1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Syncookies implementation for the Linux kernel
4 *
5 * Copyright (C) 1997 Andi Kleen
6 * Based on ideas by D.J.Bernstein and Eric Schenk.
7 */
8
9 #include <linux/tcp.h>
10 #include <linux/slab.h>
11 #include <linux/random.h>
12 #include <linux/siphash.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <net/secure_seq.h>
16 #include <net/tcp.h>
17 #include <net/route.h>
18
19 static siphash_key_t syncookie_secret[2] __read_mostly;
20
21 #define COOKIEBITS 24 /* Upper bits store count */
22 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
23
24 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
25 * stores TCP options:
26 *
27 * MSB LSB
28 * | 31 ... 6 | 5 | 4 | 3 2 1 0 |
29 * | Timestamp | ECN | SACK | WScale |
30 *
31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
32 * any) to figure out which TCP options we should use for the rebuilt
33 * connection.
34 *
35 * A WScale setting of '0xf' (which is an invalid scaling value)
36 * means that original syn did not include the TCP window scaling option.
37 */
38 #define TS_OPT_WSCALE_MASK 0xf
39 #define TS_OPT_SACK BIT(4)
40 #define TS_OPT_ECN BIT(5)
41 /* There is no TS_OPT_TIMESTAMP:
42 * if ACK contains timestamp option, we already know it was
43 * requested/supported by the syn/synack exchange.
44 */
45 #define TSBITS 6
46
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)47 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
48 u32 count, int c)
49 {
50 net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
51 return siphash_4u32((__force u32)saddr, (__force u32)daddr,
52 (__force u32)sport << 16 | (__force u32)dport,
53 count, &syncookie_secret[c]);
54 }
55
56
57 /*
58 * when syncookies are in effect and tcp timestamps are enabled we encode
59 * tcp options in the lower bits of the timestamp value that will be
60 * sent in the syn-ack.
61 * Since subsequent timestamps use the normal tcp_time_stamp value, we
62 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
63 */
cookie_init_timestamp(struct request_sock * req,u64 now)64 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
65 {
66 const struct inet_request_sock *ireq = inet_rsk(req);
67 u64 ts, ts_now = tcp_ns_to_ts(now);
68 u32 options = 0;
69
70 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
71 if (ireq->sack_ok)
72 options |= TS_OPT_SACK;
73 if (ireq->ecn_ok)
74 options |= TS_OPT_ECN;
75
76 ts = (ts_now >> TSBITS) << TSBITS;
77 ts |= options;
78 if (ts > ts_now)
79 ts -= (1UL << TSBITS);
80
81 return ts * (NSEC_PER_SEC / TCP_TS_HZ);
82 }
83
84
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)85 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
86 __be16 dport, __u32 sseq, __u32 data)
87 {
88 /*
89 * Compute the secure sequence number.
90 * The output should be:
91 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
92 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
93 * Where sseq is their sequence number and count increases every
94 * minute by 1.
95 * As an extra hack, we add a small "data" value that encodes the
96 * MSS into the second hash value.
97 */
98 u32 count = tcp_cookie_time();
99 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
100 sseq + (count << COOKIEBITS) +
101 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
102 & COOKIEMASK));
103 }
104
105 /*
106 * This retrieves the small "data" value from the syncookie.
107 * If the syncookie is bad, the data returned will be out of
108 * range. This must be checked by the caller.
109 *
110 * The count value used to generate the cookie must be less than
111 * MAX_SYNCOOKIE_AGE minutes in the past.
112 * The return value (__u32)-1 if this test fails.
113 */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)114 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
115 __be16 sport, __be16 dport, __u32 sseq)
116 {
117 u32 diff, count = tcp_cookie_time();
118
119 /* Strip away the layers from the cookie */
120 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
121
122 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
123 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
124 if (diff >= MAX_SYNCOOKIE_AGE)
125 return (__u32)-1;
126
127 return (cookie -
128 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
129 & COOKIEMASK; /* Leaving the data behind */
130 }
131
132 /*
133 * MSS Values are chosen based on the 2011 paper
134 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
135 * Values ..
136 * .. lower than 536 are rare (< 0.2%)
137 * .. between 537 and 1299 account for less than < 1.5% of observed values
138 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
139 * .. exceeding 1460 are very rare (< 0.04%)
140 *
141 * 1460 is the single most frequently announced mss value (30 to 46% depending
142 * on monitor location). Table must be sorted.
