFIG_IA64)
354 # define VM_GROWSUP VM_ARCH_1
355 #elif defined(CONFIG_SPARC64)
356 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
357 # define VM_ARCH_CLEAR VM_SPARC_ADI
358 #elif defined(CONFIG_ARM64)
359 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
360 # define VM_ARCH_CLEAR VM_ARM64_BTI
361 #elif !defined(CONFIG_MMU)
362 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
363 #endif
364
365 #if defined(CONFIG_ARM64_MTE)
366 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
367 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
368 #else
369 # define VM_MTE VM_NONE
370 # define VM_MTE_ALLOWED VM_NONE
371 #endif
372
373 #ifndef VM_GROWSUP
374 # define VM_GROWSUP VM_NONE
375 #endif
376
377 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
378 # define VM_UFFD_MINOR_BIT 37
379 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
380 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
381 # define VM_UFFD_MINOR VM_NONE
382 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
383
384 /* Bits set in the VMA until the stack is in its final location */
385 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
386
387 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
388
389 /* Common data flag combinations */
390 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
393 VM_MAYWRITE | VM_MAYEXEC)
394 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
395 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
396
397 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
398 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
399 #endif
400
401 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
402 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
403 #endif
404
405 #ifdef CONFIG_STACK_GROWSUP
406 #define VM_STACK VM_GROWSUP
407 #else
408 #define VM_STACK VM_GROWSDOWN
409 #endif
410
411 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
412
413 /* VMA basic access permission flags */
414 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
415
416
417 /*
418 * Special vmas that are non-mergable, non-mlock()able.
419 */
420 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
421
422 /* This mask prevents VMA from being scanned with khugepaged */
423 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
424
425 /* This mask defines which mm->def_flags a process can inherit its parent */
426 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
427
428 /* This mask is used to clear all the VMA flags used by mlock */
429 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
430
431 /* Arch-specific flags to clear when updating VM flags on protection change */
432 #ifndef VM_ARCH_CLEAR
433 # define VM_ARCH_CLEAR VM_NONE
434 #endif
435 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
436
437 /*
438 * mapping from the currently active vm_flags protection bits (the
439 * low four bits) to a page protection mask..
440 */
441 extern pgprot_t protection_map[16];
442
443 /**
444 * enum fault_flag - Fault flag definitions.
445 * @FAULT_FLAG_WRITE: Fault was a write fault.
446 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
447 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
448 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
449 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
450 * @FAULT_FLAG_TRIED: The fault has been tried once.
451 * @FAULT_FLAG_USER: The fault originated in userspace.
452 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
453 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
454 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
455 * @FAULT_FLAG_SPECULATIVE: The fault is handled without holding the mmap lock.
456 *
457 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
458 * whether we would allow page faults to retry by specifying these two
459 * fault flags correctly. Currently there can be three legal combinations:
460 *
461 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
462 * this is the first try
463 *
464 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
465 * we've already tried at least once
466 *
467 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
468 *
469 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
470 * be used. Note that page faults can be allowed to retry for multiple times,
471 * in which case we'll have an initial fault with flags (a) then later on
472 * continuous faults with flags (b). We should always try to detect pending
473 * signals before a retry to make sure the continuous page faults can still be
474 * interrupted if necessary.
475 */
476 enum fault_flag {
477 FAULT_FLAG_WRITE = 1 << 0,
478 FAULT_FLAG_MKWRITE = 1 << 1,
479 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
480 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
481 FAULT_FLAG_KILLABLE = 1 << 4,
482 FAULT_FLAG_TRIED = 1 << 5,
483 FAULT_FLAG_USER = 1 << 6,
484 FAULT_FLAG_REMOTE = 1 << 7,
485 FAULT_FLAG_INSTRUCTION = 1 << 8,
486 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
487 FAULT_FLAG_SPECULATIVE = 1 << 10,
488 };
489
490 /*
491 * The default fault flags that should be used by most of the
492 * arch-specific page fault handlers.
493 */
494 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
495 FAULT_FLAG_KILLABLE | \
496 FAULT_FLAG_INTERRUPTIBLE)
497
498 /**
499 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
500 * @flags: Fault flags.
501 *
502 * This is mostly used for places where we want to try to avoid taking
503 * the mmap_lock for too long a time when waiting for another condition
504 * to change, in which case we can try to be polite to release the
505 * mmap_lock in the first round to avoid potential starvation of other
506 * processes that would also want the mmap_lock.
507 *
508 * Return: true if the page fault allows retry and this is the first
509 * attempt of the fault handling; false otherwise.
510 */
fault_flag_allow_retry_first(enum fault_flag flags)511 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
512 {
513 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
514 (!(flags & FAULT_FLAG_TRIED));
515 }
516
517 #define FAULT_FLAG_TRACE \
518 { FAULT_FLAG_WRITE, "WRITE" }, \
519 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
520 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
521 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
522 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
523 { FAULT_FLAG_TRIED, "TRIED" }, \
524 { FAULT_FLAG_USER, "USER" }, \
525 { FAULT_FLAG_REMOTE, "REMOTE" }, \
526 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
527 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
528 { FAULT_FLAG_SPECULATIVE, "SPECULATIVE" }
529
530 /*
531 * vm_fault is filled by the pagefault handler and passed to the vma's
532 * ->fault function. The vma's ->fault is responsible for returning a bitmask
533 * of VM_FAULT_xxx flags that give details about how the fault was handled.
534 *
535 * MM layer fills up gfp_mask for page allocations but fault handler might
536 * alter it if its implementation requires a different allocation context.
537 *
538 * pgoff should be used in favour of virtual_address, if possible.
539 */
540 struct vm_fault {
541 const struct {
542 struct vm_area_struct *vma; /* Target VMA */
543 gfp_t gfp_mask; /* gfp mask to be used for allocations */
544 pgoff_t pgoff; /* Logical page offset based on vma */
545 unsigned long address; /* Faulting virtual address */
546 };
547 enum fault_flag flags; /* FAULT_FLAG_xxx flags
548 * XXX: should really be 'const' */
549 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
550 unsigned long seq;
551 pmd_t orig_pmd;
552 #endif
553 pmd_t *pmd; /* Pointer to pmd entry matching
554 * the 'address' */
555 pud_t *pud; /* Pointer to pud entry matching
556 * the 'address'
557 */
558 union {
559 pte_t orig_pte; /* Value of PTE at the time of fault */
560 #ifndef CONFIG_SPECULATIVE_PAGE_FAULT
561 pmd_t orig_pmd; /* Value of PMD at the time of fault,
562 * used by PMD fault only.
563 */
564 #endif
565 };
566
567 struct page *cow_page; /* Page handler may use for COW fault */
568 struct page *page; /* ->fault handlers should return a
569 * page here, unless VM_FAULT_NOPAGE
570 * is set (which is also implied by
571 * VM_FAULT_ERROR).
572 */
573 /* These three entries are valid only while holding ptl lock */
574 pte_t *pte; /* Pointer to pte entry matching
575 * the 'address'. NULL if the page
576 * table hasn't been allocated.
577 */
578 spinlock_t *ptl; /* Page table lock.
579 * Protects pte page table if 'pte'
580 * is not NULL, otherwise pmd.
581 */
582 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
583 * vm_ops->map_pages() sets up a page
584 * table from atomic context.
585 * do_fault_around() pre-allocates
586 * page table to avoid allocation from
587 * atomic context.
588 */
589 };
590
591 /* page entry size for vm->huge_fault() */
592 enum page_entry_size {
593 PE_SIZE_PTE = 0,
594 PE_SIZE_PMD,
595 PE_SIZE_PUD,
596 };
597
598 /*
599 * These are the virtual MM functions - opening of an area, closing and
600 * unmapping it (needed to keep files on disk up-to-date etc), pointer
601 * to the functions called when a no-page or a wp-page exception occurs.
602 */
603 struct vm_operations_struct {
604 void (*open)(struct vm_area_struct * area);
605 void (*close)(struct vm_area_struct * area);
606 /* Called any time before splitting to check if it's allowed */
607 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
608 int (*mremap)(struct vm_area_struct *area);
609 /*
610 * Called by mprotect() to make driver-specific permission
611 * checks before mprotect() is finalised. The VMA must not
612 * be modified. Returns 0 if eprotect() can proceed.
613 */
614 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
615 unsigned long end, unsigned long newflags);
616 vm_fault_t (*fault)(struct vm_fault *vmf);
617 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
618 enum page_entry_size pe_size);
619 vm_fault_t (*map_pages)(struct vm_fault *vmf,
620 pgoff_t start_pgoff, pgoff_t end_pgoff);
621 unsigned long (*pagesize)(struct vm_area_struct * area);
622
623 /* notification that a previously read-only page is about to become
624 * writable, if an error is returned it will cause a SIGBUS */
625 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
626
627 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
628 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
629
630 /* called by access_process_vm when get_user_pages() fails, typically
631 * for use by special VMAs. See also generic_access_phys() for a generic
632 * implementation useful for any iomem mapping.
633 */
634 int (*access)(struct vm_area_struct *vma, unsigned long addr,
635 void *buf, int len, int write);
636
637 /* Called by the /proc/PID/maps code to ask the vma whether it
638 * has a special name. Returning non-NULL will also cause this
639 * vma to be dumped unconditionally. */
640 const char *(*name)(struct vm_area_struct *vma);
641
642 #ifdef CONFIG_NUMA
643 /*
644 * set_policy() op must add a reference to any non-NULL @new mempolicy
645 * to hold the policy upon return. Caller should pass NULL @new to
646 * remove a policy and fall back to surrounding context--i.e. do not
647 * install a MPOL_DEFAULT policy, nor the task or system default
648 * mempolicy.
649 */
650 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
651
652 /*
653 * get_policy() op must add reference [mpol_get()] to any policy at
654 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
655 * in mm/mempolicy.c will do this automatically.
656 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
657 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
658 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
659 * must return NULL--i.e., do not "fallback" to task or system default
660 * policy.
661 */
662 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
663 unsigned long addr);
664 #endif
665 /*
666 * Called by vm_normal_page() for special PTEs to find the
667 * page for @addr. This is useful if the default behavior
668 * (using pte_page()) would not find the correct page.
669 */
670 struct page *(*find_special_page)(struct vm_area_struct *vma,
671 unsigned long addr);
672 /*
673 * speculative indicates that the vm_operations support
674 * speculative page faults. This allows ->fault and ->map_pages
675 * to be called with FAULT_FLAG_SPECULATIVE set; such calls will
676 * run within an rcu read locked section and with mmap lock not held.
677 */
678 bool speculative;
679
680 ANDROID_KABI_RESERVE(1);
681 ANDROID_KABI_RESERVE(2);
682 ANDROID_KABI_RESERVE(3);
683 ANDROID_KABI_RESERVE(4);
684 };
685
INIT_VMA(struct vm_area_struct * vma)686 static inline void INIT_VMA(struct vm_area_struct *vma)
687 {
688 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
689 /* Start from 0 to use atomic_inc_unless_negative() in get_vma() */
690 atomic_set(&vma->file_ref_count, 0);
691 #endif
692 INIT_LIST_HEAD(&vma->anon_vma_chain);
693 }
694
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)695 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
696 {
697 static const struct vm_operations_struct dummy_vm_ops = {};
698
699 memset(vma, 0, sizeof(*vma));
700 vma->vm_mm = mm;
701 vma->vm_ops = &dummy_vm_ops;
702 INIT_VMA(vma);
703 }
704
vma_set_anonymous(struct vm_area_struct * vma)705 static inline void vma_set_anonymous(struct vm_area_struct *vma)
706 {
707 vma->vm_ops = NULL;
708 }
709
vma_is_anonymous(struct vm_area_struct * vma)710 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
711 {
712 return !vma->vm_ops;
713 }
714
vma_is_temporary_stack(struct vm_area_struct * vma)715 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
716 {
717 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
718
719 if (!maybe_stack)
720 return false;
721
722 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
723 VM_STACK_INCOMPLETE_SETUP)
724 return true;
725
726 return false;
727 }
728
vma_is_foreign(struct vm_area_struct * vma)729 static inline bool vma_is_foreign(struct vm_area_struct *vma)
730 {
731 if (!current->mm)
732 return true;
733
734 if (current->mm != vma->vm_mm)
735 return true;
736
737 return false;
738 }
739
vma_is_accessible(struct vm_area_struct * vma)740 static inline bool vma_is_accessible(struct vm_area_struct *vma)
741 {
742 return vma->vm_flags & VM_ACCESS_FLAGS;
743 }
744
vma_can_speculate(struct vm_area_struct * vma,unsigned int flags)745 static inline bool vma_can_speculate(struct vm_area_struct *vma,
746 unsigned int flags)
747 {
748 if (vma_is_anonymous(vma))
749 return true;
750 if (!vma->vm_ops->speculative)
751 return false;
752 if (!(flags & FAULT_FLAG_WRITE))
753 return true;
754 if (!(vma->vm_flags & VM_SHARED))
755 return true;
756 return false;
757 }
758
759 #ifdef CONFIG_SHMEM
760 /*
761 * The vma_is_shmem is not inline because it is used only by slow
762 * paths in userfault.
