• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	bool			need_sync;
76 	bool			boot_enabled;
77 	unsigned int		enable_count;
78 	unsigned int		prepare_count;
79 	unsigned int		protect_count;
80 	unsigned long		min_rate;
81 	unsigned long		max_rate;
82 	unsigned long		accuracy;
83 	int			phase;
84 	struct clk_duty		duty;
85 	struct hlist_head	children;
86 	struct hlist_node	child_node;
87 	struct hlist_head	clks;
88 	unsigned int		notifier_count;
89 #ifdef CONFIG_DEBUG_FS
90 	struct dentry		*dentry;
91 	struct hlist_node	debug_node;
92 #endif
93 	struct kref		ref;
94 };
95 
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/clk.h>
98 
99 struct clk {
100 	struct clk_core	*core;
101 	struct device *dev;
102 	const char *dev_id;
103 	const char *con_id;
104 	unsigned long min_rate;
105 	unsigned long max_rate;
106 	unsigned int exclusive_count;
107 	struct hlist_node clks_node;
108 };
109 
110 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core * core)111 static int clk_pm_runtime_get(struct clk_core *core)
112 {
113 	int ret;
114 
115 	if (!core->rpm_enabled)
116 		return 0;
117 
118 	ret = pm_runtime_get_sync(core->dev);
119 	if (ret < 0) {
120 		pm_runtime_put_noidle(core->dev);
121 		return ret;
122 	}
123 	return 0;
124 }
125 
clk_pm_runtime_put(struct clk_core * core)126 static void clk_pm_runtime_put(struct clk_core *core)
127 {
128 	if (!core->rpm_enabled)
129 		return;
130 
131 	pm_runtime_put_sync(core->dev);
132 }
133 
134 /***           locking             ***/
clk_prepare_lock(void)135 static void clk_prepare_lock(void)
136 {
137 	if (!mutex_trylock(&prepare_lock)) {
138 		if (prepare_owner == current) {
139 			prepare_refcnt++;
140 			return;
141 		}
142 		mutex_lock(&prepare_lock);
143 	}
144 	WARN_ON_ONCE(prepare_owner != NULL);
145 	WARN_ON_ONCE(prepare_refcnt != 0);
146 	prepare_owner = current;
147 	prepare_refcnt = 1;
148 }
149 
clk_prepare_unlock(void)150 static void clk_prepare_unlock(void)
151 {
152 	WARN_ON_ONCE(prepare_owner != current);
153 	WARN_ON_ONCE(prepare_refcnt == 0);
154 
155 	if (--prepare_refcnt)
156 		return;
157 	prepare_owner = NULL;
158 	mutex_unlock(&prepare_lock);
159 }
160 
clk_enable_lock(void)161 static unsigned long clk_enable_lock(void)
162 	__acquires(enable_lock)
163 {
164 	unsigned long flags;
165 
166 	/*
167 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
168 	 * we already hold the lock. So, in that case, we rely only on
169 	 * reference counting.
170 	 */
171 	if (!IS_ENABLED(CONFIG_SMP) ||
172 	    !spin_trylock_irqsave(&enable_lock, flags)) {
173 		if (enable_owner == current) {
174 			enable_refcnt++;
175 			__acquire(enable_lock);
176 			if (!IS_ENABLED(CONFIG_SMP))
177 				local_save_flags(flags);
178 			return flags;
179 		}
180 		spin_lock_irqsave(&enable_lock, flags);
181 	}
182 	WARN_ON_ONCE(enable_owner != NULL);
183 	WARN_ON_ONCE(enable_refcnt != 0);
184 	enable_owner = current;
185 	enable_refcnt = 1;
186 	return flags;
187 }
188 
clk_enable_unlock(unsigned long flags)189 static void clk_enable_unlock(unsigned long flags)
190 	__releases(enable_lock)
191 {
192 	WARN_ON_ONCE(enable_owner != current);
193 	WARN_ON_ONCE(enable_refcnt == 0);
194 
195 	if (--enable_refcnt) {
196 		__release(enable_lock);
197 		return;
198 	}
199 	enable_owner = NULL;
200 	spin_unlock_irqrestore(&enable_lock, flags);
201 }
202 
clk_core_rate_is_protected(struct clk_core * core)203 static bool clk_core_rate_is_protected(struct clk_core *core)
204 {
205 	return core->protect_count;
206 }
207 
clk_core_is_prepared(struct clk_core * core)208 static bool clk_core_is_prepared(struct clk_core *core)
209 {
210 	bool ret = false;
211 
212 	/*
213 	 * .is_prepared is optional for clocks that can prepare
214 	 * fall back to software usage counter if it is missing
215 	 */
216 	if (!core->ops->is_prepared)
217 		return core->prepare_count;
218 
219 	if (!clk_pm_runtime_get(core)) {
220 		ret = core->ops->is_prepared(core->hw);
221 		clk_pm_runtime_put(core);
222 	}
223 
224 	return ret;
225 }
226 
clk_core_is_enabled(struct clk_core * core)227 static bool clk_core_is_enabled(struct clk_core *core)
228 {
229 	bool ret = false;
230 
231 	/*
232 	 * .is_enabled is only mandatory for clocks that gate
233 	 * fall back to software usage counter if .is_enabled is missing
234 	 */
235 	if (!core->ops->is_enabled)
236 		return core->enable_count;
237 
238 	/*
239 	 * Check if clock controller's device is runtime active before
240 	 * calling .is_enabled callback. If not, assume that clock is
241 	 * disabled, because we might be called from atomic context, from
242 	 * which pm_runtime_get() is not allowed.
243 	 * This function is called mainly from clk_disable_unused_subtree,
244 	 * which ensures proper runtime pm activation of controller before
245 	 * taking enable spinlock, but the below check is needed if one tries
246 	 * to call it from other places.
247 	 */
248 	if (core->rpm_enabled) {
249 		pm_runtime_get_noresume(core->dev);
250 		if (!pm_runtime_active(core->dev)) {
251 			ret = false;
252 			goto done;
253 		}
254 	}
255 
256 	/*
257 	 * This could be called with the enable lock held, or from atomic
258 	 * context. If the parent isn't enabled already, we can't do
259 	 * anything here. We can also assume this clock isn't enabled.
260 	 */
261 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
262 		if (!clk_core_is_enabled(core->parent)) {
263 			ret = false;
264 			goto done;
265 		}
266 
267 	ret = core->ops->is_enabled(core->hw);
268 done:
269 	if (core->rpm_enabled)
270 		pm_runtime_put(core->dev);
271 
272 	return ret;
273 }
274 
275 /***    helper functions   ***/
276 
__clk_get_name(const struct clk * clk)277 const char *__clk_get_name(const struct clk *clk)
278 {
279 	return !clk ? NULL : clk->core->name;
280 }
281 EXPORT_SYMBOL_GPL(__clk_get_name);
282 
clk_hw_get_name(const struct clk_hw * hw)283 const char *clk_hw_get_name(const struct clk_hw *hw)
284 {
285 	return hw->core->name;
286 }
287 EXPORT_SYMBOL_GPL(clk_hw_get_name);
288 
__clk_get_hw(struct clk * clk)289 struct clk_hw *__clk_get_hw(struct clk *clk)
290 {
291 	return !clk ? NULL : clk->core->hw;
292 }
293 EXPORT_SYMBOL_GPL(__clk_get_hw);
294 
clk_hw_get_num_parents(const struct clk_hw * hw)295 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
296 {
297 	return hw->core->num_parents;
298 }
299 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
300 
clk_hw_get_parent(const struct clk_hw * hw)301 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
302 {
303 	return hw->core->parent ? hw->core->parent->hw : NULL;
304 }
305 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
306 
__clk_lookup_subtree(const char * name,struct clk_core * core)307 static struct clk_core *__clk_lookup_subtree(const char *name,
308 					     struct clk_core *core)
309 {
310 	struct clk_core *child;
311 	struct clk_core *ret;
312 
313 	if (!strcmp(core->name, name))
314 		return core;
315 
316 	hlist_for_each_entry(child, &core->children, child_node) {
317 		ret = __clk_lookup_subtree(name, child);
318 		if (ret)
319 			return ret;
320 	}
321 
322 	return NULL;
323 }
324 
clk_core_lookup(const char * name)325 static struct clk_core *clk_core_lookup(const char *name)
326 {
327 	struct clk_core *root_clk;
328 	struct clk_core *ret;
329 
330 	if (!name)
331 		return NULL;
332 
333 	/* search the 'proper' clk tree first */
334 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
335 		ret = __clk_lookup_subtree(name, root_clk);
336 		if (ret)
337 			return ret;
338 	}
339 
340 	/* if not found, then search the orphan tree */
341 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
342 		ret = __clk_lookup_subtree(name, root_clk);
343 		if (ret)
344 			return ret;
345 	}
346 
347 	return NULL;
348 }
349 
350 #ifdef CONFIG_OF
351 static int of_parse_clkspec(const struct device_node *np, int index,
352 			    const char *name, struct of_phandle_args *out_args);
353 static struct clk_hw *
354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
355 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)356 static inline int of_parse_clkspec(const struct device_node *np, int index,
357 				   const char *name,
358 				   struct of_phandle_args *out_args)
359 {
360 	return -ENOENT;
361 }
362 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)363 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
364 {
365 	return ERR_PTR(-ENOENT);
366 }
367 #endif
368 
369 /**
370  * clk_core_get - Find the clk_core parent of a clk
371  * @core: clk to find parent of
372  * @p_index: parent index to search for
373  *
374  * This is the preferred method for clk providers to find the parent of a
375  * clk when that parent is external to the clk controller. The parent_names
376  * array is indexed and treated as a local name matching a string in the device
377  * node's 'clock-names' property or as the 'con_id' matching the device's
378  * dev_name() in a clk_lookup. This allows clk providers to use their own
379  * namespace instead of looking for a globally unique parent string.
380  *
381  * For example the following DT snippet would allow a clock registered by the
382  * clock-controller@c001 that has a clk_init_data::parent_data array
383  * with 'xtal' in the 'name' member to find the clock provided by the
384  * clock-controller@f00abcd without needing to get the globally unique name of
385  * the xtal clk.
386  *
387  *      parent: clock-controller@f00abcd {
388  *              reg = <0xf00abcd 0xabcd>;
389  *              #clock-cells = <0>;
390  *      };
391  *
392  *      clock-controller@c001 {
393  *              reg = <0xc001 0xf00d>;
394  *              clocks = <&parent>;
395  *              clock-names = "xtal";
396  *              #clock-cells = <1>;
397  *      };
398  *
399  * Returns: -ENOENT when the provider can't be found or the clk doesn't
400  * exist in the provider or the name can't be found in the DT node or
401  * in a clkdev lookup. NULL when the provider knows about the clk but it
402  * isn't provided on this system.
403  * A valid clk_core pointer when the clk can be found in the provider.
404  */
clk_core_get(struct clk_core * core,u8 p_index)405 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
406 {
407 	const char *name = core->parents[p_index].fw_name;
408 	int index = core->parents[p_index].index;
409 	struct clk_hw *hw = ERR_PTR(-ENOENT);
410 	struct device *dev = core->dev;
411 	const char *dev_id = dev ? dev_name(dev) : NULL;
412 	struct device_node *np = core->of_node;
413 	struct of_phandle_args clkspec;
414 
415 	if (np && (name || index >= 0) &&
416 	    !of_parse_clkspec(np, index, name, &clkspec)) {
417 		hw = of_clk_get_hw_from_clkspec(&clkspec);
418 		of_node_put(clkspec.np);
419 	} else if (name) {
420 		/*
421 		 * If the DT search above couldn't find the provider fallback to
422 		 * looking up via clkdev based clk_lookups.
423 		 */
424 		hw = clk_find_hw(dev_id, name);
425 	}
426 
427 	if (IS_ERR(hw))
428 		return ERR_CAST(hw);
429 
430 	return hw->core;
431 }
432 
clk_core_fill_parent_index(struct clk_core * core,u8 index)433 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
434 {
435 	struct clk_parent_map *entry = &core->parents[index];
436 	struct clk_core *parent;
437 
438 	if (entry->hw) {
439 		parent = entry->hw->core;
440 		/*
441 		 * We have a direct reference but it isn't registered yet?
442 		 * Orphan it and let clk_reparent() update the orphan status
443 		 * when the parent is registered.
444 		 */
445 		if (!parent)
446 			parent = ERR_PTR(-EPROBE_DEFER);
447 	} else {
448 		parent = clk_core_get(core, index);
449 		if (PTR_ERR(parent) == -ENOENT && entry->name)
450 			parent = clk_core_lookup(entry->name);
451 	}
452 
453 	/* Only cache it if it's not an error */
454 	if (!IS_ERR(parent))
455 		entry->core = parent;
456 }
457 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)458 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
459 							 u8 index)
460 {
461 	if (!core || index >= core->num_parents || !core->parents)
462 		return NULL;
463 
464 	if (!core->parents[index].core)
465 		clk_core_fill_parent_index(core, index);
466 
467 	return core->parents[index].core;
468 }
469 
470 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)471 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
472 {
473 	struct clk_core *parent;
474 
475 	parent = clk_core_get_parent_by_index(hw->core, index);
476 
477 	return !parent ? NULL : parent->hw;
478 }
479 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
480 
__clk_get_enable_count(struct clk * clk)481 unsigned int __clk_get_enable_count(struct clk *clk)
482 {
483 	return !clk ? 0 : clk->core->enable_count;
484 }
485 
clk_core_get_rate_nolock(struct clk_core * core)486 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
487 {
488 	if (!core)
489 		return 0;
490 
491 	if (!core->num_parents || core->parent)
492 		return core->rate;
493 
494 	/*
495 	 * Clk must have a parent because num_parents > 0 but the parent isn't
496 	 * known yet. Best to return 0 as the rate of this clk until we can
497 	 * properly recalc the rate based on the parent's rate.
498 	 */
499 	return 0;
500 }
501 
clk_hw_get_rate(const struct clk_hw * hw)502 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
503 {
504 	return clk_core_get_rate_nolock(hw->core);
505 }
506 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
507 
clk_core_get_accuracy_no_lock(struct clk_core * core)508 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
509 {
510 	if (!core)
511 		return 0;
512 
513 	return core->accuracy;
514 }
515 
clk_hw_get_flags(const struct clk_hw * hw)516 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
517 {
518 	return hw->core->flags;
519 }
520 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
521 
clk_hw_is_prepared(const struct clk_hw * hw)522 bool clk_hw_is_prepared(const struct clk_hw *hw)
523 {
524 	return clk_core_is_prepared(hw->core);
525 }
526 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
527 
clk_hw_rate_is_protected(const struct clk_hw * hw)528 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
529 {
530 	return clk_core_rate_is_protected(hw->core);
531 }
532 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
533 
clk_hw_is_enabled(const struct clk_hw * hw)534 bool clk_hw_is_enabled(const struct clk_hw *hw)
535 {
536 	return clk_core_is_enabled(hw->core);
537 }
538 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
539 
__clk_is_enabled(struct clk * clk)540 bool __clk_is_enabled(struct clk *clk)
541 {
542 	if (!clk)
543 		return false;
544 
545 	return clk_core_is_enabled(clk->core);
546 }
547 EXPORT_SYMBOL_GPL(__clk_is_enabled);
548 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)549 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
550 			   unsigned long best, unsigned long flags)
551 {
552 	if (flags & CLK_MUX_ROUND_CLOSEST)
553 		return abs(now - rate) < abs(best - rate);
554 
555 	return now <= rate && now > best;
556 }
557 
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)558 int clk_mux_determine_rate_flags(struct clk_hw *hw,
559 				 struct clk_rate_request *req,
560 				 unsigned long flags)
561 {
562 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
563 	int i, num_parents, ret;
564 	unsigned long best = 0;
565 	struct clk_rate_request parent_req = *req;
566 
567 	/* if NO_REPARENT flag set, pass through to current parent */
568 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
569 		parent = core->parent;
570 		if (core->flags & CLK_SET_RATE_PARENT) {
571 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
572 						   &parent_req);
573 			if (ret)
574 				return ret;
575 
576 			best = parent_req.rate;
577 		} else if (parent) {
578 			best = clk_core_get_rate_nolock(parent);
579 		} else {
580 			best = clk_core_get_rate_nolock(core);
581 		}
582 
583 		goto out;
584 	}
585 
586 	/* find the parent that can provide the fastest rate <= rate */
587 	num_parents = core->num_parents;
588 	for (i = 0; i < num_parents; i++) {
589 		parent = clk_core_get_parent_by_index(core, i);
590 		if (!parent)
591 			continue;
592 
593 		if (core->flags & CLK_SET_RATE_PARENT) {
594 			parent_req = *req;
595 			ret = __clk_determine_rate(parent->hw, &parent_req);
596 			if (ret)
597 				continue;
598 		} else {
599 			parent_req.rate = clk_core_get_rate_nolock(parent);
600 		}
601 
602 		if (mux_is_better_rate(req->rate, parent_req.rate,
603 				       best, flags)) {
604 			best_parent = parent;
605 			best = parent_req.rate;
606 		}
607 	}
608 
609 	if (!best_parent)
610 		return -EINVAL;
611 
612 out:
613 	if (best_parent)
614 		req->best_parent_hw = best_parent->hw;
615 	req->best_parent_rate = best;
616 	req->rate = best;
617 
618 	return 0;
619 }
620 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
621 
__clk_lookup(const char * name)622 struct clk *__clk_lookup(const char *name)
623 {
624 	struct clk_core *core = clk_core_lookup(name);
625 
626 	return !core ? NULL : core->hw->clk;
627 }
628 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)629 static void clk_core_get_boundaries(struct clk_core *core,
630 				    unsigned long *min_rate,
631 				    unsigned long *max_rate)
632 {
633 	struct clk *clk_user;
634 
635 	lockdep_assert_held(&prepare_lock);
636 
637 	*min_rate = core->min_rate;
638 	*max_rate = core->max_rate;
639 
640 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
641 		*min_rate = max(*min_rate, clk_user->min_rate);
642 
643 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
644 		*max_rate = min(*max_rate, clk_user->max_rate);
645 }
646 
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)647 static bool clk_core_check_boundaries(struct clk_core *core,
648 				      unsigned long min_rate,
649 				      unsigned long max_rate)
650 {
651 	struct clk *user;
652 
653 	lockdep_assert_held(&prepare_lock);
654 
655 	if (min_rate > core->max_rate || max_rate < core->min_rate)
656 		return false;
657 
658 	hlist_for_each_entry(user, &core->clks, clks_node)
659 		if (min_rate > user->max_rate || max_rate < user->min_rate)
660 			return false;
661 
662 	return true;
663 }
664 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)665 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
666 			   unsigned long max_rate)
667 {
668 	hw->core->min_rate = min_rate;
669 	hw->core->max_rate = max_rate;
670 }
671 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
672 
673 /*
674  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
675  * @hw: mux type clk to determine rate on
676  * @req: rate request, also used to return preferred parent and frequencies
677  *
678  * Helper for finding best parent to provide a given frequency. This can be used
679  * directly as a determine_rate callback (e.g. for a mux), or from a more
680  * complex clock that may combine a mux with other operations.
681  *
682  * Returns: 0 on success, -EERROR value on error
683  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)684 int __clk_mux_determine_rate(struct clk_hw *hw,
685 			     struct clk_rate_request *req)
686 {
687 	return clk_mux_determine_rate_flags(hw, req, 0);
688 }
689 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
690 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)691 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
692 				     struct clk_rate_request *req)
693 {
694 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
695 }
696 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
697 
698 /***        clk api        ***/
699 
clk_core_rate_unprotect(struct clk_core * core)700 static void clk_core_rate_unprotect(struct clk_core *core)
701 {
702 	lockdep_assert_held(&prepare_lock);
703 
704 	if (!core)
705 		return;
706 
707 	if (WARN(core->protect_count == 0,
708 	    "%s already unprotected\n", core->name))
709 		return;
710 
711 	if (--core->protect_count > 0)
712 		return;
713 
714 	clk_core_rate_unprotect(core->parent);
715 }
716 
clk_core_rate_nuke_protect(struct clk_core * core)717 static int clk_core_rate_nuke_protect(struct clk_core *core)
718 {
719 	int ret;
720 
721 	lockdep_assert_held(&prepare_lock);
722 
723 	if (!core)
724 		return -EINVAL;
725 
726 	if (core->protect_count == 0)
727 		return 0;
728 
729 	ret = core->protect_count;
730 	core->protect_count = 1;
731 	clk_core_rate_unprotect(core);
732 
733 	return ret;
734 }
735 
736 /**
737  * clk_rate_exclusive_put - release exclusivity over clock rate control
738  * @clk: the clk over which the exclusivity is released
739  *
740  * clk_rate_exclusive_put() completes a critical section during which a clock
741  * consumer cannot tolerate any other consumer making any operation on the
742  * clock which could result in a rate change or rate glitch. Exclusive clocks
743  * cannot have their rate changed, either directly or indirectly due to changes
744  * further up the parent chain of clocks. As a result, clocks up parent chain
745  * also get under exclusive control of the calling consumer.