143 */
144 static __u16 const msstab[] = {
145 536,
146 1300,
147 1440, /* 1440, 1452: PPPoE */
148 1460,
149 };
150
151 /*
152 * Generate a syncookie. mssp points to the mss, which is returned
153 * rounded down to the value encoded in the cookie.
154 */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)155 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
156 u16 *mssp)
157 {
158 int mssind;
159 const __u16 mss = *mssp;
160
161 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
162 if (mss >= msstab[mssind])
163 break;
164 *mssp = msstab[mssind];
165
166 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
167 th->source, th->dest, ntohl(th->seq),
168 mssind);
169 }
170 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
171
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)172 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
173 {
174 const struct iphdr *iph = ip_hdr(skb);
175 const struct tcphdr *th = tcp_hdr(skb);
176
177 return __cookie_v4_init_sequence(iph, th, mssp);
178 }
179
180 /*
181 * Check if a ack sequence number is a valid syncookie.
182 * Return the decoded mss if it is, or 0 if not.
183 */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th,u32 cookie)184 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
185 u32 cookie)
186 {
187 __u32 seq = ntohl(th->seq) - 1;
188 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
189 th->source, th->dest, seq);
190
191 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
192 }
193 EXPORT_SYMBOL_GPL(__cookie_v4_check);
194
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst,u32 tsoff)195 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
196 struct request_sock *req,
197 struct dst_entry *dst, u32 tsoff)
198 {
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 struct sock *child;
201 bool own_req;
202
203 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
204 NULL, &own_req);
205 if (child) {
206 refcount_set(&req->rsk_refcnt, 1);
207 tcp_sk(child)->tsoffset = tsoff;
208 sock_rps_save_rxhash(child, skb);
209
210 if (rsk_drop_req(req)) {
211 reqsk_put(req);
212 return child;
213 }
214
215 if (inet_csk_reqsk_queue_add(sk, req, child))
216 return child;
217
218 bh_unlock_sock(child);
219 sock_put(child);
220 }
221 __reqsk_free(req);
222
223 return NULL;
224 }
225 EXPORT_SYMBOL(tcp_get_cookie_sock);
226
227 /*
228 * when syncookies are in effect and tcp timestamps are enabled we stored
229 * additional tcp options in the timestamp.
230 * This extracts these options from the timestamp echo.
231 *
232 * return false if we decode a tcp option that is disabled
233 * on the host.
234 */
cookie_timestamp_decode(const struct net * net,struct tcp_options_received * tcp_opt)235 bool cookie_timestamp_decode(const struct net *net,
236 struct tcp_options_received *tcp_opt)
237 {
238 /* echoed timestamp, lowest bits contain options */
239 u32 options = tcp_opt->rcv_tsecr;
240
241 if (!tcp_opt->saw_tstamp) {
242 tcp_clear_options(tcp_opt);
243 return true;
244 }
245
246 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
247 return false;
248
249 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
250
251 if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
252 return false;
253
254 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
255 return true; /* no window scaling */
256
257 tcp_opt->wscale_ok = 1;
258 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
259
260 return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
261 }
262 EXPORT_SYMBOL(cookie_timestamp_decode);
263
cookie_ecn_ok(const struct tcp_options_received * tcp_opt,const struct net * net,const struct dst_entry * dst)264 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
265 const struct net *net, const struct dst_entry *dst)
266 {
267 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
268
269 if (!ecn_ok)
270 return false;
271
272 if (READ_ONCE(net->ipv4.sysctl_tcp_ecn))
273 return true;
274
275 return dst_feature(dst, RTAX_FEATURE_ECN);
276 }
277 EXPORT_SYMBOL(cookie_ecn_ok);
278
cookie_tcp_reqsk_alloc(const struct request_sock_ops * ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)279 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
280 const struct tcp_request_sock_ops *af_ops,
281 struct sock *sk,
282 struct sk_buff *skb)
283 {
284 struct tcp_request_sock *treq;
285 struct request_sock *req;
286
287 if (sk_is_mptcp(sk))
288 req = mptcp_subflow_reqsk_alloc(ops, sk, false);
289 else
290 req = inet_reqsk_alloc(ops, sk, false);
291
292 if (!req)
293 return NULL;
294
295 treq = tcp_rsk(req);
296
297 /* treq->af_specific might be used to perform TCP_MD5 lookup */
298 treq->af_specific = af_ops;
299
300 treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
301 #if IS_ENABLED(CONFIG_MPTCP)
302 treq->is_mptcp = sk_is_mptcp(sk);
303 if (treq->is_mptcp) {
304 int err = mptcp_subflow_init_cookie_req(req, sk, skb);
305
306 if (err) {
307 reqsk_free(req);
308 return NULL;
309 }
310 }
311 #endif
312
313 return req;
314 }
315 EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
316
317 /* On input, sk is a listener.