763 */
764 bool vma_is_shmem(struct vm_area_struct *vma);
765 #else
vma_is_shmem(struct vm_area_struct * vma)766 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
767 #endif
768
769 int vma_is_stack_for_current(struct vm_area_struct *vma);
770
771 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
772 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
773
774 struct mmu_gather;
775 struct inode;
776
777 #include <linux/huge_mm.h>
778
779 /*
780 * Methods to modify the page usage count.
781 *
782 * What counts for a page usage:
783 * - cache mapping (page->mapping)
784 * - private data (page->private)
785 * - page mapped in a task's page tables, each mapping
786 * is counted separately
787 *
788 * Also, many kernel routines increase the page count before a critical
789 * routine so they can be sure the page doesn't go away from under them.
790 */
791
792 /*
793 * Drop a ref, return true if the refcount fell to zero (the page has no users)
794 */
put_page_testzero(struct page * page)795 static inline int put_page_testzero(struct page *page)
796 {
797 int ret;
798
799 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
800 ret = page_ref_dec_and_test(page);
801 page_pinner_put_page(page);
802
803 return ret;
804 }
805
806 /*
807 * Try to grab a ref unless the page has a refcount of zero, return false if
808 * that is the case.
809 * This can be called when MMU is off so it must not access
810 * any of the virtual mappings.
811 */
get_page_unless_zero(struct page * page)812 static inline int get_page_unless_zero(struct page *page)
813 {
814 return page_ref_add_unless(page, 1, 0);
815 }
816
817 extern int page_is_ram(unsigned long pfn);
818
819 enum {
820 REGION_INTERSECTS,
821 REGION_DISJOINT,
822 REGION_MIXED,
823 };
824
825 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
826 unsigned long desc);
827
828 /* Support for virtually mapped pages */
829 struct page *vmalloc_to_page(const void *addr);
830 unsigned long vmalloc_to_pfn(const void *addr);
831
832 /*
833 * Determine if an address is within the vmalloc range
834 *
835 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
836 * is no special casing required.
837 */
838
839 #ifndef is_ioremap_addr
840 #define is_ioremap_addr(x) is_vmalloc_addr(x)
841 #endif
842
843 #ifdef CONFIG_MMU
844 extern bool is_vmalloc_addr(const void *x);
845 extern int is_vmalloc_or_module_addr(const void *x);
846 #else
is_vmalloc_addr(const void * x)847 static inline bool is_vmalloc_addr(const void *x)
848 {
849 return false;
850 }
is_vmalloc_or_module_addr(const void * x)851 static inline int is_vmalloc_or_module_addr(const void *x)
852 {
853 return 0;
854 }
855 #endif
856
857 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)858 static inline void *kvmalloc(size_t size, gfp_t flags)
859 {
860 return kvmalloc_node(size, flags, NUMA_NO_NODE);
861 }
kvzalloc_node(size_t size,gfp_t flags,int node)862 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
863 {
864 return kvmalloc_node(size, flags | __GFP_ZERO, node);
865 }
kvzalloc(size_t size,gfp_t flags)866 static inline void *kvzalloc(size_t size, gfp_t flags)
867 {
868 return kvmalloc(size, flags | __GFP_ZERO);
869 }
870
kvmalloc_array(size_t n,size_t size,gfp_t flags)871 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
872 {
873 size_t bytes;
874
875 if (unlikely(check_mul_overflow(n, size, &bytes)))
876 return NULL;
877
878 return kvmalloc(bytes, flags);
879 }
880
kvcalloc(size_t n,size_t size,gfp_t flags)881 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
882 {
883 return kvmalloc_array(n, size, flags | __GFP_ZERO);
884 }
885
886 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
887 gfp_t flags);
888 extern void kvfree(const void *addr);
889 extern void kvfree_sensitive(const void *addr, size_t len);
890
head_compound_mapcount(struct page * head)891 static inline int head_compound_mapcount(struct page *head)
892 {
893 return atomic_read(compound_mapcount_ptr(head)) + 1;
894 }
895
896 /*
897 * Mapcount of compound page as a whole, does not include mapped sub-pages.
898 *
899 * Must be called only for compound pages or any their tail sub-pages.
900 */
compound_mapcount(struct page * page)901 static inline int compound_mapcount(struct page *page)
902 {
903 VM_BUG_ON_PAGE(!PageCompound(page), page);
904 page = compound_head(page);
905 return head_compound_mapcount(page);
906 }
907
908 /*
909 * The atomic page->_mapcount, starts from -1: so that transitions
910 * both from it and to it can be tracked, using atomic_inc_and_test
911 * and atomic_add_negative(-1).
912 */
page_mapcount_reset(struct page * page)913 static inline void page_mapcount_reset(struct page *page)
914 {
915 atomic_set(&(page)->_mapcount, -1);
916 }
917
918 int __page_mapcount(struct page *page);
919
920 /*
921 * Mapcount of 0-order page; when compound sub-page, includes
922 * compound_mapcount().
923 *
924 * Result is undefined for pages which cannot be mapped into userspace.
925 * For example SLAB or special types of pages. See function page_has_type().
926 * They use this place in struct page differently.
927 */
page_mapcount(struct page * page)928 static inline int page_mapcount(struct page *page)
929 {
930 if (unlikely(PageCompound(page)))
931 return __page_mapcount(page);
932 return atomic_read(&page->_mapcount) + 1;
933 }
934
935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
936 int total_mapcount(struct page *page);
937 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
938 #else
total_mapcount(struct page * page)939 static inline int total_mapcount(struct page *page)
940 {
941 return page_mapcount(page);
942 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)943 static inline int page_trans_huge_mapcount(struct page *page,
944 int *total_mapcount)
945 {
946 int mapcount = page_mapcount(page);
947 if (total_mapcount)
948 *total_mapcount = mapcount;
949 return mapcount;
950 }
951 #endif
952
virt_to_head_page(const void * x)953 static inline struct page *virt_to_head_page(const void *x)
954 {
955 struct page *page = virt_to_page(x);
956
957 return compound_head(page);
958 }
959
960 void __put_page(struct page *page);
961
962 void put_pages_list(struct list_head *pages);
963
964 void split_page(struct page *page, unsigned int order);
965 void copy_huge_page(struct page *dst, struct page *src);
966
967 /*
968 * Compound pages have a destructor function. Provide a
969 * prototype for that function and accessor functions.
970 * These are _only_ valid on the head of a compound page.
971 */
972 typedef void compound_page_dtor(struct page *);
973
974 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
975 enum compound_dtor_id {
976 NULL_COMPOUND_DTOR,
977 COMPOUND_PAGE_DTOR,
978 #ifdef CONFIG_HUGETLB_PAGE
979 HUGETLB_PAGE_DTOR,
980 #endif
981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
982 TRANSHUGE_PAGE_DTOR,
983 #endif
984 NR_COMPOUND_DTORS,
985 };
986 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
987
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)988 static inline void set_compound_page_dtor(struct page *page,
989 enum compound_dtor_id compound_dtor)
990 {
991 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
992 page[1].compound_dtor = compound_dtor;
993 }
994
destroy_compound_page(struct page * page)995 static inline void destroy_compound_page(struct page *page)
996 {
997 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
998 compound_page_dtors[page[1].compound_dtor](page);
999 }
1000
compound_order(struct page * page)1001 static inline unsigned int compound_order(struct page *page)
1002 {
1003 if (!PageHead(page))
1004 return 0;
1005 return page[1].compound_order;
1006 }
1007
hpage_pincount_available(struct page * page)1008 static inline bool hpage_pincount_available(struct page *page)
1009 {
1010 /*
1011 * Can the page->hpage_pinned_refcount field be used? That field is in
1012 * the 3rd page of the compound page, so the smallest (2-page) compound
1013 * pages cannot support it.
1014 */
1015 page = compound_head(page);
1016 return PageCompound(page) && compound_order(page) > 1;
1017 }
1018
head_compound_pincount(struct page * head)1019 static inline int head_compound_pincount(struct page *head)
1020 {
1021 return atomic_read(compound_pincount_ptr(head));
1022 }
1023
compound_pincount(struct page * page)1024 static inline int compound_pincount(struct page *page)
1025 {
1026 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
1027 page = compound_head(page);
1028 return head_compound_pincount(page);
1029 }
1030
set_compound_order(struct page * page,unsigned int order)1031 static inline void set_compound_order(struct page *page, unsigned int order)
1032 {
1033 page[1].compound_order = order;
1034 page[1].compound_nr = 1U << order;
1035 }
1036
1037 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)1038 static inline unsigned long compound_nr(struct page *page)
1039 {
1040 if (!PageHead(page))
1041 return 1;
1042 return page[1].compound_nr;
1043 }
1044
1045 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1046 static inline unsigned long page_size(struct page *page)
1047 {
1048 return PAGE_SIZE << compound_order(page);
1049 }
1050
1051 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1052 static inline unsigned int page_shift(struct page *page)
1053 {
1054 return PAGE_SHIFT + compound_order(page);
1055 }
1056
1057 void free_compound_page(struct page *page);
1058
1059 #ifdef CONFIG_MMU
1060 /*
1061 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1062 * servicing faults for write access. In the normal case, do always want
1063 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1064 * that do not have writing enabled, when used by access_process_vm.
1065 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1066 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1067 {
1068 if (likely(vma->vm_flags & VM_WRITE))
1069 pte = pte_mkwrite(pte);
1070 return pte;
1071 }
1072
1073 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1074 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1075
1076 vm_fault_t finish_fault(struct vm_fault *vmf);
1077 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1078 #endif
1079
1080 /*
1081 * Multiple processes may "see" the same page. E.g. for untouched
1082 * mappings of /dev/null, all processes see the same page full of
1083 * zeroes, and text pages of executables and shared libraries have
1084 * only one copy in memory, at most, normally.
1085 *
1086 * For the non-reserved pages, page_count(page) denotes a reference count.
1087 * page_count() == 0 means the page is free. page->lru is then used for
1088 * freelist management in the buddy allocator.
1089 * page_count() > 0 means the page has been allocated.
1090 *
1091 * Pages are allocated by the slab allocator in order to provide memory
1092 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1093 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1094 * unless a particular usage is carefully commented. (the responsibility of
1095 * freeing the kmalloc memory is the caller's, of course).
1096 *
1097 * A page may be used by anyone else who does a __get_free_page().
1098 * In this case, page_count still tracks the references, and should only
1099 * be used through the normal accessor functions. The top bits of page->flags
1100 * and page->virtual store page management information, but all other fields
1101 * are unused and could be used privately, carefully. The management of this
1102 * page is the responsibility of the one who allocated it, and those who have
1103 * subsequently been given references to it.
1104 *
1105 * The other pages (we may call them "pagecache pages") are completely
1106 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1107 * The following discussion applies only to them.