746  *
747  * If exlusivity is claimed more than once on clock, even by the same consumer,
748  * the rate effectively gets locked as exclusivity can't be preempted.
749  *
750  * Calls to clk_rate_exclusive_put() must be balanced with calls to
751  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
752  * error status.
753  */
clk_rate_exclusive_put(struct clk * clk)754 void clk_rate_exclusive_put(struct clk *clk)
755 {
756 	if (!clk)
757 		return;
758 
759 	clk_prepare_lock();
760 
761 	/*
762 	 * if there is something wrong with this consumer protect count, stop
763 	 * here before messing with the provider
764 	 */
765 	if (WARN_ON(clk->exclusive_count <= 0))
766 		goto out;
767 
768 	clk_core_rate_unprotect(clk->core);
769 	clk->exclusive_count--;
770 out:
771 	clk_prepare_unlock();
772 }
773 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
774 
clk_core_rate_protect(struct clk_core * core)775 static void clk_core_rate_protect(struct clk_core *core)
776 {
777 	lockdep_assert_held(&prepare_lock);
778 
779 	if (!core)
780 		return;
781 
782 	if (core->protect_count == 0)
783 		clk_core_rate_protect(core->parent);
784 
785 	core->protect_count++;
786 }
787 
clk_core_rate_restore_protect(struct clk_core * core,int count)788 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
789 {
790 	lockdep_assert_held(&prepare_lock);
791 
792 	if (!core)
793 		return;
794 
795 	if (count == 0)
796 		return;
797 
798 	clk_core_rate_protect(core);
799 	core->protect_count = count;
800 }
801 
802 /**
803  * clk_rate_exclusive_get - get exclusivity over the clk rate control
804  * @clk: the clk over which the exclusity of rate control is requested
805  *
806  * clk_rate_exclusive_get() begins a critical section during which a clock
807  * consumer cannot tolerate any other consumer making any operation on the
808  * clock which could result in a rate change or rate glitch. Exclusive clocks
809  * cannot have their rate changed, either directly or indirectly due to changes
810  * further up the parent chain of clocks. As a result, clocks up parent chain
811  * also get under exclusive control of the calling consumer.
812  *
813  * If exlusivity is claimed more than once on clock, even by the same consumer,
814  * the rate effectively gets locked as exclusivity can't be preempted.
815  *
816  * Calls to clk_rate_exclusive_get() should be balanced with calls to
817  * clk_rate_exclusive_put(). Calls to this function may sleep.
818  * Returns 0 on success, -EERROR otherwise
819  */
clk_rate_exclusive_get(struct clk * clk)820 int clk_rate_exclusive_get(struct clk *clk)
821 {
822 	if (!clk)
823 		return 0;
824 
825 	clk_prepare_lock();
826 	clk_core_rate_protect(clk->core);
827 	clk->exclusive_count++;
828 	clk_prepare_unlock();
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
833 
clk_core_unprepare(struct clk_core * core)834 static void clk_core_unprepare(struct clk_core *core)
835 {
836 	lockdep_assert_held(&prepare_lock);
837 
838 	if (!core)
839 		return;
840 
841 	if (WARN(core->prepare_count == 0,
842 	    "%s already unprepared\n", core->name))
843 		return;
844 
845 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
846 	    "Unpreparing critical %s\n", core->name))
847 		return;
848 
849 	if (core->flags & CLK_SET_RATE_GATE)
850 		clk_core_rate_unprotect(core);
851 
852 	if (--core->prepare_count > 0)
853 		return;
854 
855 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
856 
857 	trace_clk_unprepare(core);
858 
859 	if (core->ops->unprepare)
860 		core->ops->unprepare(core->hw);
861 
862 	trace_clk_unprepare_complete(core);
863 	clk_core_unprepare(core->parent);
864 	clk_pm_runtime_put(core);
865 }
866 
clk_core_unprepare_lock(struct clk_core * core)867 static void clk_core_unprepare_lock(struct clk_core *core)
868 {
869 	clk_prepare_lock();
870 	clk_core_unprepare(core);
871 	clk_prepare_unlock();
872 }
873 
874 /**
875  * clk_unprepare - undo preparation of a clock source
876  * @clk: the clk being unprepared
877  *
878  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
879  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
880  * if the operation may sleep.  One example is a clk which is accessed over
881  * I2c.  In the complex case a clk gate operation may require a fast and a slow
882  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
883  * exclusive.  In fact clk_disable must be called before clk_unprepare.
884  */
clk_unprepare(struct clk * clk)885 void clk_unprepare(struct clk *clk)
886 {
887 	if (IS_ERR_OR_NULL(clk))
888 		return;
889 
890 	clk_core_unprepare_lock(clk->core);
891 }
892 EXPORT_SYMBOL_GPL(clk_unprepare);
893 
clk_core_prepare(struct clk_core * core)894 static int clk_core_prepare(struct clk_core *core)
895 {
896 	int ret = 0;
897 
898 	lockdep_assert_held(&prepare_lock);
899 
900 	if (!core)
901 		return 0;
902 
903 	if (core->prepare_count == 0) {
904 		ret = clk_pm_runtime_get(core);
905 		if (ret)
906 			return ret;
907 
908 		ret = clk_core_prepare(core->parent);
909 		if (ret)
910 			goto runtime_put;
911 
912 		trace_clk_prepare(core);
913 
914 		if (core->ops->prepare)
915 			ret = core->ops->prepare(core->hw);
916 
917 		trace_clk_prepare_complete(core);
918 
919 		if (ret)
920 			goto unprepare;
921 	}
922 
923 	core->prepare_count++;
924 
925 	/*
926 	 * CLK_SET_RATE_GATE is a special case of clock protection
927 	 * Instead of a consumer claiming exclusive rate control, it is
928 	 * actually the provider which prevents any consumer from making any
929 	 * operation which could result in a rate change or rate glitch while
930 	 * the clock is prepared.
931 	 */
932 	if (core->flags & CLK_SET_RATE_GATE)
933 		clk_core_rate_protect(core);
934 
935 	return 0;
936 unprepare:
937 	clk_core_unprepare(core->parent);
938 runtime_put:
939 	clk_pm_runtime_put(core);
940 	return ret;
941 }
942 
clk_core_prepare_lock(struct clk_core * core)943 static int clk_core_prepare_lock(struct clk_core *core)
944 {
945 	int ret;
946 
947 	clk_prepare_lock();
948 	ret = clk_core_prepare(core);
949 	clk_prepare_unlock();
950 
951 	return ret;
952 }
953 
954 /**
955  * clk_prepare - prepare a clock source
956  * @clk: the clk being prepared
957  *
958  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
959  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
960  * operation may sleep.  One example is a clk which is accessed over I2c.  In
961  * the complex case a clk ungate operation may require a fast and a slow part.
962  * It is this reason that clk_prepare and clk_enable are not mutually
963  * exclusive.  In fact clk_prepare must be called before clk_enable.
964  * Returns 0 on success, -EERROR otherwise.
965  */
clk_prepare(struct clk * clk)966 int clk_prepare(struct clk *clk)
967 {
968 	if (!clk)
969 		return 0;
970 
971 	return clk_core_prepare_lock(clk->core);
972 }
973 EXPORT_SYMBOL_GPL(clk_prepare);
974 
clk_core_disable(struct clk_core * core)975 static void clk_core_disable(struct clk_core *core)
976 {
977 	lockdep_assert_held(&enable_lock);
978 
979 	if (!core)
980 		return;
981 
982 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
983 		return;
984 
985 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
986 	    "Disabling critical %s\n", core->name))
987 		return;
988 
989 	if (--core->enable_count > 0)
990 		return;
991 
992 	trace_clk_disable_rcuidle(core);
993 
994 	if (core->ops->disable)
995 		core->ops->disable(core->hw);
996 
997 	trace_clk_disable_complete_rcuidle(core);
998 
999 	clk_core_disable(core->parent);
1000 }
1001 
clk_core_disable_lock(struct clk_core * core)1002 static void clk_core_disable_lock(struct clk_core *core)
1003 {
1004 	unsigned long flags;
1005 
1006 	flags = clk_enable_lock();
1007 	clk_core_disable(core);
1008 	clk_enable_unlock(flags);
1009 }
1010 
1011 /**
1012  * clk_disable - gate a clock
1013  * @clk: the clk being gated
1014  *
1015  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1016  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1017  * clk if the operation is fast and will never sleep.  One example is a
1018  * SoC-internal clk which is controlled via simple register writes.  In the
1019  * complex case a clk gate operation may require a fast and a slow part.  It is
1020  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1021  * In fact clk_disable must be called before clk_unprepare.
1022  */
clk_disable(struct clk * clk)1023 void clk_disable(struct clk *clk)
1024 {
1025 	if (IS_ERR_OR_NULL(clk))
1026 		return;
1027 
1028 	clk_core_disable_lock(clk->core);
1029 }
1030 EXPORT_SYMBOL_GPL(clk_disable);
1031 
clk_core_enable(struct clk_core * core)1032 static int clk_core_enable(struct clk_core *core)
1033 {
1034 	int ret = 0;
1035 
1036 	lockdep_assert_held(&enable_lock);
1037 
1038 	if (!core)
1039 		return 0;
1040 
1041 	if (WARN(core->prepare_count == 0,
1042 	    "Enabling unprepared %s\n", core->name))
1043 		return -ESHUTDOWN;
1044 
1045 	if (core->enable_count == 0) {
1046 		ret = clk_core_enable(core->parent);
1047 
1048 		if (ret)
1049 			return ret;
1050 
1051 		trace_clk_enable_rcuidle(core);
1052 
1053 		if (core->ops->enable)
1054 			ret = core->ops->enable(core->hw);
1055 
1056 		trace_clk_enable_complete_rcuidle(core);
1057 
1058 		if (ret) {
1059 			clk_core_disable(core->parent);
1060 			return ret;
1061 		}
1062 	}
1063 
1064 	core->enable_count++;
1065 	return 0;
1066 }
1067 
clk_core_enable_lock(struct clk_core * core)1068 static int clk_core_enable_lock(struct clk_core *core)
1069 {
1070 	unsigned long flags;
1071 	int ret;
1072 
1073 	flags = clk_enable_lock();
1074 	ret = clk_core_enable(core);
1075 	clk_enable_unlock(flags);
1076 
1077 	return ret;
1078 }
1079 
1080 /**
1081  * clk_gate_restore_context - restore context for poweroff
1082  * @hw: the clk_hw pointer of clock whose state is to be restored
1083  *
1084  * The clock gate restore context function enables or disables
1085  * the gate clocks based on the enable_count. This is done in cases
1086  * where the clock context is lost and based on the enable_count
1087  * the clock either needs to be enabled/disabled. This
1088  * helps restore the state of gate clocks.
1089  */
clk_gate_restore_context(struct clk_hw * hw)1090 void clk_gate_restore_context(struct clk_hw *hw)
1091 {
1092 	struct clk_core *core = hw->core;
1093 
1094 	if (core->enable_count)
1095 		core->ops->enable(hw);
1096 	else
1097 		core->ops->disable(hw);
1098 }
1099 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1100 
clk_core_save_context(struct clk_core * core)1101 static int clk_core_save_context(struct clk_core *core)
1102 {
1103 	struct clk_core *child;
1104 	int ret = 0;
1105 
1106 	hlist_for_each_entry(child, &core->children, child_node) {
1107 		ret = clk_core_save_context(child);
1108 		if (ret < 0)
1109 			return ret;
1110 	}
1111 
1112 	if (core->ops && core->ops->save_context)
1113 		ret = core->ops->save_context(core->hw);
1114 
1115 	return ret;
1116 }
1117 
clk_core_restore_context(struct clk_core * core)1118 static void clk_core_restore_context(struct clk_core *core)
1119 {
1120 	struct clk_core *child;
1121 
1122 	if (core->ops && core->ops->restore_context)
1123 		core->ops->restore_context(core->hw);
1124 
1125 	hlist_for_each_entry(child, &core->children, child_node)
1126 		clk_core_restore_context(child);
1127 }
1128 
1129 /**
1130  * clk_save_context - save clock context for poweroff
1131  *
1132  * Saves the context of the clock register for powerstates in which the
1133  * contents of the registers will be lost. Occurs deep within the suspend
1134  * code.  Returns 0 on success.
1135  */
clk_save_context(void)1136 int clk_save_context(void)
1137 {
1138 	struct clk_core *clk;
1139 	int ret;
1140 
1141 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1142 		ret = clk_core_save_context(clk);
1143 		if (ret < 0)
1144 			return ret;
1145 	}
1146 
1147 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1148 		ret = clk_core_save_context(clk);
1149 		if (ret < 0)
1150 			return ret;
1151 	}
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(clk_save_context);
1156 
1157 /**
1158  * clk_restore_context - restore clock context after poweroff
1159  *
1160  * Restore the saved clock context upon resume.
1161  *
1162  */
clk_restore_context(void)1163 void clk_restore_context(void)
1164 {
1165 	struct clk_core *core;
1166 
1167 	hlist_for_each_entry(core, &clk_root_list, child_node)
1168 		clk_core_restore_context(core);
1169 
1170 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1171 		clk_core_restore_context(core);
1172 }
1173 EXPORT_SYMBOL_GPL(clk_restore_context);
1174 
1175 /**
1176  * clk_enable - ungate a clock
1177  * @clk: the clk being ungated
1178  *
1179  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1180  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1181  * if the operation will never sleep.  One example is a SoC-internal clk which
1182  * is controlled via simple register writes.  In the complex case a clk ungate
1183  * operation may require a fast and a slow part.  It is this reason that
1184  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1185  * must be called before clk_enable.  Returns 0 on success, -EERROR
1186  * otherwise.
1187  */
clk_enable(struct clk * clk)1188 int clk_enable(struct clk *clk)
1189 {
1190 	if (!clk)
1191 		return 0;
1192 
1193 	return clk_core_enable_lock(clk->core);
1194 }
1195 EXPORT_SYMBOL_GPL(clk_enable);
1196 
1197 /**
1198  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1199  * @clk: clock source
1200  *
1201  * Returns true if clk_prepare() implicitly enables the clock, effectively
1202  * making clk_enable()/clk_disable() no-ops, false otherwise.
1203  *
1204  * This is of interest mainly to power management code where actually
1205  * disabling the clock also requires unpreparing it to have any material
1206  * effect.
1207  *
1208  * Regardless of the value returned here, the caller must always invoke
1209  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1210  * to be right.
1211  */
clk_is_enabled_when_prepared(struct clk * clk)1212 bool clk_is_enabled_when_prepared(struct clk *clk)
1213 {
1214 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1215 }
1216 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1217 
clk_core_prepare_enable(struct clk_core * core)1218 static int clk_core_prepare_enable(struct clk_core *core)
1219 {
1220 	int ret;
1221 
1222 	ret = clk_core_prepare_lock(core);
1223 	if (ret)
1224 		return ret;
1225 
1226 	ret = clk_core_enable_lock(core);
1227 	if (ret)
1228 		clk_core_unprepare_lock(core);
1229 
1230 	return ret;
1231 }
1232 
clk_core_disable_unprepare(struct clk_core * core)1233 static void clk_core_disable_unprepare(struct clk_core *core)
1234 {
1235 	clk_core_disable_lock(core);
1236 	clk_core_unprepare_lock(core);
1237 }
1238 
clk_unprepare_unused_subtree(struct clk_core * core)1239 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1240 {
1241 	struct clk_core *child;
1242 
1243 	lockdep_assert_held(&prepare_lock);
1244 
1245 	hlist_for_each_entry(child, &core->children, child_node)
1246 		clk_unprepare_unused_subtree(child);
1247 
1248 	if (dev_has_sync_state(core->dev) &&
1249 	    !(core->flags & CLK_DONT_HOLD_STATE))
1250 		return;
1251 
1252 	if (core->prepare_count)
1253 		return;
1254 
1255 	if (core->flags & CLK_IGNORE_UNUSED)
1256 		return;
1257 
1258 	if (clk_pm_runtime_get(core))
1259 		return;
1260 
1261 	if (clk_core_is_prepared(core)) {
1262 		trace_clk_unprepare(core);
1263 		if (core->ops->unprepare_unused)
1264 			core->ops->unprepare_unused(core->hw);
1265 		else if (core->ops->unprepare)
1266 			core->ops->unprepare(core->hw);
1267 		trace_clk_unprepare_complete(core);
1268 	}
1269 
1270 	clk_pm_runtime_put(core);
1271 }
1272 
clk_disable_unused_subtree(struct clk_core * core)1273 static void __init clk_disable_unused_subtree(struct clk_core *core)
1274 {
1275 	struct clk_core *child;
1276 	unsigned long flags;
1277 
1278 	lockdep_assert_held(&prepare_lock);
1279 
1280 	hlist_for_each_entry(child, &core->children, child_node)
1281 		clk_disable_unused_subtree(child);
1282 
1283 	if (dev_has_sync_state(core->dev) &&
1284 	    !(core->flags & CLK_DONT_HOLD_STATE))
1285 		return;
1286 
1287 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1288 		clk_core_prepare_enable(core->parent);
1289 
1290 	if (clk_pm_runtime_get(core))
1291 		goto unprepare_out;
1292 
1293 	flags = clk_enable_lock();
1294 
1295 	if (core->enable_count)
1296 		goto unlock_out;
1297 
1298 	if (core->flags & CLK_IGNORE_UNUSED)
1299 		goto unlock_out;
1300 
1301 	/*
1302 	 * some gate clocks have special needs during the disable-unused
1303 	 * sequence.  call .disable_unused if available, otherwise fall
1304 	 * back to .disable
1305 	 */
1306 	if (clk_core_is_enabled(core)) {
1307 		trace_clk_disable(core);
1308 		if (core->ops->disable_unused)
1309 			core->ops->disable_unused(core->hw);
1310 		else if (core->ops->disable)
1311 			core->ops->disable(core->hw);
1312 		trace_clk_disable_complete(core);
1313 	}
1314 
1315 unlock_out:
1316 	clk_enable_unlock(flags);
1317 	clk_pm_runtime_put(core);
1318 unprepare_out:
1319 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1320 		clk_core_disable_unprepare(core->parent);
1321 }
1322 
1323 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1324 static int __init clk_ignore_unused_setup(char *__unused)
1325 {
1326 	clk_ignore_unused = true;
1327 	return 1;
1328 }
1329 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1330 
clk_disable_unused(void)1331 static int __init clk_disable_unused(void)
1332 {
1333 	struct clk_core *core;
1334 
1335 	if (clk_ignore_unused) {
1336 		pr_warn("clk: Not disabling unused clocks\n");
1337 		return 0;
1338 	}
1339 
1340 	clk_prepare_lock();
1341 
1342 	hlist_for_each_entry(core, &clk_root_list, child_node)
1343 		clk_disable_unused_subtree(core);
1344 
1345 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1346 		clk_disable_unused_subtree(core);
1347 
1348 	hlist_for_each_entry(core, &clk_root_list, child_node)
1349 		clk_unprepare_unused_subtree(core);
1350 
1351 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1352 		clk_unprepare_unused_subtree(core);
1353 
1354 	clk_prepare_unlock();
1355 
1356 	return 0;
1357 }
1358 late_initcall_sync(clk_disable_unused);
1359 
clk_unprepare_disable_dev_subtree(struct clk_core * core,struct device * dev)1360 static void clk_unprepare_disable_dev_subtree(struct clk_core *core,
1361 					      struct device *dev)
1362 {
1363 	struct clk_core *child;
1364 
1365 	lockdep_assert_held(&prepare_lock);
1366 
1367 	hlist_for_each_entry(child, &core->children, child_node)
1368 		clk_unprepare_disable_dev_subtree(child, dev);
1369 
1370 	if (core->dev != dev || !core->need_sync)
1371 		return;
1372 
1373 	clk_core_disable_unprepare(core);
1374 }
1375 
clk_sync_state(struct device * dev)1376 void clk_sync_state(struct device *dev)
1377 {
1378 	struct clk_core *core;
1379 
1380 	clk_prepare_lock();
1381 
1382 	hlist_for_each_entry(core, &clk_root_list, child_node)
1383 		clk_unprepare_disable_dev_subtree(core, dev);
1384 
1385 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1386 		clk_unprepare_disable_dev_subtree(core, dev);
1387 
1388 	clk_prepare_unlock();
1389 }
1390 EXPORT_SYMBOL_GPL(clk_sync_state);
1391 
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1392 static int clk_core_determine_round_nolock(struct clk_core *core,
1393 					   struct clk_rate_request *req)
1394 {
1395 	long rate;
1396 
1397 	lockdep_assert_held(&prepare_lock);
1398 
1399 	if (!core)
1400 		return 0;
1401 
1402 	/*
1403 	 * At this point, core protection will be disabled
1404 	 * - if the provider is not protected at all
1405 	 * - if the calling consumer is the only one which has exclusivity
1406 	 *   over the provider
1407 	 */
1408 	if (clk_core_rate_is_protected(core)) {
1409 		req->rate = core->rate;
1410 	} else if (core->ops->determine_rate) {
1411 		return core->ops->determine_rate(core->hw, req);
1412 	} else if (core->ops->round_rate) {
1413 		rate = core->ops->round_rate(core->hw, req->rate,
1414 					     &req->best_parent_rate);
1415 		if (rate < 0)
1416 			return rate;
1417 
1418 		req->rate = rate;
1419 	} else {
1420 		return -EINVAL;
1421 	}
1422 
1423 	return 0;
1424 }
1425 
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req)1426 static void clk_core_init_rate_req(struct clk_core * const core,
1427 				   struct clk_rate_request *req)
1428 {
1429 	struct clk_core *parent;
1430 
1431 	if (WARN_ON(!core || !req))
1432 		return;
1433 
1434 	parent = core->parent;
1435 	if (parent) {
1436 		req->best_parent_hw = parent->hw;
1437 		req->best_parent_rate = parent->rate;
1438 	} else {
1439 		req->best_parent_hw = NULL;
1440 		req->best_parent_rate = 0;
1441 	}
1442 }
1443 
clk_core_can_round(struct clk_core * const core)1444 static bool clk_core_can_round(struct clk_core * const core)
1445 {
1446 	return core->ops->determine_rate || core->ops->round_rate;
1447 }
1448 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1449 static int clk_core_round_rate_nolock(struct clk_core *core,
1450 				      struct clk_rate_request *req)
1451 {
1452 	lockdep_assert_held(&prepare_lock);
1453 
1454 	if (!core) {
1455 		req->rate = 0;
1456 		return 0;
1457 	}
1458 
1459 	clk_core_init_rate_req(core, req);
1460 
1461 	if (clk_core_can_round(core))
1462 		return clk_core_determine_round_nolock(core, req);
1463 	else if (core->flags & CLK_SET_RATE_PARENT)
1464 		return clk_core_round_rate_nolock(core->parent, req);
1465 
1466 	req->rate = core->rate;
1467 	return 0;
1468 }
1469 
1470 /**
1471  * __clk_determine_rate - get the closest rate actually supported by a clock
1472  * @hw: determine the rate of this clock
1473  * @req: target rate request
1474  *
1475  * Useful for clk_ops such as .set_rate and .determine_rate.
