1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89 /*
90 * Lock ordering
91 *
92 * page fault path:
93 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
94 * -> page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_lock
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
103 * page lock
104 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
105 * i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> mmap_lock
109 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
110 *
111 * writepages:
112 * transaction start -> page lock(s) -> i_data_sem (rw)
113 */
114
115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
116 static struct file_system_type ext2_fs_type = {
117 .owner = THIS_MODULE,
118 .name = "ext2",
119 .mount = ext4_mount,
120 .kill_sb = kill_block_super,
121 .fs_flags = FS_REQUIRES_DEV,
122 };
123 MODULE_ALIAS_FS("ext2");
124 MODULE_ALIAS("ext2");
125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
126 #else
127 #define IS_EXT2_SB(sb) (0)
128 #endif
129
130
131 static struct file_system_type ext3_fs_type = {
132 .owner = THIS_MODULE,
133 .name = "ext3",
134 .mount = ext4_mount,
135 .kill_sb = kill_block_super,
136 .fs_flags = FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("ext3");
139 MODULE_ALIAS("ext3");
140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
141
142
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
144 bh_end_io_t *end_io)
145 {
146 /*
147 * buffer's verified bit is no longer valid after reading from
148 * disk again due to write out error, clear it to make sure we
149 * recheck the buffer contents.
150 */
151 clear_buffer_verified(bh);
152
153 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
154 get_bh(bh);
155 submit_bh(REQ_OP_READ, op_flags, bh);
156 }
157
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
159 bh_end_io_t *end_io)
160 {
161 BUG_ON(!buffer_locked(bh));
162
163 if (ext4_buffer_uptodate(bh)) {
164 unlock_buffer(bh);
165 return;
166 }
167 __ext4_read_bh(bh, op_flags, end_io);
168 }
169
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
171 {
172 BUG_ON(!buffer_locked(bh));
173
174 if (ext4_buffer_uptodate(bh)) {
175 unlock_buffer(bh);
176 return 0;
177 }
178
179 __ext4_read_bh(bh, op_flags, end_io);
180
181 wait_on_buffer(bh);
182 if (buffer_uptodate(bh))
183 return 0;
184 return -EIO;
185 }
186
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
188 {
189 lock_buffer(bh);
190 if (!wait) {
191 ext4_read_bh_nowait(bh, op_flags, NULL);
192 return 0;
193 }
194 return ext4_read_bh(bh, op_flags, NULL);
195 }
196
197 /*
198 * This works like __bread_gfp() except it uses ERR_PTR for error
199 * returns. Currently with sb_bread it's impossible to distinguish
200 * between ENOMEM and EIO situations (since both result in a NULL
201 * return.
202 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)203 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
204 sector_t block, int op_flags,
205 gfp_t gfp)
206 {
207 struct buffer_head *bh;
208 int ret;
209
210 bh = sb_getblk_gfp(sb, block, gfp);
211 if (bh == NULL)
212 return ERR_PTR(-ENOMEM);
213 if (ext4_buffer_uptodate(bh))
214 return bh;
215
216 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
217 if (ret) {
218 put_bh(bh);
219 return ERR_PTR(ret);
220 }
221 return bh;
222 }
223
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)224 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
225 int op_flags)
226 {
227 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
228 }
229
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)230 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
231 sector_t block)
232 {
233 return __ext4_sb_bread_gfp(sb, block, 0, 0);
234 }
235
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)236 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
237 {
238 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
239
240 if (likely(bh)) {
241 if (trylock_buffer(bh))
242 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
243 brelse(bh);
244 }
245 }
246
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)247 static int ext4_verify_csum_type(struct super_block *sb,
248 struct ext4_super_block *es)
249 {
250 if (!ext4_has_feature_metadata_csum(sb))
251 return 1;
252
253 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
254 }
255
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)256 static __le32 ext4_superblock_csum(struct super_block *sb,
257 struct ext4_super_block *es)
258 {
259 struct ext4_sb_info *sbi = EXT4_SB(sb);
260 int offset = offsetof(struct ext4_super_block, s_checksum);
261 __u32 csum;
262
263 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
264
265 return cpu_to_le32(csum);
266 }
267
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)268 static int ext4_superblock_csum_verify(struct super_block *sb,
269 struct ext4_super_block *es)
270 {
271 if (!ext4_has_metadata_csum(sb))
272 return 1;
273
274 return es->s_checksum == ext4_superblock_csum(sb, es);
275 }
276
ext4_superblock_csum_set(struct super_block * sb)277 void ext4_superblock_csum_set(struct super_block *sb)
278 {
279 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
280
281 if (!ext4_has_metadata_csum(sb))
282 return;
283
284 es->s_checksum = ext4_superblock_csum(sb, es);
285 }
286
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)287 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
288 struct ext4_group_desc *bg)
289 {
290 return le32_to_cpu(bg->bg_block_bitmap_lo) |
291 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
292 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
293 }
294
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)295 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
296 struct ext4_group_desc *bg)
297 {
298 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
299 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
300 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
301 }
302
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)303 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
304 struct ext4_group_desc *bg)
305 {
306 return le32_to_cpu(bg->bg_inode_table_lo) |
307 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
308 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
309 }
310
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)311 __u32 ext4_free_group_clusters(struct super_block *sb,
312 struct ext4_group_desc *bg)
313 {
314 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
315 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
316 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
317 }
318
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)319 __u32 ext4_free_inodes_count(struct super_block *sb,
320 struct ext4_group_desc *bg)
321 {
322 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
323 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
324 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
325 }
326
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)327 __u32 ext4_used_dirs_count(struct super_block *sb,
328 struct ext4_group_desc *bg)
329 {
330 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
333 }
334
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)335 __u32 ext4_itable_unused_count(struct super_block *sb,
336 struct ext4_group_desc *bg)
337 {
338 return le16_to_cpu(bg->bg_itable_unused_lo) |
339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
341 }
342
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)343 void ext4_block_bitmap_set(struct super_block *sb,
344 struct ext4_group_desc *bg, ext4_fsblk_t blk)
345 {
346 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
347 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
348 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
349 }
350
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)351 void ext4_inode_bitmap_set(struct super_block *sb,
352 struct ext4_group_desc *bg, ext4_fsblk_t blk)
353 {
354 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
355 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
356 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
357 }
358
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)359 void ext4_inode_table_set(struct super_block *sb,
360 struct ext4_group_desc *bg, ext4_fsblk_t blk)
361 {
362 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
363 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
364 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
365 }
366
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)367 void ext4_free_group_clusters_set(struct super_block *sb,
368 struct ext4_group_desc *bg, __u32 count)
369 {
370 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
371 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
372 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
373 }
374
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)375 void ext4_free_inodes_set(struct super_block *sb,
376 struct ext4_group_desc *bg, __u32 count)
377 {
378 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
379 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
380 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
381 }
382
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)383 void ext4_used_dirs_set(struct super_block *sb,
384 struct ext4_group_desc *bg, __u32 count)
385 {
386 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
389 }
390
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)391 void ext4_itable_unused_set(struct super_block *sb,
392 struct ext4_group_desc *bg, __u32 count)
393 {
394 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
397 }
398
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)399 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
400 {
401 now = clamp_val(now, 0, (1ull << 40) - 1);
402
403 *lo = cpu_to_le32(lower_32_bits(now));
404 *hi = upper_32_bits(now);
405 }
406
__ext4_get_tstamp(__le32 * lo,__u8 * hi)407 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
408 {
409 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
410 }
411 #define ext4_update_tstamp(es, tstamp) \
412 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
413 ktime_get_real_seconds())
414 #define ext4_get_tstamp(es, tstamp) \
415 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
416
417 /*
418 * The del_gendisk() function uninitializes the disk-specific data
419 * structures, including the bdi structure, without telling anyone
420 * else. Once this happens, any attempt to call mark_buffer_dirty()
421 * (for example, by ext4_commit_super), will cause a kernel OOPS.
422 * This is a kludge to prevent these oops until we can put in a proper
423 * hook in del_gendisk() to inform the VFS and file system layers.
424 */
block_device_ejected(struct super_block * sb)425 static int block_device_ejected(struct super_block *sb)
426 {
427 struct inode *bd_inode = sb->s_bdev->bd_inode;
428 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
429
430 return bdi->dev == NULL;
431 }
432
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)433 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
434 {
435 struct super_block *sb = journal->j_private;
436 struct ext4_sb_info *sbi = EXT4_SB(sb);
437 int error = is_journal_aborted(journal);
438 struct ext4_journal_cb_entry *jce;
439
440 BUG_ON(txn->t_state == T_FINISHED);
441
442 ext4_process_freed_data(sb, txn->t_tid);
443
444 spin_lock(&sbi->s_md_lock);
445 while (!list_empty(&txn->t_private_list)) {
446 jce = list_entry(txn->t_private_list.next,
447 struct ext4_journal_cb_entry, jce_list);
448 list_del_init(&jce->jce_list);
449 spin_unlock(&sbi->s_md_lock);
450 jce->jce_func(sb, jce, error);
451 spin_lock(&sbi->s_md_lock);
452 }
453 spin_unlock(&sbi->s_md_lock);
454 }
455
456 /*
457 * This writepage callback for write_cache_pages()
458 * takes care of a few cases after page cleaning.
459 *
460 * write_cache_pages() already checks for dirty pages
461 * and calls clear_page_dirty_for_io(), which we want,
462 * to write protect the pages.
463 *
464 * However, we may have to redirty a page (see below.)
465 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)466 static int ext4_journalled_writepage_callback(struct page *page,
467 struct writeback_control *wbc,
468 void *data)
469 {
470 transaction_t *transaction = (transaction_t *) data;
471 struct buffer_head *bh, *head;
472 struct journal_head *jh;
473
474 bh = head = page_buffers(page);
475 do {
476 /*
477 * We have to redirty a page in these cases:
478 * 1) If buffer is dirty, it means the page was dirty because it
479 * contains a buffer that needs checkpointing. So the dirty bit
480 * needs to be preserved so that checkpointing writes the buffer
481 * properly.
482 * 2) If buffer is not part of the committing transaction
483 * (we may have just accidentally come across this buffer because
484 * inode range tracking is not exact) or if the currently running
485 * transaction already contains this buffer as well, dirty bit
486 * needs to be preserved so that the buffer gets writeprotected
487 * properly on running transaction's commit.
488 */
489 jh = bh2jh(bh);
490 if (buffer_dirty(bh) ||
491 (jh && (jh->b_transaction != transaction ||
492 jh->b_next_transaction))) {
493 redirty_page_for_writepage(wbc, page);
494 goto out;
495 }
496 } while ((bh = bh->b_this_page) != head);
497
498 out:
499 return AOP_WRITEPAGE_ACTIVATE;
500 }
501
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)502 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
503 {
504 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_ALL,
507 .nr_to_write = LONG_MAX,
508 .range_start = jinode->i_dirty_start,
509 .range_end = jinode->i_dirty_end,
510 };
511
512 return write_cache_pages(mapping, &wbc,
513 ext4_journalled_writepage_callback,
514 jinode->i_transaction);
515 }
516
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)517 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
518 {
519 int ret;
520
521 if (ext4_should_journal_data(jinode->i_vfs_inode))
522 ret = ext4_journalled_submit_inode_data_buffers(jinode);
523 else
524 ret = jbd2_journal_submit_inode_data_buffers(jinode);
525
526 return ret;
527 }
528
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)529 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
530 {
531 int ret = 0;
532
533 if (!ext4_should_journal_data(jinode->i_vfs_inode))
534 ret = jbd2_journal_finish_inode_data_buffers(jinode);
535
536 return ret;
537 }
538
system_going_down(void)539 static bool system_going_down(void)
540 {
541 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
542 || system_state == SYSTEM_RESTART;
543 }
544
545 struct ext4_err_translation {
546 int code;
547 int errno;
548 };
549
550 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
551
552 static struct ext4_err_translation err_translation[] = {
553 EXT4_ERR_TRANSLATE(EIO),
554 EXT4_ERR_TRANSLATE(ENOMEM),
555 EXT4_ERR_TRANSLATE(EFSBADCRC),
556 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
557 EXT4_ERR_TRANSLATE(ENOSPC),
558 EXT4_ERR_TRANSLATE(ENOKEY),
559 EXT4_ERR_TRANSLATE(EROFS),
560 EXT4_ERR_TRANSLATE(EFBIG),
561 EXT4_ERR_TRANSLATE(EEXIST),
562 EXT4_ERR_TRANSLATE(ERANGE),
563 EXT4_ERR_TRANSLATE(EOVERFLOW),
564 EXT4_ERR_TRANSLATE(EBUSY),
565 EXT4_ERR_TRANSLATE(ENOTDIR),
566 EXT4_ERR_TRANSLATE(ENOTEMPTY),
567 EXT4_ERR_TRANSLATE(ESHUTDOWN),
568 EXT4_ERR_TRANSLATE(EFAULT),
569 };
570
ext4_errno_to_code(int errno)571 static int ext4_errno_to_code(int errno)
572 {
573 int i;
574
575 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
576 if (err_translation[i].errno == errno)
577 return err_translation[i].code;
578 return EXT4_ERR_UNKNOWN;
579 }
580
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)581 static void save_error_info(struct super_block *sb, int error,
582 __u32 ino, __u64 block,
583 const char *func, unsigned int line)
584 {
585 struct ext4_sb_info *sbi = EXT4_SB(sb);
586
587 /* We default to EFSCORRUPTED error... */
588 if (error == 0)
589 error = EFSCORRUPTED;
590
591 spin_lock(&sbi->s_error_lock);
592 sbi->s_add_error_count++;
593 sbi->s_last_error_code = error;
594 sbi->s_last_error_line = line;
595 sbi->s_last_error_ino = ino;
596 sbi->s_last_error_block = block;
597 sbi->s_last_error_func = func;
598 sbi->s_last_error_time = ktime_get_real_seconds();
599 if (!sbi->s_first_error_time) {
600 sbi->s_first_error_code = error;
601 sbi->s_first_error_line = line;
602 sbi->s_first_error_ino = ino;
603 sbi->s_first_error_block = block;
604 sbi->s_first_error_func = func;
605 sbi->s_first_error_time = sbi->s_last_error_time;
606 }
607 spin_unlock(&sbi->s_error_lock);
608 }
609
610 /* Deal with the reporting of failure conditions on a filesystem such as
611 * inconsistencies detected or read IO failures.
612 *
613 * On ext2, we can store the error state of the filesystem in the
614 * superblock. That is not possible on ext4, because we may have other
615 * write ordering constraints on the superblock which prevent us from
616 * writing it out straight away; and given that the journal is about to
617 * be aborted, we can't rely on the current, or future, transactions to
618 * write out the superblock safely.
619 *
620 * We'll just use the jbd2_journal_abort() error code to record an error in
621 * the journal instead. On recovery, the journal will complain about
622 * that error until we've noted it down and cleared it.
623 *
624 * If force_ro is set, we unconditionally force the filesystem into an
625 * ABORT|READONLY state, unless the error response on the fs has been set to
626 * panic in which case we take the easy way out and panic immediately. This is
627 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
628 * at a critical moment in log management.
629 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)630 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
631 __u32 ino, __u64 block,
632 const char *func, unsigned int line)
633 {
634 journal_t *journal = EXT4_SB(sb)->s_journal;
635 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
636
637 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
638 if (test_opt(sb, WARN_ON_ERROR))
639 WARN_ON_ONCE(1);
640
641 if (!continue_fs && !sb_rdonly(sb)) {
642 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
643 if (journal)
644 jbd2_journal_abort(journal, -EIO);
645 }
646
647 if (!bdev_read_only(sb->s_bdev)) {
648 save_error_info(sb, error, ino, block, func, line);
649 /*
650 * In case the fs should keep running, we need to writeout
651 * superblock through the journal. Due to lock ordering
652 * constraints, it may not be safe to do it right here so we
653 * defer superblock flushing to a workqueue.
654 */
655 if (continue_fs && journal)
656 schedule_work(&EXT4_SB(sb)->s_error_work);
657 else
658 ext4_commit_super(sb);
659 }
660
661 /*
662 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
663 * could panic during 'reboot -f' as the underlying device got already
664 * disabled.
665 */
666 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
667 panic("EXT4-fs (device %s): panic forced after error\n",
668 sb->s_id);
669 }
670
671 if (sb_rdonly(sb) || continue_fs)
672 return;
673
674 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
675 /*
676 * Make sure updated value of ->s_mount_flags will be visible before
677 * ->s_flags update
678 */
679 smp_wmb();
680 sb->s_flags |= SB_RDONLY;
681 }
682
flush_stashed_error_work(struct work_struct * work)683 static void flush_stashed_error_work(struct work_struct *work)
684 {
685 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
686 s_error_work);
687 journal_t *journal = sbi->s_journal;
688 handle_t *handle;
689
690 /*
691 * If the journal is still running, we have to write out superblock
692 * through the journal to avoid collisions of other journalled sb
693 * updates.
694 *
695 * We use directly jbd2 functions here to avoid recursing back into
696 * ext4 error handling code during handling of previous errors.
697 */
698 if (!sb_rdonly(sbi->s_sb) && journal) {
699 struct buffer_head *sbh = sbi->s_sbh;
700 handle = jbd2_journal_start(journal, 1);
701 if (IS_ERR(handle))
702 goto write_directly;
703 if (jbd2_journal_get_write_access(handle, sbh)) {
704 jbd2_journal_stop(handle);
705 goto write_directly;
706 }
707 ext4_update_super(sbi->s_sb);
708 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
709 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
710 "superblock detected");
711 clear_buffer_write_io_error(sbh);
712 set_buffer_uptodate(sbh);
713 }
714
715 if (jbd2_journal_dirty_metadata(handle, sbh)) {
716 jbd2_journal_stop(handle);
717 goto write_directly;
718 }
719 jbd2_journal_stop(handle);
720 ext4_notify_error_sysfs(sbi);
721 return;
722 }
723 write_directly:
724 /*
725 * Write through journal failed. Write sb directly to get error info
726 * out and hope for the best.
727 */
728 ext4_commit_super(sbi->s_sb);
729 ext4_notify_error_sysfs(sbi);
730 }
731
732 #define ext4_error_ratelimit(sb) \
733 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
734 "EXT4-fs error")
735
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)736 void __ext4_error(struct super_block *sb, const char *function,
737 unsigned int line, bool force_ro, int error, __u64 block,
738 const char *fmt, ...)
739 {
740 struct va_format vaf;
741 va_list args;
742
743 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
744 return;
745
746 trace_ext4_error(sb, function, line);
747 if (ext4_error_ratelimit(sb)) {
748 va_start(args, fmt);
749 vaf.fmt = fmt;
750 vaf.va = &args;
751 printk(KERN_CRIT
752 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
753 sb->s_id, function, line, current->comm, &vaf);
754 va_end(args);
755 }
756 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
757 }
758
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)759 void __ext4_error_inode(struct inode *inode, const char *function,
760 unsigned int line, ext4_fsblk_t block, int error,
761 const char *fmt, ...)
762 {
763 va_list args;
764 struct va_format vaf;
765
766 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
767 return;
768
769 trace_ext4_error(inode->i_sb, function, line);
770 if (ext4_error_ratelimit(inode->i_sb)) {
771 va_start(args, fmt);
772 vaf.fmt = fmt;
773 vaf.va = &args;
774 if (block)
775 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
776 "inode #%lu: block %llu: comm %s: %pV\n",
777 inode->i_sb->s_id, function, line, inode->i_ino,
778 block, current->comm, &vaf);
779 else
780 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
781 "inode #%lu: comm %s: %pV\n",
782 inode->i_sb->s_id, function, line, inode->i_ino,
783 current->comm, &vaf);
784 va_end(args);
785 }
786 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
787 function, line);
788 }
789
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)790 void __ext4_error_file(struct file *file, const char *function,
791 unsigned int line, ext4_fsblk_t block,
792 const char *fmt, ...)