1108 *
1109 * A pagecache page contains an opaque `private' member, which belongs to the
1110 * page's address_space. Usually, this is the address of a circular list of
1111 * the page's disk buffers. PG_private must be set to tell the VM to call
1112 * into the filesystem to release these pages.
1113 *
1114 * A page may belong to an inode's memory mapping. In this case, page->mapping
1115 * is the pointer to the inode, and page->index is the file offset of the page,
1116 * in units of PAGE_SIZE.
1117 *
1118 * If pagecache pages are not associated with an inode, they are said to be
1119 * anonymous pages. These may become associated with the swapcache, and in that
1120 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1121 *
1122 * In either case (swapcache or inode backed), the pagecache itself holds one
1123 * reference to the page. Setting PG_private should also increment the
1124 * refcount. The each user mapping also has a reference to the page.
1125 *
1126 * The pagecache pages are stored in a per-mapping radix tree, which is
1127 * rooted at mapping->i_pages, and indexed by offset.
1128 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1129 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1130 *
1131 * All pagecache pages may be subject to I/O:
1132 * - inode pages may need to be read from disk,
1133 * - inode pages which have been modified and are MAP_SHARED may need
1134 * to be written back to the inode on disk,
1135 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1136 * modified may need to be swapped out to swap space and (later) to be read
1137 * back into memory.
1138 */
1139
1140 /*
1141 * The zone field is never updated after free_area_init_core()
1142 * sets it, so none of the operations on it need to be atomic.
1143 */
1144
1145 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1146 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1147 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1148 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1149 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1150 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1151 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1152 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1153
1154 /*
1155 * Define the bit shifts to access each section. For non-existent
1156 * sections we define the shift as 0; that plus a 0 mask ensures
1157 * the compiler will optimise away reference to them.
1158 */
1159 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1160 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1161 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1162 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1163 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1164
1165 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1166 #ifdef NODE_NOT_IN_PAGE_FLAGS
1167 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1168 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1169 SECTIONS_PGOFF : ZONES_PGOFF)
1170 #else
1171 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1172 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1173 NODES_PGOFF : ZONES_PGOFF)
1174 #endif
1175
1176 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1177
1178 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1179 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1180 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1181 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1182 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1183 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1184
page_zonenum(const struct page * page)1185 static inline enum zone_type page_zonenum(const struct page *page)
1186 {
1187 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1188 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1189 }
1190
1191 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1192 static inline bool is_zone_device_page(const struct page *page)
1193 {
1194 return page_zonenum(page) == ZONE_DEVICE;
1195 }
1196 extern void memmap_init_zone_device(struct zone *, unsigned long,
1197 unsigned long, struct dev_pagemap *);
1198 #else
is_zone_device_page(const struct page * page)1199 static inline bool is_zone_device_page(const struct page *page)
1200 {
1201 return false;
1202 }
1203 #endif
1204
is_zone_movable_page(const struct page * page)1205 static inline bool is_zone_movable_page(const struct page *page)
1206 {
1207 return page_zonenum(page) == ZONE_MOVABLE;
1208 }
1209
1210 #ifdef CONFIG_DEV_PAGEMAP_OPS
1211 void free_devmap_managed_page(struct page *page);
1212 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1213
page_is_devmap_managed(struct page * page)1214 static inline bool page_is_devmap_managed(struct page *page)
1215 {
1216 if (!static_branch_unlikely(&devmap_managed_key))
1217 return false;
1218 if (!is_zone_device_page(page))
1219 return false;
1220 switch (page->pgmap->type) {
1221 case MEMORY_DEVICE_PRIVATE:
1222 case MEMORY_DEVICE_FS_DAX:
1223 return true;
1224 default:
1225 break;
1226 }
1227 return false;
1228 }
1229
1230 void put_devmap_managed_page(struct page *page);
1231
1232 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1233 static inline bool page_is_devmap_managed(struct page *page)
1234 {
1235 return false;
1236 }
1237
put_devmap_managed_page(struct page * page)1238 static inline void put_devmap_managed_page(struct page *page)
1239 {
1240 }
1241 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1242
is_device_private_page(const struct page * page)1243 static inline bool is_device_private_page(const struct page *page)
1244 {
1245 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1246 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1247 is_zone_device_page(page) &&
1248 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1249 }
1250
is_pci_p2pdma_page(const struct page * page)1251 static inline bool is_pci_p2pdma_page(const struct page *page)
1252 {
1253 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1254 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1255 is_zone_device_page(page) &&
1256 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1257 }
1258
1259 /* 127: arbitrary random number, small enough to assemble well */
1260 #define page_ref_zero_or_close_to_overflow(page) \
1261 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1262
get_page(struct page * page)1263 static inline void get_page(struct page *page)
1264 {
1265 page = compound_head(page);
1266 /*
1267 * Getting a normal page or the head of a compound page
1268 * requires to already have an elevated page->_refcount.
1269 */
1270 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1271 page_ref_inc(page);
1272 }
1273
1274 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1275 struct page *try_grab_compound_head(struct page *page, int refs,
1276 unsigned int flags);
1277
1278
try_get_page(struct page * page)1279 static inline __must_check bool try_get_page(struct page *page)
1280 {
1281 page = compound_head(page);
1282 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1283 return false;
1284 page_ref_inc(page);
1285 return true;
1286 }
1287
put_page(struct page * page)1288 static inline void put_page(struct page *page)
1289 {
1290 page = compound_head(page);
1291
1292 /*
1293 * For devmap managed pages we need to catch refcount transition from
1294 * 2 to 1, when refcount reach one it means the page is free and we
1295 * need to inform the device driver through callback. See
1296 * include/linux/memremap.h and HMM for details.
1297 */
1298 if (page_is_devmap_managed(page)) {
1299 put_devmap_managed_page(page);
1300 return;
1301 }
1302
1303 if (put_page_testzero(page))
1304 __put_page(page);
1305 }
1306
1307 /*
1308 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1309 * the page's refcount so that two separate items are tracked: the original page
1310 * reference count, and also a new count of how many pin_user_pages() calls were
1311 * made against the page. ("gup-pinned" is another term for the latter).
1312 *
1313 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1314 * distinct from normal pages. As such, the unpin_user_page() call (and its
1315 * variants) must be used in order to release gup-pinned pages.
1316 *
1317 * Choice of value:
1318 *
1319 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1320 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1321 * simpler, due to the fact that adding an even power of two to the page
1322 * refcount has the effect of using only the upper N bits, for the code that
1323 * counts up using the bias value. This means that the lower bits are left for
1324 * the exclusive use of the original code that increments and decrements by one
1325 * (or at least, by much smaller values than the bias value).
1326 *
1327 * Of course, once the lower bits overflow into the upper bits (and this is
1328 * OK, because subtraction recovers the original values), then visual inspection
1329 * no longer suffices to directly view the separate counts. However, for normal
1330 * applications that don't have huge page reference counts, this won't be an
1331 * issue.
1332 *
1333 * Locking: the lockless algorithm described in page_cache_get_speculative()
1334 * and page_cache_gup_pin_speculative() provides safe operation for
1335 * get_user_pages and page_mkclean and other calls that race to set up page
1336 * table entries.
1337 */
1338 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1339
1340 void unpin_user_page(struct page *page);
1341 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1342 bool make_dirty);
1343 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1344 bool make_dirty);
1345 void unpin_user_pages(struct page **pages, unsigned long npages);
1346
1347 /**
1348 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1349 * @page: The page.
1350 *
1351 * This function checks if a page has been pinned via a call to
1352 * a function in the pin_user_pages() family.
1353 *
1354 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1355 * because it means "definitely not pinned for DMA", but true means "probably
1356 * pinned for DMA, but possibly a false positive due to having at least
1357 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1358 *
1359 * False positives are OK, because: a) it's unlikely for a page to get that many
1360 * refcounts, and b) all the callers of this routine are expected to be able to
1361 * deal gracefully with a false positive.
1362 *
1363 * For huge pages, the result will be exactly correct. That's because we have
1364 * more tracking data available: the 3rd struct page in the compound page is
1365 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1366 * scheme).
1367 *
1368 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1369 *
1370 * Return: True, if it is likely that the page has been "dma-pinned".
1371 * False, if the page is definitely not dma-pinned.
1372 */
page_maybe_dma_pinned(struct page * page)1373 static inline bool page_maybe_dma_pinned(struct page *page)
1374 {
1375 if (hpage_pincount_available(page))
1376 return compound_pincount(page) > 0;
1377
1378 /*
1379 * page_ref_count() is signed. If that refcount overflows, then
1380 * page_ref_count() returns a negative value, and callers will avoid
1381 * further incrementing the refcount.
1382 *
1383 * Here, for that overflow case, use the signed bit to count a little
1384 * bit higher via unsigned math, and thus still get an accurate result.
1385 */
1386 return ((unsigned int)page_ref_count(compound_head(page))) >=
1387 GUP_PIN_COUNTING_BIAS;
1388 }
1389
is_cow_mapping(vm_flags_t flags)1390 static inline bool is_cow_mapping(vm_flags_t flags)
1391 {
1392 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1393 }
1394
1395 /*
1396 * This should most likely only be called during fork() to see whether we
1397 * should break the cow immediately for a page on the src mm.
1398 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1399 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1400 struct page *page)
1401 {
1402 if (!is_cow_mapping(vma->vm_flags))
1403 return false;
1404
1405 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1406 return false;
1407
1408 return page_maybe_dma_pinned(page);
1409 }
1410
1411 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1412 #define SECTION_IN_PAGE_FLAGS
1413 #endif
1414
1415 /*
1416 * The identification function is mainly used by the buddy allocator for
1417 * determining if two pages could be buddies. We are not really identifying
1418 * the zone since we could be using the section number id if we do not have
1419 * node id available in page flags.
1420 * We only guarantee that it will return the same value for two combinable
1421 * pages in a zone.
1422 */
page_zone_id(struct page * page)1423 static inline int page_zone_id(struct page *page)
1424 {
1425 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1426 }
1427
1428 #ifdef NODE_NOT_IN_PAGE_FLAGS
1429 extern int page_to_nid(const struct page *page);
1430 #else
page_to_nid(const struct page * page)1431 static inline int page_to_nid(const struct page *page)
1432 {
1433 struct page *p = (struct page *)page;
1434
1435 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1436 }
1437 #endif
1438
1439 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1440 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1441 {
1442 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1443 }
1444
cpupid_to_pid(int cpupid)1445 static inline int cpupid_to_pid(int cpupid)
1446 {
1447 return cpupid & LAST__PID_MASK;
1448 }
1449
cpupid_to_cpu(int cpupid)1450 static inline int cpupid_to_cpu(int cpupid)
1451 {
1452 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1453 }
1454
cpupid_to_nid(int cpupid)1455 static inline int cpupid_to_nid(int cpupid)
1456 {
1457 return cpu_to_node(cpupid_to_cpu(cpupid));
1458 }
1459
cpupid_pid_unset(int cpupid)1460 static inline bool cpupid_pid_unset(int cpupid)
1461 {
1462 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1463 }
1464
cpupid_cpu_unset(int cpupid)1465 static inline bool cpupid_cpu_unset(int cpupid)
1466 {
1467 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1468 }
1469
__cpupid_match_pid(pid_t task_pid,int cpupid)1470 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1471 {
1472 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1473 }
1474
1475 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1476 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1477 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1478 {
1479 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1480 }
1481
page_cpupid_last(struct page * page)1482 static inline int page_cpupid_last(struct page *page)
1483 {
1484 return page->_last_cpupid;
1485 }
page_cpupid_reset_last(struct page * page)1486 static inline void page_cpupid_reset_last(struct page *page)
1487 {
1488 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1489 }
1490 #else
page_cpupid_last(struct page * page)1491 static inline int page_cpupid_last(struct page *page)
1492 {
1493 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1494 }
1495
1496 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1497
page_cpupid_reset_last(struct page * page)1498 static inline void page_cpupid_reset_last(struct page *page)
1499 {
1500 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1501 }
1502 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1503 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1504 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1505 {
1506 return page_to_nid(page); /* XXX */
1507 }
1508
page_cpupid_last(struct page * page)1509 static inline int page_cpupid_last(struct page *page)
1510 {
1511 return page_to_nid(page); /* XXX */
1512 }
1513
cpupid_to_nid(int cpupid)1514 static inline int cpupid_to_nid(int cpupid)
1515 {
1516 return -1;
1517 }
1518
cpupid_to_pid(int cpupid)1519 static inline int cpupid_to_pid(int cpupid)
1520 {
1521 return -1;
1522 }
1523
cpupid_to_cpu(int cpupid)1524 static inline int cpupid_to_cpu(int cpupid)
1525 {
1526 return -1;
1527 }
1528
cpu_pid_to_cpupid(int nid,int pid)1529 static inline int cpu_pid_to_cpupid(int nid, int pid)
1530 {
1531 return -1;
1532 }
1533
cpupid_pid_unset(int cpupid)1534 static inline bool cpupid_pid_unset(int cpupid)
1535 {
1536 return true;
1537 }
1538
page_cpupid_reset_last(struct page * page)1539 static inline void page_cpupid_reset_last(struct page *page)
1540 {
1541 }
1542
cpupid_match_pid(struct task_struct * task,int cpupid)1543 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1544 {
1545 return false;
1546 }
1547 #endif /* CONFIG_NUMA_BALANCING */
1548
1549 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1550
1551 /*
1552 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1553 * setting tags for all pages to native kernel tag value 0xff, as the default
1554 * value 0x00 maps to 0xff.