1476  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1477 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1478 {
1479 	if (!hw) {
1480 		req->rate = 0;
1481 		return 0;
1482 	}
1483 
1484 	return clk_core_round_rate_nolock(hw->core, req);
1485 }
1486 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1487 
1488 /**
1489  * clk_hw_round_rate() - round the given rate for a hw clk
1490  * @hw: the hw clk for which we are rounding a rate
1491  * @rate: the rate which is to be rounded
1492  *
1493  * Takes in a rate as input and rounds it to a rate that the clk can actually
1494  * use.
1495  *
1496  * Context: prepare_lock must be held.
1497  *          For clk providers to call from within clk_ops such as .round_rate,
1498  *          .determine_rate.
1499  *
1500  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1501  *         else returns the parent rate.
1502  */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1503 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1504 {
1505 	int ret;
1506 	struct clk_rate_request req;
1507 
1508 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1509 	req.rate = rate;
1510 
1511 	ret = clk_core_round_rate_nolock(hw->core, &req);
1512 	if (ret)
1513 		return 0;
1514 
1515 	return req.rate;
1516 }
1517 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1518 
1519 /**
1520  * clk_round_rate - round the given rate for a clk
1521  * @clk: the clk for which we are rounding a rate
1522  * @rate: the rate which is to be rounded
1523  *
1524  * Takes in a rate as input and rounds it to a rate that the clk can actually
1525  * use which is then returned.  If clk doesn't support round_rate operation
1526  * then the parent rate is returned.
1527  */
clk_round_rate(struct clk * clk,unsigned long rate)1528 long clk_round_rate(struct clk *clk, unsigned long rate)
1529 {
1530 	struct clk_rate_request req;
1531 	int ret;
1532 
1533 	if (!clk)
1534 		return 0;
1535 
1536 	clk_prepare_lock();
1537 
1538 	if (clk->exclusive_count)
1539 		clk_core_rate_unprotect(clk->core);
1540 
1541 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1542 	req.rate = rate;
1543 
1544 	ret = clk_core_round_rate_nolock(clk->core, &req);
1545 
1546 	if (clk->exclusive_count)
1547 		clk_core_rate_protect(clk->core);
1548 
1549 	clk_prepare_unlock();
1550 
1551 	if (ret)
1552 		return ret;
1553 
1554 	return req.rate;
1555 }
1556 EXPORT_SYMBOL_GPL(clk_round_rate);
1557 
1558 /**
1559  * __clk_notify - call clk notifier chain
1560  * @core: clk that is changing rate
1561  * @msg: clk notifier type (see include/linux/clk.h)
1562  * @old_rate: old clk rate
1563  * @new_rate: new clk rate
1564  *
1565  * Triggers a notifier call chain on the clk rate-change notification
1566  * for 'clk'.  Passes a pointer to the struct clk and the previous
1567  * and current rates to the notifier callback.  Intended to be called by
1568  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1569  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1570  * a driver returns that.
1571  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1572 static int __clk_notify(struct clk_core *core, unsigned long msg,
1573 		unsigned long old_rate, unsigned long new_rate)
1574 {
1575 	struct clk_notifier *cn;
1576 	struct clk_notifier_data cnd;
1577 	int ret = NOTIFY_DONE;
1578 
1579 	cnd.old_rate = old_rate;
1580 	cnd.new_rate = new_rate;
1581 
1582 	list_for_each_entry(cn, &clk_notifier_list, node) {
1583 		if (cn->clk->core == core) {
1584 			cnd.clk = cn->clk;
1585 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1586 					&cnd);
1587 			if (ret & NOTIFY_STOP_MASK)
1588 				return ret;
1589 		}
1590 	}
1591 
1592 	return ret;
1593 }
1594 
1595 /**
1596  * __clk_recalc_accuracies
1597  * @core: first clk in the subtree
1598  *
1599  * Walks the subtree of clks starting with clk and recalculates accuracies as
1600  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1601  * callback then it is assumed that the clock will take on the accuracy of its
1602  * parent.
1603  */
__clk_recalc_accuracies(struct clk_core * core)1604 static void __clk_recalc_accuracies(struct clk_core *core)
1605 {
1606 	unsigned long parent_accuracy = 0;
1607 	struct clk_core *child;
1608 
1609 	lockdep_assert_held(&prepare_lock);
1610 
1611 	if (core->parent)
1612 		parent_accuracy = core->parent->accuracy;
1613 
1614 	if (core->ops->recalc_accuracy)
1615 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1616 							  parent_accuracy);
1617 	else
1618 		core->accuracy = parent_accuracy;
1619 
1620 	hlist_for_each_entry(child, &core->children, child_node)
1621 		__clk_recalc_accuracies(child);
1622 }
1623 
clk_core_get_accuracy_recalc(struct clk_core * core)1624 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1625 {
1626 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1627 		__clk_recalc_accuracies(core);
1628 
1629 	return clk_core_get_accuracy_no_lock(core);
1630 }
1631 
1632 /**
1633  * clk_get_accuracy - return the accuracy of clk
1634  * @clk: the clk whose accuracy is being returned
1635  *
1636  * Simply returns the cached accuracy of the clk, unless
1637  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1638  * issued.
1639  * If clk is NULL then returns 0.
1640  */
clk_get_accuracy(struct clk * clk)1641 long clk_get_accuracy(struct clk *clk)
1642 {
1643 	long accuracy;
1644 
1645 	if (!clk)
1646 		return 0;
1647 
1648 	clk_prepare_lock();
1649 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1650 	clk_prepare_unlock();
1651 
1652 	return accuracy;
1653 }
1654 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1655 
clk_recalc(struct clk_core * core,unsigned long parent_rate)1656 static unsigned long clk_recalc(struct clk_core *core,
1657 				unsigned long parent_rate)
1658 {
1659 	unsigned long rate = parent_rate;
1660 
1661 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1662 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1663 		clk_pm_runtime_put(core);
1664 	}
1665 	return rate;
1666 }
1667 
1668 /**
1669  * __clk_recalc_rates
1670  * @core: first clk in the subtree
1671  * @msg: notification type (see include/linux/clk.h)
1672  *
1673  * Walks the subtree of clks starting with clk and recalculates rates as it
1674  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1675  * it is assumed that the clock will take on the rate of its parent.
1676  *
1677  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1678  * if necessary.
1679  */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1680 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1681 {
1682 	unsigned long old_rate;
1683 	unsigned long parent_rate = 0;
1684 	struct clk_core *child;
1685 
1686 	lockdep_assert_held(&prepare_lock);
1687 
1688 	old_rate = core->rate;
1689 
1690 	if (core->parent)
1691 		parent_rate = core->parent->rate;
1692 
1693 	core->rate = clk_recalc(core, parent_rate);
1694 
1695 	/*
1696 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1697 	 * & ABORT_RATE_CHANGE notifiers
1698 	 */
1699 	if (core->notifier_count && msg)
1700 		__clk_notify(core, msg, old_rate, core->rate);
1701 
1702 	hlist_for_each_entry(child, &core->children, child_node)
1703 		__clk_recalc_rates(child, msg);
1704 }
1705 
clk_core_get_rate_recalc(struct clk_core * core)1706 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1707 {
1708 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1709 		__clk_recalc_rates(core, 0);
1710 
1711 	return clk_core_get_rate_nolock(core);
1712 }
1713 
1714 /**
1715  * clk_get_rate - return the rate of clk
1716  * @clk: the clk whose rate is being returned
1717  *
1718  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1719  * is set, which means a recalc_rate will be issued.
1720  * If clk is NULL then returns 0.
1721  */
clk_get_rate(struct clk * clk)1722 unsigned long clk_get_rate(struct clk *clk)
1723 {
1724 	unsigned long rate;
1725 
1726 	if (!clk)
1727 		return 0;
1728 
1729 	clk_prepare_lock();
1730 	rate = clk_core_get_rate_recalc(clk->core);
1731 	clk_prepare_unlock();
1732 
1733 	return rate;
1734 }
1735 EXPORT_SYMBOL_GPL(clk_get_rate);
1736 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1737 static int clk_fetch_parent_index(struct clk_core *core,
1738 				  struct clk_core *parent)
1739 {
1740 	int i;
1741 
1742 	if (!parent)
1743 		return -EINVAL;
1744 
1745 	for (i = 0; i < core->num_parents; i++) {
1746 		/* Found it first try! */
1747 		if (core->parents[i].core == parent)
1748 			return i;
1749 
1750 		/* Something else is here, so keep looking */
1751 		if (core->parents[i].core)
1752 			continue;
1753 
1754 		/* Maybe core hasn't been cached but the hw is all we know? */
1755 		if (core->parents[i].hw) {
1756 			if (core->parents[i].hw == parent->hw)
1757 				break;
1758 
1759 			/* Didn't match, but we're expecting a clk_hw */
1760 			continue;
1761 		}
1762 
1763 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1764 		if (parent == clk_core_get(core, i))
1765 			break;
1766 
1767 		/* Fallback to comparing globally unique names */
1768 		if (core->parents[i].name &&
1769 		    !strcmp(parent->name, core->parents[i].name))
1770 			break;
1771 	}
1772 
1773 	if (i == core->num_parents)
1774 		return -EINVAL;
1775 
1776 	core->parents[i].core = parent;
1777 	return i;
1778 }
1779 
1780 /**
1781  * clk_hw_get_parent_index - return the index of the parent clock
1782  * @hw: clk_hw associated with the clk being consumed
1783  *
1784  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1785  * clock does not have a current parent.
1786  */
clk_hw_get_parent_index(struct clk_hw * hw)1787 int clk_hw_get_parent_index(struct clk_hw *hw)
1788 {
1789 	struct clk_hw *parent = clk_hw_get_parent(hw);
1790 
1791 	if (WARN_ON(parent == NULL))
1792 		return -EINVAL;
1793 
1794 	return clk_fetch_parent_index(hw->core, parent->core);
1795 }
1796 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1797 
clk_core_hold_state(struct clk_core * core)1798 static void clk_core_hold_state(struct clk_core *core)
1799 {
1800 	if (core->need_sync || !core->boot_enabled)
1801 		return;
1802 
1803 	if (core->orphan || !dev_has_sync_state(core->dev))
1804 		return;
1805 
1806 	if (core->flags & CLK_DONT_HOLD_STATE)
1807 		return;
1808 
1809 	core->need_sync = !clk_core_prepare_enable(core);
1810 }
1811 
__clk_core_update_orphan_hold_state(struct clk_core * core)1812 static void __clk_core_update_orphan_hold_state(struct clk_core *core)
1813 {
1814 	struct clk_core *child;
1815 
1816 	if (core->orphan)
1817 		return;
1818 
1819 	clk_core_hold_state(core);
1820 
1821 	hlist_for_each_entry(child, &core->children, child_node)
1822 		__clk_core_update_orphan_hold_state(child);
1823 }
1824 
1825 /*
1826  * Update the orphan status of @core and all its children.
1827  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1828 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1829 {
1830 	struct clk_core *child;
1831 
1832 	core->orphan = is_orphan;
1833 
1834 	hlist_for_each_entry(child, &core->children, child_node)
1835 		clk_core_update_orphan_status(child, is_orphan);
1836 }
1837 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1838 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1839 {
1840 	bool was_orphan = core->orphan;
1841 
1842 	hlist_del(&core->child_node);
1843 
1844 	if (new_parent) {
1845 		bool becomes_orphan = new_parent->orphan;
1846 
1847 		/* avoid duplicate POST_RATE_CHANGE notifications */
1848 		if (new_parent->new_child == core)
1849 			new_parent->new_child = NULL;
1850 
1851 		hlist_add_head(&core->child_node, &new_parent->children);
1852 
1853 		if (was_orphan != becomes_orphan)
1854 			clk_core_update_orphan_status(core, becomes_orphan);
1855 	} else {
1856 		hlist_add_head(&core->child_node, &clk_orphan_list);
1857 		if (!was_orphan)
1858 			clk_core_update_orphan_status(core, true);
1859 	}
1860 
1861 	core->parent = new_parent;
1862 }
1863 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1864 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1865 					   struct clk_core *parent)
1866 {
1867 	unsigned long flags;
1868 	struct clk_core *old_parent = core->parent;
1869 
1870 	/*
1871 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1872 	 *
1873 	 * 2. Migrate prepare state between parents and prevent race with
1874 	 * clk_enable().
1875 	 *
1876 	 * If the clock is not prepared, then a race with
1877 	 * clk_enable/disable() is impossible since we already have the
1878 	 * prepare lock (future calls to clk_enable() need to be preceded by
1879 	 * a clk_prepare()).
1880 	 *
1881 	 * If the clock is prepared, migrate the prepared state to the new
1882 	 * parent and also protect against a race with clk_enable() by
1883 	 * forcing the clock and the new parent on.  This ensures that all
1884 	 * future calls to clk_enable() are practically NOPs with respect to
1885 	 * hardware and software states.
1886 	 *
1887 	 * See also: Comment for clk_set_parent() below.
1888 	 */
1889 
1890 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1891 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1892 		clk_core_prepare_enable(old_parent);
1893 		clk_core_prepare_enable(parent);
1894 	}
1895 
1896 	/* migrate prepare count if > 0 */
1897 	if (core->prepare_count) {
1898 		clk_core_prepare_enable(parent);
1899 		clk_core_enable_lock(core);
1900 	}
1901 
1902 	/* update the clk tree topology */
1903 	flags = clk_enable_lock();
1904 	clk_reparent(core, parent);
1905 	clk_enable_unlock(flags);
1906 
1907 	return old_parent;
1908 }
1909 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1910 static void __clk_set_parent_after(struct clk_core *core,
1911 				   struct clk_core *parent,
1912 				   struct clk_core *old_parent)
1913 {
1914 	/*
1915 	 * Finish the migration of prepare state and undo the changes done
1916 	 * for preventing a race with clk_enable().
1917 	 */
1918 	if (core->prepare_count) {
1919 		clk_core_disable_lock(core);
1920 		clk_core_disable_unprepare(old_parent);
1921 	}
1922 
1923 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1924 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1925 		clk_core_disable_unprepare(parent);
1926 		clk_core_disable_unprepare(old_parent);
1927 	}
1928 }
1929 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1930 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1931 			    u8 p_index)
1932 {
1933 	unsigned long flags;
1934 	int ret = 0;
1935 	struct clk_core *old_parent;
1936 
1937 	old_parent = __clk_set_parent_before(core, parent);
1938 
1939 	trace_clk_set_parent(core, parent);
1940 
1941 	/* change clock input source */
1942 	if (parent && core->ops->set_parent)
1943 		ret = core->ops->set_parent(core->hw, p_index);
1944 
1945 	trace_clk_set_parent_complete(core, parent);
1946 
1947 	if (ret) {
1948 		flags = clk_enable_lock();
1949 		clk_reparent(core, old_parent);
1950 		clk_enable_unlock(flags);
1951 		__clk_set_parent_after(core, old_parent, parent);
1952 
1953 		return ret;
1954 	}
1955 
1956 	__clk_set_parent_after(core, parent, old_parent);
1957 
1958 	return 0;
1959 }
1960 
1961 /**
1962  * __clk_speculate_rates
1963  * @core: first clk in the subtree
1964  * @parent_rate: the "future" rate of clk's parent
1965  *
1966  * Walks the subtree of clks starting with clk, speculating rates as it
1967  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1968  *
1969  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1970  * pre-rate change notifications and returns early if no clks in the
1971  * subtree have subscribed to the notifications.  Note that if a clk does not
1972  * implement the .recalc_rate callback then it is assumed that the clock will
1973  * take on the rate of its parent.
1974  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1975 static int __clk_speculate_rates(struct clk_core *core,
1976 				 unsigned long parent_rate)
1977 {
1978 	struct clk_core *child;
1979 	unsigned long new_rate;
1980 	int ret = NOTIFY_DONE;
1981 
1982 	lockdep_assert_held(&prepare_lock);
1983 
1984 	new_rate = clk_recalc(core, parent_rate);
1985 
1986 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1987 	if (core->notifier_count)
1988 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1989 
1990 	if (ret & NOTIFY_STOP_MASK) {
1991 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1992 				__func__, core->name, ret);
1993 		goto out;
1994 	}
1995 
1996 	hlist_for_each_entry(child, &core->children, child_node) {
1997 		ret = __clk_speculate_rates(child, new_rate);
1998 		if (ret & NOTIFY_STOP_MASK)
1999 			break;
2000 	}
2001 
2002 out:
2003 	return ret;
2004 }
2005 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2006 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2007 			     struct clk_core *new_parent, u8 p_index)
2008 {
2009 	struct clk_core *child;
2010 
2011 	core->new_rate = new_rate;
2012 	core->new_parent = new_parent;
2013 	core->new_parent_index = p_index;
2014 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2015 	core->new_child = NULL;
2016 	if (new_parent && new_parent != core->parent)
2017 		new_parent->new_child = core;
2018 
2019 	hlist_for_each_entry(child, &core->children, child_node) {
2020 		child->new_rate = clk_recalc(child, new_rate);
2021 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2022 	}
2023 }
2024 
2025 /*
2026  * calculate the new rates returning the topmost clock that has to be
2027  * changed.