793 {
794 va_list args;
795 struct va_format vaf;
796 struct inode *inode = file_inode(file);
797 char pathname[80], *path;
798
799 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
800 return;
801
802 trace_ext4_error(inode->i_sb, function, line);
803 if (ext4_error_ratelimit(inode->i_sb)) {
804 path = file_path(file, pathname, sizeof(pathname));
805 if (IS_ERR(path))
806 path = "(unknown)";
807 va_start(args, fmt);
808 vaf.fmt = fmt;
809 vaf.va = &args;
810 if (block)
811 printk(KERN_CRIT
812 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
813 "block %llu: comm %s: path %s: %pV\n",
814 inode->i_sb->s_id, function, line, inode->i_ino,
815 block, current->comm, path, &vaf);
816 else
817 printk(KERN_CRIT
818 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 "comm %s: path %s: %pV\n",
820 inode->i_sb->s_id, function, line, inode->i_ino,
821 current->comm, path, &vaf);
822 va_end(args);
823 }
824 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
825 function, line);
826 }
827
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])828 const char *ext4_decode_error(struct super_block *sb, int errno,
829 char nbuf[16])
830 {
831 char *errstr = NULL;
832
833 switch (errno) {
834 case -EFSCORRUPTED:
835 errstr = "Corrupt filesystem";
836 break;
837 case -EFSBADCRC:
838 errstr = "Filesystem failed CRC";
839 break;
840 case -EIO:
841 errstr = "IO failure";
842 break;
843 case -ENOMEM:
844 errstr = "Out of memory";
845 break;
846 case -EROFS:
847 if (!sb || (EXT4_SB(sb)->s_journal &&
848 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
849 errstr = "Journal has aborted";
850 else
851 errstr = "Readonly filesystem";
852 break;
853 default:
854 /* If the caller passed in an extra buffer for unknown
855 * errors, textualise them now. Else we just return
856 * NULL. */
857 if (nbuf) {
858 /* Check for truncated error codes... */
859 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
860 errstr = nbuf;
861 }
862 break;
863 }
864
865 return errstr;
866 }
867
868 /* __ext4_std_error decodes expected errors from journaling functions
869 * automatically and invokes the appropriate error response. */
870
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)871 void __ext4_std_error(struct super_block *sb, const char *function,
872 unsigned int line, int errno)
873 {
874 char nbuf[16];
875 const char *errstr;
876
877 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
878 return;
879
880 /* Special case: if the error is EROFS, and we're not already
881 * inside a transaction, then there's really no point in logging
882 * an error. */
883 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
884 return;
885
886 if (ext4_error_ratelimit(sb)) {
887 errstr = ext4_decode_error(sb, errno, nbuf);
888 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
889 sb->s_id, function, line, errstr);
890 }
891
892 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
893 }
894
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)895 void __ext4_msg(struct super_block *sb,
896 const char *prefix, const char *fmt, ...)
897 {
898 struct va_format vaf;
899 va_list args;
900
901 atomic_inc(&EXT4_SB(sb)->s_msg_count);
902 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
903 return;
904
905 va_start(args, fmt);
906 vaf.fmt = fmt;
907 vaf.va = &args;
908 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
909 va_end(args);
910 }
911
ext4_warning_ratelimit(struct super_block * sb)912 static int ext4_warning_ratelimit(struct super_block *sb)
913 {
914 atomic_inc(&EXT4_SB(sb)->s_warning_count);
915 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
916 "EXT4-fs warning");
917 }
918
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)919 void __ext4_warning(struct super_block *sb, const char *function,
920 unsigned int line, const char *fmt, ...)
921 {
922 struct va_format vaf;
923 va_list args;
924
925 if (!ext4_warning_ratelimit(sb))
926 return;
927
928 va_start(args, fmt);
929 vaf.fmt = fmt;
930 vaf.va = &args;
931 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
932 sb->s_id, function, line, &vaf);
933 va_end(args);
934 }
935
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)936 void __ext4_warning_inode(const struct inode *inode, const char *function,
937 unsigned int line, const char *fmt, ...)
938 {
939 struct va_format vaf;
940 va_list args;
941
942 if (!ext4_warning_ratelimit(inode->i_sb))
943 return;
944
945 va_start(args, fmt);
946 vaf.fmt = fmt;
947 vaf.va = &args;
948 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
949 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
950 function, line, inode->i_ino, current->comm, &vaf);
951 va_end(args);
952 }
953
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)954 void __ext4_grp_locked_error(const char *function, unsigned int line,
955 struct super_block *sb, ext4_group_t grp,
956 unsigned long ino, ext4_fsblk_t block,
957 const char *fmt, ...)
958 __releases(bitlock)
959 __acquires(bitlock)
960 {
961 struct va_format vaf;
962 va_list args;
963
964 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
965 return;
966
967 trace_ext4_error(sb, function, line);
968 if (ext4_error_ratelimit(sb)) {
969 va_start(args, fmt);
970 vaf.fmt = fmt;
971 vaf.va = &args;
972 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
973 sb->s_id, function, line, grp);
974 if (ino)
975 printk(KERN_CONT "inode %lu: ", ino);
976 if (block)
977 printk(KERN_CONT "block %llu:",
978 (unsigned long long) block);
979 printk(KERN_CONT "%pV\n", &vaf);
980 va_end(args);
981 }
982
983 if (test_opt(sb, ERRORS_CONT)) {
984 if (test_opt(sb, WARN_ON_ERROR))
985 WARN_ON_ONCE(1);
986 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
987 if (!bdev_read_only(sb->s_bdev)) {
988 save_error_info(sb, EFSCORRUPTED, ino, block, function,
989 line);
990 schedule_work(&EXT4_SB(sb)->s_error_work);
991 }
992 return;
993 }
994 ext4_unlock_group(sb, grp);
995 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
996 /*
997 * We only get here in the ERRORS_RO case; relocking the group
998 * may be dangerous, but nothing bad will happen since the
999 * filesystem will have already been marked read/only and the
1000 * journal has been aborted. We return 1 as a hint to callers
1001 * who might what to use the return value from
1002 * ext4_grp_locked_error() to distinguish between the
1003 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1004 * aggressively from the ext4 function in question, with a
1005 * more appropriate error code.
1006 */
1007 ext4_lock_group(sb, grp);
1008 return;
1009 }
1010
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1011 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1012 ext4_group_t group,
1013 unsigned int flags)
1014 {
1015 struct ext4_sb_info *sbi = EXT4_SB(sb);
1016 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1017 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1018 int ret;
1019
1020 if (!grp || !gdp)
1021 return;
1022 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1023 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1024 &grp->bb_state);
1025 if (!ret)
1026 percpu_counter_sub(&sbi->s_freeclusters_counter,
1027 grp->bb_free);
1028 }
1029
1030 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1031 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1032 &grp->bb_state);
1033 if (!ret && gdp) {
1034 int count;
1035
1036 count = ext4_free_inodes_count(sb, gdp);
1037 percpu_counter_sub(&sbi->s_freeinodes_counter,
1038 count);
1039 }
1040 }
1041 }
1042
ext4_update_dynamic_rev(struct super_block * sb)1043 void ext4_update_dynamic_rev(struct super_block *sb)
1044 {
1045 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1046
1047 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1048 return;
1049
1050 ext4_warning(sb,
1051 "updating to rev %d because of new feature flag, "
1052 "running e2fsck is recommended",
1053 EXT4_DYNAMIC_REV);
1054
1055 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1056 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1057 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1058 /* leave es->s_feature_*compat flags alone */
1059 /* es->s_uuid will be set by e2fsck if empty */
1060
1061 /*
1062 * The rest of the superblock fields should be zero, and if not it
1063 * means they are likely already in use, so leave them alone. We
1064 * can leave it up to e2fsck to clean up any inconsistencies there.
1065 */
1066 }
1067
1068 /*
1069 * Open the external journal device
1070 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1071 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1072 {
1073 struct block_device *bdev;
1074
1075 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1076 if (IS_ERR(bdev))
1077 goto fail;
1078 return bdev;
1079
1080 fail:
1081 ext4_msg(sb, KERN_ERR,
1082 "failed to open journal device unknown-block(%u,%u) %ld",
1083 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1084 return NULL;
1085 }
1086
1087 /*
1088 * Release the journal device
1089 */
ext4_blkdev_put(struct block_device * bdev)1090 static void ext4_blkdev_put(struct block_device *bdev)
1091 {
1092 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1093 }
1094
ext4_blkdev_remove(struct ext4_sb_info * sbi)1095 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1096 {
1097 struct block_device *bdev;
1098 bdev = sbi->s_journal_bdev;
1099 if (bdev) {
1100 /*
1101 * Invalidate the journal device's buffers. We don't want them
1102 * floating about in memory - the physical journal device may
1103 * hotswapped, and it breaks the `ro-after' testing code.
1104 */
1105 invalidate_bdev(bdev);
1106 ext4_blkdev_put(bdev);
1107 sbi->s_journal_bdev = NULL;
1108 }
1109 }
1110
orphan_list_entry(struct list_head * l)1111 static inline struct inode *orphan_list_entry(struct list_head *l)
1112 {
1113 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1114 }
1115
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1116 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1117 {
1118 struct list_head *l;
1119
1120 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1121 le32_to_cpu(sbi->s_es->s_last_orphan));
1122
1123 printk(KERN_ERR "sb_info orphan list:\n");
1124 list_for_each(l, &sbi->s_orphan) {
1125 struct inode *inode = orphan_list_entry(l);
1126 printk(KERN_ERR " "
1127 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1128 inode->i_sb->s_id, inode->i_ino, inode,
1129 inode->i_mode, inode->i_nlink,
1130 NEXT_ORPHAN(inode));
1131 }
1132 }
1133
1134 #ifdef CONFIG_QUOTA
1135 static int ext4_quota_off(struct super_block *sb, int type);
1136
ext4_quota_off_umount(struct super_block * sb)1137 static inline void ext4_quota_off_umount(struct super_block *sb)
1138 {
1139 int type;
1140
1141 /* Use our quota_off function to clear inode flags etc. */
1142 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1143 ext4_quota_off(sb, type);
1144 }
1145
1146 /*
1147 * This is a helper function which is used in the mount/remount
1148 * codepaths (which holds s_umount) to fetch the quota file name.
1149 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1150 static inline char *get_qf_name(struct super_block *sb,
1151 struct ext4_sb_info *sbi,
1152 int type)
1153 {
1154 return rcu_dereference_protected(sbi->s_qf_names[type],
1155 lockdep_is_held(&sb->s_umount));
1156 }
1157 #else
ext4_quota_off_umount(struct super_block * sb)1158 static inline void ext4_quota_off_umount(struct super_block *sb)
1159 {
1160 }
1161 #endif
1162
ext4_put_super(struct super_block * sb)1163 static void ext4_put_super(struct super_block *sb)
1164 {
1165 struct ext4_sb_info *sbi = EXT4_SB(sb);
1166 struct ext4_super_block *es = sbi->s_es;
1167 struct buffer_head **group_desc;
1168 struct flex_groups **flex_groups;
1169 int aborted = 0;
1170 int i, err;
1171
1172 /*
1173 * Unregister sysfs before destroying jbd2 journal.
1174 * Since we could still access attr_journal_task attribute via sysfs
1175 * path which could have sbi->s_journal->j_task as NULL
1176 * Unregister sysfs before flush sbi->s_error_work.
1177 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1178 * read metadata verify failed then will queue error work.
1179 * flush_stashed_error_work will call start_this_handle may trigger
1180 * BUG_ON.
1181 */
1182 ext4_unregister_sysfs(sb);
1183
1184 ext4_unregister_li_request(sb);
1185 ext4_quota_off_umount(sb);
1186
1187 flush_work(&sbi->s_error_work);
1188 destroy_workqueue(sbi->rsv_conversion_wq);
1189 ext4_release_orphan_info(sb);
1190
1191 if (sbi->s_journal) {
1192 aborted = is_journal_aborted(sbi->s_journal);
1193 err = jbd2_journal_destroy(sbi->s_journal);
1194 sbi->s_journal = NULL;
1195 if ((err < 0) && !aborted) {
1196 ext4_abort(sb, -err, "Couldn't clean up the journal");
1197 }
1198 }
1199
1200 ext4_es_unregister_shrinker(sbi);
1201 del_timer_sync(&sbi->s_err_report);
1202 ext4_release_system_zone(sb);
1203 ext4_mb_release(sb);
1204 ext4_ext_release(sb);
1205
1206 if (!sb_rdonly(sb) && !aborted) {
1207 ext4_clear_feature_journal_needs_recovery(sb);
1208 ext4_clear_feature_orphan_present(sb);
1209 es->s_state = cpu_to_le16(sbi->s_mount_state);
1210 }
1211 if (!sb_rdonly(sb))
1212 ext4_commit_super(sb);
1213
1214 rcu_read_lock();
1215 group_desc = rcu_dereference(sbi->s_group_desc);
1216 for (i = 0; i < sbi->s_gdb_count; i++)
1217 brelse(group_desc[i]);
1218 kvfree(group_desc);
1219 flex_groups = rcu_dereference(sbi->s_flex_groups);
1220 if (flex_groups) {
1221 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1222 kvfree(flex_groups[i]);
1223 kvfree(flex_groups);
1224 }
1225 rcu_read_unlock();
1226 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1227 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1228 percpu_counter_destroy(&sbi->s_dirs_counter);
1229 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1230 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1231 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1232 #ifdef CONFIG_QUOTA
1233 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1234 kfree(get_qf_name(sb, sbi, i));
1235 #endif
1236
1237 /* Debugging code just in case the in-memory inode orphan list
1238 * isn't empty. The on-disk one can be non-empty if we've
1239 * detected an error and taken the fs readonly, but the
1240 * in-memory list had better be clean by this point. */
1241 if (!list_empty(&sbi->s_orphan))
1242 dump_orphan_list(sb, sbi);
1243 ASSERT(list_empty(&sbi->s_orphan));
1244
1245 sync_blockdev(sb->s_bdev);
1246 invalidate_bdev(sb->s_bdev);
1247 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1248 sync_blockdev(sbi->s_journal_bdev);
1249 ext4_blkdev_remove(sbi);
1250 }
1251
1252 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1253 sbi->s_ea_inode_cache = NULL;
1254
1255 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1256 sbi->s_ea_block_cache = NULL;
1257
1258 ext4_stop_mmpd(sbi);
1259
1260 brelse(sbi->s_sbh);
1261 sb->s_fs_info = NULL;
1262 /*
1263 * Now that we are completely done shutting down the
1264 * superblock, we need to actually destroy the kobject.
1265 */
1266 kobject_put(&sbi->s_kobj);
1267 wait_for_completion(&sbi->s_kobj_unregister);
1268 if (sbi->s_chksum_driver)
1269 crypto_free_shash(sbi->s_chksum_driver);
1270 kfree(sbi->s_blockgroup_lock);
1271 fs_put_dax(sbi->s_daxdev);
1272 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1273 #ifdef CONFIG_UNICODE
1274 utf8_unload(sb->s_encoding);
1275 #endif
1276 kfree(sbi);
1277 }
1278
1279 static struct kmem_cache *ext4_inode_cachep;
1280
1281 /*
1282 * Called inside transaction, so use GFP_NOFS
1283 */
ext4_alloc_inode(struct super_block * sb)1284 static struct inode *ext4_alloc_inode(struct super_block *sb)
1285 {
1286 struct ext4_inode_info *ei;
1287
1288 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1289 if (!ei)
1290 return NULL;
1291
1292 inode_set_iversion(&ei->vfs_inode, 1);
1293 ei->i_flags = 0;
1294 spin_lock_init(&ei->i_raw_lock);
1295 INIT_LIST_HEAD(&ei->i_prealloc_list);
1296 atomic_set(&ei->i_prealloc_active, 0);
1297 spin_lock_init(&ei->i_prealloc_lock);
1298 ext4_es_init_tree(&ei->i_es_tree);
1299 rwlock_init(&ei->i_es_lock);
1300 INIT_LIST_HEAD(&ei->i_es_list);
1301 ei->i_es_all_nr = 0;
1302 ei->i_es_shk_nr = 0;
1303 ei->i_es_shrink_lblk = 0;
1304 ei->i_reserved_data_blocks = 0;
1305 spin_lock_init(&(ei->i_block_reservation_lock));
1306 ext4_init_pending_tree(&ei->i_pending_tree);
1307 #ifdef CONFIG_QUOTA
1308 ei->i_reserved_quota = 0;
1309 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1310 #endif
1311 ei->jinode = NULL;
1312 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1313 spin_lock_init(&ei->i_completed_io_lock);
1314 ei->i_sync_tid = 0;
1315 ei->i_datasync_tid = 0;
1316 atomic_set(&ei->i_unwritten, 0);
1317 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1318 ext4_fc_init_inode(&ei->vfs_inode);
1319 mutex_init(&ei->i_fc_lock);
1320 return &ei->vfs_inode;
1321 }
1322
ext4_drop_inode(struct inode * inode)1323 static int ext4_drop_inode(struct inode *inode)
1324 {
1325 int drop = generic_drop_inode(inode);
1326
1327 if (!drop)
1328 drop = fscrypt_drop_inode(inode);
1329
1330 trace_ext4_drop_inode(inode, drop);
1331 return drop;
1332 }
1333
ext4_free_in_core_inode(struct inode * inode)1334 static void ext4_free_in_core_inode(struct inode *inode)
1335 {
1336 fscrypt_free_inode(inode);
1337 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1338 pr_warn("%s: inode %ld still in fc list",
1339 __func__, inode->i_ino);
1340 }
1341 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1342 }
1343
ext4_destroy_inode(struct inode * inode)1344 static void ext4_destroy_inode(struct inode *inode)
1345 {
1346 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1347 ext4_msg(inode->i_sb, KERN_ERR,
1348 "Inode %lu (%p): orphan list check failed!",
1349 inode->i_ino, EXT4_I(inode));
1350 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1351 EXT4_I(inode), sizeof(struct ext4_inode_info),
1352 true);
1353 dump_stack();
1354 }
1355
1356 if (EXT4_I(inode)->i_reserved_data_blocks)
1357 ext4_msg(inode->i_sb, KERN_ERR,
1358 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1359 inode->i_ino, EXT4_I(inode),
1360 EXT4_I(inode)->i_reserved_data_blocks);
1361 }
1362
init_once(void * foo)1363 static void init_once(void *foo)
1364 {
1365 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1366
1367 INIT_LIST_HEAD(&ei->i_orphan);
1368 init_rwsem(&ei->xattr_sem);
1369 init_rwsem(&ei->i_data_sem);
1370 inode_init_once(&ei->vfs_inode);
1371 ext4_fc_init_inode(&ei->vfs_inode);
1372 }
1373
init_inodecache(void)1374 static int __init init_inodecache(void)
1375 {
1376 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377 sizeof(struct ext4_inode_info), 0,
1378 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379 SLAB_ACCOUNT),
1380 offsetof(struct ext4_inode_info, i_data),
1381 sizeof_field(struct ext4_inode_info, i_data),
1382 init_once);
1383 if (ext4_inode_cachep == NULL)
1384 return -ENOMEM;
1385 return 0;
1386 }
1387
destroy_inodecache(void)1388 static void destroy_inodecache(void)
1389 {
1390 /*
1391 * Make sure all delayed rcu free inodes are flushed before we
1392 * destroy cache.