1555 */
1556
page_kasan_tag(const struct page * page)1557 static inline u8 page_kasan_tag(const struct page *page)
1558 {
1559 u8 tag = 0xff;
1560
1561 if (kasan_enabled()) {
1562 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1563 tag ^= 0xff;
1564 }
1565
1566 return tag;
1567 }
1568
page_kasan_tag_set(struct page * page,u8 tag)1569 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1570 {
1571 unsigned long old_flags, flags;
1572
1573 if (!kasan_enabled())
1574 return;
1575
1576 tag ^= 0xff;
1577 old_flags = READ_ONCE(page->flags);
1578 do {
1579 flags = old_flags;
1580 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1581 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1582 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1583 }
1584
page_kasan_tag_reset(struct page * page)1585 static inline void page_kasan_tag_reset(struct page *page)
1586 {
1587 if (kasan_enabled())
1588 page_kasan_tag_set(page, 0xff);
1589 }
1590
1591 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1592
page_kasan_tag(const struct page * page)1593 static inline u8 page_kasan_tag(const struct page *page)
1594 {
1595 return 0xff;
1596 }
1597
page_kasan_tag_set(struct page * page,u8 tag)1598 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1599 static inline void page_kasan_tag_reset(struct page *page) { }
1600
1601 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1602
page_zone(const struct page * page)1603 static inline struct zone *page_zone(const struct page *page)
1604 {
1605 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1606 }
1607
page_pgdat(const struct page * page)1608 static inline pg_data_t *page_pgdat(const struct page *page)
1609 {
1610 return NODE_DATA(page_to_nid(page));
1611 }
1612
1613 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1614 static inline void set_page_section(struct page *page, unsigned long section)
1615 {
1616 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1617 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1618 }
1619
page_to_section(const struct page * page)1620 static inline unsigned long page_to_section(const struct page *page)
1621 {
1622 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1623 }
1624 #endif
1625
1626 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1627 #ifdef CONFIG_MIGRATION
is_pinnable_page(struct page * page)1628 static inline bool is_pinnable_page(struct page *page)
1629 {
1630 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1631 is_zero_pfn(page_to_pfn(page));
1632 }
1633 #else
is_pinnable_page(struct page * page)1634 static inline bool is_pinnable_page(struct page *page)
1635 {
1636 return true;
1637 }
1638 #endif
1639
set_page_zone(struct page * page,enum zone_type zone)1640 static inline void set_page_zone(struct page *page, enum zone_type zone)
1641 {
1642 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1643 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1644 }
1645
set_page_node(struct page * page,unsigned long node)1646 static inline void set_page_node(struct page *page, unsigned long node)
1647 {
1648 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1649 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1650 }
1651
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1652 static inline void set_page_links(struct page *page, enum zone_type zone,
1653 unsigned long node, unsigned long pfn)
1654 {
1655 set_page_zone(page, zone);
1656 set_page_node(page, node);
1657 #ifdef SECTION_IN_PAGE_FLAGS
1658 set_page_section(page, pfn_to_section_nr(pfn));
1659 #endif
1660 }
1661
1662 /*
1663 * Some inline functions in vmstat.h depend on page_zone()
1664 */
1665 #include <linux/vmstat.h>
1666
lowmem_page_address(const struct page * page)1667 static __always_inline void *lowmem_page_address(const struct page *page)
1668 {
1669 return page_to_virt(page);
1670 }
1671
1672 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1673 #define HASHED_PAGE_VIRTUAL
1674 #endif
1675
1676 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1677 static inline void *page_address(const struct page *page)
1678 {
1679 return page->virtual;
1680 }
set_page_address(struct page * page,void * address)1681 static inline void set_page_address(struct page *page, void *address)
1682 {
1683 page->virtual = address;
1684 }
1685 #define page_address_init() do { } while(0)
1686 #endif
1687
1688 #if defined(HASHED_PAGE_VIRTUAL)
1689 void *page_address(const struct page *page);
1690 void set_page_address(struct page *page, void *virtual);
1691 void page_address_init(void);
1692 #endif
1693
1694 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1695 #define page_address(page) lowmem_page_address(page)
1696 #define set_page_address(page, address) do { } while(0)
1697 #define page_address_init() do { } while(0)
1698 #endif
1699
1700 extern void *page_rmapping(struct page *page);
1701 extern struct anon_vma *page_anon_vma(struct page *page);
1702 extern struct address_space *page_mapping(struct page *page);
1703
1704 extern struct address_space *__page_file_mapping(struct page *);
1705
1706 static inline
page_file_mapping(struct page * page)1707 struct address_space *page_file_mapping(struct page *page)
1708 {
1709 if (unlikely(PageSwapCache(page)))
1710 return __page_file_mapping(page);
1711
1712 return page->mapping;
1713 }
1714
1715 extern pgoff_t __page_file_index(struct page *page);
1716
1717 /*
1718 * Return the pagecache index of the passed page. Regular pagecache pages
1719 * use ->index whereas swapcache pages use swp_offset(->private)
1720 */
page_index(struct page * page)1721 static inline pgoff_t page_index(struct page *page)
1722 {
1723 if (unlikely(PageSwapCache(page)))
1724 return __page_file_index(page);
1725 return page->index;
1726 }
1727
1728 bool page_mapped(struct page *page);
1729 struct address_space *page_mapping(struct page *page);
1730
1731 /*
1732 * Return true only if the page has been allocated with
1733 * ALLOC_NO_WATERMARKS and the low watermark was not
1734 * met implying that the system is under some pressure.
1735 */
page_is_pfmemalloc(const struct page * page)1736 static inline bool page_is_pfmemalloc(const struct page *page)
1737 {
1738 /*
1739 * lru.next has bit 1 set if the page is allocated from the
1740 * pfmemalloc reserves. Callers may simply overwrite it if
1741 * they do not need to preserve that information.
1742 */
1743 return (uintptr_t)page->lru.next & BIT(1);
1744 }
1745
1746 /*
1747 * Only to be called by the page allocator on a freshly allocated
1748 * page.
1749 */
set_page_pfmemalloc(struct page * page)1750 static inline void set_page_pfmemalloc(struct page *page)
1751 {
1752 page->lru.next = (void *)BIT(1);
1753 }
1754
clear_page_pfmemalloc(struct page * page)1755 static inline void clear_page_pfmemalloc(struct page *page)
1756 {
1757 page->lru.next = NULL;
1758 }
1759
1760 /*
1761 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1762 */
1763 extern void pagefault_out_of_memory(void);
1764
1765 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1766 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1767
1768 /*
1769 * Flags passed to show_mem() and show_free_areas() to suppress output in
1770 * various contexts.
1771 */
1772 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1773
1774 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1775
1776 #ifdef CONFIG_MMU
1777 extern bool can_do_mlock(void);
1778 #else
can_do_mlock(void)1779 static inline bool can_do_mlock(void) { return false; }
1780 #endif
1781 extern int user_shm_lock(size_t, struct ucounts *);
1782 extern void user_shm_unlock(size_t, struct ucounts *);
1783
1784 /*
1785 * Parameter block passed down to zap_pte_range in exceptional cases.
1786 */
1787 struct zap_details {
1788 struct address_space *check_mapping; /* Check page->mapping if set */
1789 pgoff_t first_index; /* Lowest page->index to unmap */
1790 pgoff_t last_index; /* Highest page->index to unmap */
1791 struct page *single_page; /* Locked page to be unmapped */
1792 };
1793
1794 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1795 pte_t pte);
1796 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1797 pmd_t pmd);
1798
1799 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1800 unsigned long size);
1801 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1802 unsigned long size);
1803 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1804 unsigned long start, unsigned long end);
1805
1806 struct mmu_notifier_range;
1807
1808 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1809 unsigned long end, unsigned long floor, unsigned long ceiling);
1810 int
1811 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1812 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1813 struct mmu_notifier_range *range, pte_t **ptepp,
1814 pmd_t **pmdpp, spinlock_t **ptlp);
1815 int follow_pte(struct mm_struct *mm, unsigned long address,
1816 pte_t **ptepp, spinlock_t **ptlp);
1817 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1818 unsigned long *pfn);
1819 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1820 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1821 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1822 void *buf, int len, int write);
1823
1824 extern void truncate_pagecache(struct inode *inode, loff_t new);
1825 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1826 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1827 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1828 int truncate_inode_page(struct address_space *mapping, struct page *page);
1829 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1830 int invalidate_inode_page(struct page *page);
1831
1832 #ifdef CONFIG_MMU
1833 extern vm_fault_t do_handle_mm_fault(struct vm_area_struct *vma,
1834 unsigned long address, unsigned int flags,
1835 unsigned long seq, struct pt_regs *regs);
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1836 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1837 unsigned long address, unsigned int flags,
1838 struct pt_regs *regs)
1839 {
1840 return do_handle_mm_fault(vma, address, flags, 0, regs);
1841 }
1842 extern int fixup_user_fault(struct mm_struct *mm,
1843 unsigned long address, unsigned int fault_flags,
1844 bool *unlocked);
1845 void unmap_mapping_page(struct page *page);
1846 void unmap_mapping_pages(struct address_space *mapping,
1847 pgoff_t start, pgoff_t nr, bool even_cows);
1848 void unmap_mapping_range(struct address_space *mapping,
1849 loff_t const holebegin, loff_t const holelen, int even_cows);
1850 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1851 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1852 unsigned long address, unsigned int flags,
1853 struct pt_regs *regs)
1854 {
1855 /* should never happen if there's no MMU */
1856 BUG();
1857 return VM_FAULT_SIGBUS;
1858 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1859 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1860 unsigned int fault_flags, bool *unlocked)
1861 {
1862 /* should never happen if there's no MMU */
1863 BUG();
1864 return -EFAULT;
1865 }
unmap_mapping_page(struct page * page)1866 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1867 static inline void unmap_mapping_pages(struct address_space *mapping,
1868 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1869 static inline void unmap_mapping_range(struct address_space *mapping,
1870 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1871 #endif
1872
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1873 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1874 loff_t const holebegin, loff_t const holelen)
1875 {
1876 unmap_mapping_range(mapping, holebegin, holelen, 0);
1877 }
1878
1879 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1880 void *buf, int len, unsigned int gup_flags);
1881 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1882 void *buf, int len, unsigned int gup_flags);
1883 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1884 void *buf, int len, unsigned int gup_flags);
1885
1886 long get_user_pages_remote(struct mm_struct *mm,
1887 unsigned long start, unsigned long nr_pages,
1888 unsigned int gup_flags, struct page **pages,
1889 struct vm_area_struct **vmas, int *locked);
1890 long pin_user_pages_remote(struct mm_struct *mm,
1891 unsigned long start, unsigned long nr_pages,
1892 unsigned int gup_flags, struct page **pages,
1893 struct vm_area_struct **vmas, int *locked);
1894 long get_user_pages(unsigned long start, unsigned long nr_pages,
1895 unsigned int gup_flags, struct page **pages,
1896 struct vm_area_struct **vmas);
1897 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1898 unsigned int gup_flags, struct page **pages,
1899 struct vm_area_struct **vmas);
1900 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1901 unsigned int gup_flags, struct page **pages, int *locked);
1902 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1903 unsigned int gup_flags, struct page **pages, int *locked);
1904 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1905 struct page **pages, unsigned int gup_flags);
1906 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1907 struct page **pages, unsigned int gup_flags);
1908
1909 int get_user_pages_fast(unsigned long start, int nr_pages,
1910 unsigned int gup_flags, struct page **pages);
1911 int pin_user_pages_fast(unsigned long start, int nr_pages,
1912 unsigned int gup_flags, struct page **pages);
1913
1914 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1915 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1916 struct task_struct *task, bool bypass_rlim);
1917
1918 struct kvec;
1919 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1920 struct page **pages);
1921 struct page *get_dump_page(unsigned long addr);
1922
1923 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1924 extern void do_invalidatepage(struct page *page, unsigned int offset,
1925 unsigned int length);
1926
1927 int redirty_page_for_writepage(struct writeback_control *wbc,
1928 struct page *page);
1929 void account_page_cleaned(struct page *page, struct address_space *mapping,
1930 struct bdi_writeback *wb);
1931 int set_page_dirty(struct page *page);
1932 int set_page_dirty_lock(struct page *page);
1933 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1934 static inline void cancel_dirty_page(struct page *page)
1935 {
1936 /* Avoid atomic ops, locking, etc. when not actually needed. */
1937 if (PageDirty(page))
1938 __cancel_dirty_page(page);
1939 }
1940 int clear_page_dirty_for_io(struct page *page);
1941
1942 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1943
1944 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1945 unsigned long old_addr, struct vm_area_struct *new_vma,
1946 unsigned long new_addr, unsigned long len,
1947 bool need_rmap_locks);
1948
1949 /*
1950 * Flags used by change_protection(). For now we make it a bitmap so
1951 * that we can pass in multiple flags just like parameters. However
1952 * for now all the callers are only use one of the flags at the same
1953 * time.