2028  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2029 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2030 					   unsigned long rate)
2031 {
2032 	struct clk_core *top = core;
2033 	struct clk_core *old_parent, *parent;
2034 	unsigned long best_parent_rate = 0;
2035 	unsigned long new_rate;
2036 	unsigned long min_rate;
2037 	unsigned long max_rate;
2038 	int p_index = 0;
2039 	long ret;
2040 
2041 	/* sanity */
2042 	if (IS_ERR_OR_NULL(core))
2043 		return NULL;
2044 
2045 	/* save parent rate, if it exists */
2046 	parent = old_parent = core->parent;
2047 	if (parent)
2048 		best_parent_rate = parent->rate;
2049 
2050 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2051 
2052 	/* find the closest rate and parent clk/rate */
2053 	if (clk_core_can_round(core)) {
2054 		struct clk_rate_request req;
2055 
2056 		req.rate = rate;
2057 		req.min_rate = min_rate;
2058 		req.max_rate = max_rate;
2059 
2060 		clk_core_init_rate_req(core, &req);
2061 
2062 		ret = clk_core_determine_round_nolock(core, &req);
2063 		if (ret < 0)
2064 			return NULL;
2065 
2066 		best_parent_rate = req.best_parent_rate;
2067 		new_rate = req.rate;
2068 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2069 
2070 		if (new_rate < min_rate || new_rate > max_rate)
2071 			return NULL;
2072 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2073 		/* pass-through clock without adjustable parent */
2074 		core->new_rate = core->rate;
2075 		return NULL;
2076 	} else {
2077 		/* pass-through clock with adjustable parent */
2078 		top = clk_calc_new_rates(parent, rate);
2079 		new_rate = parent->new_rate;
2080 		goto out;
2081 	}
2082 
2083 	/* some clocks must be gated to change parent */
2084 	if (parent != old_parent &&
2085 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2086 		pr_debug("%s: %s not gated but wants to reparent\n",
2087 			 __func__, core->name);
2088 		return NULL;
2089 	}
2090 
2091 	/* try finding the new parent index */
2092 	if (parent && core->num_parents > 1) {
2093 		p_index = clk_fetch_parent_index(core, parent);
2094 		if (p_index < 0) {
2095 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2096 				 __func__, parent->name, core->name);
2097 			return NULL;
2098 		}
2099 	}
2100 
2101 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2102 	    best_parent_rate != parent->rate)
2103 		top = clk_calc_new_rates(parent, best_parent_rate);
2104 
2105 out:
2106 	clk_calc_subtree(core, new_rate, parent, p_index);
2107 
2108 	return top;
2109 }
2110 
2111 /*
2112  * Notify about rate changes in a subtree. Always walk down the whole tree
2113  * so that in case of an error we can walk down the whole tree again and
2114  * abort the change.
2115  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2116 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2117 						  unsigned long event)
2118 {
2119 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2120 	int ret = NOTIFY_DONE;
2121 
2122 	if (core->rate == core->new_rate)
2123 		return NULL;
2124 
2125 	if (core->notifier_count) {
2126 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2127 		if (ret & NOTIFY_STOP_MASK)
2128 			fail_clk = core;
2129 	}
2130 
2131 	if (core->ops->pre_rate_change) {
2132 		ret = core->ops->pre_rate_change(core->hw, core->rate,
2133 						 core->new_rate);
2134 		if (ret)
2135 			fail_clk = core;
2136 	}
2137 
2138 	hlist_for_each_entry(child, &core->children, child_node) {
2139 		/* Skip children who will be reparented to another clock */
2140 		if (child->new_parent && child->new_parent != core)
2141 			continue;
2142 		tmp_clk = clk_propagate_rate_change(child, event);
2143 		if (tmp_clk)
2144 			fail_clk = tmp_clk;
2145 	}
2146 
2147 	/* handle the new child who might not be in core->children yet */
2148 	if (core->new_child) {
2149 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2150 		if (tmp_clk)
2151 			fail_clk = tmp_clk;
2152 	}
2153 
2154 	return fail_clk;
2155 }
2156 
2157 /*
2158  * walk down a subtree and set the new rates notifying the rate
2159  * change on the way
2160  */
clk_change_rate(struct clk_core * core)2161 static void clk_change_rate(struct clk_core *core)
2162 {
2163 	struct clk_core *child;
2164 	struct hlist_node *tmp;
2165 	unsigned long old_rate;
2166 	unsigned long best_parent_rate = 0;
2167 	bool skip_set_rate = false;
2168 	struct clk_core *old_parent;
2169 	struct clk_core *parent = NULL;
2170 
2171 	old_rate = core->rate;
2172 
2173 	if (core->new_parent) {
2174 		parent = core->new_parent;
2175 		best_parent_rate = core->new_parent->rate;
2176 	} else if (core->parent) {
2177 		parent = core->parent;
2178 		best_parent_rate = core->parent->rate;
2179 	}
2180 
2181 	if (clk_pm_runtime_get(core))
2182 		return;
2183 
2184 	if (core->flags & CLK_SET_RATE_UNGATE) {
2185 		clk_core_prepare(core);
2186 		clk_core_enable_lock(core);
2187 	}
2188 
2189 	if (core->new_parent && core->new_parent != core->parent) {
2190 		old_parent = __clk_set_parent_before(core, core->new_parent);
2191 		trace_clk_set_parent(core, core->new_parent);
2192 
2193 		if (core->ops->set_rate_and_parent) {
2194 			skip_set_rate = true;
2195 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2196 					best_parent_rate,
2197 					core->new_parent_index);
2198 		} else if (core->ops->set_parent) {
2199 			core->ops->set_parent(core->hw, core->new_parent_index);
2200 		}
2201 
2202 		trace_clk_set_parent_complete(core, core->new_parent);
2203 		__clk_set_parent_after(core, core->new_parent, old_parent);
2204 	}
2205 
2206 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2207 		clk_core_prepare_enable(parent);
2208 
2209 	trace_clk_set_rate(core, core->new_rate);
2210 
2211 	if (!skip_set_rate && core->ops->set_rate)
2212 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2213 
2214 	trace_clk_set_rate_complete(core, core->new_rate);
2215 
2216 	core->rate = clk_recalc(core, best_parent_rate);
2217 
2218 	if (core->flags & CLK_SET_RATE_UNGATE) {
2219 		clk_core_disable_lock(core);
2220 		clk_core_unprepare(core);
2221 	}
2222 
2223 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2224 		clk_core_disable_unprepare(parent);
2225 
2226 	if (core->notifier_count && old_rate != core->rate)
2227 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2228 
2229 	if (core->flags & CLK_RECALC_NEW_RATES)
2230 		(void)clk_calc_new_rates(core, core->new_rate);
2231 
2232 	if (core->ops->post_rate_change)
2233 		core->ops->post_rate_change(core->hw, old_rate, core->rate);
2234 
2235 	/*
2236 	 * Use safe iteration, as change_rate can actually swap parents
2237 	 * for certain clock types.
2238 	 */
2239 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2240 		/* Skip children who will be reparented to another clock */
2241 		if (child->new_parent && child->new_parent != core)
2242 			continue;
2243 		clk_change_rate(child);
2244 	}
2245 
2246 	/* handle the new child who might not be in core->children yet */
2247 	if (core->new_child)
2248 		clk_change_rate(core->new_child);
2249 
2250 	clk_pm_runtime_put(core);
2251 }
2252 
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2253 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2254 						     unsigned long req_rate)
2255 {
2256 	int ret, cnt;
2257 	struct clk_rate_request req;
2258 
2259 	lockdep_assert_held(&prepare_lock);
2260 
2261 	if (!core)
2262 		return 0;
2263 
2264 	/* simulate what the rate would be if it could be freely set */
2265 	cnt = clk_core_rate_nuke_protect(core);
2266 	if (cnt < 0)
2267 		return cnt;
2268 
2269 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2270 	req.rate = req_rate;
2271 
2272 	ret = clk_core_round_rate_nolock(core, &req);
2273 
2274 	/* restore the protection */
2275 	clk_core_rate_restore_protect(core, cnt);
2276 
2277 	return ret ? 0 : req.rate;
2278 }
2279 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2280 static int clk_core_set_rate_nolock(struct clk_core *core,
2281 				    unsigned long req_rate)
2282 {
2283 	struct clk_core *top, *fail_clk;
2284 	unsigned long rate;
2285 	int ret = 0;
2286 
2287 	if (!core)
2288 		return 0;
2289 
2290 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2291 
2292 	/* bail early if nothing to do */
2293 	if (rate == clk_core_get_rate_nolock(core))
2294 		return 0;
2295 
2296 	/* fail on a direct rate set of a protected provider */
2297 	if (clk_core_rate_is_protected(core))
2298 		return -EBUSY;
2299 
2300 	/* calculate new rates and get the topmost changed clock */
2301 	top = clk_calc_new_rates(core, req_rate);
2302 	if (!top)
2303 		return -EINVAL;
2304 
2305 	ret = clk_pm_runtime_get(core);
2306 	if (ret)
2307 		return ret;
2308 
2309 	/* notify that we are about to change rates */
2310 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2311 	if (fail_clk) {
2312 		pr_debug("%s: failed to set %s rate\n", __func__,
2313 				fail_clk->name);
2314 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2315 		ret = -EBUSY;
2316 		goto err;
2317 	}
2318 
2319 	/* change the rates */
2320 	clk_change_rate(top);
2321 
2322 	core->req_rate = req_rate;
2323 err:
2324 	clk_pm_runtime_put(core);
2325 
2326 	return ret;
2327 }
2328 
2329 /**
2330  * clk_set_rate - specify a new rate for clk
2331  * @clk: the clk whose rate is being changed
2332  * @rate: the new rate for clk
2333  *
2334  * In the simplest case clk_set_rate will only adjust the rate of clk.
2335  *
2336  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2337  * propagate up to clk's parent; whether or not this happens depends on the
2338  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2339  * after calling .round_rate then upstream parent propagation is ignored.  If
2340  * *parent_rate comes back with a new rate for clk's parent then we propagate
2341  * up to clk's parent and set its rate.  Upward propagation will continue
2342  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2343  * .round_rate stops requesting changes to clk's parent_rate.
2344  *
2345  * Rate changes are accomplished via tree traversal that also recalculates the
2346  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2347  *
2348  * Returns 0 on success, -EERROR otherwise.
2349  */
clk_set_rate(struct clk * clk,unsigned long rate)2350 int clk_set_rate(struct clk *clk, unsigned long rate)
2351 {
2352 	int ret;
2353 
2354 	if (!clk)
2355 		return 0;
2356 
2357 	/* prevent racing with updates to the clock topology */
2358 	clk_prepare_lock();
2359 
2360 	if (clk->exclusive_count)
2361 		clk_core_rate_unprotect(clk->core);
2362 
2363 	ret = clk_core_set_rate_nolock(clk->core, rate);
2364 
2365 	if (clk->exclusive_count)
2366 		clk_core_rate_protect(clk->core);
2367 
2368 	clk_prepare_unlock();
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(clk_set_rate);
2373 
2374 /**
2375  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2376  * @clk: the clk whose rate is being changed
2377  * @rate: the new rate for clk
2378  *
2379  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2380  * within a critical section
2381  *
2382  * This can be used initially to ensure that at least 1 consumer is
2383  * satisfied when several consumers are competing for exclusivity over the
2384  * same clock provider.
2385  *
2386  * The exclusivity is not applied if setting the rate failed.
2387  *
2388  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2389  * clk_rate_exclusive_put().
2390  *
2391  * Returns 0 on success, -EERROR otherwise.
2392  */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2393 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2394 {
2395 	int ret;
2396 
2397 	if (!clk)
2398 		return 0;
2399 
2400 	/* prevent racing with updates to the clock topology */
2401 	clk_prepare_lock();
2402 
2403 	/*
2404 	 * The temporary protection removal is not here, on purpose
2405 	 * This function is meant to be used instead of clk_rate_protect,
2406 	 * so before the consumer code path protect the clock provider
2407 	 */
2408 
2409 	ret = clk_core_set_rate_nolock(clk->core, rate);
2410 	if (!ret) {
2411 		clk_core_rate_protect(clk->core);
2412 		clk->exclusive_count++;
2413 	}
2414 
2415 	clk_prepare_unlock();
2416 
2417 	return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2420 
2421 /**
2422  * clk_set_rate_range - set a rate range for a clock source
2423  * @clk: clock source
2424  * @min: desired minimum clock rate in Hz, inclusive
2425  * @max: desired maximum clock rate in Hz, inclusive
2426  *
2427  * Returns success (0) or negative errno.
2428  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2429 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2430 {
2431 	int ret = 0;
2432 	unsigned long old_min, old_max, rate;
2433 
2434 	if (!clk)
2435 		return 0;
2436 
2437 	trace_clk_set_rate_range(clk->core, min, max);
2438 
2439 	if (min > max) {
2440 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2441 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2442 		       min, max);
2443 		return -EINVAL;
2444 	}
2445 
2446 	clk_prepare_lock();
2447 
2448 	if (clk->exclusive_count)
2449 		clk_core_rate_unprotect(clk->core);
2450 
2451 	/* Save the current values in case we need to rollback the change */
2452 	old_min = clk->min_rate;
2453 	old_max = clk->max_rate;
2454 	clk->min_rate = min;
2455 	clk->max_rate = max;
2456 
2457 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2458 		ret = -EINVAL;
2459 		goto out;
2460 	}
2461 
2462 	rate = clk_core_get_rate_nolock(clk->core);
2463 	if (rate < min || rate > max) {
2464 		/*
2465 		 * FIXME:
2466 		 * We are in bit of trouble here, current rate is outside the
2467 		 * the requested range. We are going try to request appropriate
2468 		 * range boundary but there is a catch. It may fail for the
2469 		 * usual reason (clock broken, clock protected, etc) but also
2470 		 * because:
2471 		 * - round_rate() was not favorable and fell on the wrong
2472 		 *   side of the boundary
2473 		 * - the determine_rate() callback does not really check for
2474 		 *   this corner case when determining the rate
2475 		 */
2476 
2477 		if (rate < min)
2478 			rate = min;
2479 		else
2480 			rate = max;
2481 
2482 		ret = clk_core_set_rate_nolock(clk->core, rate);
2483 		if (ret) {
2484 			/* rollback the changes */
2485 			clk->min_rate = old_min;
2486 			clk->max_rate = old_max;
2487 		}
2488 	}
2489 
2490 out:
2491 	if (clk->exclusive_count)
2492 		clk_core_rate_protect(clk->core);
2493 
2494 	clk_prepare_unlock();
2495 
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2499 
2500 /**
2501  * clk_set_min_rate - set a minimum clock rate for a clock source
2502  * @clk: clock source
2503  * @rate: desired minimum clock rate in Hz, inclusive
2504  *
2505  * Returns success (0) or negative errno.
2506  */
clk_set_min_rate(struct clk * clk,unsigned long rate)2507 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2508 {
2509 	if (!clk)
2510 		return 0;
2511 
2512 	trace_clk_set_min_rate(clk->core, rate);
2513 
2514 	return clk_set_rate_range(clk, rate, clk->max_rate);
2515 }
2516 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2517 
2518 /**
2519  * clk_set_max_rate - set a maximum clock rate for a clock source
2520  * @clk: clock source
2521  * @rate: desired maximum clock rate in Hz, inclusive
2522  *
2523  * Returns success (0) or negative errno.
2524  */
clk_set_max_rate(struct clk * clk,unsigned long rate)2525 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2526 {
2527 	if (!clk)
2528 		return 0;
2529 
2530 	trace_clk_set_max_rate(clk->core, rate);
2531 
2532 	return clk_set_rate_range(clk, clk->min_rate, rate);
2533 }
2534 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2535 
2536 /**
2537  * clk_get_parent - return the parent of a clk
2538  * @clk: the clk whose parent gets returned
2539  *
2540  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2541  */
clk_get_parent(struct clk * clk)2542 struct clk *clk_get_parent(struct clk *clk)
2543 {
2544 	struct clk *parent;
2545 
2546 	if (!clk)
2547 		return NULL;
2548 
2549 	clk_prepare_lock();
2550 	/* TODO: Create a per-user clk and change callers to call clk_put */
2551 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2552 	clk_prepare_unlock();
2553 
2554 	return parent;
2555 }
2556 EXPORT_SYMBOL_GPL(clk_get_parent);
2557 
__clk_init_parent(struct clk_core * core)2558 static struct clk_core *__clk_init_parent(struct clk_core *core)
2559 {
2560 	u8 index = 0;
2561 
2562 	if (core->num_parents > 1 && core->ops->get_parent)
2563 		index = core->ops->get_parent(core->hw);
2564 
2565 	return clk_core_get_parent_by_index(core, index);
2566 }
2567 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2568 static void clk_core_reparent(struct clk_core *core,
2569 				  struct clk_core *new_parent)
2570 {
2571 	clk_reparent(core, new_parent);
2572 	__clk_recalc_accuracies(core);
2573 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2574 }
2575 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2576 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2577 {
2578 	if (!hw)
2579 		return;
2580 
2581 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2582 }
2583 
2584 /**
2585  * clk_has_parent - check if a clock is a possible parent for another
2586  * @clk: clock source
2587  * @parent: parent clock source
2588  *
2589  * This function can be used in drivers that need to check that a clock can be
2590  * the parent of another without actually changing the parent.
2591  *
2592  * Returns true if @parent is a possible parent for @clk, false otherwise.
2593  */
clk_has_parent(struct clk * clk,struct clk * parent)2594 bool clk_has_parent(struct clk *clk, struct clk *parent)
2595 {
2596 	struct clk_core *core, *parent_core;
2597 	int i;
2598 
2599 	/* NULL clocks should be nops, so return success if either is NULL. */
2600 	if (!clk || !parent)
2601 		return true;
2602 
2603 	core = clk->core;
2604 	parent_core = parent->core;
2605 
2606 	/* Optimize for the case where the parent is already the parent. */
2607 	if (core->parent == parent_core)
2608 		return true;
2609 
2610 	for (i = 0; i < core->num_parents; i++)
2611 		if (!strcmp(core->parents[i].name, parent_core->name))
2612 			return true;
2613 
2614 	return false;
2615 }
2616 EXPORT_SYMBOL_GPL(clk_has_parent);
2617 
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2618 static int clk_core_set_parent_nolock(struct clk_core *core,
2619 				      struct clk_core *parent)
2620 {
2621 	int ret = 0;
2622 	int p_index = 0;
2623 	unsigned long p_rate = 0;
2624 
2625 	lockdep_assert_held(&prepare_lock);
2626 
2627 	if (!core)
2628 		return 0;
2629 
2630 	if (core->parent == parent)
2631 		return 0;
2632 
2633 	/* verify ops for multi-parent clks */
2634 	if (core->num_parents > 1 && !core->ops->set_parent)
2635 		return -EPERM;
2636 
2637 	/* check that we are allowed to re-parent if the clock is in use */
2638 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2639 		return -EBUSY;
2640 
2641 	if (clk_core_rate_is_protected(core))
2642 		return -EBUSY;
2643 
2644 	/* try finding the new parent index */
2645 	if (parent) {
2646 		p_index = clk_fetch_parent_index(core, parent);
2647 		if (p_index < 0) {
2648 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2649 					__func__, parent->name, core->name);
2650 			return p_index;
2651 		}
2652 		p_rate = parent->rate;
2653 	}
2654 
2655 	ret = clk_pm_runtime_get(core);
2656 	if (ret)
2657 		return ret;
2658 
2659 	/* propagate PRE_RATE_CHANGE notifications */
2660 	ret = __clk_speculate_rates(core, p_rate);
2661 
2662 	/* abort if a driver objects */
2663 	if (ret & NOTIFY_STOP_MASK)
2664 		goto runtime_put;
2665 
2666 	/* do the re-parent */
2667 	ret = __clk_set_parent(core, parent, p_index);
2668 
2669 	/* propagate rate an accuracy recalculation accordingly */
2670 	if (ret) {
2671 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2672 	} else {
2673 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2674 		__clk_recalc_accuracies(core);
2675 	}
2676 
2677 runtime_put:
2678 	clk_pm_runtime_put(core);
2679 
2680 	return ret;
2681 }
2682 
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2683 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2684 {
2685 	return clk_core_set_parent_nolock(hw->core, parent->core);
2686 }
2687 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2688 
2689 /**
2690  * clk_set_parent - switch the parent of a mux clk
2691  * @clk: the mux clk whose input we are switching
2692  * @parent: the new input to clk
2693  *
2694  * Re-parent clk to use parent as its new input source.  If clk is in
2695  * prepared state, the clk will get enabled for the duration of this call. If
2696  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2697  * that, the reparenting is glitchy in hardware, etc), use the
2698  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2699  *
2700  * After successfully changing clk's parent clk_set_parent will update the
2701  * clk topology, sysfs topology and propagate rate recalculation via
2702  * __clk_recalc_rates.