318 * Output is listener if incoming packet would not create a child
319 * NULL if memory could not be allocated.
320 */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)321 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
322 {
323 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
324 struct tcp_options_received tcp_opt;
325 struct inet_request_sock *ireq;
326 struct tcp_request_sock *treq;
327 struct tcp_sock *tp = tcp_sk(sk);
328 const struct tcphdr *th = tcp_hdr(skb);
329 __u32 cookie = ntohl(th->ack_seq) - 1;
330 struct sock *ret = sk;
331 struct request_sock *req;
332 int full_space, mss;
333 struct rtable *rt;
334 __u8 rcv_wscale;
335 struct flowi4 fl4;
336 u32 tsoff = 0;
337
338 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
339 !th->ack || th->rst)
340 goto out;
341
342 if (tcp_synq_no_recent_overflow(sk))
343 goto out;
344
345 mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
346 if (mss == 0) {
347 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
348 goto out;
349 }
350
351 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
352
353 /* check for timestamp cookie support */
354 memset(&tcp_opt, 0, sizeof(tcp_opt));
355 tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
356
357 if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
358 tsoff = secure_tcp_ts_off(sock_net(sk),
359 ip_hdr(skb)->daddr,
360 ip_hdr(skb)->saddr);
361 tcp_opt.rcv_tsecr -= tsoff;
362 }
363
364 if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
365 goto out;
366
367 ret = NULL;
368 req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops,
369 &tcp_request_sock_ipv4_ops, sk, skb);
370 if (!req)
371 goto out;
372
373 ireq = inet_rsk(req);
374 treq = tcp_rsk(req);
375 treq->rcv_isn = ntohl(th->seq) - 1;
376 treq->snt_isn = cookie;
377 treq->ts_off = 0;
378 treq->txhash = net_tx_rndhash();
379 req->mss = mss;
380 ireq->ir_num = ntohs(th->dest);
381 ireq->ir_rmt_port = th->source;
382 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
383 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
384 ireq->ir_mark = inet_request_mark(sk, skb);
385 ireq->snd_wscale = tcp_opt.snd_wscale;
386 ireq->sack_ok = tcp_opt.sack_ok;
387 ireq->wscale_ok = tcp_opt.wscale_ok;
388 ireq->tstamp_ok = tcp_opt.saw_tstamp;
389 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
390 treq->snt_synack = 0;
391 treq->tfo_listener = false;
392
393 if (IS_ENABLED(CONFIG_SMC))
394 ireq->smc_ok = 0;
395
396 ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
397
398 /* We throwed the options of the initial SYN away, so we hope
399 * the ACK carries the same options again (see RFC1122 4.2.3.8)
400 */
401 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
402
403 if (security_inet_conn_request(sk, skb, req)) {
404 reqsk_free(req);
405 goto out;
406 }
407
408 req->num_retrans = 0;
409
410 /*
411 * We need to lookup the route here to get at the correct
412 * window size. We should better make sure that the window size
413 * hasn't changed since we received the original syn, but I see
414 * no easy way to do this.
415 */
416 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
417 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
418 inet_sk_flowi_flags(sk),
419 opt->srr ? opt->faddr : ireq->ir_rmt_addr,
420 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
421 security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
422 rt = ip_route_output_key(sock_net(sk), &fl4);
423 if (IS_ERR(rt)) {
424 reqsk_free(req);
425 goto out;
426 }
427
428 /* Try to redo what tcp_v4_send_synack did. */
429 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
430 /* limit the window selection if the user enforce a smaller rx buffer */
431 full_space = tcp_full_space(sk);
432 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
433 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
434 req->rsk_window_clamp = full_space;
435
436 tcp_select_initial_window(sk, full_space, req->mss,
437 &req->rsk_rcv_wnd, &req->rsk_window_clamp,
438 ireq->wscale_ok, &rcv_wscale,
439 dst_metric(&rt->dst, RTAX_INITRWND));
440
441 ireq->rcv_wscale = rcv_wscale;
442 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
443
444 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
445 /* ip_queue_xmit() depends on our flow being setup
446 * Normal sockets get it right from inet_csk_route_child_sock()
447 */
448 if (ret)
449 inet_sk(ret)->cork.fl.u.ip4 = fl4;
450 out: return ret;
451 }
452