1393 */
1394 rcu_barrier();
1395 kmem_cache_destroy(ext4_inode_cachep);
1396 }
1397
ext4_clear_inode(struct inode * inode)1398 void ext4_clear_inode(struct inode *inode)
1399 {
1400 ext4_fc_del(inode);
1401 invalidate_inode_buffers(inode);
1402 clear_inode(inode);
1403 ext4_discard_preallocations(inode, 0);
1404 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405 dquot_drop(inode);
1406 if (EXT4_I(inode)->jinode) {
1407 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408 EXT4_I(inode)->jinode);
1409 jbd2_free_inode(EXT4_I(inode)->jinode);
1410 EXT4_I(inode)->jinode = NULL;
1411 }
1412 fscrypt_put_encryption_info(inode);
1413 fsverity_cleanup_inode(inode);
1414 }
1415
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1416 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417 u64 ino, u32 generation)
1418 {
1419 struct inode *inode;
1420
1421 /*
1422 * Currently we don't know the generation for parent directory, so
1423 * a generation of 0 means "accept any"
1424 */
1425 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426 if (IS_ERR(inode))
1427 return ERR_CAST(inode);
1428 if (generation && inode->i_generation != generation) {
1429 iput(inode);
1430 return ERR_PTR(-ESTALE);
1431 }
1432
1433 return inode;
1434 }
1435
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1436 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437 int fh_len, int fh_type)
1438 {
1439 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440 ext4_nfs_get_inode);
1441 }
1442
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1443 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444 int fh_len, int fh_type)
1445 {
1446 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447 ext4_nfs_get_inode);
1448 }
1449
ext4_nfs_commit_metadata(struct inode * inode)1450 static int ext4_nfs_commit_metadata(struct inode *inode)
1451 {
1452 struct writeback_control wbc = {
1453 .sync_mode = WB_SYNC_ALL
1454 };
1455
1456 trace_ext4_nfs_commit_metadata(inode);
1457 return ext4_write_inode(inode, &wbc);
1458 }
1459
1460 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1461 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1462 {
1463 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1464 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1465 }
1466
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1467 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1468 void *fs_data)
1469 {
1470 handle_t *handle = fs_data;
1471 int res, res2, credits, retries = 0;
1472
1473 /*
1474 * Encrypting the root directory is not allowed because e2fsck expects
1475 * lost+found to exist and be unencrypted, and encrypting the root
1476 * directory would imply encrypting the lost+found directory as well as
1477 * the filename "lost+found" itself.
1478 */
1479 if (inode->i_ino == EXT4_ROOT_INO)
1480 return -EPERM;
1481
1482 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1483 return -EINVAL;
1484
1485 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1486 return -EOPNOTSUPP;
1487
1488 res = ext4_convert_inline_data(inode);
1489 if (res)
1490 return res;
1491
1492 /*
1493 * If a journal handle was specified, then the encryption context is
1494 * being set on a new inode via inheritance and is part of a larger
1495 * transaction to create the inode. Otherwise the encryption context is
1496 * being set on an existing inode in its own transaction. Only in the
1497 * latter case should the "retry on ENOSPC" logic be used.
1498 */
1499
1500 if (handle) {
1501 res = ext4_xattr_set_handle(handle, inode,
1502 EXT4_XATTR_INDEX_ENCRYPTION,
1503 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1504 ctx, len, 0);
1505 if (!res) {
1506 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1507 ext4_clear_inode_state(inode,
1508 EXT4_STATE_MAY_INLINE_DATA);
1509 /*
1510 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1511 * S_DAX may be disabled
1512 */
1513 ext4_set_inode_flags(inode, false);
1514 }
1515 return res;
1516 }
1517
1518 res = dquot_initialize(inode);
1519 if (res)
1520 return res;
1521 retry:
1522 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1523 &credits);
1524 if (res)
1525 return res;
1526
1527 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1528 if (IS_ERR(handle))
1529 return PTR_ERR(handle);
1530
1531 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1532 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1533 ctx, len, 0);
1534 if (!res) {
1535 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1536 /*
1537 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1538 * S_DAX may be disabled
1539 */
1540 ext4_set_inode_flags(inode, false);
1541 res = ext4_mark_inode_dirty(handle, inode);
1542 if (res)
1543 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1544 }
1545 res2 = ext4_journal_stop(handle);
1546
1547 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1548 goto retry;
1549 if (!res)
1550 res = res2;
1551 return res;
1552 }
1553
ext4_get_dummy_policy(struct super_block * sb)1554 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1555 {
1556 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1557 }
1558
ext4_has_stable_inodes(struct super_block * sb)1559 static bool ext4_has_stable_inodes(struct super_block *sb)
1560 {
1561 return ext4_has_feature_stable_inodes(sb);
1562 }
1563
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1564 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1565 int *ino_bits_ret, int *lblk_bits_ret)
1566 {
1567 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1568 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1569 }
1570
1571 static const struct fscrypt_operations ext4_cryptops = {
1572 .flags = FS_CFLG_SUPPORTS_SUBBLOCK_DATA_UNITS,
1573 .key_prefix = "ext4:",
1574 .get_context = ext4_get_context,
1575 .set_context = ext4_set_context,
1576 .get_dummy_policy = ext4_get_dummy_policy,
1577 .empty_dir = ext4_empty_dir,
1578 .has_stable_inodes = ext4_has_stable_inodes,
1579 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1580 };
1581 #endif
1582
1583 #ifdef CONFIG_QUOTA
1584 static const char * const quotatypes[] = INITQFNAMES;
1585 #define QTYPE2NAME(t) (quotatypes[t])
1586
1587 static int ext4_write_dquot(struct dquot *dquot);
1588 static int ext4_acquire_dquot(struct dquot *dquot);
1589 static int ext4_release_dquot(struct dquot *dquot);
1590 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1591 static int ext4_write_info(struct super_block *sb, int type);
1592 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1593 const struct path *path);
1594 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1595 size_t len, loff_t off);
1596 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1597 const char *data, size_t len, loff_t off);
1598 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1599 unsigned int flags);
1600
ext4_get_dquots(struct inode * inode)1601 static struct dquot **ext4_get_dquots(struct inode *inode)
1602 {
1603 return EXT4_I(inode)->i_dquot;
1604 }
1605
1606 static const struct dquot_operations ext4_quota_operations = {
1607 .get_reserved_space = ext4_get_reserved_space,
1608 .write_dquot = ext4_write_dquot,
1609 .acquire_dquot = ext4_acquire_dquot,
1610 .release_dquot = ext4_release_dquot,
1611 .mark_dirty = ext4_mark_dquot_dirty,
1612 .write_info = ext4_write_info,
1613 .alloc_dquot = dquot_alloc,
1614 .destroy_dquot = dquot_destroy,
1615 .get_projid = ext4_get_projid,
1616 .get_inode_usage = ext4_get_inode_usage,
1617 .get_next_id = dquot_get_next_id,
1618 };
1619
1620 static const struct quotactl_ops ext4_qctl_operations = {
1621 .quota_on = ext4_quota_on,
1622 .quota_off = ext4_quota_off,
1623 .quota_sync = dquot_quota_sync,
1624 .get_state = dquot_get_state,
1625 .set_info = dquot_set_dqinfo,
1626 .get_dqblk = dquot_get_dqblk,
1627 .set_dqblk = dquot_set_dqblk,
1628 .get_nextdqblk = dquot_get_next_dqblk,
1629 };
1630 #endif
1631
1632 static const struct super_operations ext4_sops = {
1633 .alloc_inode = ext4_alloc_inode,
1634 .free_inode = ext4_free_in_core_inode,
1635 .destroy_inode = ext4_destroy_inode,
1636 .write_inode = ext4_write_inode,
1637 .dirty_inode = ext4_dirty_inode,
1638 .drop_inode = ext4_drop_inode,
1639 .evict_inode = ext4_evict_inode,
1640 .put_super = ext4_put_super,
1641 .sync_fs = ext4_sync_fs,
1642 .freeze_fs = ext4_freeze,
1643 .unfreeze_fs = ext4_unfreeze,
1644 .statfs = ext4_statfs,
1645 .remount_fs = ext4_remount,
1646 .show_options = ext4_show_options,
1647 #ifdef CONFIG_QUOTA
1648 .quota_read = ext4_quota_read,
1649 .quota_write = ext4_quota_write,
1650 .get_dquots = ext4_get_dquots,
1651 #endif
1652 };
1653
1654 static const struct export_operations ext4_export_ops = {
1655 .fh_to_dentry = ext4_fh_to_dentry,
1656 .fh_to_parent = ext4_fh_to_parent,
1657 .get_parent = ext4_get_parent,
1658 .commit_metadata = ext4_nfs_commit_metadata,
1659 };
1660
1661 enum {
1662 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1663 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1664 Opt_nouid32, Opt_debug, Opt_removed,
1665 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1666 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1667 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1668 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1669 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1670 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1671 Opt_inlinecrypt,
1672 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1673 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1674 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1675 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1676 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1677 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1678 Opt_nowarn_on_error, Opt_mblk_io_submit,
1679 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1680 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 Opt_dioread_nolock, Opt_dioread_lock,
1683 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 #ifdef CONFIG_EXT4_DEBUG
1687 Opt_fc_debug_max_replay, Opt_fc_debug_force
1688 #endif
1689 };
1690
1691 static const match_table_t tokens = {
1692 {Opt_bsd_df, "bsddf"},
1693 {Opt_minix_df, "minixdf"},
1694 {Opt_grpid, "grpid"},
1695 {Opt_grpid, "bsdgroups"},
1696 {Opt_nogrpid, "nogrpid"},
1697 {Opt_nogrpid, "sysvgroups"},
1698 {Opt_resgid, "resgid=%u"},
1699 {Opt_resuid, "resuid=%u"},
1700 {Opt_sb, "sb=%u"},
1701 {Opt_err_cont, "errors=continue"},
1702 {Opt_err_panic, "errors=panic"},
1703 {Opt_err_ro, "errors=remount-ro"},
1704 {Opt_nouid32, "nouid32"},
1705 {Opt_debug, "debug"},
1706 {Opt_removed, "oldalloc"},
1707 {Opt_removed, "orlov"},
1708 {Opt_user_xattr, "user_xattr"},
1709 {Opt_nouser_xattr, "nouser_xattr"},
1710 {Opt_acl, "acl"},
1711 {Opt_noacl, "noacl"},
1712 {Opt_noload, "norecovery"},
1713 {Opt_noload, "noload"},
1714 {Opt_removed, "nobh"},
1715 {Opt_removed, "bh"},
1716 {Opt_commit, "commit=%u"},
1717 {Opt_min_batch_time, "min_batch_time=%u"},
1718 {Opt_max_batch_time, "max_batch_time=%u"},
1719 {Opt_journal_dev, "journal_dev=%u"},
1720 {Opt_journal_path, "journal_path=%s"},
1721 {Opt_journal_checksum, "journal_checksum"},
1722 {Opt_nojournal_checksum, "nojournal_checksum"},
1723 {Opt_journal_async_commit, "journal_async_commit"},
1724 {Opt_abort, "abort"},
1725 {Opt_data_journal, "data=journal"},
1726 {Opt_data_ordered, "data=ordered"},
1727 {Opt_data_writeback, "data=writeback"},
1728 {Opt_data_err_abort, "data_err=abort"},
1729 {Opt_data_err_ignore, "data_err=ignore"},
1730 {Opt_offusrjquota, "usrjquota="},
1731 {Opt_usrjquota, "usrjquota=%s"},
1732 {Opt_offgrpjquota, "grpjquota="},
1733 {Opt_grpjquota, "grpjquota=%s"},
1734 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1735 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1736 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1737 {Opt_grpquota, "grpquota"},
1738 {Opt_noquota, "noquota"},
1739 {Opt_quota, "quota"},
1740 {Opt_usrquota, "usrquota"},
1741 {Opt_prjquota, "prjquota"},
1742 {Opt_barrier, "barrier=%u"},
1743 {Opt_barrier, "barrier"},
1744 {Opt_nobarrier, "nobarrier"},
1745 {Opt_i_version, "i_version"},
1746 {Opt_dax, "dax"},
1747 {Opt_dax_always, "dax=always"},
1748 {Opt_dax_inode, "dax=inode"},
1749 {Opt_dax_never, "dax=never"},
1750 {Opt_stripe, "stripe=%u"},
1751 {Opt_delalloc, "delalloc"},
1752 {Opt_warn_on_error, "warn_on_error"},
1753 {Opt_nowarn_on_error, "nowarn_on_error"},
1754 {Opt_lazytime, "lazytime"},
1755 {Opt_nolazytime, "nolazytime"},
1756 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1757 {Opt_nodelalloc, "nodelalloc"},
1758 {Opt_removed, "mblk_io_submit"},
1759 {Opt_removed, "nomblk_io_submit"},
1760 {Opt_block_validity, "block_validity"},
1761 {Opt_noblock_validity, "noblock_validity"},
1762 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1763 {Opt_journal_ioprio, "journal_ioprio=%u"},
1764 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1765 {Opt_auto_da_alloc, "auto_da_alloc"},
1766 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1767 {Opt_dioread_nolock, "dioread_nolock"},
1768 {Opt_dioread_lock, "nodioread_nolock"},
1769 {Opt_dioread_lock, "dioread_lock"},
1770 {Opt_discard, "discard"},
1771 {Opt_nodiscard, "nodiscard"},
1772 {Opt_init_itable, "init_itable=%u"},
1773 {Opt_init_itable, "init_itable"},
1774 {Opt_noinit_itable, "noinit_itable"},
1775 #ifdef CONFIG_EXT4_DEBUG
1776 {Opt_fc_debug_force, "fc_debug_force"},
1777 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1778 #endif
1779 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1780 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1781 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1782 {Opt_inlinecrypt, "inlinecrypt"},
1783 {Opt_nombcache, "nombcache"},
1784 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1785 {Opt_removed, "prefetch_block_bitmaps"},
1786 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1787 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1788 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1789 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1790 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1791 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1792 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1793 {Opt_err, NULL},
1794 };
1795
get_sb_block(void ** data)1796 static ext4_fsblk_t get_sb_block(void **data)
1797 {
1798 ext4_fsblk_t sb_block;
1799 char *options = (char *) *data;
1800
1801 if (!options || strncmp(options, "sb=", 3) != 0)
1802 return 1; /* Default location */
1803
1804 options += 3;
1805 /* TODO: use simple_strtoll with >32bit ext4 */
1806 sb_block = simple_strtoul(options, &options, 0);
1807 if (*options && *options != ',') {
1808 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1809 (char *) *data);
1810 return 1;
1811 }
1812 if (*options == ',')
1813 options++;
1814 *data = (void *) options;
1815
1816 return sb_block;
1817 }
1818
1819 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1820 #define DEFAULT_MB_OPTIMIZE_SCAN (-1)
1821
1822 static const char deprecated_msg[] =
1823 "Mount option \"%s\" will be removed by %s\n"
1824 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1825
1826 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1827 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1828 {
1829 struct ext4_sb_info *sbi = EXT4_SB(sb);
1830 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1831 int ret = -1;
1832
1833 if (sb_any_quota_loaded(sb) && !old_qname) {
1834 ext4_msg(sb, KERN_ERR,
1835 "Cannot change journaled "
1836 "quota options when quota turned on");
1837 return -1;
1838 }
1839 if (ext4_has_feature_quota(sb)) {
1840 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1841 "ignored when QUOTA feature is enabled");
1842 return 1;
1843 }
1844 qname = match_strdup(args);
1845 if (!qname) {
1846 ext4_msg(sb, KERN_ERR,
1847 "Not enough memory for storing quotafile name");
1848 return -1;
1849 }
1850 if (old_qname) {
1851 if (strcmp(old_qname, qname) == 0)
1852 ret = 1;
1853 else
1854 ext4_msg(sb, KERN_ERR,
1855 "%s quota file already specified",
1856 QTYPE2NAME(qtype));
1857 goto errout;
1858 }
1859 if (strchr(qname, '/')) {
1860 ext4_msg(sb, KERN_ERR,
1861 "quotafile must be on filesystem root");
1862 goto errout;
1863 }
1864 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1865 set_opt(sb, QUOTA);
1866 return 1;
1867 errout:
1868 kfree(qname);
1869 return ret;
1870 }
1871
clear_qf_name(struct super_block * sb,int qtype)1872 static int clear_qf_name(struct super_block *sb, int qtype)
1873 {
1874
1875 struct ext4_sb_info *sbi = EXT4_SB(sb);
1876 char *old_qname = get_qf_name(sb, sbi, qtype);
1877
1878 if (sb_any_quota_loaded(sb) && old_qname) {
1879 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1880 " when quota turned on");
1881 return -1;
1882 }
1883 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1884 synchronize_rcu();
1885 kfree(old_qname);
1886 return 1;
1887 }
1888 #endif
1889
1890 #define MOPT_SET 0x0001
1891 #define MOPT_CLEAR 0x0002
1892 #define MOPT_NOSUPPORT 0x0004
1893 #define MOPT_EXPLICIT 0x0008
1894 #define MOPT_CLEAR_ERR 0x0010
1895 #define MOPT_GTE0 0x0020
1896 #ifdef CONFIG_QUOTA
1897 #define MOPT_Q 0
1898 #define MOPT_QFMT 0x0040
1899 #else
1900 #define MOPT_Q MOPT_NOSUPPORT
1901 #define MOPT_QFMT MOPT_NOSUPPORT
1902 #endif
1903 #define MOPT_DATAJ 0x0080
1904 #define MOPT_NO_EXT2 0x0100
1905 #define MOPT_NO_EXT3 0x0200
1906 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1907 #define MOPT_STRING 0x0400
1908 #define MOPT_SKIP 0x0800
1909 #define MOPT_2 0x1000
1910
1911 static const struct mount_opts {
1912 int token;
1913 int mount_opt;
1914 int flags;
1915 } ext4_mount_opts[] = {
1916 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1917 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1918 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1919 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1920 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1921 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1922 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1923 MOPT_EXT4_ONLY | MOPT_SET},
1924 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1925 MOPT_EXT4_ONLY | MOPT_CLEAR},
1926 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1927 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1928 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1929 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1930 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1931 MOPT_EXT4_ONLY | MOPT_CLEAR},
1932 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1933 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1934 {Opt_commit, 0, MOPT_NO_EXT2},
1935 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1936 MOPT_EXT4_ONLY | MOPT_CLEAR},
1937 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1938 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1940 EXT4_MOUNT_JOURNAL_CHECKSUM),
1941 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1942 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1943 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1944 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1945 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1946 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1947 MOPT_NO_EXT2},
1948 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1949 MOPT_NO_EXT2},
1950 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1951 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1952 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1953 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1954 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1955 {Opt_commit, 0, MOPT_GTE0},
1956 {Opt_max_batch_time, 0, MOPT_GTE0},
1957 {Opt_min_batch_time, 0, MOPT_GTE0},
1958 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1959 {Opt_init_itable, 0, MOPT_GTE0},
1960 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1961 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1962 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1963 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1964 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1965 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1966 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1967 {Opt_stripe, 0, MOPT_GTE0},
1968 {Opt_resuid, 0, MOPT_GTE0},
1969 {Opt_resgid, 0, MOPT_GTE0},
1970 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1971 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1972 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1973 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1974 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1976 MOPT_NO_EXT2 | MOPT_DATAJ},
1977 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1978 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1979 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1980 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1981 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1982 #else
1983 {Opt_acl, 0, MOPT_NOSUPPORT},
1984 {Opt_noacl, 0, MOPT_NOSUPPORT},
1985 #endif
1986 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1987 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1988 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1989 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1990 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1991 MOPT_SET | MOPT_Q},
1992 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1993 MOPT_SET | MOPT_Q},
1994 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1995 MOPT_SET | MOPT_Q},
1996 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1997 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1998 MOPT_CLEAR | MOPT_Q},
1999 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2000 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2001 {Opt_offusrjquota, 0, MOPT_Q},
2002 {Opt_offgrpjquota, 0, MOPT_Q},
2003 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2004 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2005 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2006 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2007 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2008 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2009 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2010 MOPT_SET},
2011 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2012 #ifdef CONFIG_EXT4_DEBUG
2013 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2014 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2015 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2016 #endif
2017 {Opt_err, 0, 0}
2018 };
2019
2020 #ifdef CONFIG_UNICODE
2021 static const struct ext4_sb_encodings {
2022 __u16 magic;
2023 char *name;
2024 char *version;
2025 } ext4_sb_encoding_map[] = {
2026 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2027 };
2028
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2029 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2030 const struct ext4_sb_encodings **encoding,
2031 __u16 *flags)
2032 {
2033 __u16 magic = le16_to_cpu(es->s_encoding);
2034 int i;
2035
2036 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2037 if (magic == ext4_sb_encoding_map[i].magic)
2038 break;
2039
2040 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2041 return -EINVAL;
2042
2043 *encoding = &ext4_sb_encoding_map[i];
2044 *flags = le16_to_cpu(es->s_encoding_flags);
2045
2046 return 0;
2047 }
2048 #endif
2049
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2050 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2051 const char *opt,
2052 const substring_t *arg,
2053 bool is_remount)
2054 {
2055 #ifdef CONFIG_FS_ENCRYPTION
2056 struct ext4_sb_info *sbi = EXT4_SB(sb);
2057 int err;
2058
2059 if (!ext4_has_feature_encrypt(sb)) {
2060 ext4_msg(sb, KERN_WARNING,
2061 "test_dummy_encryption requires encrypt feature");
2062 return -1;
2063 }
2064
2065 /*
2066 * This mount option is just for testing, and it's not worthwhile to
2067 * implement the extra complexity (e.g. RCU protection) that would be
2068 * needed to allow it to be set or changed during remount. We do allow
2069 * it to be specified during remount, but only if there is no change.