1954 */
1955 /* Whether we should allow dirty bit accounting */
1956 #define MM_CP_DIRTY_ACCT (1UL << 0)
1957 /* Whether this protection change is for NUMA hints */
1958 #define MM_CP_PROT_NUMA (1UL << 1)
1959 /* Whether this change is for write protecting */
1960 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1961 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1962 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1963 MM_CP_UFFD_WP_RESOLVE)
1964
1965 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1966 unsigned long end, pgprot_t newprot,
1967 unsigned long cp_flags);
1968 extern int mprotect_fixup(struct vm_area_struct *vma,
1969 struct vm_area_struct **pprev, unsigned long start,
1970 unsigned long end, unsigned long newflags);
1971
1972 /*
1973 * doesn't attempt to fault and will return short.
1974 */
1975 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1976 unsigned int gup_flags, struct page **pages);
1977 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1978 unsigned int gup_flags, struct page **pages);
1979
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1980 static inline bool get_user_page_fast_only(unsigned long addr,
1981 unsigned int gup_flags, struct page **pagep)
1982 {
1983 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1984 }
1985 /*
1986 * per-process(per-mm_struct) statistics.
1987 */
get_mm_counter(struct mm_struct * mm,int member)1988 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1989 {
1990 long val = atomic_long_read(&mm->rss_stat.count[member]);
1991
1992 #ifdef SPLIT_RSS_COUNTING
1993 /*
1994 * counter is updated in asynchronous manner and may go to minus.
1995 * But it's never be expected number for users.
1996 */
1997 if (val < 0)
1998 val = 0;
1999 #endif
2000 return (unsigned long)val;
2001 }
2002
2003 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2004
add_mm_counter(struct mm_struct * mm,int member,long value)2005 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2006 {
2007 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2008
2009 mm_trace_rss_stat(mm, member, count);
2010 }
2011
inc_mm_counter(struct mm_struct * mm,int member)2012 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2013 {
2014 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2015
2016 mm_trace_rss_stat(mm, member, count);
2017 }
2018
dec_mm_counter(struct mm_struct * mm,int member)2019 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2020 {
2021 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2022
2023 mm_trace_rss_stat(mm, member, count);
2024 }
2025
2026 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2027 static inline int mm_counter_file(struct page *page)
2028 {
2029 if (PageSwapBacked(page))
2030 return MM_SHMEMPAGES;
2031 return MM_FILEPAGES;
2032 }
2033
mm_counter(struct page * page)2034 static inline int mm_counter(struct page *page)
2035 {
2036 if (PageAnon(page))
2037 return MM_ANONPAGES;
2038 return mm_counter_file(page);
2039 }
2040
get_mm_rss(struct mm_struct * mm)2041 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2042 {
2043 return get_mm_counter(mm, MM_FILEPAGES) +
2044 get_mm_counter(mm, MM_ANONPAGES) +
2045 get_mm_counter(mm, MM_SHMEMPAGES);
2046 }
2047
get_mm_hiwater_rss(struct mm_struct * mm)2048 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2049 {
2050 return max(mm->hiwater_rss, get_mm_rss(mm));
2051 }
2052
get_mm_hiwater_vm(struct mm_struct * mm)2053 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2054 {
2055 return max(mm->hiwater_vm, mm->total_vm);
2056 }
2057
update_hiwater_rss(struct mm_struct * mm)2058 static inline void update_hiwater_rss(struct mm_struct *mm)
2059 {
2060 unsigned long _rss = get_mm_rss(mm);
2061
2062 if ((mm)->hiwater_rss < _rss)
2063 (mm)->hiwater_rss = _rss;
2064 }
2065
update_hiwater_vm(struct mm_struct * mm)2066 static inline void update_hiwater_vm(struct mm_struct *mm)
2067 {
2068 if (mm->hiwater_vm < mm->total_vm)
2069 mm->hiwater_vm = mm->total_vm;
2070 }
2071
reset_mm_hiwater_rss(struct mm_struct * mm)2072 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2073 {
2074 mm->hiwater_rss = get_mm_rss(mm);
2075 }
2076
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2077 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2078 struct mm_struct *mm)
2079 {
2080 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2081
2082 if (*maxrss < hiwater_rss)
2083 *maxrss = hiwater_rss;
2084 }
2085
2086 #if defined(SPLIT_RSS_COUNTING)
2087 void sync_mm_rss(struct mm_struct *mm);
2088 #else
sync_mm_rss(struct mm_struct * mm)2089 static inline void sync_mm_rss(struct mm_struct *mm)
2090 {
2091 }
2092 #endif
2093
2094 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2095 static inline int pte_special(pte_t pte)
2096 {
2097 return 0;
2098 }
2099
pte_mkspecial(pte_t pte)2100 static inline pte_t pte_mkspecial(pte_t pte)
2101 {
2102 return pte;
2103 }
2104 #endif
2105
2106 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2107 static inline int pte_devmap(pte_t pte)
2108 {
2109 return 0;
2110 }
2111 #endif
2112
2113 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2114
2115 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2116 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2117 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2118 spinlock_t **ptl)
2119 {
2120 pte_t *ptep;
2121 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2122 return ptep;
2123 }
2124
2125 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2126 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2127 unsigned long address)
2128 {
2129 return 0;
2130 }
2131 #else
2132 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2133 #endif
2134
2135 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2136 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2137 unsigned long address)
2138 {
2139 return 0;
2140 }
mm_inc_nr_puds(struct mm_struct * mm)2141 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2142 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2143
2144 #else
2145 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2146
mm_inc_nr_puds(struct mm_struct * mm)2147 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2148 {
2149 if (mm_pud_folded(mm))
2150 return;
2151 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2152 }
2153
mm_dec_nr_puds(struct mm_struct * mm)2154 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2155 {
2156 if (mm_pud_folded(mm))
2157 return;
2158 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2159 }
2160 #endif
2161
2162 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2163 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2164 unsigned long address)
2165 {
2166 return 0;
2167 }
2168
mm_inc_nr_pmds(struct mm_struct * mm)2169 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2170 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2171
2172 #else
2173 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2174
mm_inc_nr_pmds(struct mm_struct * mm)2175 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2176 {
2177 if (mm_pmd_folded(mm))
2178 return;
2179 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2180 }
2181
mm_dec_nr_pmds(struct mm_struct * mm)2182 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2183 {
2184 if (mm_pmd_folded(mm))
2185 return;
2186 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2187 }
2188 #endif
2189
2190 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2191 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2192 {
2193 atomic_long_set(&mm->pgtables_bytes, 0);
2194 }
2195
mm_pgtables_bytes(const struct mm_struct * mm)2196 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2197 {
2198 return atomic_long_read(&mm->pgtables_bytes);
2199 }
2200
mm_inc_nr_ptes(struct mm_struct * mm)2201 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2202 {
2203 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2204 }
2205
mm_dec_nr_ptes(struct mm_struct * mm)2206 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2207 {
2208 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2209 }
2210 #else
2211
mm_pgtables_bytes_init(struct mm_struct * mm)2212 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2213 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2214 {
2215 return 0;
2216 }
2217
mm_inc_nr_ptes(struct mm_struct * mm)2218 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2219 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2220 #endif
2221
2222 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2223 int __pte_alloc_kernel(pmd_t *pmd);
2224
2225 #if defined(CONFIG_MMU)
2226
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2227 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2228 unsigned long address)
2229 {
2230 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2231 NULL : p4d_offset(pgd, address);
2232 }
2233
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2234 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2235 unsigned long address)
2236 {
2237 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2238 NULL : pud_offset(p4d, address);
2239 }
2240
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2241 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2242 {
2243 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2244 NULL: pmd_offset(pud, address);
2245 }
2246 #endif /* CONFIG_MMU */
2247
2248 #if USE_SPLIT_PTE_PTLOCKS
2249 #if ALLOC_SPLIT_PTLOCKS
2250 void __init ptlock_cache_init(void);
2251 extern bool ptlock_alloc(struct page *page);
2252 extern void ptlock_free(struct page *page);
2253
ptlock_ptr(struct page * page)2254 static inline spinlock_t *ptlock_ptr(struct page *page)
2255 {
2256 return page->ptl;
2257 }
2258 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2259 static inline void ptlock_cache_init(void)
2260 {
2261 }
2262
ptlock_alloc(struct page * page)2263 static inline bool ptlock_alloc(struct page *page)
2264 {
2265 return true;
2266 }
2267
ptlock_free(struct page * page)2268 static inline void ptlock_free(struct page *page)
2269 {
2270 }
2271
ptlock_ptr(struct page * page)2272 static inline spinlock_t *ptlock_ptr(struct page *page)
2273 {
2274 return &page->ptl;
2275 }
2276 #endif /* ALLOC_SPLIT_PTLOCKS */
2277
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2278 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2279 {
2280 return ptlock_ptr(pmd_page(*pmd));
2281 }
2282
ptlock_init(struct page * page)2283 static inline bool ptlock_init(struct page *page)
2284 {
2285 /*
2286 * prep_new_page() initialize page->private (and therefore page->ptl)
2287 * with 0. Make sure nobody took it in use in between.
2288 *
2289 * It can happen if arch try to use slab for page table allocation:
2290 * slab code uses page->slab_cache, which share storage with page->ptl.