2703  *
2704  * Returns 0 on success, -EERROR otherwise.
2705  */
clk_set_parent(struct clk * clk,struct clk * parent)2706 int clk_set_parent(struct clk *clk, struct clk *parent)
2707 {
2708 	int ret;
2709 
2710 	if (!clk)
2711 		return 0;
2712 
2713 	clk_prepare_lock();
2714 
2715 	if (clk->exclusive_count)
2716 		clk_core_rate_unprotect(clk->core);
2717 
2718 	ret = clk_core_set_parent_nolock(clk->core,
2719 					 parent ? parent->core : NULL);
2720 
2721 	if (clk->exclusive_count)
2722 		clk_core_rate_protect(clk->core);
2723 
2724 	clk_prepare_unlock();
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(clk_set_parent);
2729 
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2730 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2731 {
2732 	int ret = -EINVAL;
2733 
2734 	lockdep_assert_held(&prepare_lock);
2735 
2736 	if (!core)
2737 		return 0;
2738 
2739 	if (clk_core_rate_is_protected(core))
2740 		return -EBUSY;
2741 
2742 	trace_clk_set_phase(core, degrees);
2743 
2744 	if (core->ops->set_phase) {
2745 		ret = core->ops->set_phase(core->hw, degrees);
2746 		if (!ret)
2747 			core->phase = degrees;
2748 	}
2749 
2750 	trace_clk_set_phase_complete(core, degrees);
2751 
2752 	return ret;
2753 }
2754 
2755 /**
2756  * clk_set_phase - adjust the phase shift of a clock signal
2757  * @clk: clock signal source
2758  * @degrees: number of degrees the signal is shifted
2759  *
2760  * Shifts the phase of a clock signal by the specified
2761  * degrees. Returns 0 on success, -EERROR otherwise.
2762  *
2763  * This function makes no distinction about the input or reference
2764  * signal that we adjust the clock signal phase against. For example
2765  * phase locked-loop clock signal generators we may shift phase with
2766  * respect to feedback clock signal input, but for other cases the
2767  * clock phase may be shifted with respect to some other, unspecified
2768  * signal.
2769  *
2770  * Additionally the concept of phase shift does not propagate through
2771  * the clock tree hierarchy, which sets it apart from clock rates and
2772  * clock accuracy. A parent clock phase attribute does not have an
2773  * impact on the phase attribute of a child clock.
2774  */
clk_set_phase(struct clk * clk,int degrees)2775 int clk_set_phase(struct clk *clk, int degrees)
2776 {
2777 	int ret;
2778 
2779 	if (!clk)
2780 		return 0;
2781 
2782 	/* sanity check degrees */
2783 	degrees %= 360;
2784 	if (degrees < 0)
2785 		degrees += 360;
2786 
2787 	clk_prepare_lock();
2788 
2789 	if (clk->exclusive_count)
2790 		clk_core_rate_unprotect(clk->core);
2791 
2792 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2793 
2794 	if (clk->exclusive_count)
2795 		clk_core_rate_protect(clk->core);
2796 
2797 	clk_prepare_unlock();
2798 
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(clk_set_phase);
2802 
clk_core_get_phase(struct clk_core * core)2803 static int clk_core_get_phase(struct clk_core *core)
2804 {
2805 	int ret;
2806 
2807 	lockdep_assert_held(&prepare_lock);
2808 	if (!core->ops->get_phase)
2809 		return 0;
2810 
2811 	/* Always try to update cached phase if possible */
2812 	ret = core->ops->get_phase(core->hw);
2813 	if (ret >= 0)
2814 		core->phase = ret;
2815 
2816 	return ret;
2817 }
2818 
2819 /**
2820  * clk_get_phase - return the phase shift of a clock signal
2821  * @clk: clock signal source
2822  *
2823  * Returns the phase shift of a clock node in degrees, otherwise returns
2824  * -EERROR.
2825  */
clk_get_phase(struct clk * clk)2826 int clk_get_phase(struct clk *clk)
2827 {
2828 	int ret;
2829 
2830 	if (!clk)
2831 		return 0;
2832 
2833 	clk_prepare_lock();
2834 	ret = clk_core_get_phase(clk->core);
2835 	clk_prepare_unlock();
2836 
2837 	return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(clk_get_phase);
2840 
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2841 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2842 {
2843 	/* Assume a default value of 50% */
2844 	core->duty.num = 1;
2845 	core->duty.den = 2;
2846 }
2847 
2848 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2849 
clk_core_update_duty_cycle_nolock(struct clk_core * core)2850 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2851 {
2852 	struct clk_duty *duty = &core->duty;
2853 	int ret = 0;
2854 
2855 	if (!core->ops->get_duty_cycle)
2856 		return clk_core_update_duty_cycle_parent_nolock(core);
2857 
2858 	ret = core->ops->get_duty_cycle(core->hw, duty);
2859 	if (ret)
2860 		goto reset;
2861 
2862 	/* Don't trust the clock provider too much */
2863 	if (duty->den == 0 || duty->num > duty->den) {
2864 		ret = -EINVAL;
2865 		goto reset;
2866 	}
2867 
2868 	return 0;
2869 
2870 reset:
2871 	clk_core_reset_duty_cycle_nolock(core);
2872 	return ret;
2873 }
2874 
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2875 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2876 {
2877 	int ret = 0;
2878 
2879 	if (core->parent &&
2880 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2881 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2882 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2883 	} else {
2884 		clk_core_reset_duty_cycle_nolock(core);
2885 	}
2886 
2887 	return ret;
2888 }
2889 
2890 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2891 						 struct clk_duty *duty);
2892 
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2893 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2894 					  struct clk_duty *duty)
2895 {
2896 	int ret;
2897 
2898 	lockdep_assert_held(&prepare_lock);
2899 
2900 	if (clk_core_rate_is_protected(core))
2901 		return -EBUSY;
2902 
2903 	trace_clk_set_duty_cycle(core, duty);
2904 
2905 	if (!core->ops->set_duty_cycle)
2906 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2907 
2908 	ret = core->ops->set_duty_cycle(core->hw, duty);
2909 	if (!ret)
2910 		memcpy(&core->duty, duty, sizeof(*duty));
2911 
2912 	trace_clk_set_duty_cycle_complete(core, duty);
2913 
2914 	return ret;
2915 }
2916 
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2917 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2918 						 struct clk_duty *duty)
2919 {
2920 	int ret = 0;
2921 
2922 	if (core->parent &&
2923 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2924 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2925 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2926 	}
2927 
2928 	return ret;
2929 }
2930 
2931 /**
2932  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2933  * @clk: clock signal source
2934  * @num: numerator of the duty cycle ratio to be applied
2935  * @den: denominator of the duty cycle ratio to be applied
2936  *
2937  * Apply the duty cycle ratio if the ratio is valid and the clock can
2938  * perform this operation
2939  *
2940  * Returns (0) on success, a negative errno otherwise.
2941  */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)2942 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2943 {
2944 	int ret;
2945 	struct clk_duty duty;
2946 
2947 	if (!clk)
2948 		return 0;
2949 
2950 	/* sanity check the ratio */
2951 	if (den == 0 || num > den)
2952 		return -EINVAL;
2953 
2954 	duty.num = num;
2955 	duty.den = den;
2956 
2957 	clk_prepare_lock();
2958 
2959 	if (clk->exclusive_count)
2960 		clk_core_rate_unprotect(clk->core);
2961 
2962 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2963 
2964 	if (clk->exclusive_count)
2965 		clk_core_rate_protect(clk->core);
2966 
2967 	clk_prepare_unlock();
2968 
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2972 
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)2973 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2974 					  unsigned int scale)
2975 {
2976 	struct clk_duty *duty = &core->duty;
2977 	int ret;
2978 
2979 	clk_prepare_lock();
2980 
2981 	ret = clk_core_update_duty_cycle_nolock(core);
2982 	if (!ret)
2983 		ret = mult_frac(scale, duty->num, duty->den);
2984 
2985 	clk_prepare_unlock();
2986 
2987 	return ret;
2988 }
2989 
2990 /**
2991  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2992  * @clk: clock signal source
2993  * @scale: scaling factor to be applied to represent the ratio as an integer
2994  *
2995  * Returns the duty cycle ratio of a clock node multiplied by the provided
2996  * scaling factor, or negative errno on error.
2997  */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)2998 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2999 {
3000 	if (!clk)
3001 		return 0;
3002 
3003 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3004 }
3005 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3006 
3007 /**
3008  * clk_is_match - check if two clk's point to the same hardware clock
3009  * @p: clk compared against q
3010  * @q: clk compared against p
3011  *
3012  * Returns true if the two struct clk pointers both point to the same hardware
3013  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3014  * share the same struct clk_core object.
3015  *
3016  * Returns false otherwise. Note that two NULL clks are treated as matching.
3017  */
clk_is_match(const struct clk * p,const struct clk * q)3018 bool clk_is_match(const struct clk *p, const struct clk *q)
3019 {
3020 	/* trivial case: identical struct clk's or both NULL */
3021 	if (p == q)
3022 		return true;
3023 
3024 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3025 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3026 		if (p->core == q->core)
3027 			return true;
3028 
3029 	return false;
3030 }
3031 EXPORT_SYMBOL_GPL(clk_is_match);
3032 
3033 /***        debugfs support        ***/
3034 
3035 #ifdef CONFIG_DEBUG_FS
3036 #include <linux/debugfs.h>
3037 
3038 static struct dentry *rootdir;
3039 static int inited = 0;
3040 static DEFINE_MUTEX(clk_debug_lock);
3041 static HLIST_HEAD(clk_debug_list);
3042 
3043 static struct hlist_head *orphan_list[] = {
3044 	&clk_orphan_list,
3045 	NULL,
3046 };
3047 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3048 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3049 				 int level)
3050 {
3051 	int phase;
3052 
3053 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3054 		   level * 3 + 1, "",
3055 		   30 - level * 3, c->name,
3056 		   c->enable_count, c->prepare_count, c->protect_count,
3057 		   clk_core_get_rate_recalc(c),
3058 		   clk_core_get_accuracy_recalc(c));
3059 
3060 	phase = clk_core_get_phase(c);
3061 	if (phase >= 0)
3062 		seq_printf(s, "%5d", phase);
3063 	else
3064 		seq_puts(s, "-----");
3065 
3066 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3067 
3068 	if (c->ops->is_enabled)
3069 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3070 	else if (!c->ops->enable)
3071 		seq_printf(s, " %9c\n", 'Y');
3072 	else
3073 		seq_printf(s, " %9c\n", '?');
3074 }
3075 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3076 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3077 				     int level)
3078 {
3079 	struct clk_core *child;
3080 
3081 	clk_summary_show_one(s, c, level);
3082 
3083 	hlist_for_each_entry(child, &c->children, child_node)
3084 		clk_summary_show_subtree(s, child, level + 1);
3085 }
3086 
clk_summary_show(struct seq_file * s,void * data)3087 static int clk_summary_show(struct seq_file *s, void *data)
3088 {
3089 	struct clk_core *c;
3090 	struct hlist_head **lists = (struct hlist_head **)s->private;
3091 
3092 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3093 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3094 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3095 
3096 	clk_prepare_lock();
3097 
3098 	for (; *lists; lists++)
3099 		hlist_for_each_entry(c, *lists, child_node)
3100 			clk_summary_show_subtree(s, c, 0);
3101 
3102 	clk_prepare_unlock();
3103 
3104 	return 0;
3105 }
3106 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3107 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3108 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3109 {
3110 	int phase;
3111 	unsigned long min_rate, max_rate;
3112 
3113 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3114 
3115 	/* This should be JSON format, i.e. elements separated with a comma */
3116 	seq_printf(s, "\"%s\": { ", c->name);
3117 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3118 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3119 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3120 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3121 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3122 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3123 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3124 	phase = clk_core_get_phase(c);
3125 	if (phase >= 0)
3126 		seq_printf(s, "\"phase\": %d,", phase);
3127 	seq_printf(s, "\"duty_cycle\": %u",
3128 		   clk_core_get_scaled_duty_cycle(c, 100000));
3129 }
3130 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3131 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3132 {
3133 	struct clk_core *child;
3134 
3135 	clk_dump_one(s, c, level);
3136 
3137 	hlist_for_each_entry(child, &c->children, child_node) {
3138 		seq_putc(s, ',');
3139 		clk_dump_subtree(s, child, level + 1);
3140 	}
3141 
3142 	seq_putc(s, '}');
3143 }
3144 
clk_dump_show(struct seq_file * s,void * data)3145 static int clk_dump_show(struct seq_file *s, void *data)
3146 {
3147 	struct clk_core *c;
3148 	bool first_node = true;
3149 	struct hlist_head **lists = (struct hlist_head **)s->private;
3150 
3151 	seq_putc(s, '{');
3152 	clk_prepare_lock();
3153 
3154 	for (; *lists; lists++) {
3155 		hlist_for_each_entry(c, *lists, child_node) {
3156 			if (!first_node)
3157 				seq_putc(s, ',');
3158 			first_node = false;
3159 			clk_dump_subtree(s, c, 0);
3160 		}
3161 	}
3162 
3163 	clk_prepare_unlock();
3164 
3165 	seq_puts(s, "}\n");
3166 	return 0;
3167 }
3168 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3169 
3170 #define CLOCK_ALLOW_WRITE_DEBUGFS
3171 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3172 /*
3173  * This can be dangerous, therefore don't provide any real compile time
3174  * configuration option for this feature.
3175  * People who want to use this will need to modify the source code directly.
3176  */
clk_rate_set(void * data,u64 val)3177 static int clk_rate_set(void *data, u64 val)
3178 {
3179 	struct clk_core *core = data;
3180 	int ret;
3181 
3182 	clk_prepare_lock();
3183 	ret = clk_core_set_rate_nolock(core, val);
3184 	clk_prepare_unlock();
3185 
3186 	return ret;
3187 }
3188 
3189 #define clk_rate_mode	0644
3190 
clk_prepare_enable_set(void * data,u64 val)3191 static int clk_prepare_enable_set(void *data, u64 val)
3192 {
3193 	struct clk_core *core = data;
3194 	int ret = 0;
3195 
3196 	if (val)
3197 		ret = clk_prepare_enable(core->hw->clk);
3198 	else
3199 		clk_disable_unprepare(core->hw->clk);
3200 
3201 	return ret;
3202 }
3203 
clk_prepare_enable_get(void * data,u64 * val)3204 static int clk_prepare_enable_get(void *data, u64 *val)
3205 {
3206 	struct clk_core *core = data;
3207 
3208 	*val = core->enable_count && core->prepare_count;
3209 	return 0;
3210 }
3211 
3212 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3213 			 clk_prepare_enable_set, "%llu\n");
3214 
3215 #else
3216 #define clk_rate_set	NULL
3217 #define clk_rate_mode	0444
3218 #endif
3219 
clk_rate_get(void * data,u64 * val)3220 static int clk_rate_get(void *data, u64 *val)
3221 {
3222 	struct clk_core *core = data;
3223 
3224 	*val = core->rate;
3225 	return 0;
3226 }
3227 
3228 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3229 
3230 static const struct {
3231 	unsigned long flag;
3232 	const char *name;
3233 } clk_flags[] = {
3234 #define ENTRY(f) { f, #f }
3235 	ENTRY(CLK_SET_RATE_GATE),
3236 	ENTRY(CLK_SET_PARENT_GATE),
3237 	ENTRY(CLK_SET_RATE_PARENT),
3238 	ENTRY(CLK_IGNORE_UNUSED),
3239 	ENTRY(CLK_GET_RATE_NOCACHE),
3240 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3241 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3242 	ENTRY(CLK_RECALC_NEW_RATES),
3243 	ENTRY(CLK_SET_RATE_UNGATE),
3244 	ENTRY(CLK_IS_CRITICAL),
3245 	ENTRY(CLK_OPS_PARENT_ENABLE),
3246 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3247 #undef ENTRY
3248 };
3249 
clk_flags_show(struct seq_file * s,void * data)3250 static int clk_flags_show(struct seq_file *s, void *data)
3251 {
3252 	struct clk_core *core = s->private;
3253 	unsigned long flags = core->flags;
3254 	unsigned int i;
3255 
3256 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3257 		if (flags & clk_flags[i].flag) {
3258 			seq_printf(s, "%s\n", clk_flags[i].name);
3259 			flags &= ~clk_flags[i].flag;
3260 		}
3261 	}
3262 	if (flags) {
3263 		/* Unknown flags */
3264 		seq_printf(s, "0x%lx\n", flags);
3265 	}
3266 
3267 	return 0;
3268 }
3269 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3270 
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3271 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3272 				 unsigned int i, char terminator)
3273 {
3274 	struct clk_core *parent;
3275 	const char *name = NULL;
3276 
3277 	/*
3278 	 * Go through the following options to fetch a parent's name.
3279 	 *
3280 	 * 1. Fetch the registered parent clock and use its name
3281 	 * 2. Use the global (fallback) name if specified
3282 	 * 3. Use the local fw_name if provided
3283 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3284 	 *
3285 	 * This may still fail in some cases, such as when the parent is
3286 	 * specified directly via a struct clk_hw pointer, but it isn't
3287 	 * registered (yet).