2070 */
2071 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2072 ext4_msg(sb, KERN_WARNING,
2073 "Can't set test_dummy_encryption on remount");
2074 return -1;
2075 }
2076 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2077 &sbi->s_dummy_enc_policy);
2078 if (err) {
2079 if (err == -EEXIST)
2080 ext4_msg(sb, KERN_WARNING,
2081 "Can't change test_dummy_encryption on remount");
2082 else if (err == -EINVAL)
2083 ext4_msg(sb, KERN_WARNING,
2084 "Value of option \"%s\" is unrecognized", opt);
2085 else
2086 ext4_msg(sb, KERN_WARNING,
2087 "Error processing option \"%s\" [%d]",
2088 opt, err);
2089 return -1;
2090 }
2091 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2092 return 1;
2093 #else
2094 ext4_msg(sb, KERN_WARNING,
2095 "test_dummy_encryption option not supported");
2096 return -1;
2097
2098 #endif
2099 }
2100
2101 struct ext4_parsed_options {
2102 unsigned long journal_devnum;
2103 unsigned int journal_ioprio;
2104 int mb_optimize_scan;
2105 };
2106
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,struct ext4_parsed_options * parsed_opts,int is_remount)2107 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2108 substring_t *args, struct ext4_parsed_options *parsed_opts,
2109 int is_remount)
2110 {
2111 struct ext4_sb_info *sbi = EXT4_SB(sb);
2112 const struct mount_opts *m;
2113 kuid_t uid;
2114 kgid_t gid;
2115 int arg = 0;
2116
2117 #ifdef CONFIG_QUOTA
2118 if (token == Opt_usrjquota)
2119 return set_qf_name(sb, USRQUOTA, &args[0]);
2120 else if (token == Opt_grpjquota)
2121 return set_qf_name(sb, GRPQUOTA, &args[0]);
2122 else if (token == Opt_offusrjquota)
2123 return clear_qf_name(sb, USRQUOTA);
2124 else if (token == Opt_offgrpjquota)
2125 return clear_qf_name(sb, GRPQUOTA);
2126 #endif
2127 switch (token) {
2128 case Opt_noacl:
2129 case Opt_nouser_xattr:
2130 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2131 break;
2132 case Opt_sb:
2133 return 1; /* handled by get_sb_block() */
2134 case Opt_removed:
2135 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2136 return 1;
2137 case Opt_abort:
2138 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2139 return 1;
2140 case Opt_i_version:
2141 sb->s_flags |= SB_I_VERSION;
2142 return 1;
2143 case Opt_lazytime:
2144 sb->s_flags |= SB_LAZYTIME;
2145 return 1;
2146 case Opt_nolazytime:
2147 sb->s_flags &= ~SB_LAZYTIME;
2148 return 1;
2149 case Opt_inlinecrypt:
2150 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2151 sb->s_flags |= SB_INLINECRYPT;
2152 #else
2153 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2154 #endif
2155 return 1;
2156 }
2157
2158 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2159 if (token == m->token)
2160 break;
2161
2162 if (m->token == Opt_err) {
2163 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2164 "or missing value", opt);
2165 return -1;
2166 }
2167
2168 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2169 ext4_msg(sb, KERN_ERR,
2170 "Mount option \"%s\" incompatible with ext2", opt);
2171 return -1;
2172 }
2173 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2174 ext4_msg(sb, KERN_ERR,
2175 "Mount option \"%s\" incompatible with ext3", opt);
2176 return -1;
2177 }
2178
2179 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2180 return -1;
2181 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2182 return -1;
2183 if (m->flags & MOPT_EXPLICIT) {
2184 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2185 set_opt2(sb, EXPLICIT_DELALLOC);
2186 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2187 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2188 } else
2189 return -1;
2190 }
2191 if (m->flags & MOPT_CLEAR_ERR)
2192 clear_opt(sb, ERRORS_MASK);
2193 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2194 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2195 "options when quota turned on");
2196 return -1;
2197 }
2198
2199 if (m->flags & MOPT_NOSUPPORT) {
2200 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2201 } else if (token == Opt_commit) {
2202 if (arg == 0)
2203 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2204 else if (arg > INT_MAX / HZ) {
2205 ext4_msg(sb, KERN_ERR,
2206 "Invalid commit interval %d, "
2207 "must be smaller than %d",
2208 arg, INT_MAX / HZ);
2209 return -1;
2210 }
2211 sbi->s_commit_interval = HZ * arg;
2212 } else if (token == Opt_debug_want_extra_isize) {
2213 if ((arg & 1) ||
2214 (arg < 4) ||
2215 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2216 ext4_msg(sb, KERN_ERR,
2217 "Invalid want_extra_isize %d", arg);
2218 return -1;
2219 }
2220 sbi->s_want_extra_isize = arg;
2221 } else if (token == Opt_max_batch_time) {
2222 sbi->s_max_batch_time = arg;
2223 } else if (token == Opt_min_batch_time) {
2224 sbi->s_min_batch_time = arg;
2225 } else if (token == Opt_inode_readahead_blks) {
2226 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2227 ext4_msg(sb, KERN_ERR,
2228 "EXT4-fs: inode_readahead_blks must be "
2229 "0 or a power of 2 smaller than 2^31");
2230 return -1;
2231 }
2232 sbi->s_inode_readahead_blks = arg;
2233 } else if (token == Opt_init_itable) {
2234 set_opt(sb, INIT_INODE_TABLE);
2235 if (!args->from)
2236 arg = EXT4_DEF_LI_WAIT_MULT;
2237 sbi->s_li_wait_mult = arg;
2238 } else if (token == Opt_max_dir_size_kb) {
2239 sbi->s_max_dir_size_kb = arg;
2240 #ifdef CONFIG_EXT4_DEBUG
2241 } else if (token == Opt_fc_debug_max_replay) {
2242 sbi->s_fc_debug_max_replay = arg;
2243 #endif
2244 } else if (token == Opt_stripe) {
2245 sbi->s_stripe = arg;
2246 } else if (token == Opt_resuid) {
2247 uid = make_kuid(current_user_ns(), arg);
2248 if (!uid_valid(uid)) {
2249 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2250 return -1;
2251 }
2252 sbi->s_resuid = uid;
2253 } else if (token == Opt_resgid) {
2254 gid = make_kgid(current_user_ns(), arg);
2255 if (!gid_valid(gid)) {
2256 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2257 return -1;
2258 }
2259 sbi->s_resgid = gid;
2260 } else if (token == Opt_journal_dev) {
2261 if (is_remount) {
2262 ext4_msg(sb, KERN_ERR,
2263 "Cannot specify journal on remount");
2264 return -1;
2265 }
2266 parsed_opts->journal_devnum = arg;
2267 } else if (token == Opt_journal_path) {
2268 char *journal_path;
2269 struct inode *journal_inode;
2270 struct path path;
2271 int error;
2272
2273 if (is_remount) {
2274 ext4_msg(sb, KERN_ERR,
2275 "Cannot specify journal on remount");
2276 return -1;
2277 }
2278 journal_path = match_strdup(&args[0]);
2279 if (!journal_path) {
2280 ext4_msg(sb, KERN_ERR, "error: could not dup "
2281 "journal device string");
2282 return -1;
2283 }
2284
2285 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2286 if (error) {
2287 ext4_msg(sb, KERN_ERR, "error: could not find "
2288 "journal device path: error %d", error);
2289 kfree(journal_path);
2290 return -1;
2291 }
2292
2293 journal_inode = d_inode(path.dentry);
2294 if (!S_ISBLK(journal_inode->i_mode)) {
2295 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2296 "is not a block device", journal_path);
2297 path_put(&path);
2298 kfree(journal_path);
2299 return -1;
2300 }
2301
2302 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2303 path_put(&path);
2304 kfree(journal_path);
2305 } else if (token == Opt_journal_ioprio) {
2306 if (arg > 7) {
2307 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2308 " (must be 0-7)");
2309 return -1;
2310 }
2311 parsed_opts->journal_ioprio =
2312 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2313 } else if (token == Opt_test_dummy_encryption) {
2314 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2315 is_remount);
2316 } else if (m->flags & MOPT_DATAJ) {
2317 if (is_remount) {
2318 if (!sbi->s_journal)
2319 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2320 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2321 ext4_msg(sb, KERN_ERR,
2322 "Cannot change data mode on remount");
2323 return -1;
2324 }
2325 } else {
2326 clear_opt(sb, DATA_FLAGS);
2327 sbi->s_mount_opt |= m->mount_opt;
2328 }
2329 #ifdef CONFIG_QUOTA
2330 } else if (m->flags & MOPT_QFMT) {
2331 if (sb_any_quota_loaded(sb) &&
2332 sbi->s_jquota_fmt != m->mount_opt) {
2333 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2334 "quota options when quota turned on");
2335 return -1;
2336 }
2337 if (ext4_has_feature_quota(sb)) {
2338 ext4_msg(sb, KERN_INFO,
2339 "Quota format mount options ignored "
2340 "when QUOTA feature is enabled");
2341 return 1;
2342 }
2343 sbi->s_jquota_fmt = m->mount_opt;
2344 #endif
2345 } else if (token == Opt_dax || token == Opt_dax_always ||
2346 token == Opt_dax_inode || token == Opt_dax_never) {
2347 #ifdef CONFIG_FS_DAX
2348 switch (token) {
2349 case Opt_dax:
2350 case Opt_dax_always:
2351 if (is_remount &&
2352 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2353 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2354 fail_dax_change_remount:
2355 ext4_msg(sb, KERN_ERR, "can't change "
2356 "dax mount option while remounting");
2357 return -1;
2358 }
2359 if (is_remount &&
2360 (test_opt(sb, DATA_FLAGS) ==
2361 EXT4_MOUNT_JOURNAL_DATA)) {
2362 ext4_msg(sb, KERN_ERR, "can't mount with "
2363 "both data=journal and dax");
2364 return -1;
2365 }
2366 ext4_msg(sb, KERN_WARNING,
2367 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2368 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2369 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2370 break;
2371 case Opt_dax_never:
2372 if (is_remount &&
2373 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2374 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2375 goto fail_dax_change_remount;
2376 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2377 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2378 break;
2379 case Opt_dax_inode:
2380 if (is_remount &&
2381 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2382 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2383 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2384 goto fail_dax_change_remount;
2385 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2386 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2387 /* Strictly for printing options */
2388 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2389 break;
2390 }
2391 #else
2392 ext4_msg(sb, KERN_INFO, "dax option not supported");
2393 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2394 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2395 return -1;
2396 #endif
2397 } else if (token == Opt_data_err_abort) {
2398 sbi->s_mount_opt |= m->mount_opt;
2399 } else if (token == Opt_data_err_ignore) {
2400 sbi->s_mount_opt &= ~m->mount_opt;
2401 } else if (token == Opt_mb_optimize_scan) {
2402 if (arg != 0 && arg != 1) {
2403 ext4_msg(sb, KERN_WARNING,
2404 "mb_optimize_scan should be set to 0 or 1.");
2405 return -1;
2406 }
2407 parsed_opts->mb_optimize_scan = arg;
2408 } else {
2409 if (!args->from)
2410 arg = 1;
2411 if (m->flags & MOPT_CLEAR)
2412 arg = !arg;
2413 else if (unlikely(!(m->flags & MOPT_SET))) {
2414 ext4_msg(sb, KERN_WARNING,
2415 "buggy handling of option %s", opt);
2416 WARN_ON(1);
2417 return -1;
2418 }
2419 if (m->flags & MOPT_2) {
2420 if (arg != 0)
2421 sbi->s_mount_opt2 |= m->mount_opt;
2422 else
2423 sbi->s_mount_opt2 &= ~m->mount_opt;
2424 } else {
2425 if (arg != 0)
2426 sbi->s_mount_opt |= m->mount_opt;
2427 else
2428 sbi->s_mount_opt &= ~m->mount_opt;
2429 }
2430 }
2431 return 1;
2432 }
2433
parse_options(char * options,struct super_block * sb,struct ext4_parsed_options * ret_opts,int is_remount)2434 static int parse_options(char *options, struct super_block *sb,
2435 struct ext4_parsed_options *ret_opts,
2436 int is_remount)
2437 {
2438 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2439 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2440 substring_t args[MAX_OPT_ARGS];
2441 int token;
2442
2443 if (!options)
2444 return 1;
2445
2446 while ((p = strsep(&options, ",")) != NULL) {
2447 if (!*p)
2448 continue;
2449 /*
2450 * Initialize args struct so we know whether arg was
2451 * found; some options take optional arguments.
2452 */
2453 args[0].to = args[0].from = NULL;
2454 token = match_token(p, tokens, args);
2455 if (handle_mount_opt(sb, p, token, args, ret_opts,
2456 is_remount) < 0)
2457 return 0;
2458 }
2459 #ifdef CONFIG_QUOTA
2460 /*
2461 * We do the test below only for project quotas. 'usrquota' and
2462 * 'grpquota' mount options are allowed even without quota feature
2463 * to support legacy quotas in quota files.