2291 */
2292 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2293 if (!ptlock_alloc(page))
2294 return false;
2295 spin_lock_init(ptlock_ptr(page));
2296 return true;
2297 }
2298
2299 #else /* !USE_SPLIT_PTE_PTLOCKS */
2300 /*
2301 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2302 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2303 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2304 {
2305 return &mm->page_table_lock;
2306 }
ptlock_cache_init(void)2307 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2308 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2309 static inline void ptlock_free(struct page *page) {}
2310 #endif /* USE_SPLIT_PTE_PTLOCKS */
2311
pgtable_init(void)2312 static inline void pgtable_init(void)
2313 {
2314 ptlock_cache_init();
2315 pgtable_cache_init();
2316 }
2317
pgtable_pte_page_ctor(struct page * page)2318 static inline bool pgtable_pte_page_ctor(struct page *page)
2319 {
2320 if (!ptlock_init(page))
2321 return false;
2322 __SetPageTable(page);
2323 inc_lruvec_page_state(page, NR_PAGETABLE);
2324 return true;
2325 }
2326
pgtable_pte_page_dtor(struct page * page)2327 static inline void pgtable_pte_page_dtor(struct page *page)
2328 {
2329 ptlock_free(page);
2330 __ClearPageTable(page);
2331 dec_lruvec_page_state(page, NR_PAGETABLE);
2332 }
2333
2334 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2335 ({ \
2336 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2337 pte_t *__pte = pte_offset_map(pmd, address); \
2338 *(ptlp) = __ptl; \
2339 spin_lock(__ptl); \
2340 __pte; \
2341 })
2342
2343 #define pte_unmap_unlock(pte, ptl) do { \
2344 spin_unlock(ptl); \
2345 pte_unmap(pte); \
2346 } while (0)
2347
2348 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2349
2350 #define pte_alloc_map(mm, pmd, address) \
2351 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2352
2353 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2354 (pte_alloc(mm, pmd) ? \
2355 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2356
2357 #define pte_alloc_kernel(pmd, address) \
2358 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2359 NULL: pte_offset_kernel(pmd, address))
2360
2361 #if USE_SPLIT_PMD_PTLOCKS
2362
pmd_to_page(pmd_t * pmd)2363 static struct page *pmd_to_page(pmd_t *pmd)
2364 {
2365 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2366 return virt_to_page((void *)((unsigned long) pmd & mask));
2367 }
2368
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2369 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2370 {
2371 return ptlock_ptr(pmd_to_page(pmd));
2372 }
2373
pmd_ptlock_init(struct page * page)2374 static inline bool pmd_ptlock_init(struct page *page)
2375 {
2376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377 page->pmd_huge_pte = NULL;
2378 #endif
2379 return ptlock_init(page);
2380 }
2381
pmd_ptlock_free(struct page * page)2382 static inline void pmd_ptlock_free(struct page *page)
2383 {
2384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2385 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2386 #endif
2387 ptlock_free(page);
2388 }
2389
2390 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2391
2392 #else
2393
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2394 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2395 {
2396 return &mm->page_table_lock;
2397 }
2398
pmd_ptlock_init(struct page * page)2399 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2400 static inline void pmd_ptlock_free(struct page *page) {}
2401
2402 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2403
2404 #endif
2405
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2406 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2407 {
2408 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2409 spin_lock(ptl);
2410 return ptl;
2411 }
2412
pgtable_pmd_page_ctor(struct page * page)2413 static inline bool pgtable_pmd_page_ctor(struct page *page)
2414 {
2415 if (!pmd_ptlock_init(page))
2416 return false;
2417 __SetPageTable(page);
2418 inc_lruvec_page_state(page, NR_PAGETABLE);
2419 return true;
2420 }
2421
pgtable_pmd_page_dtor(struct page * page)2422 static inline void pgtable_pmd_page_dtor(struct page *page)
2423 {
2424 pmd_ptlock_free(page);
2425 __ClearPageTable(page);
2426 dec_lruvec_page_state(page, NR_PAGETABLE);
2427 }
2428
2429 /*
2430 * No scalability reason to split PUD locks yet, but follow the same pattern
2431 * as the PMD locks to make it easier if we decide to. The VM should not be
2432 * considered ready to switch to split PUD locks yet; there may be places
2433 * which need to be converted from page_table_lock.
2434 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2435 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2436 {
2437 return &mm->page_table_lock;
2438 }
2439
pud_lock(struct mm_struct * mm,pud_t * pud)2440 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2441 {
2442 spinlock_t *ptl = pud_lockptr(mm, pud);
2443
2444 spin_lock(ptl);
2445 return ptl;
2446 }
2447
2448 extern void __init pagecache_init(void);
2449 extern void __init free_area_init_memoryless_node(int nid);
2450 extern void free_initmem(void);
2451
2452 /*
2453 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2454 * into the buddy system. The freed pages will be poisoned with pattern
2455 * "poison" if it's within range [0, UCHAR_MAX].
2456 * Return pages freed into the buddy system.
2457 */
2458 extern unsigned long free_reserved_area(void *start, void *end,
2459 int poison, const char *s);
2460
2461 extern void adjust_managed_page_count(struct page *page, long count);
2462 extern void mem_init_print_info(void);
2463
2464 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2465
2466 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2467 static inline void free_reserved_page(struct page *page)
2468 {
2469 ClearPageReserved(page);
2470 init_page_count(page);
2471 __free_page(page);
2472 adjust_managed_page_count(page, 1);
2473 }
2474 #define free_highmem_page(page) free_reserved_page(page)
2475
mark_page_reserved(struct page * page)2476 static inline void mark_page_reserved(struct page *page)
2477 {
2478 SetPageReserved(page);
2479 adjust_managed_page_count(page, -1);
2480 }
2481
2482 /*
2483 * Default method to free all the __init memory into the buddy system.
2484 * The freed pages will be poisoned with pattern "poison" if it's within
2485 * range [0, UCHAR_MAX].
2486 * Return pages freed into the buddy system.
2487 */
free_initmem_default(int poison)2488 static inline unsigned long free_initmem_default(int poison)
2489 {
2490 extern char __init_begin[], __init_end[];
2491
2492 return free_reserved_area(&__init_begin, &__init_end,
2493 poison, "unused kernel image (initmem)");
2494 }
2495
get_num_physpages(void)2496 static inline unsigned long get_num_physpages(void)
2497 {
2498 int nid;
2499 unsigned long phys_pages = 0;
2500
2501 for_each_online_node(nid)
2502 phys_pages += node_present_pages(nid);
2503
2504 return phys_pages;
2505 }
2506
2507 /*
2508 * Using memblock node mappings, an architecture may initialise its
2509 * zones, allocate the backing mem_map and account for memory holes in an
2510 * architecture independent manner.
2511 *
2512 * An architecture is expected to register range of page frames backed by
2513 * physical memory with memblock_add[_node]() before calling
2514 * free_area_init() passing in the PFN each zone ends at. At a basic
2515 * usage, an architecture is expected to do something like
2516 *
2517 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2518 * max_highmem_pfn};
2519 * for_each_valid_physical_page_range()
2520 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2521 * free_area_init(max_zone_pfns);
2522 */
2523 void free_area_init(unsigned long *max_zone_pfn);
2524 unsigned long node_map_pfn_alignment(void);
2525 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2526 unsigned long end_pfn);
2527 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2528 unsigned long end_pfn);
2529 extern void get_pfn_range_for_nid(unsigned int nid,
2530 unsigned long *start_pfn, unsigned long *end_pfn);
2531 extern unsigned long find_min_pfn_with_active_regions(void);
2532
2533 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2534 static inline int early_pfn_to_nid(unsigned long pfn)
2535 {
2536 return 0;
2537 }
2538 #else
2539 /* please see mm/page_alloc.c */
2540 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2541 #endif
2542
2543 extern void set_dma_reserve(unsigned long new_dma_reserve);
2544 extern void memmap_init_range(unsigned long, int, unsigned long,
2545 unsigned long, unsigned long, enum meminit_context,
2546 struct vmem_altmap *, int migratetype);
2547 extern void setup_per_zone_wmarks(void);
2548 extern void calculate_min_free_kbytes(void);
2549 extern int __meminit init_per_zone_wmark_min(void);
2550 extern void mem_init(void);
2551 extern void __init mmap_init(void);
2552 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2553 extern long si_mem_available(void);
2554 extern void si_meminfo(struct sysinfo * val);
2555 extern void si_meminfo_node(struct sysinfo *val, int nid);
2556 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2557 extern unsigned long arch_reserved_kernel_pages(void);
2558 #endif
2559
2560 extern __printf(3, 4)
2561 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2562
2563 extern void setup_per_cpu_pageset(void);
2564
2565 /* page_alloc.c */
2566 extern int min_free_kbytes;
2567 extern int watermark_boost_factor;
2568 extern int watermark_scale_factor;
2569 extern bool arch_has_descending_max_zone_pfns(void);
2570
2571 /* nommu.c */
2572 extern atomic_long_t mmap_pages_allocated;
2573 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2574
2575 /* interval_tree.c */
2576 void vma_interval_tree_insert(struct vm_area_struct *node,
2577 struct rb_root_cached *root);
2578 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2579 struct vm_area_struct *prev,
2580 struct rb_root_cached *root);
2581 void vma_interval_tree_remove(struct vm_area_struct *node,
2582 struct rb_root_cached *root);
2583 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2584 unsigned long start, unsigned long last);
2585 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2586 unsigned long start, unsigned long last);
2587
2588 #define vma_interval_tree_foreach(vma, root, start, last) \
2589 for (vma = vma_interval_tree_iter_first(root, start, last); \
2590 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2591
2592 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2593 struct rb_root_cached *root);
2594 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2595 struct rb_root_cached *root);
2596 struct anon_vma_chain *
2597 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2598 unsigned long start, unsigned long last);
2599 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2600 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2601 #ifdef CONFIG_DEBUG_VM_RB
2602 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2603 #endif
2604
2605 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2606 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2607 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2608
2609 /* mmap.c */
2610 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2611 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2612 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2613 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2614 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2615 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2616 {
2617 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2618 }
2619 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2620 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2621 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2622 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2623 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2624 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2625 unsigned long addr, int new_below);
2626 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2627 unsigned long addr, int new_below);
2628 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2629 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2630 struct rb_node **, struct rb_node *);
2631 extern void unlink_file_vma(struct vm_area_struct *);
2632 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2633 unsigned long addr, unsigned long len, pgoff_t pgoff,
2634 bool *need_rmap_locks);
2635 extern void exit_mmap(struct mm_struct *);
2636
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2637 static inline int check_data_rlimit(unsigned long rlim,
2638 unsigned long new,
2639 unsigned long start,
2640 unsigned long end_data,
2641 unsigned long start_data)
2642 {
2643 if (rlim < RLIM_INFINITY) {
2644 if (((new - start) + (end_data - start_data)) > rlim)
2645 return -ENOSPC;
2646 }
2647
2648 return 0;
2649 }
2650
2651 extern int mm_take_all_locks(struct mm_struct *mm);
2652 extern void mm_drop_all_locks(struct mm_struct *mm);
2653
2654 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2655 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2656 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2657 extern struct file *get_task_exe_file(struct task_struct *task);
2658
2659 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2660 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2661
2662 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2663 const struct vm_special_mapping *sm);
2664 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2665 unsigned long addr, unsigned long len,
2666 unsigned long flags,
2667 const struct vm_special_mapping *spec);
2668 /* This is an obsolete alternative to _install_special_mapping. */
2669 extern int install_special_mapping(struct mm_struct *mm,
2670 unsigned long addr, unsigned long len,
2671 unsigned long flags, struct page **pages);
2672
2673 unsigned long randomize_stack_top(unsigned long stack_top);
2674 unsigned long randomize_page(unsigned long start, unsigned long range);
2675
2676 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2677
2678 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2679 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2680 struct list_head *uf);
2681 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2682 unsigned long len, unsigned long prot, unsigned long flags,
2683 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2684 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2685 struct list_head *uf, bool downgrade);
2686 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2687 struct list_head *uf);
2688 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2689
2690 #ifdef CONFIG_MMU
2691 extern int __mm_populate(unsigned long addr, unsigned long len,
2692 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2693 static inline void mm_populate(unsigned long addr, unsigned long len)
2694 {
2695 /* Ignore errors */
2696 (void) __mm_populate(addr, len, 1);
2697 }
2698 #else
mm_populate(unsigned long addr,unsigned long len)2699 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2700 #endif
2701
2702 /* These take the mm semaphore themselves */
2703 extern int __must_check vm_brk(unsigned long, unsigned long);
2704 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2705 extern int vm_munmap(unsigned long, size_t);
2706 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2707 unsigned long, unsigned long,
2708 unsigned long, unsigned long);
2709
2710 struct vm_unmapped_area_info {
2711 #define VM_UNMAPPED_AREA_TOPDOWN 1
2712 unsigned long flags;
2713 unsigned long length;
2714 unsigned long low_limit;
2715 unsigned long high_limit;
2716 unsigned long align_mask;
2717 unsigned long align_offset;
2718 };
2719
2720 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2721
2722 /* truncate.c */
2723 extern void truncate_inode_pages(struct address_space *, loff_t);
2724 extern void truncate_inode_pages_range(struct address_space *,
2725 loff_t lstart, loff_t lend);
2726 extern void truncate_inode_pages_final(struct address_space *);
2727
2728 /* generic vm_area_ops exported for stackable file systems */
2729 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2730 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2731 pgoff_t start_pgoff, pgoff_t end_pgoff);
2732 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2733
2734 /* mm/page-writeback.c */
2735 int __must_check write_one_page(struct page *page);
2736 void task_dirty_inc(struct task_struct *tsk);
2737
2738 extern unsigned long stack_guard_gap;
2739 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2740 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2741
2742 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2743 extern int expand_downwards(struct vm_area_struct *vma,
2744 unsigned long address);
2745 #if VM_GROWSUP
2746 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2747 #else
2748 #define expand_upwards(vma, address) (0)
2749 #endif
2750
2751 extern struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm,
2752 unsigned long addr);
2753 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2754 extern struct vm_area_struct * __find_vma(struct mm_struct * mm, unsigned long addr);
2755 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2756 struct vm_area_struct **pprev);
2757
2758 static inline
find_vma(struct mm_struct * mm,unsigned long addr)2759 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2760 {
2761 mmap_assert_locked(mm);
2762 return __find_vma(mm, addr);
2763 }
2764
2765 /**
2766 * find_vma_intersection() - Look up the first VMA which intersects the interval
2767 * @mm: The process address space.