3288 	 */
3289 	parent = clk_core_get_parent_by_index(core, i);
3290 	if (parent) {
3291 		seq_puts(s, parent->name);
3292 	} else if (core->parents[i].name) {
3293 		seq_puts(s, core->parents[i].name);
3294 	} else if (core->parents[i].fw_name) {
3295 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3296 	} else {
3297 		if (core->parents[i].index >= 0)
3298 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3299 		if (!name)
3300 			name = "(missing)";
3301 
3302 		seq_puts(s, name);
3303 	}
3304 
3305 	seq_putc(s, terminator);
3306 }
3307 
possible_parents_show(struct seq_file * s,void * data)3308 static int possible_parents_show(struct seq_file *s, void *data)
3309 {
3310 	struct clk_core *core = s->private;
3311 	int i;
3312 
3313 	for (i = 0; i < core->num_parents - 1; i++)
3314 		possible_parent_show(s, core, i, ' ');
3315 
3316 	possible_parent_show(s, core, i, '\n');
3317 
3318 	return 0;
3319 }
3320 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3321 
current_parent_show(struct seq_file * s,void * data)3322 static int current_parent_show(struct seq_file *s, void *data)
3323 {
3324 	struct clk_core *core = s->private;
3325 
3326 	if (core->parent)
3327 		seq_printf(s, "%s\n", core->parent->name);
3328 
3329 	return 0;
3330 }
3331 DEFINE_SHOW_ATTRIBUTE(current_parent);
3332 
clk_duty_cycle_show(struct seq_file * s,void * data)3333 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3334 {
3335 	struct clk_core *core = s->private;
3336 	struct clk_duty *duty = &core->duty;
3337 
3338 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3339 
3340 	return 0;
3341 }
3342 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3343 
clk_min_rate_show(struct seq_file * s,void * data)3344 static int clk_min_rate_show(struct seq_file *s, void *data)
3345 {
3346 	struct clk_core *core = s->private;
3347 	unsigned long min_rate, max_rate;
3348 
3349 	clk_prepare_lock();
3350 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3351 	clk_prepare_unlock();
3352 	seq_printf(s, "%lu\n", min_rate);
3353 
3354 	return 0;
3355 }
3356 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3357 
clk_max_rate_show(struct seq_file * s,void * data)3358 static int clk_max_rate_show(struct seq_file *s, void *data)
3359 {
3360 	struct clk_core *core = s->private;
3361 	unsigned long min_rate, max_rate;
3362 
3363 	clk_prepare_lock();
3364 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3365 	clk_prepare_unlock();
3366 	seq_printf(s, "%lu\n", max_rate);
3367 
3368 	return 0;
3369 }
3370 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3371 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3372 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3373 {
3374 	struct dentry *root;
3375 
3376 	if (!core || !pdentry)
3377 		return;
3378 
3379 	root = debugfs_create_dir(core->name, pdentry);
3380 	core->dentry = root;
3381 
3382 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3383 			    &clk_rate_fops);
3384 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3385 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3386 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3387 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3388 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3389 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3390 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3391 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3392 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3393 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3394 			    &clk_duty_cycle_fops);
3395 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3396 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3397 			    &clk_prepare_enable_fops);
3398 #endif
3399 
3400 	if (core->num_parents > 0)
3401 		debugfs_create_file("clk_parent", 0444, root, core,
3402 				    &current_parent_fops);
3403 
3404 	if (core->num_parents > 1)
3405 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3406 				    &possible_parents_fops);
3407 
3408 	if (core->ops->debug_init)
3409 		core->ops->debug_init(core->hw, core->dentry);
3410 }
3411 
3412 /**
3413  * clk_debug_register - add a clk node to the debugfs clk directory
3414  * @core: the clk being added to the debugfs clk directory
3415  *
3416  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3417  * initialized.  Otherwise it bails out early since the debugfs clk directory
3418  * will be created lazily by clk_debug_init as part of a late_initcall.
3419  */
clk_debug_register(struct clk_core * core)3420 static void clk_debug_register(struct clk_core *core)
3421 {
3422 	mutex_lock(&clk_debug_lock);
3423 	hlist_add_head(&core->debug_node, &clk_debug_list);
3424 	if (inited)
3425 		clk_debug_create_one(core, rootdir);
3426 	mutex_unlock(&clk_debug_lock);
3427 }
3428 
3429  /**
3430  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3431  * @core: the clk being removed from the debugfs clk directory
3432  *
3433  * Dynamically removes a clk and all its child nodes from the
3434  * debugfs clk directory if clk->dentry points to debugfs created by
3435  * clk_debug_register in __clk_core_init.
3436  */
clk_debug_unregister(struct clk_core * core)3437 static void clk_debug_unregister(struct clk_core *core)
3438 {
3439 	mutex_lock(&clk_debug_lock);
3440 	hlist_del_init(&core->debug_node);
3441 	debugfs_remove_recursive(core->dentry);
3442 	core->dentry = NULL;
3443 	mutex_unlock(&clk_debug_lock);
3444 }
3445 
3446 /**
3447  * clk_debug_init - lazily populate the debugfs clk directory
3448  *
3449  * clks are often initialized very early during boot before memory can be
3450  * dynamically allocated and well before debugfs is setup. This function
3451  * populates the debugfs clk directory once at boot-time when we know that
3452  * debugfs is setup. It should only be called once at boot-time, all other clks
3453  * added dynamically will be done so with clk_debug_register.
3454  */
clk_debug_init(void)3455 static int __init clk_debug_init(void)
3456 {
3457 	struct clk_core *core;
3458 
3459 	rootdir = debugfs_create_dir("clk", NULL);
3460 
3461 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3462 			    &clk_summary_fops);
3463 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3464 			    &clk_dump_fops);
3465 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3466 			    &clk_summary_fops);
3467 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3468 			    &clk_dump_fops);
3469 
3470 	mutex_lock(&clk_debug_lock);
3471 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3472 		clk_debug_create_one(core, rootdir);
3473 
3474 	inited = 1;
3475 	mutex_unlock(&clk_debug_lock);
3476 
3477 	return 0;
3478 }
3479 late_initcall(clk_debug_init);
3480 #else
clk_debug_register(struct clk_core * core)3481 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3482 static inline void clk_debug_unregister(struct clk_core *core)
3483 {
3484 }
3485 #endif
3486 
clk_core_reparent_orphans_nolock(void)3487 static void clk_core_reparent_orphans_nolock(void)
3488 {
3489 	struct clk_core *orphan;
3490 	struct hlist_node *tmp2;
3491 
3492 	/*
3493 	 * walk the list of orphan clocks and reparent any that newly finds a
3494 	 * parent.
3495 	 */
3496 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3497 		struct clk_core *parent = __clk_init_parent(orphan);
3498 
3499 		/*
3500 		 * We need to use __clk_set_parent_before() and _after() to
3501 		 * to properly migrate any prepare/enable count of the orphan
3502 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3503 		 * are enabled during init but might not have a parent yet.
3504 		 */
3505 		if (parent) {
3506 			/* update the clk tree topology */
3507 			__clk_set_parent_before(orphan, parent);
3508 			__clk_set_parent_after(orphan, parent, NULL);
3509 			__clk_recalc_accuracies(orphan);
3510 			__clk_recalc_rates(orphan, 0);
3511 			__clk_core_update_orphan_hold_state(orphan);
3512 
3513 			/*
3514 			 * __clk_init_parent() will set the initial req_rate to
3515 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3516 			 * is an orphan when it's registered.
3517 			 *
3518 			 * 'req_rate' is used by clk_set_rate_range() and
3519 			 * clk_put() to trigger a clk_set_rate() call whenever
3520 			 * the boundaries are modified. Let's make sure
3521 			 * 'req_rate' is set to something non-zero so that
3522 			 * clk_set_rate_range() doesn't drop the frequency.
3523 			 */
3524 			orphan->req_rate = orphan->rate;
3525 		}
3526 	}
3527 }
3528 
3529 /**
3530  * __clk_core_init - initialize the data structures in a struct clk_core
3531  * @core:	clk_core being initialized
3532  *
3533  * Initializes the lists in struct clk_core, queries the hardware for the
3534  * parent and rate and sets them both.
3535  */
__clk_core_init(struct clk_core * core)3536 static int __clk_core_init(struct clk_core *core)
3537 {
3538 	int ret;
3539 	struct clk_core *parent;
3540 	unsigned long rate;
3541 	int phase;
3542 
3543 	if (!core)
3544 		return -EINVAL;
3545 
3546 	clk_prepare_lock();
3547 
3548 	/*
3549 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3550 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3551 	 * being NULL as the clk not being registered yet. This is crucial so
3552 	 * that clks aren't parented until their parent is fully registered.
3553 	 */
3554 	core->hw->core = core;
3555 
3556 	ret = clk_pm_runtime_get(core);
3557 	if (ret)
3558 		goto unlock;
3559 
3560 	/* check to see if a clock with this name is already registered */
3561 	if (clk_core_lookup(core->name)) {
3562 		pr_debug("%s: clk %s already initialized\n",
3563 				__func__, core->name);
3564 		ret = -EEXIST;
3565 		goto out;
3566 	}
3567 
3568 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3569 	if (core->ops->set_rate &&
3570 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3571 	      core->ops->recalc_rate)) {
3572 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3573 		       __func__, core->name);
3574 		ret = -EINVAL;
3575 		goto out;
3576 	}
3577 
3578 	if (core->ops->set_parent && !core->ops->get_parent) {
3579 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3580 		       __func__, core->name);
3581 		ret = -EINVAL;
3582 		goto out;
3583 	}
3584 
3585 	if (core->num_parents > 1 && !core->ops->get_parent) {
3586 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3587 		       __func__, core->name);
3588 		ret = -EINVAL;
3589 		goto out;
3590 	}
3591 
3592 	if (core->ops->set_rate_and_parent &&
3593 			!(core->ops->set_parent && core->ops->set_rate)) {
3594 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3595 				__func__, core->name);
3596 		ret = -EINVAL;
3597 		goto out;
3598 	}
3599 
3600 	/*
3601 	 * optional platform-specific magic
3602 	 *
3603 	 * The .init callback is not used by any of the basic clock types, but
3604 	 * exists for weird hardware that must perform initialization magic for
3605 	 * CCF to get an accurate view of clock for any other callbacks. It may
3606 	 * also be used needs to perform dynamic allocations. Such allocation
3607 	 * must be freed in the terminate() callback.
3608 	 * This callback shall not be used to initialize the parameters state,
3609 	 * such as rate, parent, etc ...
3610 	 *
3611 	 * If it exist, this callback should called before any other callback of
3612 	 * the clock
3613 	 */
3614 	if (core->ops->init) {
3615 		ret = core->ops->init(core->hw);
3616 		if (ret)
3617 			goto out;
3618 	}
3619 
3620 	parent = core->parent = __clk_init_parent(core);
3621 
3622 	/*
3623 	 * Populate core->parent if parent has already been clk_core_init'd. If
3624 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3625 	 * list.  If clk doesn't have any parents then place it in the root
3626 	 * clk list.
3627 	 *
3628 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3629 	 * clocks and re-parent any that are children of the clock currently
3630 	 * being clk_init'd.
3631 	 */
3632 	if (parent) {
3633 		hlist_add_head(&core->child_node, &parent->children);
3634 		core->orphan = parent->orphan;
3635 	} else if (!core->num_parents) {
3636 		hlist_add_head(&core->child_node, &clk_root_list);
3637 		core->orphan = false;
3638 	} else {
3639 		hlist_add_head(&core->child_node, &clk_orphan_list);
3640 		core->orphan = true;
3641 	}
3642 
3643 	/*
3644 	 * Set clk's accuracy.  The preferred method is to use
3645 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3646 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3647 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3648 	 * clock).
3649 	 */
3650 	if (core->ops->recalc_accuracy)
3651 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3652 					clk_core_get_accuracy_no_lock(parent));
3653 	else if (parent)
3654 		core->accuracy = parent->accuracy;
3655 	else
3656 		core->accuracy = 0;
3657 
3658 	/*
3659 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3660 	 * Since a phase is by definition relative to its parent, just
3661 	 * query the current clock phase, or just assume it's in phase.
3662 	 */
3663 	phase = clk_core_get_phase(core);
3664 	if (phase < 0) {
3665 		ret = phase;
3666 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3667 			core->name);
3668 		goto out;
3669 	}
3670 
3671 	/*
3672 	 * Set clk's duty cycle.
3673 	 */
3674 	clk_core_update_duty_cycle_nolock(core);
3675 
3676 	/*
3677 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3678 	 * simple clocks and lazy developers the default fallback is to use the
3679 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3680 	 * then rate is set to zero.
3681 	 */
3682 	if (core->ops->recalc_rate)
3683 		rate = core->ops->recalc_rate(core->hw,
3684 				clk_core_get_rate_nolock(parent));
3685 	else if (parent)
3686 		rate = parent->rate;
3687 	else
3688 		rate = 0;
3689 	core->rate = core->req_rate = rate;
3690 
3691 	core->boot_enabled = clk_core_is_enabled(core);
3692 
3693 	/*
3694 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3695 	 * don't get accidentally disabled when walking the orphan tree and
3696 	 * reparenting clocks
3697 	 */
3698 	if (core->flags & CLK_IS_CRITICAL) {
3699 		ret = clk_core_prepare(core);
3700 		if (ret) {
3701 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3702 			       __func__, core->name);
3703 			goto out;
3704 		}
3705 
3706 		ret = clk_core_enable_lock(core);
3707 		if (ret) {
3708 			pr_warn("%s: critical clk '%s' failed to enable\n",
3709 			       __func__, core->name);
3710 			clk_core_unprepare(core);
3711 			goto out;
3712 		}
3713 	}
3714 
3715 	clk_core_hold_state(core);
3716 	clk_core_reparent_orphans_nolock();
3717 
3718 
3719 	kref_init(&core->ref);
3720 out:
3721 	clk_pm_runtime_put(core);
3722 unlock:
3723 	if (ret) {
3724 		hlist_del_init(&core->child_node);
3725 		core->hw->core = NULL;
3726 	}
3727 
3728 	clk_prepare_unlock();
3729 
3730 	if (!ret)
3731 		clk_debug_register(core);
3732 
3733 	return ret;
3734 }
3735 
3736 /**
3737  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3738  * @core: clk to add consumer to
3739  * @clk: consumer to link to a clk
3740  */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3741 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3742 {
3743 	clk_prepare_lock();
3744 	hlist_add_head(&clk->clks_node, &core->clks);
3745 	clk_prepare_unlock();
3746 }
3747 
3748 /**
3749  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3750  * @clk: consumer to unlink
3751  */
clk_core_unlink_consumer(struct clk * clk)3752 static void clk_core_unlink_consumer(struct clk *clk)
3753 {
3754 	lockdep_assert_held(&prepare_lock);
3755 	hlist_del(&clk->clks_node);
3756 }
3757 
3758 /**
3759  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3760  * @core: clk to allocate a consumer for
3761  * @dev_id: string describing device name
3762  * @con_id: connection ID string on device
3763  *
3764  * Returns: clk consumer left unlinked from the consumer list
3765  */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3766 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3767 			     const char *con_id)
3768 {
3769 	struct clk *clk;
3770 
3771 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3772 	if (!clk)
3773 		return ERR_PTR(-ENOMEM);
3774 
3775 	clk->core = core;
3776 	clk->dev_id = dev_id;
3777 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3778 	clk->max_rate = ULONG_MAX;
3779 
3780 	return clk;
3781 }
3782 
3783 /**
3784  * free_clk - Free a clk consumer
3785  * @clk: clk consumer to free
3786  *
3787  * Note, this assumes the clk has been unlinked from the clk_core consumer
3788  * list.
3789  */
free_clk(struct clk * clk)3790 static void free_clk(struct clk *clk)
3791 {
3792 	kfree_const(clk->con_id);
3793 	kfree(clk);
3794 }
3795 
3796 /**
3797  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3798  * a clk_hw
3799  * @dev: clk consumer device
3800  * @hw: clk_hw associated with the clk being consumed
3801  * @dev_id: string describing device name
3802  * @con_id: connection ID string on device
3803  *
3804  * This is the main function used to create a clk pointer for use by clk
3805  * consumers. It connects a consumer to the clk_core and clk_hw structures
3806  * used by the framework and clk provider respectively.
3807  */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3808 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3809 			      const char *dev_id, const char *con_id)
3810 {
3811 	struct clk *clk;
3812 	struct clk_core *core;
3813 
3814 	/* This is to allow this function to be chained to others */
3815 	if (IS_ERR_OR_NULL(hw))
3816 		return ERR_CAST(hw);
3817 
3818 	core = hw->core;
3819 	clk = alloc_clk(core, dev_id, con_id);
3820 	if (IS_ERR(clk))
3821 		return clk;
3822 	clk->dev = dev;
3823 
3824 	if (!try_module_get(core->owner)) {
3825 		free_clk(clk);
3826 		return ERR_PTR(-ENOENT);
3827 	}
3828 
3829 	kref_get(&core->ref);
3830 	clk_core_link_consumer(core, clk);
3831 
3832 	return clk;
3833 }
3834 
3835 /**
3836  * clk_hw_get_clk - get clk consumer given an clk_hw
3837  * @hw: clk_hw associated with the clk being consumed
3838  * @con_id: connection ID string on device
3839  *
3840  * Returns: new clk consumer
3841  * This is the function to be used by providers which need
3842  * to get a consumer clk and act on the clock element
3843  * Calls to this function must be balanced with calls clk_put()
3844  */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)3845 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3846 {
3847 	struct device *dev = hw->core->dev;
3848 	const char *name = dev ? dev_name(dev) : NULL;
3849 
3850 	return clk_hw_create_clk(dev, hw, name, con_id);
3851 }
3852 EXPORT_SYMBOL(clk_hw_get_clk);
3853 
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)3854 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3855 {
3856 	const char *dst;
3857 
3858 	if (!src) {
3859 		if (must_exist)
3860 			return -EINVAL;
3861 		return 0;
3862 	}
3863 
3864 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3865 	if (!dst)
3866 		return -ENOMEM;
3867 
3868 	return 0;
3869 }
3870 
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)3871 static int clk_core_populate_parent_map(struct clk_core *core,
3872 					const struct clk_init_data *init)
3873 {
3874 	u8 num_parents = init->num_parents;
3875 	const char * const *parent_names = init->parent_names;
3876 	const struct clk_hw **parent_hws = init->parent_hws;
3877 	const struct clk_parent_data *parent_data = init->parent_data;
3878 	int i, ret = 0;
3879 	struct clk_parent_map *parents, *parent;
3880 
3881 	if (!num_parents)
3882 		return 0;
3883 
3884 	/*
3885 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3886 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3887 	 */
3888 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3889 	core->parents = parents;
3890 	if (!parents)
3891 		return -ENOMEM;
3892 
3893 	/* Copy everything over because it might be __initdata */
3894 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3895 		parent->index = -1;
3896 		if (parent_names) {
3897 			/* throw a WARN if any entries are NULL */
3898 			WARN(!parent_names[i],
3899 				"%s: invalid NULL in %s's .parent_names\n",
3900 				__func__, core->name);
3901 			ret = clk_cpy_name(&parent->name, parent_names[i],
3902 					   true);
3903 		} else if (parent_data) {
3904 			parent->hw = parent_data[i].hw;
3905 			parent->index = parent_data[i].index;
3906 			ret = clk_cpy_name(&parent->fw_name,
3907 					   parent_data[i].fw_name, false);
3908 			if (!ret)
3909 				ret = clk_cpy_name(&parent->name,
3910 						   parent_data[i].name,
3911 						   false);
3912 		} else if (parent_hws) {
3913 			parent->hw = parent_hws[i];
3914 		} else {
3915 			ret = -EINVAL;
3916 			WARN(1, "Must specify parents if num_parents > 0\n");
3917 		}
3918 
3919 		if (ret) {
3920 			do {
3921 				kfree_const(parents[i].name);
3922 				kfree_const(parents[i].fw_name);
3923 			} while (--i >= 0);
3924 			kfree(parents);
3925 
3926 			return ret;
3927 		}
3928 	}
3929 
3930 	return 0;
3931 }
3932 
clk_core_free_parent_map(struct clk_core * core)3933 static void clk_core_free_parent_map(struct clk_core *core)
3934 {
3935 	int i = core->num_parents;
3936 
3937 	if (!core->num_parents)
3938 		return;
3939 
3940 	while (--i >= 0) {
3941 		kfree_const(core->parents[i].name);
3942 		kfree_const(core->parents[i].fw_name);
3943 	}
3944 
3945 	kfree(core->parents);
3946 }
3947 
3948 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)3949 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3950 {
3951 	int ret;
3952 	struct clk_core *core;
3953 	const struct clk_init_data *init = hw->init;
3954 
3955 	/*
3956 	 * The init data is not supposed to be used outside of registration path.
3957 	 * Set it to NULL so that provider drivers can't use it either and so that
3958 	 * we catch use of hw->init early on in the core.
3959 	 */
3960 	hw->init = NULL;
3961 
3962 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3963 	if (!core) {
3964 		ret = -ENOMEM;
3965 		goto fail_out;
3966 	}
3967 
3968 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3969 	if (!core->name) {
3970 		ret = -ENOMEM;
3971 		goto fail_name;
3972 	}
3973 
3974 	if (WARN_ON(!init->ops)) {
3975 		ret = -EINVAL;
3976 		goto fail_ops;
3977 	}
3978 	core->ops = init->ops;
3979 
3980 	if (dev && pm_runtime_enabled(dev))
3981 		core->rpm_enabled = true;
3982 	core->dev = dev;
3983 	core->of_node = np;
3984 	if (dev && dev->driver)
3985 		core->owner = dev->driver->owner;
3986 	core->hw = hw;
3987 	core->flags = init->flags;
3988 	core->num_parents = init->num_parents;
3989 	core->min_rate = 0;
3990 	core->max_rate = ULONG_MAX;
3991 
3992 	ret = clk_core_populate_parent_map(core, init);
3993 	if (ret)
3994 		goto fail_parents;
3995 
3996 	INIT_HLIST_HEAD(&core->clks);
3997 
3998 	/*
3999 	 * Don't call clk_hw_create_clk() here because that would pin the
4000 	 * provider module to itself and prevent it from ever being removed.