2464 */
2465 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2466 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2467 "Cannot enable project quota enforcement.");
2468 return 0;
2469 }
2470 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2471 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2472 if (usr_qf_name || grp_qf_name) {
2473 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2474 clear_opt(sb, USRQUOTA);
2475
2476 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2477 clear_opt(sb, GRPQUOTA);
2478
2479 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2480 ext4_msg(sb, KERN_ERR, "old and new quota "
2481 "format mixing");
2482 return 0;
2483 }
2484
2485 if (!sbi->s_jquota_fmt) {
2486 ext4_msg(sb, KERN_ERR, "journaled quota format "
2487 "not specified");
2488 return 0;
2489 }
2490 }
2491 #endif
2492 if (test_opt(sb, DIOREAD_NOLOCK)) {
2493 int blocksize =
2494 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2495 if (blocksize < PAGE_SIZE)
2496 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2497 "experimental mount option 'dioread_nolock' "
2498 "for blocksize < PAGE_SIZE");
2499 }
2500 return 1;
2501 }
2502
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2503 static inline void ext4_show_quota_options(struct seq_file *seq,
2504 struct super_block *sb)
2505 {
2506 #if defined(CONFIG_QUOTA)
2507 struct ext4_sb_info *sbi = EXT4_SB(sb);
2508 char *usr_qf_name, *grp_qf_name;
2509
2510 if (sbi->s_jquota_fmt) {
2511 char *fmtname = "";
2512
2513 switch (sbi->s_jquota_fmt) {
2514 case QFMT_VFS_OLD:
2515 fmtname = "vfsold";
2516 break;
2517 case QFMT_VFS_V0:
2518 fmtname = "vfsv0";
2519 break;
2520 case QFMT_VFS_V1:
2521 fmtname = "vfsv1";
2522 break;
2523 }
2524 seq_printf(seq, ",jqfmt=%s", fmtname);
2525 }
2526
2527 rcu_read_lock();
2528 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2529 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2530 if (usr_qf_name)
2531 seq_show_option(seq, "usrjquota", usr_qf_name);
2532 if (grp_qf_name)
2533 seq_show_option(seq, "grpjquota", grp_qf_name);
2534 rcu_read_unlock();
2535 #endif
2536 }
2537
token2str(int token)2538 static const char *token2str(int token)
2539 {
2540 const struct match_token *t;
2541
2542 for (t = tokens; t->token != Opt_err; t++)
2543 if (t->token == token && !strchr(t->pattern, '='))
2544 break;
2545 return t->pattern;
2546 }
2547
2548 /*
2549 * Show an option if
2550 * - it's set to a non-default value OR
2551 * - if the per-sb default is different from the global default
2552 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2553 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2554 int nodefs)
2555 {
2556 struct ext4_sb_info *sbi = EXT4_SB(sb);
2557 struct ext4_super_block *es = sbi->s_es;
2558 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2559 const struct mount_opts *m;
2560 char sep = nodefs ? '\n' : ',';
2561
2562 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2563 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2564
2565 if (sbi->s_sb_block != 1)
2566 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2567
2568 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2569 int want_set = m->flags & MOPT_SET;
2570 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2571 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2572 continue;
2573 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2574 continue; /* skip if same as the default */
2575 if ((want_set &&
2576 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2577 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2578 continue; /* select Opt_noFoo vs Opt_Foo */
2579 SEQ_OPTS_PRINT("%s", token2str(m->token));
2580 }
2581
2582 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2583 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2584 SEQ_OPTS_PRINT("resuid=%u",
2585 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2586 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2587 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2588 SEQ_OPTS_PRINT("resgid=%u",
2589 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2590 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2591 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2592 SEQ_OPTS_PUTS("errors=remount-ro");
2593 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2594 SEQ_OPTS_PUTS("errors=continue");
2595 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2596 SEQ_OPTS_PUTS("errors=panic");
2597 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2598 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2599 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2600 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2601 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2602 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2603 if (sb->s_flags & SB_I_VERSION)
2604 SEQ_OPTS_PUTS("i_version");
2605 if (nodefs || sbi->s_stripe)
2606 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2607 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2608 (sbi->s_mount_opt ^ def_mount_opt)) {
2609 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2610 SEQ_OPTS_PUTS("data=journal");
2611 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2612 SEQ_OPTS_PUTS("data=ordered");
2613 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2614 SEQ_OPTS_PUTS("data=writeback");
2615 }
2616 if (nodefs ||
2617 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2618 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2619 sbi->s_inode_readahead_blks);
2620
2621 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2622 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2623 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2624 if (nodefs || sbi->s_max_dir_size_kb)
2625 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2626 if (test_opt(sb, DATA_ERR_ABORT))
2627 SEQ_OPTS_PUTS("data_err=abort");
2628
2629 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2630
2631 if (sb->s_flags & SB_INLINECRYPT)
2632 SEQ_OPTS_PUTS("inlinecrypt");
2633
2634 if (test_opt(sb, DAX_ALWAYS)) {
2635 if (IS_EXT2_SB(sb))
2636 SEQ_OPTS_PUTS("dax");
2637 else
2638 SEQ_OPTS_PUTS("dax=always");
2639 } else if (test_opt2(sb, DAX_NEVER)) {
2640 SEQ_OPTS_PUTS("dax=never");
2641 } else if (test_opt2(sb, DAX_INODE)) {
2642 SEQ_OPTS_PUTS("dax=inode");
2643 }
2644 ext4_show_quota_options(seq, sb);
2645 return 0;
2646 }
2647
ext4_show_options(struct seq_file * seq,struct dentry * root)2648 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2649 {
2650 return _ext4_show_options(seq, root->d_sb, 0);
2651 }
2652
ext4_seq_options_show(struct seq_file * seq,void * offset)2653 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2654 {
2655 struct super_block *sb = seq->private;
2656 int rc;
2657
2658 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2659 rc = _ext4_show_options(seq, sb, 1);
2660 seq_puts(seq, "\n");
2661 return rc;
2662 }
2663
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2664 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2665 int read_only)
2666 {
2667 struct ext4_sb_info *sbi = EXT4_SB(sb);
2668 int err = 0;
2669
2670 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2671 ext4_msg(sb, KERN_ERR, "revision level too high, "
2672 "forcing read-only mode");
2673 err = -EROFS;
2674 goto done;
2675 }
2676 if (read_only)
2677 goto done;
2678 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2679 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2680 "running e2fsck is recommended");
2681 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2682 ext4_msg(sb, KERN_WARNING,
2683 "warning: mounting fs with errors, "
2684 "running e2fsck is recommended");
2685 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2686 le16_to_cpu(es->s_mnt_count) >=
2687 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2688 ext4_msg(sb, KERN_WARNING,
2689 "warning: maximal mount count reached, "
2690 "running e2fsck is recommended");
2691 else if (le32_to_cpu(es->s_checkinterval) &&
2692 (ext4_get_tstamp(es, s_lastcheck) +
2693 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2694 ext4_msg(sb, KERN_WARNING,
2695 "warning: checktime reached, "
2696 "running e2fsck is recommended");
2697 if (!sbi->s_journal)
2698 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2699 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2700 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2701 le16_add_cpu(&es->s_mnt_count, 1);
2702 ext4_update_tstamp(es, s_mtime);
2703 if (sbi->s_journal) {
2704 ext4_set_feature_journal_needs_recovery(sb);
2705 if (ext4_has_feature_orphan_file(sb))
2706 ext4_set_feature_orphan_present(sb);
2707 }
2708
2709 err = ext4_commit_super(sb);
2710 done:
2711 if (test_opt(sb, DEBUG))
2712 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2713 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2714 sb->s_blocksize,
2715 sbi->s_groups_count,
2716 EXT4_BLOCKS_PER_GROUP(sb),
2717 EXT4_INODES_PER_GROUP(sb),
2718 sbi->s_mount_opt, sbi->s_mount_opt2);
2719
2720 cleancache_init_fs(sb);
2721 return err;
2722 }
2723
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2724 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2725 {
2726 struct ext4_sb_info *sbi = EXT4_SB(sb);
2727 struct flex_groups **old_groups, **new_groups;
2728 int size, i, j;
2729
2730 if (!sbi->s_log_groups_per_flex)
2731 return 0;
2732
2733 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2734 if (size <= sbi->s_flex_groups_allocated)
2735 return 0;
2736
2737 new_groups = kvzalloc(roundup_pow_of_two(size *
2738 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2739 if (!new_groups) {
2740 ext4_msg(sb, KERN_ERR,
2741 "not enough memory for %d flex group pointers", size);
2742 return -ENOMEM;
2743 }
2744 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2745 new_groups[i] = kvzalloc(roundup_pow_of_two(
2746 sizeof(struct flex_groups)),
2747 GFP_KERNEL);
2748 if (!new_groups[i]) {
2749 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2750 kvfree(new_groups[j]);
2751 kvfree(new_groups);
2752 ext4_msg(sb, KERN_ERR,
2753 "not enough memory for %d flex groups", size);
2754 return -ENOMEM;
2755 }
2756 }
2757 rcu_read_lock();
2758 old_groups = rcu_dereference(sbi->s_flex_groups);
2759 if (old_groups)
2760 memcpy(new_groups, old_groups,
2761 (sbi->s_flex_groups_allocated *
2762 sizeof(struct flex_groups *)));
2763 rcu_read_unlock();
2764 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2765 sbi->s_flex_groups_allocated = size;
2766 if (old_groups)
2767 ext4_kvfree_array_rcu(old_groups);
2768 return 0;
2769 }
2770
ext4_fill_flex_info(struct super_block * sb)2771 static int ext4_fill_flex_info(struct super_block *sb)
2772 {
2773 struct ext4_sb_info *sbi = EXT4_SB(sb);
2774 struct ext4_group_desc *gdp = NULL;
2775 struct flex_groups *fg;
2776 ext4_group_t flex_group;
2777 int i, err;
2778
2779 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2780 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2781 sbi->s_log_groups_per_flex = 0;
2782 return 1;
2783 }
2784
2785 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2786 if (err)
2787 goto failed;
2788
2789 for (i = 0; i < sbi->s_groups_count; i++) {
2790 gdp = ext4_get_group_desc(sb, i, NULL);
2791
2792 flex_group = ext4_flex_group(sbi, i);
2793 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2794 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2795 atomic64_add(ext4_free_group_clusters(sb, gdp),
2796 &fg->free_clusters);
2797 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2798 }
2799
2800 return 1;
2801 failed:
2802 return 0;
2803 }
2804
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2805 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2806 struct ext4_group_desc *gdp)
2807 {
2808 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2809 __u16 crc = 0;
2810 __le32 le_group = cpu_to_le32(block_group);
2811 struct ext4_sb_info *sbi = EXT4_SB(sb);
2812
2813 if (ext4_has_metadata_csum(sbi->s_sb)) {
2814 /* Use new metadata_csum algorithm */
2815 __u32 csum32;
2816 __u16 dummy_csum = 0;
2817
2818 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2819 sizeof(le_group));
2820 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2821 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2822 sizeof(dummy_csum));
2823 offset += sizeof(dummy_csum);
2824 if (offset < sbi->s_desc_size)
2825 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2826 sbi->s_desc_size - offset);
2827
2828 crc = csum32 & 0xFFFF;
2829 goto out;
2830 }
2831
2832 /* old crc16 code */
2833 if (!ext4_has_feature_gdt_csum(sb))
2834 return 0;
2835
2836 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2837 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2838 crc = crc16(crc, (__u8 *)gdp, offset);
2839 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2840 /* for checksum of struct ext4_group_desc do the rest...*/
2841 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2842 crc = crc16(crc, (__u8 *)gdp + offset,
2843 sbi->s_desc_size - offset);
2844
2845 out:
2846 return cpu_to_le16(crc);
2847 }
2848
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2849 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2850 struct ext4_group_desc *gdp)
2851 {
2852 if (ext4_has_group_desc_csum(sb) &&
2853 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2854 return 0;
2855
2856 return 1;
2857 }
2858
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2859 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2860 struct ext4_group_desc *gdp)
2861 {
2862 if (!ext4_has_group_desc_csum(sb))
2863 return;
2864 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2865 }
2866
2867 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2868 static int ext4_check_descriptors(struct super_block *sb,
2869 ext4_fsblk_t sb_block,
2870 ext4_group_t *first_not_zeroed)
2871 {
2872 struct ext4_sb_info *sbi = EXT4_SB(sb);
2873 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2874 ext4_fsblk_t last_block;
2875 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2876 ext4_fsblk_t block_bitmap;
2877 ext4_fsblk_t inode_bitmap;
2878 ext4_fsblk_t inode_table;
2879 int flexbg_flag = 0;
2880 ext4_group_t i, grp = sbi->s_groups_count;
2881
2882 if (ext4_has_feature_flex_bg(sb))
2883 flexbg_flag = 1;
2884
2885 ext4_debug("Checking group descriptors");
2886
2887 for (i = 0; i < sbi->s_groups_count; i++) {
2888 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2889
2890 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2891 last_block = ext4_blocks_count(sbi->s_es) - 1;
2892 else
2893 last_block = first_block +
2894 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2895
2896 if ((grp == sbi->s_groups_count) &&
2897 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2898 grp = i;
2899
2900 block_bitmap = ext4_block_bitmap(sb, gdp);
2901 if (block_bitmap == sb_block) {
2902 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 "Block bitmap for group %u overlaps "
2904 "superblock", i);
2905 if (!sb_rdonly(sb))
2906 return 0;
2907 }
2908 if (block_bitmap >= sb_block + 1 &&
2909 block_bitmap <= last_bg_block) {
2910 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 "Block bitmap for group %u overlaps "
2912 "block group descriptors", i);
2913 if (!sb_rdonly(sb))
2914 return 0;
2915 }
2916 if (block_bitmap < first_block || block_bitmap > last_block) {
2917 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918 "Block bitmap for group %u not in group "
2919 "(block %llu)!", i, block_bitmap);
2920 return 0;
2921 }
2922 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2923 if (inode_bitmap == sb_block) {
2924 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 "Inode bitmap for group %u overlaps "
2926 "superblock", i);
2927 if (!sb_rdonly(sb))
2928 return 0;
2929 }
2930 if (inode_bitmap >= sb_block + 1 &&
2931 inode_bitmap <= last_bg_block) {
2932 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 "Inode bitmap for group %u overlaps "
2934 "block group descriptors", i);
2935 if (!sb_rdonly(sb))
2936 return 0;
2937 }
2938 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2939 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2940 "Inode bitmap for group %u not in group "
2941 "(block %llu)!", i, inode_bitmap);
2942 return 0;
2943 }
2944 inode_table = ext4_inode_table(sb, gdp);
2945 if (inode_table == sb_block) {
2946 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2947 "Inode table for group %u overlaps "
2948 "superblock", i);
2949 if (!sb_rdonly(sb))
2950 return 0;
2951 }
2952 if (inode_table >= sb_block + 1 &&
2953 inode_table <= last_bg_block) {
2954 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955 "Inode table for group %u overlaps "
2956 "block group descriptors", i);
2957 if (!sb_rdonly(sb))
2958 return 0;
2959 }
2960 if (inode_table < first_block ||
2961 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2962 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2963 "Inode table for group %u not in group "
2964 "(block %llu)!", i, inode_table);
2965 return 0;
2966 }
2967 ext4_lock_group(sb, i);
2968 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2969 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2970 "Checksum for group %u failed (%u!=%u)",
2971 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2972 gdp)), le16_to_cpu(gdp->bg_checksum));
2973 if (!sb_rdonly(sb)) {
2974 ext4_unlock_group(sb, i);
2975 return 0;
2976 }
2977 }
2978 ext4_unlock_group(sb, i);
2979 if (!flexbg_flag)
2980 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2981 }
2982 if (NULL != first_not_zeroed)
2983 *first_not_zeroed = grp;
2984 return 1;
2985 }
2986
2987 /*
2988 * Maximal extent format file size.
2989 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2990 * extent format containers, within a sector_t, and within i_blocks
2991 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2992 * so that won't be a limiting factor.
2993 *
2994 * However there is other limiting factor. We do store extents in the form
2995 * of starting block and length, hence the resulting length of the extent
2996 * covering maximum file size must fit into on-disk format containers as
2997 * well. Given that length is always by 1 unit bigger than max unit (because
2998 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2999 *
3000 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3001 */
ext4_max_size(int blkbits,int has_huge_files)3002 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3003 {
3004 loff_t res;
3005 loff_t upper_limit = MAX_LFS_FILESIZE;
3006
3007 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3008
3009 if (!has_huge_files) {
3010 upper_limit = (1LL << 32) - 1;
3011
3012 /* total blocks in file system block size */
3013 upper_limit >>= (blkbits - 9);
3014 upper_limit <<= blkbits;
3015 }
3016
3017 /*
3018 * 32-bit extent-start container, ee_block. We lower the maxbytes
3019 * by one fs block, so ee_len can cover the extent of maximum file
3020 * size
3021 */
3022 res = (1LL << 32) - 1;
3023 res <<= blkbits;
3024
3025 /* Sanity check against vm- & vfs- imposed limits */
3026 if (res > upper_limit)
3027 res = upper_limit;
3028
3029 return res;
3030 }
3031
3032 /*
3033 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3034 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3035 * We need to be 1 filesystem block less than the 2^48 sector limit.
3036 */
ext4_max_bitmap_size(int bits,int has_huge_files)3037 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3038 {
3039 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3040 int meta_blocks;
3041
3042 /*
3043 * This is calculated to be the largest file size for a dense, block
3044 * mapped file such that the file's total number of 512-byte sectors,
3045 * including data and all indirect blocks, does not exceed (2^48 - 1).
3046 *
3047 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3048 * number of 512-byte sectors of the file.
3049 */
3050 if (!has_huge_files) {
3051 /*
3052 * !has_huge_files or implies that the inode i_block field
3053 * represents total file blocks in 2^32 512-byte sectors ==
3054 * size of vfs inode i_blocks * 8
3055 */
3056 upper_limit = (1LL << 32) - 1;
3057
3058 /* total blocks in file system block size */
3059 upper_limit >>= (bits - 9);
3060
3061 } else {
3062 /*
3063 * We use 48 bit ext4_inode i_blocks
3064 * With EXT4_HUGE_FILE_FL set the i_blocks
3065 * represent total number of blocks in
3066 * file system block size
3067 */
3068 upper_limit = (1LL << 48) - 1;
3069
3070 }
3071
3072 /* indirect blocks */
3073 meta_blocks = 1;
3074 /* double indirect blocks */
3075 meta_blocks += 1 + (1LL << (bits-2));
3076 /* tripple indirect blocks */
3077 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3078
3079 upper_limit -= meta_blocks;
3080 upper_limit <<= bits;
3081
3082 res += 1LL << (bits-2);
3083 res += 1LL << (2*(bits-2));
3084 res += 1LL << (3*(bits-2));
3085 res <<= bits;
3086 if (res > upper_limit)
3087 res = upper_limit;
3088
3089 if (res > MAX_LFS_FILESIZE)
3090 res = MAX_LFS_FILESIZE;
3091
3092 return (loff_t)res;
3093 }
3094
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3095 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3096 ext4_fsblk_t logical_sb_block, int nr)
3097 {
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 ext4_group_t bg, first_meta_bg;
3100 int has_super = 0;
3101
3102 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3103
3104 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3105 return logical_sb_block + nr + 1;
3106 bg = sbi->s_desc_per_block * nr;
3107 if (ext4_bg_has_super(sb, bg))
3108 has_super = 1;
3109
3110 /*
3111 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3112 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3113 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3114 * compensate.
3115 */
3116 if (sb->s_blocksize == 1024 && nr == 0 &&
3117 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3118 has_super++;
3119
3120 return (has_super + ext4_group_first_block_no(sb, bg));
3121 }
3122
3123 /**
3124 * ext4_get_stripe_size: Get the stripe size.
3125 * @sbi: In memory super block info
3126 *
3127 * If we have specified it via mount option, then
3128 * use the mount option value. If the value specified at mount time is
3129 * greater than the blocks per group use the super block value.
3130 * If the super block value is greater than blocks per group return 0.
3131 * Allocator needs it be less than blocks per group.
3132 *
3133 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3134 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3135 {
3136 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3137 unsigned long stripe_width =
3138 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3139 int ret;
3140
3141 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3142 ret = sbi->s_stripe;
3143 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3144 ret = stripe_width;
3145 else if (stride && stride <= sbi->s_blocks_per_group)
3146 ret = stride;
3147 else
3148 ret = 0;
3149
3150 /*
3151 * If the stripe width is 1, this makes no sense and
3152 * we set it to 0 to turn off stripe handling code.
3153 */
3154 if (ret <= 1)
3155 ret = 0;
3156
3157 return ret;
3158 }
3159
3160 /*
3161 * Check whether this filesystem can be mounted based on
3162 * the features present and the RDONLY/RDWR mount requested.
3163 * Returns 1 if this filesystem can be mounted as requested,
3164 * 0 if it cannot be.
3165 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3166 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3167 {
3168 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3169 ext4_msg(sb, KERN_ERR,
3170 "Couldn't mount because of "
3171 "unsupported optional features (%x)",
3172 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3173 ~EXT4_FEATURE_INCOMPAT_SUPP));
3174 return 0;
3175 }
3176
3177 #ifndef CONFIG_UNICODE
3178 if (ext4_has_feature_casefold(sb)) {
3179 ext4_msg(sb, KERN_ERR,
3180 "Filesystem with casefold feature cannot be "
3181 "mounted without CONFIG_UNICODE");
3182 return 0;
3183 }
3184 #endif
3185
3186 if (readonly)
3187 return 1;
3188
3189 if (ext4_has_feature_readonly(sb)) {
3190 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3191 sb->s_flags |= SB_RDONLY;
3192 return 1;
3193 }
3194
3195 /* Check that feature set is OK for a read-write mount */
3196 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3197 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3198 "unsupported optional features (%x)",
3199 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3200 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3201 return 0;
3202 }
3203 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3204 ext4_msg(sb, KERN_ERR,
3205 "Can't support bigalloc feature without "
3206 "extents feature\n");
3207 return 0;
3208 }
3209
3210 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3211 if (!readonly && (ext4_has_feature_quota(sb) ||
3212 ext4_has_feature_project(sb))) {
3213 ext4_msg(sb, KERN_ERR,
3214 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3215 return 0;
3216 }
3217 #endif /* CONFIG_QUOTA */
3218 return 1;
3219 }
3220
3221 /*
3222 * This function is called once a day if we have errors logged
3223 * on the file system
3224 */
print_daily_error_info(struct timer_list * t)3225 static void print_daily_error_info(struct timer_list *t)
3226 {
3227 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3228 struct super_block *sb = sbi->s_sb;
3229 struct ext4_super_block *es = sbi->s_es;
3230
3231 if (es->s_error_count)
3232 /* fsck newer than v1.41.13 is needed to clean this condition. */
3233 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3234 le32_to_cpu(es->s_error_count));
3235 if (es->s_first_error_time) {
3236 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3237 sb->s_id,
3238 ext4_get_tstamp(es, s_first_error_time),
3239 (int) sizeof(es->s_first_error_func),
3240 es->s_first_error_func,
3241 le32_to_cpu(es->s_first_error_line));
3242 if (es->s_first_error_ino)
3243 printk(KERN_CONT ": inode %u",
3244 le32_to_cpu(es->s_first_error_ino));
3245 if (es->s_first_error_block)
3246 printk(KERN_CONT ": block %llu", (unsigned long long)
3247 le64_to_cpu(es->s_first_error_block));
3248 printk(KERN_CONT "\n");
3249 }
3250 if (es->s_last_error_time) {
3251 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3252 sb->s_id,
3253 ext4_get_tstamp(es, s_last_error_time),
3254 (int) sizeof(es->s_last_error_func),
3255 es->s_last_error_func,
3256 le32_to_cpu(es->s_last_error_line));
3257 if (es->s_last_error_ino)
3258 printk(KERN_CONT ": inode %u",
3259 le32_to_cpu(es->s_last_error_ino));
3260 if (es->s_last_error_block)
3261 printk(KERN_CONT ": block %llu", (unsigned long long)
3262 le64_to_cpu(es->s_last_error_block));
3263 printk(KERN_CONT "\n");
3264 }
3265 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3266 }
3267
3268 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3269 static int ext4_run_li_request(struct ext4_li_request *elr)
3270 {
3271 struct ext4_group_desc *gdp = NULL;
3272 struct super_block *sb = elr->lr_super;
3273 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3274 ext4_group_t group = elr->lr_next_group;
3275 unsigned int prefetch_ios = 0;
3276 int ret = 0;
3277 u64 start_time;
3278
3279 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3280 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3281 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3282 if (prefetch_ios)
3283 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3284 prefetch_ios);
3285 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3286 prefetch_ios);
3287 if (group >= elr->lr_next_group) {
3288 ret = 1;
3289 if (elr->lr_first_not_zeroed != ngroups &&
3290 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3291 elr->lr_next_group = elr->lr_first_not_zeroed;
3292 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3293 ret = 0;
3294 }
3295 }
3296 return ret;
3297 }
3298
3299 for (; group < ngroups; group++) {
3300 gdp = ext4_get_group_desc(sb, group, NULL);
3301 if (!gdp) {
3302 ret = 1;
3303 break;
3304 }
3305
3306 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3307 break;
3308 }
3309
3310 if (group >= ngroups)
3311 ret = 1;
3312
3313 if (!ret) {
3314 start_time = ktime_get_real_ns();
3315 ret = ext4_init_inode_table(sb, group,
3316 elr->lr_timeout ? 0 : 1);
3317 trace_ext4_lazy_itable_init(sb, group);
3318 if (elr->lr_timeout == 0) {
3319 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3320 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3321 }
3322 elr->lr_next_sched = jiffies + elr->lr_timeout;
3323 elr->lr_next_group = group + 1;
3324 }
3325 return ret;
3326 }
3327
3328 /*
3329 * Remove lr_request from the list_request and free the
3330 * request structure. Should be called with li_list_mtx held
3331 */
ext4_remove_li_request(struct ext4_li_request * elr)3332 static void ext4_remove_li_request(struct ext4_li_request *elr)
3333 {
3334 if (!elr)
3335 return;
3336
3337 list_del(&elr->lr_request);
3338 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3339 kfree(elr);
3340 }
3341
ext4_unregister_li_request(struct super_block * sb)3342 static void ext4_unregister_li_request(struct super_block *sb)
3343 {
3344 mutex_lock(&ext4_li_mtx);
3345 if (!ext4_li_info) {
3346 mutex_unlock(&ext4_li_mtx);
3347 return;
3348 }
3349
3350 mutex_lock(&ext4_li_info->li_list_mtx);
3351 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3352 mutex_unlock(&ext4_li_info->li_list_mtx);
3353 mutex_unlock(&ext4_li_mtx);
3354 }
3355
3356 static struct task_struct *ext4_lazyinit_task;
3357
3358 /*
3359 * This is the function where ext4lazyinit thread lives. It walks
3360 * through the request list searching for next scheduled filesystem.