2768 * @start_addr: The inclusive start user address.
2769 * @end_addr: The exclusive end user address.
2770 *
2771 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2772 * start_addr < end_addr.
2773 */
2774 static inline
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2775 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2776 unsigned long start_addr,
2777 unsigned long end_addr)
2778 {
2779 struct vm_area_struct *vma = find_vma(mm, start_addr);
2780
2781 if (vma && end_addr <= vma->vm_start)
2782 vma = NULL;
2783 return vma;
2784 }
2785
2786 /**
2787 * vma_lookup() - Find a VMA at a specific address
2788 * @mm: The process address space.
2789 * @addr: The user address.
2790 *
2791 * Return: The vm_area_struct at the given address, %NULL otherwise.
2792 */
2793 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2794 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2795 {
2796 struct vm_area_struct *vma = find_vma(mm, addr);
2797
2798 if (vma && addr < vma->vm_start)
2799 vma = NULL;
2800
2801 return vma;
2802 }
2803
vm_start_gap(struct vm_area_struct * vma)2804 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2805 {
2806 unsigned long vm_start = vma->vm_start;
2807
2808 if (vma->vm_flags & VM_GROWSDOWN) {
2809 vm_start -= stack_guard_gap;
2810 if (vm_start > vma->vm_start)
2811 vm_start = 0;
2812 }
2813 return vm_start;
2814 }
2815
vm_end_gap(struct vm_area_struct * vma)2816 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2817 {
2818 unsigned long vm_end = vma->vm_end;
2819
2820 if (vma->vm_flags & VM_GROWSUP) {
2821 vm_end += stack_guard_gap;
2822 if (vm_end < vma->vm_end)
2823 vm_end = -PAGE_SIZE;
2824 }
2825 return vm_end;
2826 }
2827
vma_pages(struct vm_area_struct * vma)2828 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2829 {
2830 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2831 }
2832
2833 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2834 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2835 unsigned long vm_start, unsigned long vm_end)
2836 {
2837 struct vm_area_struct *vma = find_vma(mm, vm_start);
2838
2839 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2840 vma = NULL;
2841
2842 return vma;
2843 }
2844
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2845 static inline bool range_in_vma(struct vm_area_struct *vma,
2846 unsigned long start, unsigned long end)
2847 {
2848 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2849 }
2850
2851 #ifdef CONFIG_MMU
2852 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2853 void vma_set_page_prot(struct vm_area_struct *vma);
2854 #else
vm_get_page_prot(unsigned long vm_flags)2855 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2856 {
2857 return __pgprot(0);
2858 }
vma_set_page_prot(struct vm_area_struct * vma)2859 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2860 {
2861 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2862 }
2863 #endif
2864
2865 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2866
2867 #ifdef CONFIG_NUMA_BALANCING
2868 unsigned long change_prot_numa(struct vm_area_struct *vma,
2869 unsigned long start, unsigned long end);
2870 #endif
2871
2872 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2873 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2874 unsigned long pfn, unsigned long size, pgprot_t);
2875 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2876 unsigned long pfn, unsigned long size, pgprot_t prot);
2877 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2878 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2879 struct page **pages, unsigned long *num);
2880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2881 unsigned long num);
2882 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2883 unsigned long num);
2884 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2885 unsigned long pfn);
2886 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2887 unsigned long pfn, pgprot_t pgprot);
2888 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2889 pfn_t pfn);
2890 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2891 pfn_t pfn, pgprot_t pgprot);
2892 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2893 unsigned long addr, pfn_t pfn);
2894 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2895
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2896 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2897 unsigned long addr, struct page *page)
2898 {
2899 int err = vm_insert_page(vma, addr, page);
2900
2901 if (err == -ENOMEM)
2902 return VM_FAULT_OOM;
2903 if (err < 0 && err != -EBUSY)
2904 return VM_FAULT_SIGBUS;
2905
2906 return VM_FAULT_NOPAGE;
2907 }
2908
2909 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2910 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2911 unsigned long addr, unsigned long pfn,
2912 unsigned long size, pgprot_t prot)
2913 {
2914 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2915 }
2916 #endif
2917
vmf_error(int err)2918 static inline vm_fault_t vmf_error(int err)
2919 {
2920 if (err == -ENOMEM)
2921 return VM_FAULT_OOM;
2922 return VM_FAULT_SIGBUS;
2923 }
2924
2925 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2926 unsigned int foll_flags);
2927
2928 #define FOLL_WRITE 0x01 /* check pte is writable */
2929 #define FOLL_TOUCH 0x02 /* mark page accessed */
2930 #define FOLL_GET 0x04 /* do get_page on page */
2931 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2932 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2933 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2934 * and return without waiting upon it */
2935 #define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */
2936 #define FOLL_NOFAULT 0x80 /* do not fault in pages */
2937 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2938 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2939 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2940 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2941 #define FOLL_MLOCK 0x1000 /* lock present pages */
2942 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2943 #define FOLL_COW 0x4000 /* internal GUP flag */
2944 #define FOLL_ANON 0x8000 /* don't do file mappings */
2945 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2946 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2947 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2948 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2949
2950 /*
2951 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2952 * other. Here is what they mean, and how to use them:
2953 *
2954 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2955 * period _often_ under userspace control. This is in contrast to
2956 * iov_iter_get_pages(), whose usages are transient.
2957 *
2958 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2959 * lifetime enforced by the filesystem and we need guarantees that longterm
2960 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2961 * the filesystem. Ideas for this coordination include revoking the longterm
2962 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2963 * added after the problem with filesystems was found FS DAX VMAs are
2964 * specifically failed. Filesystem pages are still subject to bugs and use of
2965 * FOLL_LONGTERM should be avoided on those pages.
2966 *
2967 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2968 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2969 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2970 * is due to an incompatibility with the FS DAX check and
2971 * FAULT_FLAG_ALLOW_RETRY.
2972 *
2973 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2974 * that region. And so, CMA attempts to migrate the page before pinning, when
2975 * FOLL_LONGTERM is specified.
2976 *
2977 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2978 * but an additional pin counting system) will be invoked. This is intended for
2979 * anything that gets a page reference and then touches page data (for example,
2980 * Direct IO). This lets the filesystem know that some non-file-system entity is
2981 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2982 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2983 * a call to unpin_user_page().
2984 *
2985 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2986 * and separate refcounting mechanisms, however, and that means that each has
2987 * its own acquire and release mechanisms:
2988 *
2989 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2990 *
2991 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2992 *
2993 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2994 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2995 * calls applied to them, and that's perfectly OK. This is a constraint on the
2996 * callers, not on the pages.)
2997 *
2998 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2999 * directly by the caller. That's in order to help avoid mismatches when
3000 * releasing pages: get_user_pages*() pages must be released via put_page(),
3001 * while pin_user_pages*() pages must be released via unpin_user_page().
3002 *
3003 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3004 */
3005
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3006 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3007 {
3008 if (vm_fault & VM_FAULT_OOM)
3009 return -ENOMEM;
3010 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3011 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3012 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3013 return -EFAULT;
3014 return 0;
3015 }
3016
3017 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3018 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3019 unsigned long size, pte_fn_t fn, void *data);
3020 extern int apply_to_existing_page_range(struct mm_struct *mm,
3021 unsigned long address, unsigned long size,
3022 pte_fn_t fn, void *data);
3023
3024 extern void init_mem_debugging_and_hardening(void);
3025 #ifdef CONFIG_PAGE_POISONING
3026 extern void __kernel_poison_pages(struct page *page, int numpages);
3027 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3028 extern bool _page_poisoning_enabled_early;
3029 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3030 static inline bool page_poisoning_enabled(void)
3031 {
3032 return _page_poisoning_enabled_early;
3033 }
3034 /*
3035 * For use in fast paths after init_mem_debugging() has run, or when a
3036 * false negative result is not harmful when called too early.
3037 */
page_poisoning_enabled_static(void)3038 static inline bool page_poisoning_enabled_static(void)
3039 {
3040 return static_branch_unlikely(&_page_poisoning_enabled);
3041 }
kernel_poison_pages(struct page * page,int numpages)3042 static inline void kernel_poison_pages(struct page *page, int numpages)
3043 {
3044 if (page_poisoning_enabled_static())
3045 __kernel_poison_pages(page, numpages);
3046 }
kernel_unpoison_pages(struct page * page,int numpages)3047 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3048 {
3049 if (page_poisoning_enabled_static())
3050 __kernel_unpoison_pages(page, numpages);
3051 }
3052 #else
page_poisoning_enabled(void)3053 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3054 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3055 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3056 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3057 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3058 #endif
3059
3060 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3061 static inline bool want_init_on_alloc(gfp_t flags)
3062 {
3063 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3064 &init_on_alloc))
3065 return true;
3066 return flags & __GFP_ZERO;
3067 }
3068
3069 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3070 static inline bool want_init_on_free(void)
3071 {
3072 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3073 &init_on_free);
3074 }
3075
3076 extern bool _debug_pagealloc_enabled_early;
3077 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3078
debug_pagealloc_enabled(void)3079 static inline bool debug_pagealloc_enabled(void)
3080 {
3081 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3082 _debug_pagealloc_enabled_early;
3083 }
3084
3085 /*
3086 * For use in fast paths after init_debug_pagealloc() has run, or when a
3087 * false negative result is not harmful when called too early.