4001 	 */
4002 	hw->clk = alloc_clk(core, NULL, NULL);
4003 	if (IS_ERR(hw->clk)) {
4004 		ret = PTR_ERR(hw->clk);
4005 		goto fail_create_clk;
4006 	}
4007 
4008 	clk_core_link_consumer(core, hw->clk);
4009 
4010 	ret = __clk_core_init(core);
4011 	if (!ret)
4012 		return hw->clk;
4013 
4014 	clk_prepare_lock();
4015 	clk_core_unlink_consumer(hw->clk);
4016 	clk_prepare_unlock();
4017 
4018 	free_clk(hw->clk);
4019 	hw->clk = NULL;
4020 
4021 fail_create_clk:
4022 	clk_core_free_parent_map(core);
4023 fail_parents:
4024 fail_ops:
4025 	kfree_const(core->name);
4026 fail_name:
4027 	kfree(core);
4028 fail_out:
4029 	return ERR_PTR(ret);
4030 }
4031 
4032 /**
4033  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4034  * @dev: Device to get device node of
4035  *
4036  * Return: device node pointer of @dev, or the device node pointer of
4037  * @dev->parent if dev doesn't have a device node, or NULL if neither
4038  * @dev or @dev->parent have a device node.
4039  */
dev_or_parent_of_node(struct device * dev)4040 static struct device_node *dev_or_parent_of_node(struct device *dev)
4041 {
4042 	struct device_node *np;
4043 
4044 	if (!dev)
4045 		return NULL;
4046 
4047 	np = dev_of_node(dev);
4048 	if (!np)
4049 		np = dev_of_node(dev->parent);
4050 
4051 	return np;
4052 }
4053 
4054 /**
4055  * clk_register - allocate a new clock, register it and return an opaque cookie
4056  * @dev: device that is registering this clock
4057  * @hw: link to hardware-specific clock data
4058  *
4059  * clk_register is the *deprecated* interface for populating the clock tree with
4060  * new clock nodes. Use clk_hw_register() instead.
4061  *
4062  * Returns: a pointer to the newly allocated struct clk which
4063  * cannot be dereferenced by driver code but may be used in conjunction with the
4064  * rest of the clock API.  In the event of an error clk_register will return an
4065  * error code; drivers must test for an error code after calling clk_register.
4066  */
clk_register(struct device * dev,struct clk_hw * hw)4067 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4068 {
4069 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4070 }
4071 EXPORT_SYMBOL_GPL(clk_register);
4072 
4073 /**
4074  * clk_hw_register - register a clk_hw and return an error code
4075  * @dev: device that is registering this clock
4076  * @hw: link to hardware-specific clock data
4077  *
4078  * clk_hw_register is the primary interface for populating the clock tree with
4079  * new clock nodes. It returns an integer equal to zero indicating success or
4080  * less than zero indicating failure. Drivers must test for an error code after
4081  * calling clk_hw_register().
4082  */
clk_hw_register(struct device * dev,struct clk_hw * hw)4083 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4084 {
4085 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4086 			       hw));
4087 }
4088 EXPORT_SYMBOL_GPL(clk_hw_register);
4089 
4090 /*
4091  * of_clk_hw_register - register a clk_hw and return an error code
4092  * @node: device_node of device that is registering this clock
4093  * @hw: link to hardware-specific clock data
4094  *
4095  * of_clk_hw_register() is the primary interface for populating the clock tree
4096  * with new clock nodes when a struct device is not available, but a struct
4097  * device_node is. It returns an integer equal to zero indicating success or
4098  * less than zero indicating failure. Drivers must test for an error code after
4099  * calling of_clk_hw_register().
4100  */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4101 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4102 {
4103 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4104 }
4105 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4106 
4107 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)4108 static void __clk_release(struct kref *ref)
4109 {
4110 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4111 
4112 	lockdep_assert_held(&prepare_lock);
4113 
4114 	clk_core_free_parent_map(core);
4115 	kfree_const(core->name);
4116 	kfree(core);
4117 }
4118 
4119 /*
4120  * Empty clk_ops for unregistered clocks. These are used temporarily
4121  * after clk_unregister() was called on a clock and until last clock
4122  * consumer calls clk_put() and the struct clk object is freed.
4123  */
clk_nodrv_prepare_enable(struct clk_hw * hw)4124 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4125 {
4126 	return -ENXIO;
4127 }
4128 
clk_nodrv_disable_unprepare(struct clk_hw * hw)4129 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4130 {
4131 	WARN_ON_ONCE(1);
4132 }
4133 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4134 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4135 					unsigned long parent_rate)
4136 {
4137 	return -ENXIO;
4138 }
4139 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4140 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4141 {
4142 	return -ENXIO;
4143 }
4144 
4145 static const struct clk_ops clk_nodrv_ops = {
4146 	.enable		= clk_nodrv_prepare_enable,
4147 	.disable	= clk_nodrv_disable_unprepare,
4148 	.prepare	= clk_nodrv_prepare_enable,
4149 	.unprepare	= clk_nodrv_disable_unprepare,
4150 	.set_rate	= clk_nodrv_set_rate,
4151 	.set_parent	= clk_nodrv_set_parent,
4152 };
4153 
clk_core_evict_parent_cache_subtree(struct clk_core * root,struct clk_core * target)4154 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4155 						struct clk_core *target)
4156 {
4157 	int i;
4158 	struct clk_core *child;
4159 
4160 	for (i = 0; i < root->num_parents; i++)
4161 		if (root->parents[i].core == target)
4162 			root->parents[i].core = NULL;
4163 
4164 	hlist_for_each_entry(child, &root->children, child_node)
4165 		clk_core_evict_parent_cache_subtree(child, target);
4166 }
4167 
4168 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4169 static void clk_core_evict_parent_cache(struct clk_core *core)
4170 {
4171 	struct hlist_head **lists;
4172 	struct clk_core *root;
4173 
4174 	lockdep_assert_held(&prepare_lock);
4175 
4176 	for (lists = all_lists; *lists; lists++)
4177 		hlist_for_each_entry(root, *lists, child_node)
4178 			clk_core_evict_parent_cache_subtree(root, core);
4179 
4180 }
4181 
4182 /**
4183  * clk_unregister - unregister a currently registered clock
4184  * @clk: clock to unregister
4185  */
clk_unregister(struct clk * clk)4186 void clk_unregister(struct clk *clk)
4187 {
4188 	unsigned long flags;
4189 	const struct clk_ops *ops;
4190 
4191 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4192 		return;
4193 
4194 	clk_debug_unregister(clk->core);
4195 
4196 	clk_prepare_lock();
4197 
4198 	ops = clk->core->ops;
4199 	if (ops == &clk_nodrv_ops) {
4200 		pr_err("%s: unregistered clock: %s\n", __func__,
4201 		       clk->core->name);
4202 		goto unlock;
4203 	}
4204 	/*
4205 	 * Assign empty clock ops for consumers that might still hold
4206 	 * a reference to this clock.
4207 	 */
4208 	flags = clk_enable_lock();
4209 	clk->core->ops = &clk_nodrv_ops;
4210 	clk_enable_unlock(flags);
4211 
4212 	if (ops->terminate)
4213 		ops->terminate(clk->core->hw);
4214 
4215 	if (!hlist_empty(&clk->core->children)) {
4216 		struct clk_core *child;
4217 		struct hlist_node *t;
4218 
4219 		/* Reparent all children to the orphan list. */
4220 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4221 					  child_node)
4222 			clk_core_set_parent_nolock(child, NULL);
4223 	}
4224 
4225 	clk_core_evict_parent_cache(clk->core);
4226 
4227 	hlist_del_init(&clk->core->child_node);
4228 
4229 	if (clk->core->prepare_count)
4230 		pr_warn("%s: unregistering prepared clock: %s\n",
4231 					__func__, clk->core->name);
4232 
4233 	if (clk->core->protect_count)
4234 		pr_warn("%s: unregistering protected clock: %s\n",
4235 					__func__, clk->core->name);
4236 
4237 	kref_put(&clk->core->ref, __clk_release);
4238 	free_clk(clk);
4239 unlock:
4240 	clk_prepare_unlock();
4241 }
4242 EXPORT_SYMBOL_GPL(clk_unregister);
4243 
4244 /**
4245  * clk_hw_unregister - unregister a currently registered clk_hw
4246  * @hw: hardware-specific clock data to unregister
4247  */
clk_hw_unregister(struct clk_hw * hw)4248 void clk_hw_unregister(struct clk_hw *hw)
4249 {
4250 	clk_unregister(hw->clk);
4251 }
4252 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4253 
devm_clk_unregister_cb(struct device * dev,void * res)4254 static void devm_clk_unregister_cb(struct device *dev, void *res)
4255 {
4256 	clk_unregister(*(struct clk **)res);
4257 }
4258 
devm_clk_hw_unregister_cb(struct device * dev,void * res)4259 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4260 {
4261 	clk_hw_unregister(*(struct clk_hw **)res);
4262 }
4263 
4264 /**
4265  * devm_clk_register - resource managed clk_register()
4266  * @dev: device that is registering this clock
4267  * @hw: link to hardware-specific clock data
4268  *
4269  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4270  *
4271  * Clocks returned from this function are automatically clk_unregister()ed on
4272  * driver detach. See clk_register() for more information.
4273  */
devm_clk_register(struct device * dev,struct clk_hw * hw)4274 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4275 {
4276 	struct clk *clk;
4277 	struct clk **clkp;
4278 
4279 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4280 	if (!clkp)
4281 		return ERR_PTR(-ENOMEM);
4282 
4283 	clk = clk_register(dev, hw);
4284 	if (!IS_ERR(clk)) {
4285 		*clkp = clk;
4286 		devres_add(dev, clkp);
4287 	} else {
4288 		devres_free(clkp);
4289 	}
4290 
4291 	return clk;
4292 }
4293 EXPORT_SYMBOL_GPL(devm_clk_register);
4294 
4295 /**
4296  * devm_clk_hw_register - resource managed clk_hw_register()
4297  * @dev: device that is registering this clock
4298  * @hw: link to hardware-specific clock data
4299  *
4300  * Managed clk_hw_register(). Clocks registered by this function are
4301  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4302  * for more information.
4303  */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4304 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4305 {
4306 	struct clk_hw **hwp;
4307 	int ret;
4308 
4309 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4310 	if (!hwp)
4311 		return -ENOMEM;
4312 
4313 	ret = clk_hw_register(dev, hw);
4314 	if (!ret) {
4315 		*hwp = hw;
4316 		devres_add(dev, hwp);
4317 	} else {
4318 		devres_free(hwp);
4319 	}
4320 
4321 	return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4324 
devm_clk_match(struct device * dev,void * res,void * data)4325 static int devm_clk_match(struct device *dev, void *res, void *data)
4326 {
4327 	struct clk *c = res;
4328 	if (WARN_ON(!c))
4329 		return 0;
4330 	return c == data;
4331 }
4332 
devm_clk_hw_match(struct device * dev,void * res,void * data)4333 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4334 {
4335 	struct clk_hw *hw = res;
4336 
4337 	if (WARN_ON(!hw))
4338 		return 0;
4339 	return hw == data;
4340 }
4341 
4342 /**
4343  * devm_clk_unregister - resource managed clk_unregister()
4344  * @dev: device that is unregistering the clock data
4345  * @clk: clock to unregister
4346  *
4347  * Deallocate a clock allocated with devm_clk_register(). Normally
4348  * this function will not need to be called and the resource management
4349  * code will ensure that the resource is freed.
4350  */
devm_clk_unregister(struct device * dev,struct clk * clk)4351 void devm_clk_unregister(struct device *dev, struct clk *clk)
4352 {
4353 	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4354 }
4355 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4356 
4357 /**
4358  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4359  * @dev: device that is unregistering the hardware-specific clock data
4360  * @hw: link to hardware-specific clock data
4361  *
4362  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4363  * this function will not need to be called and the resource management
4364  * code will ensure that the resource is freed.
4365  */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)4366 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4367 {
4368 	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4369 				hw));
4370 }
4371 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4372 
devm_clk_release(struct device * dev,void * res)4373 static void devm_clk_release(struct device *dev, void *res)
4374 {
4375 	clk_put(*(struct clk **)res);
4376 }
4377 
4378 /**
4379  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4380  * @dev: device that is registering this clock
4381  * @hw: clk_hw associated with the clk being consumed
4382  * @con_id: connection ID string on device
4383  *
4384  * Managed clk_hw_get_clk(). Clocks got with this function are
4385  * automatically clk_put() on driver detach. See clk_put()
4386  * for more information.
4387  */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4388 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4389 				const char *con_id)
4390 {
4391 	struct clk *clk;
4392 	struct clk **clkp;
4393 
4394 	/* This should not happen because it would mean we have drivers
4395 	 * passing around clk_hw pointers instead of having the caller use
4396 	 * proper clk_get() style APIs
4397 	 */
4398 	WARN_ON_ONCE(dev != hw->core->dev);
4399 
4400 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4401 	if (!clkp)
4402 		return ERR_PTR(-ENOMEM);
4403 
4404 	clk = clk_hw_get_clk(hw, con_id);
4405 	if (!IS_ERR(clk)) {
4406 		*clkp = clk;
4407 		devres_add(dev, clkp);
4408 	} else {
4409 		devres_free(clkp);
4410 	}
4411 
4412 	return clk;
4413 }
4414 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4415 
4416 /*
4417  * clkdev helpers
4418  */
4419 
__clk_put(struct clk * clk)4420 void __clk_put(struct clk *clk)
4421 {
4422 	struct module *owner;
4423 
4424 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4425 		return;
4426 
4427 	clk_prepare_lock();
4428 
4429 	/*
4430 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4431 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4432 	 * and by that same consumer
4433 	 */
4434 	if (WARN_ON(clk->exclusive_count)) {
4435 		/* We voiced our concern, let's sanitize the situation */
4436 		clk->core->protect_count -= (clk->exclusive_count - 1);
4437 		clk_core_rate_unprotect(clk->core);
4438 		clk->exclusive_count = 0;
4439 	}
4440 
4441 	hlist_del(&clk->clks_node);
4442 	if (clk->min_rate > clk->core->req_rate ||
4443 	    clk->max_rate < clk->core->req_rate)
4444 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4445 
4446 	owner = clk->core->owner;
4447 	kref_put(&clk->core->ref, __clk_release);
4448 
4449 	clk_prepare_unlock();
4450 
4451 	module_put(owner);
4452 
4453 	free_clk(clk);
4454 }
4455 
4456 /***        clk rate change notifiers        ***/
4457 
4458 /**
4459  * clk_notifier_register - add a clk rate change notifier
4460  * @clk: struct clk * to watch
4461  * @nb: struct notifier_block * with callback info
4462  *
4463  * Request notification when clk's rate changes.  This uses an SRCU
4464  * notifier because we want it to block and notifier unregistrations are
4465  * uncommon.  The callbacks associated with the notifier must not
4466  * re-enter into the clk framework by calling any top-level clk APIs;
4467  * this will cause a nested prepare_lock mutex.
4468  *
4469  * In all notification cases (pre, post and abort rate change) the original
4470  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4471  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4472  *
4473  * clk_notifier_register() must be called from non-atomic context.
4474  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4475  * allocation failure; otherwise, passes along the return value of
4476  * srcu_notifier_chain_register().
4477  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4478 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4479 {
4480 	struct clk_notifier *cn;
4481 	int ret = -ENOMEM;
4482 
4483 	if (!clk || !nb)
4484 		return -EINVAL;
4485 
4486 	clk_prepare_lock();
4487 
4488 	/* search the list of notifiers for this clk */
4489 	list_for_each_entry(cn, &clk_notifier_list, node)
4490 		if (cn->clk == clk)
4491 			goto found;
4492 
4493 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4494 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4495 	if (!cn)
4496 		goto out;
4497 
4498 	cn->clk = clk;
4499 	srcu_init_notifier_head(&cn->notifier_head);
4500 
4501 	list_add(&cn->node, &clk_notifier_list);
4502 
4503 found:
4504 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4505 
4506 	clk->core->notifier_count++;
4507 
4508 out:
4509 	clk_prepare_unlock();
4510 
4511 	return ret;
4512 }
4513 EXPORT_SYMBOL_GPL(clk_notifier_register);
4514 
4515 /**
4516  * clk_notifier_unregister - remove a clk rate change notifier
4517  * @clk: struct clk *
4518  * @nb: struct notifier_block * with callback info
4519  *
4520  * Request no further notification for changes to 'clk' and frees memory
4521  * allocated in clk_notifier_register.
4522  *
4523  * Returns -EINVAL if called with null arguments; otherwise, passes
4524  * along the return value of srcu_notifier_chain_unregister().
4525  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4526 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4527 {
4528 	struct clk_notifier *cn;
4529 	int ret = -ENOENT;
4530 
4531 	if (!clk || !nb)
4532 		return -EINVAL;
4533 
4534 	clk_prepare_lock();
4535 
4536 	list_for_each_entry(cn, &clk_notifier_list, node) {
4537 		if (cn->clk == clk) {
4538 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4539 
4540 			clk->core->notifier_count--;
4541 
4542 			/* XXX the notifier code should handle this better */
4543 			if (!cn->notifier_head.head) {
4544 				srcu_cleanup_notifier_head(&cn->notifier_head);
4545 				list_del(&cn->node);
4546 				kfree(cn);
4547 			}
4548 			break;
4549 		}
4550 	}
4551 
4552 	clk_prepare_unlock();
4553 
4554 	return ret;
4555 }
4556 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4557 
4558 struct clk_notifier_devres {
4559 	struct clk *clk;
4560 	struct notifier_block *nb;
4561 };
4562 
devm_clk_notifier_release(struct device * dev,void * res)4563 static void devm_clk_notifier_release(struct device *dev, void *res)
4564 {
4565 	struct clk_notifier_devres *devres = res;
4566 
4567 	clk_notifier_unregister(devres->clk, devres->nb);
4568 }
4569 
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4570 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4571 			       struct notifier_block *nb)
4572 {
4573 	struct clk_notifier_devres *devres;
4574 	int ret;
4575 
4576 	devres = devres_alloc(devm_clk_notifier_release,
4577 			      sizeof(*devres), GFP_KERNEL);
4578 
4579 	if (!devres)
4580 		return -ENOMEM;
4581 
4582 	ret = clk_notifier_register(clk, nb);
4583 	if (!ret) {
4584 		devres->clk = clk;
4585 		devres->nb = nb;
4586 		devres_add(dev, devres);
4587 	} else {
4588 		devres_free(devres);
4589 	}
4590 
4591 	return ret;
4592 }
4593 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4594 
4595 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4596 static void clk_core_reparent_orphans(void)
4597 {
4598 	clk_prepare_lock();
4599 	clk_core_reparent_orphans_nolock();
4600 	clk_prepare_unlock();
4601 }
4602 
4603 /**
4604  * struct of_clk_provider - Clock provider registration structure
4605  * @link: Entry in global list of clock providers
4606  * @node: Pointer to device tree node of clock provider
4607  * @get: Get clock callback.  Returns NULL or a struct clk for the
4608  *       given clock specifier
4609  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4610  *       struct clk_hw for the given clock specifier
4611  * @data: context pointer to be passed into @get callback
4612  */
4613 struct of_clk_provider {
4614 	struct list_head link;
4615 
4616 	struct device_node *node;
4617 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4618 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4619 	void *data;
4620 };
4621 
4622 extern struct of_device_id __clk_of_table;
4623 static const struct of_device_id __clk_of_table_sentinel
4624 	__used __section("__clk_of_table_end");
4625 
4626 static LIST_HEAD(of_clk_providers);
4627 static DEFINE_MUTEX(of_clk_mutex);
4628 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4629 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4630 				     void *data)
4631 {
4632 	return data;
4633 }
4634 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4635 
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4636 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4637 {
4638 	return data;
4639 }
4640 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4641 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4642 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4643 {
4644 	struct clk_onecell_data *clk_data = data;
4645 	unsigned int idx = clkspec->args[0];
4646 
4647 	if (idx >= clk_data->clk_num) {
4648 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4649 		return ERR_PTR(-EINVAL);
4650 	}
4651 
4652 	return clk_data->clks[idx];
4653 }
4654 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4655 
4656 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4657 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4658 {
4659 	struct clk_hw_onecell_data *hw_data = data;
4660 	unsigned int idx = clkspec->args[0];
4661 
4662 	if (idx >= hw_data->num) {
4663 		pr_err("%s: invalid index %u\n", __func__, idx);
4664 		return ERR_PTR(-EINVAL);
4665 	}
4666 
4667 	return hw_data->hws[idx];
4668 }
4669 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4670 
4671 /**
4672  * of_clk_add_provider() - Register a clock provider for a node
4673  * @np: Device node pointer associated with clock provider
4674  * @clk_src_get: callback for decoding clock
4675  * @data: context pointer for @clk_src_get callback.