3361 * When such a fs is found, run the lazy initialization request
3362 * (ext4_rn_li_request) and keep track of the time spend in this
3363 * function. Based on that time we compute next schedule time of
3364 * the request. When walking through the list is complete, compute
3365 * next waking time and put itself into sleep.
3366 */
ext4_lazyinit_thread(void * arg)3367 static int ext4_lazyinit_thread(void *arg)
3368 {
3369 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3370 struct list_head *pos, *n;
3371 struct ext4_li_request *elr;
3372 unsigned long next_wakeup, cur;
3373
3374 BUG_ON(NULL == eli);
3375 set_freezable();
3376
3377 cont_thread:
3378 while (true) {
3379 next_wakeup = MAX_JIFFY_OFFSET;
3380
3381 mutex_lock(&eli->li_list_mtx);
3382 if (list_empty(&eli->li_request_list)) {
3383 mutex_unlock(&eli->li_list_mtx);
3384 goto exit_thread;
3385 }
3386 list_for_each_safe(pos, n, &eli->li_request_list) {
3387 int err = 0;
3388 int progress = 0;
3389 elr = list_entry(pos, struct ext4_li_request,
3390 lr_request);
3391
3392 if (time_before(jiffies, elr->lr_next_sched)) {
3393 if (time_before(elr->lr_next_sched, next_wakeup))
3394 next_wakeup = elr->lr_next_sched;
3395 continue;
3396 }
3397 if (down_read_trylock(&elr->lr_super->s_umount)) {
3398 if (sb_start_write_trylock(elr->lr_super)) {
3399 progress = 1;
3400 /*
3401 * We hold sb->s_umount, sb can not
3402 * be removed from the list, it is
3403 * now safe to drop li_list_mtx
3404 */
3405 mutex_unlock(&eli->li_list_mtx);
3406 err = ext4_run_li_request(elr);
3407 sb_end_write(elr->lr_super);
3408 mutex_lock(&eli->li_list_mtx);
3409 n = pos->next;
3410 }
3411 up_read((&elr->lr_super->s_umount));
3412 }
3413 /* error, remove the lazy_init job */
3414 if (err) {
3415 ext4_remove_li_request(elr);
3416 continue;
3417 }
3418 if (!progress) {
3419 elr->lr_next_sched = jiffies +
3420 (prandom_u32()
3421 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3422 }
3423 if (time_before(elr->lr_next_sched, next_wakeup))
3424 next_wakeup = elr->lr_next_sched;
3425 }
3426 mutex_unlock(&eli->li_list_mtx);
3427
3428 try_to_freeze();
3429
3430 cur = jiffies;
3431 if ((time_after_eq(cur, next_wakeup)) ||
3432 (MAX_JIFFY_OFFSET == next_wakeup)) {
3433 cond_resched();
3434 continue;
3435 }
3436
3437 schedule_timeout_interruptible(next_wakeup - cur);
3438
3439 if (kthread_should_stop()) {
3440 ext4_clear_request_list();
3441 goto exit_thread;
3442 }
3443 }
3444
3445 exit_thread:
3446 /*
3447 * It looks like the request list is empty, but we need
3448 * to check it under the li_list_mtx lock, to prevent any
3449 * additions into it, and of course we should lock ext4_li_mtx
3450 * to atomically free the list and ext4_li_info, because at
3451 * this point another ext4 filesystem could be registering
3452 * new one.
3453 */
3454 mutex_lock(&ext4_li_mtx);
3455 mutex_lock(&eli->li_list_mtx);
3456 if (!list_empty(&eli->li_request_list)) {
3457 mutex_unlock(&eli->li_list_mtx);
3458 mutex_unlock(&ext4_li_mtx);
3459 goto cont_thread;
3460 }
3461 mutex_unlock(&eli->li_list_mtx);
3462 kfree(ext4_li_info);
3463 ext4_li_info = NULL;
3464 mutex_unlock(&ext4_li_mtx);
3465
3466 return 0;
3467 }
3468
ext4_clear_request_list(void)3469 static void ext4_clear_request_list(void)
3470 {
3471 struct list_head *pos, *n;
3472 struct ext4_li_request *elr;
3473
3474 mutex_lock(&ext4_li_info->li_list_mtx);
3475 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3476 elr = list_entry(pos, struct ext4_li_request,
3477 lr_request);
3478 ext4_remove_li_request(elr);
3479 }
3480 mutex_unlock(&ext4_li_info->li_list_mtx);
3481 }
3482
ext4_run_lazyinit_thread(void)3483 static int ext4_run_lazyinit_thread(void)
3484 {
3485 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3486 ext4_li_info, "ext4lazyinit");
3487 if (IS_ERR(ext4_lazyinit_task)) {
3488 int err = PTR_ERR(ext4_lazyinit_task);
3489 ext4_clear_request_list();
3490 kfree(ext4_li_info);
3491 ext4_li_info = NULL;
3492 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3493 "initialization thread\n",
3494 err);
3495 return err;
3496 }
3497 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3498 return 0;
3499 }
3500
3501 /*
3502 * Check whether it make sense to run itable init. thread or not.
3503 * If there is at least one uninitialized inode table, return
3504 * corresponding group number, else the loop goes through all
3505 * groups and return total number of groups.
3506 */
ext4_has_uninit_itable(struct super_block * sb)3507 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3508 {
3509 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3510 struct ext4_group_desc *gdp = NULL;
3511
3512 if (!ext4_has_group_desc_csum(sb))
3513 return ngroups;
3514
3515 for (group = 0; group < ngroups; group++) {
3516 gdp = ext4_get_group_desc(sb, group, NULL);
3517 if (!gdp)
3518 continue;
3519
3520 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3521 break;
3522 }
3523
3524 return group;
3525 }
3526
ext4_li_info_new(void)3527 static int ext4_li_info_new(void)
3528 {
3529 struct ext4_lazy_init *eli = NULL;
3530
3531 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3532 if (!eli)
3533 return -ENOMEM;
3534
3535 INIT_LIST_HEAD(&eli->li_request_list);
3536 mutex_init(&eli->li_list_mtx);
3537
3538 eli->li_state |= EXT4_LAZYINIT_QUIT;
3539
3540 ext4_li_info = eli;
3541
3542 return 0;
3543 }
3544
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3545 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3546 ext4_group_t start)
3547 {
3548 struct ext4_li_request *elr;
3549
3550 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3551 if (!elr)
3552 return NULL;
3553
3554 elr->lr_super = sb;
3555 elr->lr_first_not_zeroed = start;
3556 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3557 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3558 elr->lr_next_group = start;
3559 } else {
3560 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3561 }
3562
3563 /*
3564 * Randomize first schedule time of the request to
3565 * spread the inode table initialization requests
3566 * better.
3567 */
3568 elr->lr_next_sched = jiffies + (prandom_u32() %
3569 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3570 return elr;
3571 }
3572
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3573 int ext4_register_li_request(struct super_block *sb,
3574 ext4_group_t first_not_zeroed)
3575 {
3576 struct ext4_sb_info *sbi = EXT4_SB(sb);
3577 struct ext4_li_request *elr = NULL;
3578 ext4_group_t ngroups = sbi->s_groups_count;
3579 int ret = 0;
3580
3581 mutex_lock(&ext4_li_mtx);
3582 if (sbi->s_li_request != NULL) {
3583 /*
3584 * Reset timeout so it can be computed again, because
3585 * s_li_wait_mult might have changed.
3586 */
3587 sbi->s_li_request->lr_timeout = 0;
3588 goto out;
3589 }
3590
3591 if (sb_rdonly(sb) ||
3592 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3593 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3594 goto out;
3595
3596 elr = ext4_li_request_new(sb, first_not_zeroed);
3597 if (!elr) {
3598 ret = -ENOMEM;
3599 goto out;
3600 }
3601
3602 if (NULL == ext4_li_info) {
3603 ret = ext4_li_info_new();
3604 if (ret)
3605 goto out;
3606 }
3607
3608 mutex_lock(&ext4_li_info->li_list_mtx);
3609 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3610 mutex_unlock(&ext4_li_info->li_list_mtx);
3611
3612 sbi->s_li_request = elr;
3613 /*
3614 * set elr to NULL here since it has been inserted to
3615 * the request_list and the removal and free of it is
3616 * handled by ext4_clear_request_list from now on.
3617 */
3618 elr = NULL;
3619
3620 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3621 ret = ext4_run_lazyinit_thread();
3622 if (ret)
3623 goto out;
3624 }
3625 out:
3626 mutex_unlock(&ext4_li_mtx);
3627 if (ret)
3628 kfree(elr);
3629 return ret;
3630 }
3631
3632 /*
3633 * We do not need to lock anything since this is called on
3634 * module unload.
3635 */
ext4_destroy_lazyinit_thread(void)3636 static void ext4_destroy_lazyinit_thread(void)
3637 {
3638 /*
3639 * If thread exited earlier
3640 * there's nothing to be done.
3641 */
3642 if (!ext4_li_info || !ext4_lazyinit_task)
3643 return;
3644
3645 kthread_stop(ext4_lazyinit_task);
3646 }
3647
set_journal_csum_feature_set(struct super_block * sb)3648 static int set_journal_csum_feature_set(struct super_block *sb)
3649 {
3650 int ret = 1;
3651 int compat, incompat;
3652 struct ext4_sb_info *sbi = EXT4_SB(sb);
3653
3654 if (ext4_has_metadata_csum(sb)) {
3655 /* journal checksum v3 */
3656 compat = 0;
3657 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3658 } else {
3659 /* journal checksum v1 */
3660 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3661 incompat = 0;
3662 }
3663
3664 jbd2_journal_clear_features(sbi->s_journal,
3665 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3666 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3667 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3668 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3669 ret = jbd2_journal_set_features(sbi->s_journal,
3670 compat, 0,
3671 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3672 incompat);
3673 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3674 ret = jbd2_journal_set_features(sbi->s_journal,
3675 compat, 0,
3676 incompat);
3677 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3678 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3679 } else {
3680 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3681 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3682 }
3683
3684 return ret;
3685 }
3686
3687 /*
3688 * Note: calculating the overhead so we can be compatible with
3689 * historical BSD practice is quite difficult in the face of
3690 * clusters/bigalloc. This is because multiple metadata blocks from
3691 * different block group can end up in the same allocation cluster.
3692 * Calculating the exact overhead in the face of clustered allocation
3693 * requires either O(all block bitmaps) in memory or O(number of block
3694 * groups**2) in time. We will still calculate the superblock for
3695 * older file systems --- and if we come across with a bigalloc file
3696 * system with zero in s_overhead_clusters the estimate will be close to
3697 * correct especially for very large cluster sizes --- but for newer
3698 * file systems, it's better to calculate this figure once at mkfs
3699 * time, and store it in the superblock. If the superblock value is
3700 * present (even for non-bigalloc file systems), we will use it.
3701 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3702 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3703 char *buf)
3704 {
3705 struct ext4_sb_info *sbi = EXT4_SB(sb);
3706 struct ext4_group_desc *gdp;
3707 ext4_fsblk_t first_block, last_block, b;
3708 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3709 int s, j, count = 0;
3710 int has_super = ext4_bg_has_super(sb, grp);
3711
3712 if (!ext4_has_feature_bigalloc(sb))
3713 return (has_super + ext4_bg_num_gdb(sb, grp) +
3714 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3715 sbi->s_itb_per_group + 2);
3716
3717 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3718 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3719 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3720 for (i = 0; i < ngroups; i++) {
3721 gdp = ext4_get_group_desc(sb, i, NULL);
3722 b = ext4_block_bitmap(sb, gdp);
3723 if (b >= first_block && b <= last_block) {
3724 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3725 count++;
3726 }
3727 b = ext4_inode_bitmap(sb, gdp);
3728 if (b >= first_block && b <= last_block) {
3729 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3730 count++;
3731 }
3732 b = ext4_inode_table(sb, gdp);
3733 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3734 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3735 int c = EXT4_B2C(sbi, b - first_block);
3736 ext4_set_bit(c, buf);
3737 count++;
3738 }
3739 if (i != grp)
3740 continue;
3741 s = 0;
3742 if (ext4_bg_has_super(sb, grp)) {
3743 ext4_set_bit(s++, buf);
3744 count++;
3745 }
3746 j = ext4_bg_num_gdb(sb, grp);
3747 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3748 ext4_error(sb, "Invalid number of block group "
3749 "descriptor blocks: %d", j);
3750 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3751 }
3752 count += j;
3753 for (; j > 0; j--)
3754 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3755 }
3756 if (!count)
3757 return 0;
3758 return EXT4_CLUSTERS_PER_GROUP(sb) -
3759 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3760 }
3761
3762 /*
3763 * Compute the overhead and stash it in sbi->s_overhead
3764 */
ext4_calculate_overhead(struct super_block * sb)3765 int ext4_calculate_overhead(struct super_block *sb)
3766 {
3767 struct ext4_sb_info *sbi = EXT4_SB(sb);
3768 struct ext4_super_block *es = sbi->s_es;
3769 struct inode *j_inode;
3770 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3771 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3772 ext4_fsblk_t overhead = 0;
3773 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3774
3775 if (!buf)
3776 return -ENOMEM;
3777
3778 /*
3779 * Compute the overhead (FS structures). This is constant
3780 * for a given filesystem unless the number of block groups
3781 * changes so we cache the previous value until it does.
3782 */
3783
3784 /*
3785 * All of the blocks before first_data_block are overhead
3786 */
3787 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3788
3789 /*
3790 * Add the overhead found in each block group
3791 */
3792 for (i = 0; i < ngroups; i++) {
3793 int blks;
3794
3795 blks = count_overhead(sb, i, buf);
3796 overhead += blks;
3797 if (blks)
3798 memset(buf, 0, PAGE_SIZE);
3799 cond_resched();
3800 }
3801
3802 /*
3803 * Add the internal journal blocks whether the journal has been
3804 * loaded or not
3805 */
3806 if (sbi->s_journal && !sbi->s_journal_bdev)
3807 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3808 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3809 /* j_inum for internal journal is non-zero */
3810 j_inode = ext4_get_journal_inode(sb, j_inum);
3811 if (j_inode) {
3812 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3813 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3814 iput(j_inode);
3815 } else {
3816 ext4_msg(sb, KERN_ERR, "can't get journal size");
3817 }
3818 }
3819 sbi->s_overhead = overhead;
3820 smp_wmb();
3821 free_page((unsigned long) buf);
3822 return 0;
3823 }
3824
ext4_set_resv_clusters(struct super_block * sb)3825 static void ext4_set_resv_clusters(struct super_block *sb)
3826 {
3827 ext4_fsblk_t resv_clusters;
3828 struct ext4_sb_info *sbi = EXT4_SB(sb);
3829
3830 /*
3831 * There's no need to reserve anything when we aren't using extents.
3832 * The space estimates are exact, there are no unwritten extents,
3833 * hole punching doesn't need new metadata... This is needed especially
3834 * to keep ext2/3 backward compatibility.
3835 */
3836 if (!ext4_has_feature_extents(sb))
3837 return;
3838 /*
3839 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3840 * This should cover the situations where we can not afford to run
3841 * out of space like for example punch hole, or converting
3842 * unwritten extents in delalloc path. In most cases such
3843 * allocation would require 1, or 2 blocks, higher numbers are
3844 * very rare.