3088 */
debug_pagealloc_enabled_static(void)3089 static inline bool debug_pagealloc_enabled_static(void)
3090 {
3091 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3092 return false;
3093
3094 return static_branch_unlikely(&_debug_pagealloc_enabled);
3095 }
3096
3097 #ifdef CONFIG_DEBUG_PAGEALLOC
3098 /*
3099 * To support DEBUG_PAGEALLOC architecture must ensure that
3100 * __kernel_map_pages() never fails
3101 */
3102 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3103
debug_pagealloc_map_pages(struct page * page,int numpages)3104 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3105 {
3106 if (debug_pagealloc_enabled_static())
3107 __kernel_map_pages(page, numpages, 1);
3108 }
3109
debug_pagealloc_unmap_pages(struct page * page,int numpages)3110 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3111 {
3112 if (debug_pagealloc_enabled_static())
3113 __kernel_map_pages(page, numpages, 0);
3114 }
3115 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3116 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3117 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3118 #endif /* CONFIG_DEBUG_PAGEALLOC */
3119
3120 #ifdef __HAVE_ARCH_GATE_AREA
3121 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3122 extern int in_gate_area_no_mm(unsigned long addr);
3123 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3124 #else
get_gate_vma(struct mm_struct * mm)3125 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3126 {
3127 return NULL;
3128 }
in_gate_area_no_mm(unsigned long addr)3129 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3130 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3131 {
3132 return 0;
3133 }
3134 #endif /* __HAVE_ARCH_GATE_AREA */
3135
3136 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3137
3138 #ifdef CONFIG_SYSCTL
3139 extern int sysctl_drop_caches;
3140 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3141 loff_t *);
3142 #endif
3143
3144 void drop_slab(void);
3145 void drop_slab_node(int nid);
3146
3147 #ifndef CONFIG_MMU
3148 #define randomize_va_space 0
3149 #else
3150 extern int randomize_va_space;
3151 #endif
3152
3153 const char * arch_vma_name(struct vm_area_struct *vma);
3154 #ifdef CONFIG_MMU
3155 void print_vma_addr(char *prefix, unsigned long rip);
3156 #else
print_vma_addr(char * prefix,unsigned long rip)3157 static inline void print_vma_addr(char *prefix, unsigned long rip)
3158 {
3159 }
3160 #endif
3161
3162 int vmemmap_remap_free(unsigned long start, unsigned long end,
3163 unsigned long reuse);
3164 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3165 unsigned long reuse, gfp_t gfp_mask);
3166
3167 void *sparse_buffer_alloc(unsigned long size);
3168 struct page * __populate_section_memmap(unsigned long pfn,
3169 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3170 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3171 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3172 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3173 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3174 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3175 struct vmem_altmap *altmap);
3176 void *vmemmap_alloc_block(unsigned long size, int node);
3177 struct vmem_altmap;
3178 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3179 struct vmem_altmap *altmap);
3180 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3181 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3182 int node, struct vmem_altmap *altmap);
3183 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3184 struct vmem_altmap *altmap);
3185 void vmemmap_populate_print_last(void);
3186 #ifdef CONFIG_MEMORY_HOTPLUG
3187 void vmemmap_free(unsigned long start, unsigned long end,
3188 struct vmem_altmap *altmap);
3189 #endif
3190 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3191 unsigned long nr_pages);
3192
3193 enum mf_flags {
3194 MF_COUNT_INCREASED = 1 << 0,
3195 MF_ACTION_REQUIRED = 1 << 1,
3196 MF_MUST_KILL = 1 << 2,
3197 MF_SOFT_OFFLINE = 1 << 3,
3198 };
3199 extern int memory_failure(unsigned long pfn, int flags);
3200 extern void memory_failure_queue_kick(int cpu);
3201 extern int unpoison_memory(unsigned long pfn);
3202 extern int sysctl_memory_failure_early_kill;
3203 extern int sysctl_memory_failure_recovery;
3204 extern void shake_page(struct page *p);
3205 extern atomic_long_t num_poisoned_pages __read_mostly;
3206 extern int soft_offline_page(unsigned long pfn, int flags);
3207 #ifdef CONFIG_MEMORY_FAILURE
3208 extern void memory_failure_queue(unsigned long pfn, int flags);
3209 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3210 #else
memory_failure_queue(unsigned long pfn,int flags)3211 static inline void memory_failure_queue(unsigned long pfn, int flags)
3212 {
3213 }
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)3214 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3215 {
3216 return 0;
3217 }
3218 #endif
3219
3220
3221 /*
3222 * Error handlers for various types of pages.
3223 */
3224 enum mf_result {
3225 MF_IGNORED, /* Error: cannot be handled */
3226 MF_FAILED, /* Error: handling failed */
3227 MF_DELAYED, /* Will be handled later */
3228 MF_RECOVERED, /* Successfully recovered */
3229 };
3230
3231 enum mf_action_page_type {
3232 MF_MSG_KERNEL,
3233 MF_MSG_KERNEL_HIGH_ORDER,
3234 MF_MSG_SLAB,
3235 MF_MSG_DIFFERENT_COMPOUND,
3236 MF_MSG_POISONED_HUGE,
3237 MF_MSG_HUGE,
3238 MF_MSG_FREE_HUGE,
3239 MF_MSG_NON_PMD_HUGE,
3240 MF_MSG_UNMAP_FAILED,
3241 MF_MSG_DIRTY_SWAPCACHE,
3242 MF_MSG_CLEAN_SWAPCACHE,
3243 MF_MSG_DIRTY_MLOCKED_LRU,
3244 MF_MSG_CLEAN_MLOCKED_LRU,
3245 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3246 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3247 MF_MSG_DIRTY_LRU,
3248 MF_MSG_CLEAN_LRU,
3249 MF_MSG_TRUNCATED_LRU,
3250 MF_MSG_BUDDY,
3251 MF_MSG_BUDDY_2ND,
3252 MF_MSG_DAX,
3253 MF_MSG_UNSPLIT_THP,
3254 MF_MSG_UNKNOWN,
3255 };
3256
3257 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3258 extern void clear_huge_page(struct page *page,
3259 unsigned long addr_hint,
3260 unsigned int pages_per_huge_page);
3261 extern void copy_user_huge_page(struct page *dst, struct page *src,
3262 unsigned long addr_hint,
3263 struct vm_area_struct *vma,
3264 unsigned int pages_per_huge_page);
3265 extern long copy_huge_page_from_user(struct page *dst_page,
3266 const void __user *usr_src,
3267 unsigned int pages_per_huge_page,
3268 bool allow_pagefault);
3269
3270 /**
3271 * vma_is_special_huge - Are transhuge page-table entries considered special?
3272 * @vma: Pointer to the struct vm_area_struct to consider
3273 *
3274 * Whether transhuge page-table entries are considered "special" following
3275 * the definition in vm_normal_page().
3276 *
3277 * Return: true if transhuge page-table entries should be considered special,
3278 * false otherwise.
3279 */
vma_is_special_huge(const struct vm_area_struct * vma)3280 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3281 {
3282 return vma_is_dax(vma) || (vma->vm_file &&
3283 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3284 }
3285
3286 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3287
3288 #ifdef CONFIG_DEBUG_PAGEALLOC
3289 extern unsigned int _debug_guardpage_minorder;
3290 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3291
debug_guardpage_minorder(void)3292 static inline unsigned int debug_guardpage_minorder(void)
3293 {
3294 return _debug_guardpage_minorder;
3295 }
3296
debug_guardpage_enabled(void)3297 static inline bool debug_guardpage_enabled(void)
3298 {
3299 return static_branch_unlikely(&_debug_guardpage_enabled);
3300 }
3301
page_is_guard(struct page * page)3302 static inline bool page_is_guard(struct page *page)
3303 {
3304 if (!debug_guardpage_enabled())
3305 return false;
3306
3307 return PageGuard(page);
3308 }
3309 #else
debug_guardpage_minorder(void)3310 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3311 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3312 static inline bool page_is_guard(struct page *page) { return false; }
3313 #endif /* CONFIG_DEBUG_PAGEALLOC */
3314
3315 #if MAX_NUMNODES > 1
3316 void __init setup_nr_node_ids(void);
3317 #else
setup_nr_node_ids(void)3318 static inline void setup_nr_node_ids(void) {}
3319 #endif
3320
3321 extern int memcmp_pages(struct page *page1, struct page *page2);
3322
pages_identical(struct page * page1,struct page * page2)3323 static inline int pages_identical(struct page *page1, struct page *page2)
3324 {
3325 return !memcmp_pages(page1, page2);
3326 }
3327
3328 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3329 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3330 pgoff_t first_index, pgoff_t nr,
3331 pgoff_t bitmap_pgoff,
3332 unsigned long *bitmap,
3333 pgoff_t *start,
3334 pgoff_t *end);
3335
3336 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3337 pgoff_t first_index, pgoff_t nr);
3338 #endif
3339
3340 extern int sysctl_nr_trim_pages;
3341 extern int reclaim_shmem_address_space(struct address_space *mapping);
3342
3343 #ifdef CONFIG_PRINTK
3344 void mem_dump_obj(void *object);
3345 #else
mem_dump_obj(void * object)3346 static inline void mem_dump_obj(void *object) {}
3347 #endif
3348
3349 /**
3350 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3351 * @seals: the seals to check
3352 * @vma: the vma to operate on
3353 *
3354 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3355 * the vma flags. Return 0 if check pass, or <0 for errors.
3356 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3357 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3358 {
3359 if (seals & F_SEAL_FUTURE_WRITE) {
3360 /*
3361 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3362 * "future write" seal active.
3363 */
3364 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3365 return -EPERM;
3366
3367 /*
3368 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3369 * MAP_SHARED and read-only, take care to not allow mprotect to
3370 * revert protections on such mappings. Do this only for shared
3371 * mappings. For private mappings, don't need to mask
3372 * VM_MAYWRITE as we still want them to be COW-writable.
3373 */
3374 if (vma->vm_flags & VM_SHARED)
3375 vma->vm_flags &= ~(VM_MAYWRITE);
3376 }
3377
3378 return 0;
3379 }
3380
3381 #ifdef CONFIG_ANON_VMA_NAME
3382 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3383 unsigned long len_in,
3384 struct anon_vma_name *anon_name);
3385 #else
3386 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)3387 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3388 unsigned long len_in, struct anon_vma_name *anon_name) {
3389 return 0;
3390 }
3391 #endif
3392
3393 #ifdef CONFIG_MMU
3394 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
3395
3396 bool __pte_map_lock(struct vm_fault *vmf);
3397
pte_map_lock(struct vm_fault * vmf)3398 static inline bool pte_map_lock(struct vm_fault *vmf)
3399 {
3400 VM_BUG_ON(vmf->pte);
3401 return __pte_map_lock(vmf);
3402 }
3403
pte_spinlock(struct vm_fault * vmf)3404 static inline bool pte_spinlock(struct vm_fault *vmf)
3405 {
3406 VM_BUG_ON(!vmf->pte);
3407 return __pte_map_lock(vmf);
3408 }
3409
3410 struct vm_area_struct *get_vma(struct mm_struct *mm, unsigned long addr);
3411 void put_vma(struct vm_area_struct *vma);
3412
3413 #else /* !CONFIG_SPECULATIVE_PAGE_FAULT */
3414
3415 #define pte_map_lock(___vmf) \
3416 ({ \
3417 ___vmf->pte = pte_offset_map_lock(___vmf->vma->vm_mm, ___vmf->pmd,\
3418 ___vmf->address, &___vmf->ptl); \
3419 true; \
3420 })
3421
3422 #define pte_spinlock(___vmf) \
3423 ({ \
3424 ___vmf->ptl = pte_lockptr(___vmf->vma->vm_mm, ___vmf->pmd); \
3425 spin_lock(___vmf->ptl); \
3426 true; \
3427 })
3428
3429 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
3430 #endif /* CONFIG_MMU */
3431
3432 #endif /* __KERNEL__ */
3433 #endif /* _LINUX_MM_H */
3434