4676  *
4677  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4678  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4679 int of_clk_add_provider(struct device_node *np,
4680 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4681 						   void *data),
4682 			void *data)
4683 {
4684 	struct of_clk_provider *cp;
4685 	int ret;
4686 
4687 	if (!np)
4688 		return 0;
4689 
4690 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4691 	if (!cp)
4692 		return -ENOMEM;
4693 
4694 	cp->node = of_node_get(np);
4695 	cp->data = data;
4696 	cp->get = clk_src_get;
4697 
4698 	mutex_lock(&of_clk_mutex);
4699 	list_add(&cp->link, &of_clk_providers);
4700 	mutex_unlock(&of_clk_mutex);
4701 	pr_debug("Added clock from %pOF\n", np);
4702 
4703 	clk_core_reparent_orphans();
4704 
4705 	ret = of_clk_set_defaults(np, true);
4706 	if (ret < 0)
4707 		of_clk_del_provider(np);
4708 
4709 	fwnode_dev_initialized(&np->fwnode, true);
4710 
4711 	return ret;
4712 }
4713 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4714 
4715 /**
4716  * of_clk_add_hw_provider() - Register a clock provider for a node
4717  * @np: Device node pointer associated with clock provider
4718  * @get: callback for decoding clk_hw
4719  * @data: context pointer for @get callback.
4720  */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4721 int of_clk_add_hw_provider(struct device_node *np,
4722 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4723 						 void *data),
4724 			   void *data)
4725 {
4726 	struct of_clk_provider *cp;
4727 	int ret;
4728 
4729 	if (!np)
4730 		return 0;
4731 
4732 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4733 	if (!cp)
4734 		return -ENOMEM;
4735 
4736 	cp->node = of_node_get(np);
4737 	cp->data = data;
4738 	cp->get_hw = get;
4739 
4740 	mutex_lock(&of_clk_mutex);
4741 	list_add(&cp->link, &of_clk_providers);
4742 	mutex_unlock(&of_clk_mutex);
4743 	pr_debug("Added clk_hw provider from %pOF\n", np);
4744 
4745 	clk_core_reparent_orphans();
4746 
4747 	ret = of_clk_set_defaults(np, true);
4748 	if (ret < 0)
4749 		of_clk_del_provider(np);
4750 
4751 	fwnode_dev_initialized(&np->fwnode, true);
4752 
4753 	return ret;
4754 }
4755 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4756 
devm_of_clk_release_provider(struct device * dev,void * res)4757 static void devm_of_clk_release_provider(struct device *dev, void *res)
4758 {
4759 	of_clk_del_provider(*(struct device_node **)res);
4760 }
4761 
4762 /*
4763  * We allow a child device to use its parent device as the clock provider node
4764  * for cases like MFD sub-devices where the child device driver wants to use
4765  * devm_*() APIs but not list the device in DT as a sub-node.
4766  */
get_clk_provider_node(struct device * dev)4767 static struct device_node *get_clk_provider_node(struct device *dev)
4768 {
4769 	struct device_node *np, *parent_np;
4770 
4771 	np = dev->of_node;
4772 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4773 
4774 	if (!of_find_property(np, "#clock-cells", NULL))
4775 		if (of_find_property(parent_np, "#clock-cells", NULL))
4776 			np = parent_np;
4777 
4778 	return np;
4779 }
4780 
4781 /**
4782  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4783  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4784  * @get: callback for decoding clk_hw
4785  * @data: context pointer for @get callback
4786  *
4787  * Registers clock provider for given device's node. If the device has no DT
4788  * node or if the device node lacks of clock provider information (#clock-cells)
4789  * then the parent device's node is scanned for this information. If parent node
4790  * has the #clock-cells then it is used in registration. Provider is
4791  * automatically released at device exit.
4792  *
4793  * Return: 0 on success or an errno on failure.
4794  */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4795 int devm_of_clk_add_hw_provider(struct device *dev,
4796 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4797 					      void *data),
4798 			void *data)
4799 {
4800 	struct device_node **ptr, *np;
4801 	int ret;
4802 
4803 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4804 			   GFP_KERNEL);
4805 	if (!ptr)
4806 		return -ENOMEM;
4807 
4808 	np = get_clk_provider_node(dev);
4809 	ret = of_clk_add_hw_provider(np, get, data);
4810 	if (!ret) {
4811 		*ptr = np;
4812 		devres_add(dev, ptr);
4813 	} else {
4814 		devres_free(ptr);
4815 	}
4816 
4817 	return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4820 
4821 /**
4822  * of_clk_del_provider() - Remove a previously registered clock provider
4823  * @np: Device node pointer associated with clock provider
4824  */
of_clk_del_provider(struct device_node * np)4825 void of_clk_del_provider(struct device_node *np)
4826 {
4827 	struct of_clk_provider *cp;
4828 
4829 	if (!np)
4830 		return;
4831 
4832 	mutex_lock(&of_clk_mutex);
4833 	list_for_each_entry(cp, &of_clk_providers, link) {
4834 		if (cp->node == np) {
4835 			list_del(&cp->link);
4836 			fwnode_dev_initialized(&np->fwnode, false);
4837 			of_node_put(cp->node);
4838 			kfree(cp);
4839 			break;
4840 		}
4841 	}
4842 	mutex_unlock(&of_clk_mutex);
4843 }
4844 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4845 
devm_clk_provider_match(struct device * dev,void * res,void * data)4846 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4847 {
4848 	struct device_node **np = res;
4849 
4850 	if (WARN_ON(!np || !*np))
4851 		return 0;
4852 
4853 	return *np == data;
4854 }
4855 
4856 /**
4857  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4858  * @dev: Device to whose lifetime the clock provider was bound
4859  */
devm_of_clk_del_provider(struct device * dev)4860 void devm_of_clk_del_provider(struct device *dev)
4861 {
4862 	int ret;
4863 	struct device_node *np = get_clk_provider_node(dev);
4864 
4865 	ret = devres_release(dev, devm_of_clk_release_provider,
4866 			     devm_clk_provider_match, np);
4867 
4868 	WARN_ON(ret);
4869 }
4870 EXPORT_SYMBOL(devm_of_clk_del_provider);
4871 
4872 /**
4873  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4874  * @np: device node to parse clock specifier from
4875  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4876  * @name: clock name to find and parse. If name is NULL, the index is used
4877  * @out_args: Result of parsing the clock specifier
4878  *
4879  * Parses a device node's "clocks" and "clock-names" properties to find the
4880  * phandle and cells for the index or name that is desired. The resulting clock
4881  * specifier is placed into @out_args, or an errno is returned when there's a
4882  * parsing error. The @index argument is ignored if @name is non-NULL.
4883  *
4884  * Example:
4885  *
4886  * phandle1: clock-controller@1 {
4887  *	#clock-cells = <2>;
4888  * }
4889  *
4890  * phandle2: clock-controller@2 {
4891  *	#clock-cells = <1>;
4892  * }
4893  *
4894  * clock-consumer@3 {
4895  *	clocks = <&phandle1 1 2 &phandle2 3>;
4896  *	clock-names = "name1", "name2";
4897  * }
4898  *
4899  * To get a device_node for `clock-controller@2' node you may call this
4900  * function a few different ways:
4901  *
4902  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4903  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4904  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4905  *
4906  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4907  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4908  * the "clock-names" property of @np.
4909  */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)4910 static int of_parse_clkspec(const struct device_node *np, int index,
4911 			    const char *name, struct of_phandle_args *out_args)
4912 {
4913 	int ret = -ENOENT;
4914 
4915 	/* Walk up the tree of devices looking for a clock property that matches */
4916 	while (np) {
4917 		/*
4918 		 * For named clocks, first look up the name in the
4919 		 * "clock-names" property.  If it cannot be found, then index
4920 		 * will be an error code and of_parse_phandle_with_args() will
4921 		 * return -EINVAL.
4922 		 */
4923 		if (name)
4924 			index = of_property_match_string(np, "clock-names", name);
4925 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4926 						 index, out_args);
4927 		if (!ret)
4928 			break;
4929 		if (name && index >= 0)
4930 			break;
4931 
4932 		/*
4933 		 * No matching clock found on this node.  If the parent node
4934 		 * has a "clock-ranges" property, then we can try one of its
4935 		 * clocks.
4936 		 */
4937 		np = np->parent;
4938 		if (np && !of_get_property(np, "clock-ranges", NULL))
4939 			break;
4940 		index = 0;
4941 	}
4942 
4943 	return ret;
4944 }
4945 
4946 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)4947 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4948 			      struct of_phandle_args *clkspec)
4949 {
4950 	struct clk *clk;
4951 
4952 	if (provider->get_hw)
4953 		return provider->get_hw(clkspec, provider->data);
4954 
4955 	clk = provider->get(clkspec, provider->data);
4956 	if (IS_ERR(clk))
4957 		return ERR_CAST(clk);
4958 	return __clk_get_hw(clk);
4959 }
4960 
4961 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)4962 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4963 {
4964 	struct of_clk_provider *provider;
4965 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4966 
4967 	if (!clkspec)
4968 		return ERR_PTR(-EINVAL);
4969 
4970 	mutex_lock(&of_clk_mutex);
4971 	list_for_each_entry(provider, &of_clk_providers, link) {
4972 		if (provider->node == clkspec->np) {
4973 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4974 			if (!IS_ERR(hw))
4975 				break;
4976 		}
4977 	}
4978 	mutex_unlock(&of_clk_mutex);
4979 
4980 	return hw;
4981 }
4982 
4983 /**
4984  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4985  * @clkspec: pointer to a clock specifier data structure
4986  *
4987  * This function looks up a struct clk from the registered list of clock
4988  * providers, an input is a clock specifier data structure as returned
4989  * from the of_parse_phandle_with_args() function call.
4990  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)4991 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4992 {
4993 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4994 
4995 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4996 }
4997 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4998 
of_clk_get_hw(struct device_node * np,int index,const char * con_id)4999 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5000 			     const char *con_id)
5001 {
5002 	int ret;
5003 	struct clk_hw *hw;
5004 	struct of_phandle_args clkspec;
5005 
5006 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5007 	if (ret)
5008 		return ERR_PTR(ret);
5009 
5010 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5011 	of_node_put(clkspec.np);
5012 
5013 	return hw;
5014 }
5015 
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5016 static struct clk *__of_clk_get(struct device_node *np,
5017 				int index, const char *dev_id,
5018 				const char *con_id)
5019 {
5020 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5021 
5022 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5023 }
5024 
of_clk_get(struct device_node * np,int index)5025 struct clk *of_clk_get(struct device_node *np, int index)
5026 {
5027 	return __of_clk_get(np, index, np->full_name, NULL);
5028 }
5029 EXPORT_SYMBOL(of_clk_get);
5030 
5031 /**
5032  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5033  * @np: pointer to clock consumer node
5034  * @name: name of consumer's clock input, or NULL for the first clock reference
5035  *
5036  * This function parses the clocks and clock-names properties,
5037  * and uses them to look up the struct clk from the registered list of clock
5038  * providers.
5039  */
of_clk_get_by_name(struct device_node * np,const char * name)5040 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5041 {
5042 	if (!np)
5043 		return ERR_PTR(-ENOENT);
5044 
5045 	return __of_clk_get(np, 0, np->full_name, name);
5046 }
5047 EXPORT_SYMBOL(of_clk_get_by_name);
5048 
5049 /**
5050  * of_clk_get_parent_count() - Count the number of clocks a device node has
5051  * @np: device node to count
5052  *
5053  * Returns: The number of clocks that are possible parents of this node
5054  */
of_clk_get_parent_count(const struct device_node * np)5055 unsigned int of_clk_get_parent_count(const struct device_node *np)
5056 {
5057 	int count;
5058 
5059 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5060 	if (count < 0)
5061 		return 0;
5062 
5063 	return count;
5064 }
5065 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5066 
of_clk_get_parent_name(const struct device_node * np,int index)5067 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5068 {
5069 	struct of_phandle_args clkspec;
5070 	struct property *prop;
5071 	const char *clk_name;
5072 	const __be32 *vp;
5073 	u32 pv;
5074 	int rc;
5075 	int count;
5076 	struct clk *clk;
5077 
5078 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5079 					&clkspec);
5080 	if (rc)
5081 		return NULL;
5082 
5083 	index = clkspec.args_count ? clkspec.args[0] : 0;
5084 	count = 0;
5085 
5086 	/* if there is an indices property, use it to transfer the index
5087 	 * specified into an array offset for the clock-output-names property.
5088 	 */
5089 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5090 		if (index == pv) {
5091 			index = count;
5092 			break;
5093 		}
5094 		count++;
5095 	}
5096 	/* We went off the end of 'clock-indices' without finding it */
5097 	if (prop && !vp)
5098 		return NULL;
5099 
5100 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5101 					  index,
5102 					  &clk_name) < 0) {
5103 		/*
5104 		 * Best effort to get the name if the clock has been
5105 		 * registered with the framework. If the clock isn't
5106 		 * registered, we return the node name as the name of
5107 		 * the clock as long as #clock-cells = 0.
5108 		 */
5109 		clk = of_clk_get_from_provider(&clkspec);
5110 		if (IS_ERR(clk)) {
5111 			if (clkspec.args_count == 0)
5112 				clk_name = clkspec.np->name;
5113 			else
5114 				clk_name = NULL;
5115 		} else {
5116 			clk_name = __clk_get_name(clk);
5117 			clk_put(clk);
5118 		}
5119 	}
5120 
5121 
5122 	of_node_put(clkspec.np);
5123 	return clk_name;
5124 }
5125 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5126 
5127 /**
5128  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5129  * number of parents
5130  * @np: Device node pointer associated with clock provider
5131  * @parents: pointer to char array that hold the parents' names
5132  * @size: size of the @parents array
5133  *
5134  * Return: number of parents for the clock node.
5135  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5136 int of_clk_parent_fill(struct device_node *np, const char **parents,
5137 		       unsigned int size)
5138 {
5139 	unsigned int i = 0;
5140 
5141 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5142 		i++;
5143 
5144 	return i;
5145 }
5146 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5147 
5148 struct clock_provider {
5149 	void (*clk_init_cb)(struct device_node *);
5150 	struct device_node *np;
5151 	struct list_head node;
5152 };
5153 
5154 /*
5155  * This function looks for a parent clock. If there is one, then it
5156  * checks that the provider for this parent clock was initialized, in
5157  * this case the parent clock will be ready.
5158  */
parent_ready(struct device_node * np)5159 static int parent_ready(struct device_node *np)
5160 {
5161 	int i = 0;
5162 
5163 	while (true) {
5164 		struct clk *clk = of_clk_get(np, i);
5165 
5166 		/* this parent is ready we can check the next one */
5167 		if (!IS_ERR(clk)) {
5168 			clk_put(clk);
5169 			i++;
5170 			continue;
5171 		}
5172 
5173 		/* at least one parent is not ready, we exit now */
5174 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5175 			return 0;
5176 
5177 		/*
5178 		 * Here we make assumption that the device tree is
5179 		 * written correctly. So an error means that there is
5180 		 * no more parent. As we didn't exit yet, then the
5181 		 * previous parent are ready. If there is no clock
5182 		 * parent, no need to wait for them, then we can
5183 		 * consider their absence as being ready
5184 		 */
5185 		return 1;
5186 	}
5187 }
5188 
5189 /**
5190  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5191  * @np: Device node pointer associated with clock provider
5192  * @index: clock index
5193  * @flags: pointer to top-level framework flags
5194  *
5195  * Detects if the clock-critical property exists and, if so, sets the
5196  * corresponding CLK_IS_CRITICAL flag.
5197  *
5198  * Do not use this function. It exists only for legacy Device Tree
5199  * bindings, such as the one-clock-per-node style that are outdated.
5200  * Those bindings typically put all clock data into .dts and the Linux
5201  * driver has no clock data, thus making it impossible to set this flag
5202  * correctly from the driver. Only those drivers may call
5203  * of_clk_detect_critical from their setup functions.
5204  *
5205  * Return: error code or zero on success
5206  */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5207 int of_clk_detect_critical(struct device_node *np, int index,
5208 			   unsigned long *flags)
5209 {
5210 	struct property *prop;
5211 	const __be32 *cur;
5212 	uint32_t idx;
5213 
5214 	if (!np || !flags)
5215 		return -EINVAL;
5216 
5217 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5218 		if (index == idx)
5219 			*flags |= CLK_IS_CRITICAL;
5220 
5221 	return 0;
5222 }
5223 
5224 /**
5225  * of_clk_init() - Scan and init clock providers from the DT
5226  * @matches: array of compatible values and init functions for providers.
5227  *
5228  * This function scans the device tree for matching clock providers
5229  * and calls their initialization functions. It also does it by trying
5230  * to follow the dependencies.
5231  */
of_clk_init(const struct of_device_id * matches)5232 void __init of_clk_init(const struct of_device_id *matches)
5233 {
5234 	const struct of_device_id *match;
5235 	struct device_node *np;
5236 	struct clock_provider *clk_provider, *next;
5237 	bool is_init_done;
5238 	bool force = false;
5239 	LIST_HEAD(clk_provider_list);
5240 
5241 	if (!matches)
5242 		matches = &__clk_of_table;
5243 
5244 	/* First prepare the list of the clocks providers */
5245 	for_each_matching_node_and_match(np, matches, &match) {
5246 		struct clock_provider *parent;
5247 
5248 		if (!of_device_is_available(np))
5249 			continue;
5250 
5251 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5252 		if (!parent) {
5253 			list_for_each_entry_safe(clk_provider, next,
5254 						 &clk_provider_list, node) {
5255 				list_del(&clk_provider->node);
5256 				of_node_put(clk_provider->np);
5257 				kfree(clk_provider);
5258 			}
5259 			of_node_put(np);
5260 			return;
5261 		}
5262 
5263 		parent->clk_init_cb = match->data;
5264 		parent->np = of_node_get(np);
5265 		list_add_tail(&parent->node, &clk_provider_list);
5266 	}
5267 
5268 	while (!list_empty(&clk_provider_list)) {
5269 		is_init_done = false;
5270 		list_for_each_entry_safe(clk_provider, next,
5271 					&clk_provider_list, node) {
5272 			if (force || parent_ready(clk_provider->np)) {
5273 
5274 				/* Don't populate platform devices */
5275 				of_node_set_flag(clk_provider->np,
5276 						 OF_POPULATED);
5277 
5278 				clk_provider->clk_init_cb(clk_provider->np);
5279 				of_clk_set_defaults(clk_provider->np, true);
5280 
5281 				list_del(&clk_provider->node);
5282 				of_node_put(clk_provider->np);
5283 				kfree(clk_provider);
5284 				is_init_done = true;
5285 			}
5286 		}
5287 
5288 		/*
5289 		 * We didn't manage to initialize any of the
5290 		 * remaining providers during the last loop, so now we
5291 		 * initialize all the remaining ones unconditionally
5292 		 * in case the clock parent was not mandatory
5293 		 */
5294 		if (!is_init_done)
5295 			force = true;
5296 	}
5297 }
5298 #endif
5299