3845 */
3846 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3847 sbi->s_cluster_bits);
3848
3849 do_div(resv_clusters, 50);
3850 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3851
3852 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3853 }
3854
ext4_quota_mode(struct super_block * sb)3855 static const char *ext4_quota_mode(struct super_block *sb)
3856 {
3857 #ifdef CONFIG_QUOTA
3858 if (!ext4_quota_capable(sb))
3859 return "none";
3860
3861 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3862 return "journalled";
3863 else
3864 return "writeback";
3865 #else
3866 return "disabled";
3867 #endif
3868 }
3869
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))3870 static void ext4_setup_csum_trigger(struct super_block *sb,
3871 enum ext4_journal_trigger_type type,
3872 void (*trigger)(
3873 struct jbd2_buffer_trigger_type *type,
3874 struct buffer_head *bh,
3875 void *mapped_data,
3876 size_t size))
3877 {
3878 struct ext4_sb_info *sbi = EXT4_SB(sb);
3879
3880 sbi->s_journal_triggers[type].sb = sb;
3881 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3882 }
3883
ext4_fill_super(struct super_block * sb,void * data,int silent)3884 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3885 {
3886 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3887 char *orig_data = kstrdup(data, GFP_KERNEL);
3888 struct buffer_head *bh, **group_desc;
3889 struct ext4_super_block *es = NULL;
3890 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3891 struct flex_groups **flex_groups;
3892 ext4_fsblk_t block;
3893 ext4_fsblk_t sb_block = get_sb_block(&data);
3894 ext4_fsblk_t logical_sb_block;
3895 unsigned long offset = 0;
3896 unsigned long def_mount_opts;
3897 struct inode *root;
3898 const char *descr;
3899 int ret = -ENOMEM;
3900 int blocksize, clustersize;
3901 unsigned int db_count;
3902 unsigned int i;
3903 int needs_recovery, has_huge_files;
3904 __u64 blocks_count;
3905 int err = 0;
3906 ext4_group_t first_not_zeroed;
3907 struct ext4_parsed_options parsed_opts;
3908
3909 /* Set defaults for the variables that will be set during parsing */
3910 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3911 parsed_opts.journal_devnum = 0;
3912 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3913
3914 if ((data && !orig_data) || !sbi)
3915 goto out_free_base;
3916
3917 sbi->s_daxdev = dax_dev;
3918 sbi->s_blockgroup_lock =
3919 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3920 if (!sbi->s_blockgroup_lock)
3921 goto out_free_base;
3922
3923 sb->s_fs_info = sbi;
3924 sbi->s_sb = sb;
3925 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3926 sbi->s_sb_block = sb_block;
3927 sbi->s_sectors_written_start =
3928 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3929
3930 /* Cleanup superblock name */
3931 strreplace(sb->s_id, '/', '!');
3932
3933 /* -EINVAL is default */
3934 ret = -EINVAL;
3935 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3936 if (!blocksize) {
3937 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3938 goto out_fail;
3939 }
3940
3941 /*
3942 * The ext4 superblock will not be buffer aligned for other than 1kB
3943 * block sizes. We need to calculate the offset from buffer start.
3944 */
3945 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3946 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3947 offset = do_div(logical_sb_block, blocksize);
3948 } else {
3949 logical_sb_block = sb_block;
3950 }
3951
3952 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3953 if (IS_ERR(bh)) {
3954 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3955 ret = PTR_ERR(bh);
3956 goto out_fail;
3957 }
3958 /*
3959 * Note: s_es must be initialized as soon as possible because
3960 * some ext4 macro-instructions depend on its value
3961 */
3962 es = (struct ext4_super_block *) (bh->b_data + offset);
3963 sbi->s_es = es;
3964 sb->s_magic = le16_to_cpu(es->s_magic);
3965 if (sb->s_magic != EXT4_SUPER_MAGIC)
3966 goto cantfind_ext4;
3967 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3968
3969 /* Warn if metadata_csum and gdt_csum are both set. */
3970 if (ext4_has_feature_metadata_csum(sb) &&
3971 ext4_has_feature_gdt_csum(sb))
3972 ext4_warning(sb, "metadata_csum and uninit_bg are "
3973 "redundant flags; please run fsck.");
3974
3975 /* Check for a known checksum algorithm */
3976 if (!ext4_verify_csum_type(sb, es)) {
3977 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3978 "unknown checksum algorithm.");
3979 silent = 1;
3980 goto cantfind_ext4;
3981 }
3982 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3983 ext4_orphan_file_block_trigger);
3984
3985 /* Load the checksum driver */
3986 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3987 if (IS_ERR(sbi->s_chksum_driver)) {
3988 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3989 ret = PTR_ERR(sbi->s_chksum_driver);
3990 sbi->s_chksum_driver = NULL;
3991 goto failed_mount;
3992 }
3993
3994 /* Check superblock checksum */
3995 if (!ext4_superblock_csum_verify(sb, es)) {
3996 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3997 "invalid superblock checksum. Run e2fsck?");
3998 silent = 1;
3999 ret = -EFSBADCRC;
4000 goto cantfind_ext4;
4001 }
4002
4003 /* Precompute checksum seed for all metadata */
4004 if (ext4_has_feature_csum_seed(sb))
4005 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4006 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4007 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4008 sizeof(es->s_uuid));
4009
4010 /* Set defaults before we parse the mount options */
4011 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4012 set_opt(sb, INIT_INODE_TABLE);
4013 if (def_mount_opts & EXT4_DEFM_DEBUG)
4014 set_opt(sb, DEBUG);
4015 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4016 set_opt(sb, GRPID);
4017 if (def_mount_opts & EXT4_DEFM_UID16)
4018 set_opt(sb, NO_UID32);
4019 /* xattr user namespace & acls are now defaulted on */
4020 set_opt(sb, XATTR_USER);
4021 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4022 set_opt(sb, POSIX_ACL);
4023 #endif
4024 if (ext4_has_feature_fast_commit(sb))
4025 set_opt2(sb, JOURNAL_FAST_COMMIT);
4026 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4027 if (ext4_has_metadata_csum(sb))
4028 set_opt(sb, JOURNAL_CHECKSUM);
4029
4030 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4031 set_opt(sb, JOURNAL_DATA);
4032 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4033 set_opt(sb, ORDERED_DATA);
4034 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4035 set_opt(sb, WRITEBACK_DATA);
4036
4037 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4038 set_opt(sb, ERRORS_PANIC);
4039 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4040 set_opt(sb, ERRORS_CONT);
4041 else
4042 set_opt(sb, ERRORS_RO);
4043 /* block_validity enabled by default; disable with noblock_validity */
4044 set_opt(sb, BLOCK_VALIDITY);
4045 if (def_mount_opts & EXT4_DEFM_DISCARD)
4046 set_opt(sb, DISCARD);
4047
4048 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4049 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4050 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4051 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4052 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4053
4054 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4055 set_opt(sb, BARRIER);
4056
4057 /*
4058 * enable delayed allocation by default
4059 * Use -o nodelalloc to turn it off
4060 */
4061 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4062 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4063 set_opt(sb, DELALLOC);
4064
4065 /*
4066 * set default s_li_wait_mult for lazyinit, for the case there is
4067 * no mount option specified.
4068 */
4069 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4070
4071 if (le32_to_cpu(es->s_log_block_size) >
4072 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4073 ext4_msg(sb, KERN_ERR,
4074 "Invalid log block size: %u",
4075 le32_to_cpu(es->s_log_block_size));
4076 goto failed_mount;
4077 }
4078 if (le32_to_cpu(es->s_log_cluster_size) >
4079 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4080 ext4_msg(sb, KERN_ERR,
4081 "Invalid log cluster size: %u",
4082 le32_to_cpu(es->s_log_cluster_size));
4083 goto failed_mount;
4084 }
4085
4086 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4087
4088 if (blocksize == PAGE_SIZE)
4089 set_opt(sb, DIOREAD_NOLOCK);
4090
4091 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4092 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4093 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4094 } else {
4095 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4096 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4097 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4098 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4099 sbi->s_first_ino);
4100 goto failed_mount;
4101 }
4102 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4103 (!is_power_of_2(sbi->s_inode_size)) ||
4104 (sbi->s_inode_size > blocksize)) {
4105 ext4_msg(sb, KERN_ERR,
4106 "unsupported inode size: %d",
4107 sbi->s_inode_size);
4108 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4109 goto failed_mount;
4110 }
4111 /*
4112 * i_atime_extra is the last extra field available for
4113 * [acm]times in struct ext4_inode. Checking for that
4114 * field should suffice to ensure we have extra space
4115 * for all three.
4116 */
4117 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4118 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4119 sb->s_time_gran = 1;
4120 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4121 } else {
4122 sb->s_time_gran = NSEC_PER_SEC;
4123 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4124 }
4125 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4126 }
4127 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4128 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4129 EXT4_GOOD_OLD_INODE_SIZE;
4130 if (ext4_has_feature_extra_isize(sb)) {
4131 unsigned v, max = (sbi->s_inode_size -
4132 EXT4_GOOD_OLD_INODE_SIZE);
4133
4134 v = le16_to_cpu(es->s_want_extra_isize);
4135 if (v > max) {
4136 ext4_msg(sb, KERN_ERR,
4137 "bad s_want_extra_isize: %d", v);
4138 goto failed_mount;
4139 }
4140 if (sbi->s_want_extra_isize < v)
4141 sbi->s_want_extra_isize = v;
4142
4143 v = le16_to_cpu(es->s_min_extra_isize);
4144 if (v > max) {
4145 ext4_msg(sb, KERN_ERR,
4146 "bad s_min_extra_isize: %d", v);
4147 goto failed_mount;
4148 }
4149 if (sbi->s_want_extra_isize < v)
4150 sbi->s_want_extra_isize = v;
4151 }
4152 }
4153
4154 if (sbi->s_es->s_mount_opts[0]) {
4155 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4156 sizeof(sbi->s_es->s_mount_opts),
4157 GFP_KERNEL);
4158 if (!s_mount_opts)
4159 goto failed_mount;
4160 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4161 ext4_msg(sb, KERN_WARNING,
4162 "failed to parse options in superblock: %s",
4163 s_mount_opts);
4164 }
4165 kfree(s_mount_opts);
4166 }
4167 sbi->s_def_mount_opt = sbi->s_mount_opt;
4168 if (!parse_options((char *) data, sb, &parsed_opts, 0))
4169 goto failed_mount;
4170
4171 #ifdef CONFIG_UNICODE
4172 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4173 const struct ext4_sb_encodings *encoding_info;
4174 struct unicode_map *encoding;
4175 __u16 encoding_flags;
4176
4177 if (ext4_sb_read_encoding(es, &encoding_info,
4178 &encoding_flags)) {
4179 ext4_msg(sb, KERN_ERR,
4180 "Encoding requested by superblock is unknown");
4181 goto failed_mount;
4182 }
4183
4184 encoding = utf8_load(encoding_info->version);
4185 if (IS_ERR(encoding)) {
4186 ext4_msg(sb, KERN_ERR,
4187 "can't mount with superblock charset: %s-%s "
4188 "not supported by the kernel. flags: 0x%x.",
4189 encoding_info->name, encoding_info->version,
4190 encoding_flags);
4191 goto failed_mount;
4192 }
4193 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4194 "%s-%s with flags 0x%hx", encoding_info->name,
4195 encoding_info->version?:"\b", encoding_flags);
4196
4197 sb->s_encoding = encoding;
4198 sb->s_encoding_flags = encoding_flags;
4199 }
4200 #endif
4201
4202 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4203 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4204 /* can't mount with both data=journal and dioread_nolock. */
4205 clear_opt(sb, DIOREAD_NOLOCK);
4206 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4207 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4208 ext4_msg(sb, KERN_ERR, "can't mount with "
4209 "both data=journal and delalloc");
4210 goto failed_mount;
4211 }
4212 if (test_opt(sb, DAX_ALWAYS)) {
4213 ext4_msg(sb, KERN_ERR, "can't mount with "
4214 "both data=journal and dax");
4215 goto failed_mount;
4216 }
4217 if (ext4_has_feature_encrypt(sb)) {
4218 ext4_msg(sb, KERN_WARNING,
4219 "encrypted files will use data=ordered "
4220 "instead of data journaling mode");
4221 }
4222 if (test_opt(sb, DELALLOC))
4223 clear_opt(sb, DELALLOC);
4224 } else {
4225 sb->s_iflags |= SB_I_CGROUPWB;
4226 }
4227
4228 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4229 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4230
4231 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4232 (ext4_has_compat_features(sb) ||
4233 ext4_has_ro_compat_features(sb) ||
4234 ext4_has_incompat_features(sb)))
4235 ext4_msg(sb, KERN_WARNING,
4236 "feature flags set on rev 0 fs, "
4237 "running e2fsck is recommended");
4238
4239 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4240 set_opt2(sb, HURD_COMPAT);
4241 if (ext4_has_feature_64bit(sb)) {
4242 ext4_msg(sb, KERN_ERR,
4243 "The Hurd can't support 64-bit file systems");
4244 goto failed_mount;
4245 }
4246
4247 /*
4248 * ea_inode feature uses l_i_version field which is not
4249 * available in HURD_COMPAT mode.
4250 */
4251 if (ext4_has_feature_ea_inode(sb)) {
4252 ext4_msg(sb, KERN_ERR,
4253 "ea_inode feature is not supported for Hurd");
4254 goto failed_mount;
4255 }
4256 }
4257
4258 if (IS_EXT2_SB(sb)) {
4259 if (ext2_feature_set_ok(sb))
4260 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4261 "using the ext4 subsystem");
4262 else {
4263 /*
4264 * If we're probing be silent, if this looks like
4265 * it's actually an ext[34] filesystem.
4266 */
4267 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4268 goto failed_mount;
4269 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4270 "to feature incompatibilities");
4271 goto failed_mount;
4272 }
4273 }
4274
4275 if (IS_EXT3_SB(sb)) {
4276 if (ext3_feature_set_ok(sb))
4277 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4278 "using the ext4 subsystem");
4279 else {
4280 /*
4281 * If we're probing be silent, if this looks like
4282 * it's actually an ext4 filesystem.
4283 */
4284 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4285 goto failed_mount;
4286 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4287 "to feature incompatibilities");
4288 goto failed_mount;
4289 }
4290 }
4291
4292 /*
4293 * Check feature flags regardless of the revision level, since we
4294 * previously didn't change the revision level when setting the flags,
4295 * so there is a chance incompat flags are set on a rev 0 filesystem.
4296 */
4297 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4298 goto failed_mount;
4299
4300 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4301 ext4_msg(sb, KERN_ERR,
4302 "Number of reserved GDT blocks insanely large: %d",
4303 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4304 goto failed_mount;
4305 }
4306
4307 if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0,
4308 bdev_nr_sectors(sb->s_bdev)))
4309 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4310
4311 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4312 if (ext4_has_feature_inline_data(sb)) {
4313 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4314 " that may contain inline data");
4315 goto failed_mount;
4316 }
4317 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4318 ext4_msg(sb, KERN_ERR,
4319 "DAX unsupported by block device.");
4320 goto failed_mount;
4321 }
4322 }
4323
4324 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4325 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4326 es->s_encryption_level);
4327 goto failed_mount;
4328 }
4329
4330 if (sb->s_blocksize != blocksize) {
4331 /*
4332 * bh must be released before kill_bdev(), otherwise
4333 * it won't be freed and its page also. kill_bdev()
4334 * is called by sb_set_blocksize().
4335 */
4336 brelse(bh);
4337 /* Validate the filesystem blocksize */
4338 if (!sb_set_blocksize(sb, blocksize)) {
4339 ext4_msg(sb, KERN_ERR, "bad block size %d",
4340 blocksize);
4341 bh = NULL;
4342 goto failed_mount;
4343 }
4344
4345 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4346 offset = do_div(logical_sb_block, blocksize);
4347 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4348 if (IS_ERR(bh)) {
4349 ext4_msg(sb, KERN_ERR,
4350 "Can't read superblock on 2nd try");
4351 ret = PTR_ERR(bh);
4352 bh = NULL;
4353 goto failed_mount;
4354 }
4355 es = (struct ext4_super_block *)(bh->b_data + offset);
4356 sbi->s_es = es;
4357 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4358 ext4_msg(sb, KERN_ERR,
4359 "Magic mismatch, very weird!");
4360 goto failed_mount;
4361 }
4362 }
4363
4364 has_huge_files = ext4_has_feature_huge_file(sb);
4365 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4366 has_huge_files);
4367 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4368
4369 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4370 if (ext4_has_feature_64bit(sb)) {
4371 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4372 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4373 !is_power_of_2(sbi->s_desc_size)) {
4374 ext4_msg(sb, KERN_ERR,
4375 "unsupported descriptor size %lu",
4376 sbi->s_desc_size);
4377 goto failed_mount;
4378 }
4379 } else
4380 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4381
4382 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4383 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4384
4385 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4386 if (sbi->s_inodes_per_block == 0)
4387 goto cantfind_ext4;
4388 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4389 sbi->s_inodes_per_group > blocksize * 8) {
4390 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4391 sbi->s_inodes_per_group);
4392 goto failed_mount;
4393 }
4394 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4395 sbi->s_inodes_per_block;
4396 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4397 sbi->s_sbh = bh;
4398 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4399 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4400 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4401
4402 for (i = 0; i < 4; i++)
4403 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4404 sbi->s_def_hash_version = es->s_def_hash_version;
4405 if (ext4_has_feature_dir_index(sb)) {
4406 i = le32_to_cpu(es->s_flags);
4407 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4408 sbi->s_hash_unsigned = 3;
4409 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4410 #ifdef __CHAR_UNSIGNED__
4411 if (!sb_rdonly(sb))
4412 es->s_flags |=
4413 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4414 sbi->s_hash_unsigned = 3;
4415 #else
4416 if (!sb_rdonly(sb))
4417 es->s_flags |=
4418 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4419 #endif
4420 }
4421 }
4422
4423 /* Handle clustersize */
4424 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4425 if (ext4_has_feature_bigalloc(sb)) {
4426 if (clustersize < blocksize) {
4427 ext4_msg(sb, KERN_ERR,
4428 "cluster size (%d) smaller than "
4429 "block size (%d)", clustersize, blocksize);
4430 goto failed_mount;
4431 }
4432 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4433 le32_to_cpu(es->s_log_block_size);
4434 sbi->s_clusters_per_group =
4435 le32_to_cpu(es->s_clusters_per_group);
4436 if (sbi->s_clusters_per_group > blocksize * 8) {
4437 ext4_msg(sb, KERN_ERR,
4438 "#clusters per group too big: %lu",
4439 sbi->s_clusters_per_group);
4440 goto failed_mount;
4441 }
4442 if (sbi->s_blocks_per_group !=
4443 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4444 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4445 "clusters per group (%lu) inconsistent",
4446 sbi->s_blocks_per_group,
4447 sbi->s_clusters_per_group);
4448 goto failed_mount;
4449 }
4450 } else {
4451 if (clustersize != blocksize) {
4452 ext4_msg(sb, KERN_ERR,
4453 "fragment/cluster size (%d) != "
4454 "block size (%d)", clustersize, blocksize);
4455 goto failed_mount;
4456 }
4457 if (sbi->s_blocks_per_group > blocksize * 8) {
4458 ext4_msg(sb, KERN_ERR,
4459 "#blocks per group too big: %lu",
4460 sbi->s_blocks_per_group);
4461 goto failed_mount;
4462 }
4463 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4464 sbi->s_cluster_bits = 0;
4465 }
4466 sbi->s_cluster_ratio = clustersize / blocksize;
4467
4468 /* Do we have standard group size of clustersize * 8 blocks ? */
4469 if (sbi->s_blocks_per_group == clustersize << 3)
4470 set_opt2(sb, STD_GROUP_SIZE);
4471
4472 /*
4473 * Test whether we have more sectors than will fit in sector_t,
4474 * and whether the max offset is addressable by the page cache.
4475 */
4476 err = generic_check_addressable(sb->s_blocksize_bits,
4477 ext4_blocks_count(es));
4478 if (err) {
4479 ext4_msg(sb, KERN_ERR, "filesystem"
4480 " too large to mount safely on this system");
4481 goto failed_mount;
4482 }
4483
4484 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4485 goto cantfind_ext4;
4486
4487 /* check blocks count against device size */
4488 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4489 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4490 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4491 "exceeds size of device (%llu blocks)",
4492 ext4_blocks_count(es), blocks_count);
4493 goto failed_mount;
4494 }
4495
4496 /*
4497 * It makes no sense for the first data block to be beyond the end
4498 * of the filesystem.
4499 */
4500 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4501 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4502 "block %u is beyond end of filesystem (%llu)",
4503 le32_to_cpu(es->s_first_data_block),
4504 ext4_blocks_count(es));
4505 goto failed_mount;
4506 }
4507 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4508 (sbi->s_cluster_ratio == 1)) {
4509 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4510 "block is 0 with a 1k block and cluster size");
4511 goto failed_mount;
4512 }
4513
4514 blocks_count = (ext4_blocks_count(es) -
4515 le32_to_cpu(es->s_first_data_block) +
4516 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4517 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4518 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4519 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4520 "(block count %llu, first data block %u, "
4521 "blocks per group %lu)", blocks_count,
4522 ext4_blocks_count(es),
4523 le32_to_cpu(es->s_first_data_block),
4524 EXT4_BLOCKS_PER_GROUP(sb));
4525 goto failed_mount;
4526 }
4527 sbi->s_groups_count = blocks_count;
4528 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4529 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4530 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4531 le32_to_cpu(es->s_inodes_count)) {
4532 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4533 le32_to_cpu(es->s_inodes_count),
4534 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4535 ret = -EINVAL;
4536 goto failed_mount;
4537 }
4538 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4539 EXT4_DESC_PER_BLOCK(sb);
4540 if (ext4_has_feature_meta_bg(sb)) {
4541 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4542 ext4_msg(sb, KERN_WARNING,
4543 "first meta block group too large: %u "
4544 "(group descriptor block count %u)",
4545 le32_to_cpu(es->s_first_meta_bg), db_count);
4546 goto failed_mount;
4547 }
4548 }
4549 rcu_assign_pointer(sbi->s_group_desc,
4550 kvmalloc_array(db_count,
4551 sizeof(struct buffer_head *),
4552 GFP_KERNEL));
4553 if (sbi->s_group_desc == NULL) {
4554 ext4_msg(sb, KERN_ERR, "not enough memory");
4555 ret = -ENOMEM;
4556 goto failed_mount;
4557 }
4558
4559 bgl_lock_init(sbi->s_blockgroup_lock);
4560
4561 /* Pre-read the descriptors into the buffer cache */
4562 for (i = 0; i < db_count; i++) {
4563 block = descriptor_loc(sb, logical_sb_block, i);
4564 ext4_sb_breadahead_unmovable(sb, block);
4565 }
4566
4567 for (i = 0; i < db_count; i++) {
4568 struct buffer_head *bh;
4569
4570 block = descriptor_loc(sb, logical_sb_block, i);
4571 bh = ext4_sb_bread_unmovable(sb, block);
4572 if (IS_ERR(bh)) {
4573 ext4_msg(sb, KERN_ERR,
4574 "can't read group descriptor %d", i);
4575 db_count = i;
4576 ret = PTR_ERR(bh);
4577 goto failed_mount2;
4578 }
4579 rcu_read_lock();
4580 rcu_dereference(sbi->s_group_desc)[i] = bh;
4581 rcu_read_unlock();
4582 }
4583 sbi->s_gdb_count = db_count;
4584 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4585 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4586 ret = -EFSCORRUPTED;
4587 goto failed_mount2;
4588 }
4589
4590 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4591 spin_lock_init(&sbi->s_error_lock);
4592 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4593
4594 /* Register extent status tree shrinker */
4595 if (ext4_es_register_shrinker(sbi))
4596 goto failed_mount3;
4597
4598 sbi->s_stripe = ext4_get_stripe_size(sbi);
4599 sbi->s_extent_max_zeroout_kb = 32;
4600
4601 /*
4602 * set up enough so that it can read an inode
4603 */
4604 sb->s_op = &ext4_sops;
4605 sb->s_export_op = &ext4_export_ops;
4606 sb->s_xattr = ext4_xattr_handlers;
4607 #ifdef CONFIG_FS_ENCRYPTION
4608 sb->s_cop = &ext4_cryptops;
4609 #endif
4610 #ifdef CONFIG_FS_VERITY
4611 sb->s_vop = &ext4_verityops;
4612 #endif
4613 #ifdef CONFIG_QUOTA
4614 sb->dq_op = &ext4_quota_operations;
4615 if (ext4_has_feature_quota(sb))
4616 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4617 else
4618 sb->s_qcop = &ext4_qctl_operations;
4619 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4620 #endif
4621 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4622
4623 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4624 mutex_init(&sbi->s_orphan_lock);
4625
4626 /* Initialize fast commit stuff */
4627 atomic_set(&sbi->s_fc_subtid, 0);
4628 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4629 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4630 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4631 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4632 sbi->s_fc_bytes = 0;
4633 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4634 sbi->s_fc_ineligible_tid = 0;
4635 spin_lock_init(&sbi->s_fc_lock);
4636 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4637 sbi->s_fc_replay_state.fc_regions = NULL;
4638 sbi->s_fc_replay_state.fc_regions_size = 0;
4639 sbi->s_fc_replay_state.fc_regions_used = 0;
4640 sbi->s_fc_replay_state.fc_regions_valid = 0;
4641 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4642 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4643 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4644
4645 sb->s_root = NULL;
4646
4647 needs_recovery = (es->s_last_orphan != 0 ||
4648 ext4_has_feature_orphan_present(sb) ||
4649 ext4_has_feature_journal_needs_recovery(sb));
4650
4651 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4652 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4653 if (err)
4654 goto failed_mount3a;
4655 }
4656
4657 /*
4658 * The first inode we look at is the journal inode. Don't try
4659 * root first: it may be modified in the journal!
4660 */
4661 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4662 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4663 if (err)
4664 goto failed_mount3a;
4665 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4666 ext4_has_feature_journal_needs_recovery(sb)) {
4667 ext4_msg(sb, KERN_ERR, "required journal recovery "
4668 "suppressed and not mounted read-only");
4669 goto failed_mount3a;
4670 } else {
4671 /* Nojournal mode, all journal mount options are illegal */
4672 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4673 ext4_msg(sb, KERN_ERR, "can't mount with "
4674 "journal_async_commit, fs mounted w/o journal");
4675 goto failed_mount3a;
4676 }
4677
4678 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4679 ext4_msg(sb, KERN_ERR, "can't mount with "
4680 "journal_checksum, fs mounted w/o journal");
4681 goto failed_mount3a;
4682 }
4683 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4684 ext4_msg(sb, KERN_ERR, "can't mount with "
4685 "commit=%lu, fs mounted w/o journal",
4686 sbi->s_commit_interval / HZ);
4687 goto failed_mount3a;
4688 }
4689 if (EXT4_MOUNT_DATA_FLAGS &
4690 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4691 ext4_msg(sb, KERN_ERR, "can't mount with "
4692 "data=, fs mounted w/o journal");
4693 goto failed_mount3a;
4694 }
4695 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4696 clear_opt(sb, JOURNAL_CHECKSUM);
4697 clear_opt(sb, DATA_FLAGS);
4698 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4699 sbi->s_journal = NULL;
4700 needs_recovery = 0;
4701 goto no_journal;
4702 }
4703
4704 if (ext4_has_feature_64bit(sb) &&
4705 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4706 JBD2_FEATURE_INCOMPAT_64BIT)) {
4707 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4708 goto failed_mount_wq;
4709 }
4710
4711 if (!set_journal_csum_feature_set(sb)) {
4712 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4713 "feature set");
4714 goto failed_mount_wq;
4715 }
4716
4717 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4718 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4719 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4720 ext4_msg(sb, KERN_ERR,
4721 "Failed to set fast commit journal feature");
4722 goto failed_mount_wq;
4723 }
4724
4725 /* We have now updated the journal if required, so we can
4726 * validate the data journaling mode. */
4727 switch (test_opt(sb, DATA_FLAGS)) {
4728 case 0:
4729 /* No mode set, assume a default based on the journal
4730 * capabilities: ORDERED_DATA if the journal can
4731 * cope, else JOURNAL_DATA
4732 */
4733 if (jbd2_journal_check_available_features
4734 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4735 set_opt(sb, ORDERED_DATA);
4736 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4737 } else {
4738 set_opt(sb, JOURNAL_DATA);
4739 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4740 }
4741 break;
4742
4743 case EXT4_MOUNT_ORDERED_DATA:
4744 case EXT4_MOUNT_WRITEBACK_DATA:
4745 if (!jbd2_journal_check_available_features
4746 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4747 ext4_msg(sb, KERN_ERR, "Journal does not support "
4748 "requested data journaling mode");
4749 goto failed_mount_wq;
4750 }
4751 break;
4752 default:
4753 break;
4754 }
4755
4756 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4757 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4758 ext4_msg(sb, KERN_ERR, "can't mount with "
4759 "journal_async_commit in data=ordered mode");
4760 goto failed_mount_wq;
4761 }
4762
4763 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4764
4765 sbi->s_journal->j_submit_inode_data_buffers =
4766 ext4_journal_submit_inode_data_buffers;
4767 sbi->s_journal->j_finish_inode_data_buffers =
4768 ext4_journal_finish_inode_data_buffers;
4769
4770 no_journal:
4771 if (!test_opt(sb, NO_MBCACHE)) {
4772 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4773 if (!sbi->s_ea_block_cache) {
4774 ext4_msg(sb, KERN_ERR,
4775 "Failed to create ea_block_cache");
4776 goto failed_mount_wq;
4777 }
4778
4779 if (ext4_has_feature_ea_inode(sb)) {
4780 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4781 if (!sbi->s_ea_inode_cache) {
4782 ext4_msg(sb, KERN_ERR,
4783 "Failed to create ea_inode_cache");
4784 goto failed_mount_wq;
4785 }
4786 }
4787 }
4788
4789 /*
4790 * Get the # of file system overhead blocks from the
4791 * superblock if present.
4792 */
4793 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4794 /* ignore the precalculated value if it is ridiculous */
4795 if (sbi->s_overhead > ext4_blocks_count(es))
4796 sbi->s_overhead = 0;
4797 /*
4798 * If the bigalloc feature is not enabled recalculating the
4799 * overhead doesn't take long, so we might as well just redo
4800 * it to make sure we are using the correct value.
4801 */
4802 if (!ext4_has_feature_bigalloc(sb))
4803 sbi->s_overhead = 0;
4804 if (sbi->s_overhead == 0) {
4805 err = ext4_calculate_overhead(sb);
4806 if (err)
4807 goto failed_mount_wq;
4808 }
4809
4810 /*
4811 * The maximum number of concurrent works can be high and
4812 * concurrency isn't really necessary. Limit it to 1.
4813 */
4814 EXT4_SB(sb)->rsv_conversion_wq =
4815 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4816 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4817 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4818 ret = -ENOMEM;
4819 goto failed_mount4;
4820 }
4821
4822 /*
4823 * The jbd2_journal_load will have done any necessary log recovery,
4824 * so we can safely mount the rest of the filesystem now.
4825 */
4826
4827 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4828 if (IS_ERR(root)) {
4829 ext4_msg(sb, KERN_ERR, "get root inode failed");
4830 ret = PTR_ERR(root);
4831 root = NULL;
4832 goto failed_mount4;
4833 }
4834 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4835 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4836 iput(root);
4837 goto failed_mount4;
4838 }
4839
4840 sb->s_root = d_make_root(root);
4841 if (!sb->s_root) {
4842 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4843 ret = -ENOMEM;
4844 goto failed_mount4;
4845 }
4846
4847 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4848 if (ret == -EROFS) {
4849 sb->s_flags |= SB_RDONLY;
4850 ret = 0;
4851 } else if (ret)
4852 goto failed_mount4a;
4853
4854 ext4_set_resv_clusters(sb);
4855
4856 if (test_opt(sb, BLOCK_VALIDITY)) {
4857 err = ext4_setup_system_zone(sb);
4858 if (err) {
4859 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4860 "zone (%d)", err);
4861 goto failed_mount4a;
4862 }
4863 }
4864 ext4_fc_replay_cleanup(sb);
4865
4866 ext4_ext_init(sb);
4867
4868 /*
4869 * Enable optimize_scan if number of groups is > threshold. This can be
4870 * turned off by passing "mb_optimize_scan=0". This can also be
4871 * turned on forcefully by passing "mb_optimize_scan=1".
4872 */
4873 if (parsed_opts.mb_optimize_scan == 1)
4874 set_opt2(sb, MB_OPTIMIZE_SCAN);
4875 else if (parsed_opts.mb_optimize_scan == 0)
4876 clear_opt2(sb, MB_OPTIMIZE_SCAN);
4877 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4878 set_opt2(sb, MB_OPTIMIZE_SCAN);
4879
4880 err = ext4_mb_init(sb);
4881 if (err) {
4882 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4883 err);
4884 goto failed_mount5;
4885 }
4886
4887 /*
4888 * We can only set up the journal commit callback once
4889 * mballoc is initialized
4890 */
4891 if (sbi->s_journal)
4892 sbi->s_journal->j_commit_callback =
4893 ext4_journal_commit_callback;
4894
4895 block = ext4_count_free_clusters(sb);
4896 ext4_free_blocks_count_set(sbi->s_es,
4897 EXT4_C2B(sbi, block));
4898 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4899 GFP_KERNEL);
4900 if (!err) {
4901 unsigned long freei = ext4_count_free_inodes(sb);
4902 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4903 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4904 GFP_KERNEL);
4905 }
4906 if (!err)
4907 err = percpu_counter_init(&sbi->s_dirs_counter,
4908 ext4_count_dirs(sb), GFP_KERNEL);
4909 if (!err)
4910 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4911 GFP_KERNEL);
4912 if (!err)
4913 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4914 GFP_KERNEL);
4915 if (!err)
4916 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4917
4918 if (err) {
4919 ext4_msg(sb, KERN_ERR, "insufficient memory");
4920 goto failed_mount6;
4921 }
4922
4923 if (ext4_has_feature_flex_bg(sb))
4924 if (!ext4_fill_flex_info(sb)) {
4925 ext4_msg(sb, KERN_ERR,
4926 "unable to initialize "
4927 "flex_bg meta info!");
4928 ret = -ENOMEM;
4929 goto failed_mount6;
4930 }
4931
4932 err = ext4_register_li_request(sb, first_not_zeroed);
4933 if (err)
4934 goto failed_mount6;
4935
4936 err = ext4_register_sysfs(sb);
4937 if (err)
4938 goto failed_mount7;
4939
4940 err = ext4_init_orphan_info(sb);
4941 if (err)
4942 goto failed_mount8;
4943 #ifdef CONFIG_QUOTA
4944 /* Enable quota usage during mount. */
4945 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4946 err = ext4_enable_quotas(sb);
4947 if (err)
4948 goto failed_mount9;
4949 }
4950 #endif /* CONFIG_QUOTA */
4951
4952 /*
4953 * Save the original bdev mapping's wb_err value which could be
4954 * used to detect the metadata async write error.
4955 */
4956 spin_lock_init(&sbi->s_bdev_wb_lock);
4957 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4958 &sbi->s_bdev_wb_err);
4959 sb->s_bdev->bd_super = sb;
4960 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4961 ext4_orphan_cleanup(sb, es);
4962 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4963 /*
4964 * Update the checksum after updating free space/inode counters and
4965 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
4966 * checksum in the buffer cache until it is written out and
4967 * e2fsprogs programs trying to open a file system immediately
4968 * after it is mounted can fail.
4969 */
4970 ext4_superblock_csum_set(sb);
4971 if (needs_recovery) {
4972 ext4_msg(sb, KERN_INFO, "recovery complete");
4973 err = ext4_mark_recovery_complete(sb, es);
4974 if (err)
4975 goto failed_mount10;
4976 }
4977 if (EXT4_SB(sb)->s_journal) {
4978 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4979 descr = " journalled data mode";
4980 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4981 descr = " ordered data mode";
4982 else
4983 descr = " writeback data mode";
4984 } else
4985 descr = "out journal";
4986
4987 if (test_opt(sb, DISCARD)) {
4988 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4989 if (!blk_queue_discard(q))
4990 ext4_msg(sb, KERN_WARNING,
4991 "mounting with \"discard\" option, but "
4992 "the device does not support discard");
4993 }
4994
4995 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4996 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4997 "Opts: %.*s%s%s. Quota mode: %s.", descr,
4998 (int) sizeof(sbi->s_es->s_mount_opts),
4999 sbi->s_es->s_mount_opts,
5000 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5001 ext4_quota_mode(sb));
5002
5003 if (es->s_error_count)
5004 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5005
5006 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5007 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5008 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5009 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5010 atomic_set(&sbi->s_warning_count, 0);
5011 atomic_set(&sbi->s_msg_count, 0);
5012
5013 kfree(orig_data);
5014 return 0;
5015
5016 cantfind_ext4:
5017 if (!silent)
5018 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5019 goto failed_mount;
5020
5021 failed_mount10:
5022 ext4_quota_off_umount(sb);
5023 failed_mount9: __maybe_unused
5024 ext4_release_orphan_info(sb);
5025 failed_mount8:
5026 ext4_unregister_sysfs(sb);
5027 kobject_put(&sbi->s_kobj);
5028 failed_mount7:
5029 ext4_unregister_li_request(sb);
5030 failed_mount6:
5031 ext4_mb_release(sb);
5032 rcu_read_lock();
5033 flex_groups = rcu_dereference(sbi->s_flex_groups);
5034 if (flex_groups) {
5035 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5036 kvfree(flex_groups[i]);
5037 kvfree(flex_groups);
5038 }
5039 rcu_read_unlock();
5040 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5041 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5042 percpu_counter_destroy(&sbi->s_dirs_counter);
5043 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5044 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5045 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5046 failed_mount5:
5047 ext4_ext_release(sb);
5048 ext4_release_system_zone(sb);
5049 failed_mount4a:
5050 dput(sb->s_root);
5051 sb->s_root = NULL;
5052 failed_mount4:
5053 ext4_msg(sb, KERN_ERR, "mount failed");
5054 if (EXT4_SB(sb)->rsv_conversion_wq)
5055 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5056 failed_mount_wq:
5057 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5058 sbi->s_ea_inode_cache = NULL;
5059
5060 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5061 sbi->s_ea_block_cache = NULL;
5062
5063 if (sbi->s_journal) {
5064 /* flush s_error_work before journal destroy. */
5065 flush_work(&sbi->s_error_work);
5066 jbd2_journal_destroy(sbi->s_journal);
5067 sbi->s_journal = NULL;
5068 }
5069 failed_mount3a:
5070 ext4_es_unregister_shrinker(sbi);
5071 failed_mount3:
5072 /* flush s_error_work before sbi destroy */
5073 flush_work(&sbi->s_error_work);
5074 del_timer_sync(&sbi->s_err_report);
5075 ext4_stop_mmpd(sbi);
5076 failed_mount2:
5077 rcu_read_lock();
5078 group_desc = rcu_dereference(sbi->s_group_desc);
5079 for (i = 0; i < db_count; i++)
5080 brelse(group_desc[i]);
5081 kvfree(group_desc);
5082 rcu_read_unlock();
5083 failed_mount:
5084 if (sbi->s_chksum_driver)
5085 crypto_free_shash(sbi->s_chksum_driver);
5086
5087 #ifdef CONFIG_UNICODE
5088 utf8_unload(sb->s_encoding);
5089 #endif
5090
5091 #ifdef CONFIG_QUOTA
5092 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5093 kfree(get_qf_name(sb, sbi, i));
5094 #endif
5095 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5096 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5097 brelse(bh);
5098 ext4_blkdev_remove(sbi);
5099 out_fail:
5100 invalidate_bdev(sb->s_bdev);
5101 sb->s_fs_info = NULL;
5102 kfree(sbi->s_blockgroup_lock);
5103 out_free_base:
5104 kfree(sbi);
5105 kfree(orig_data);
5106 fs_put_dax(dax_dev);
5107 return err ? err : ret;
5108 }
5109
5110 /*
5111 * Setup any per-fs journal parameters now. We'll do this both on
5112 * initial mount, once the journal has been initialised but before we've
5113 * done any recovery; and again on any subsequent remount.
5114 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5115 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5116 {
5117 struct ext4_sb_info *sbi = EXT4_SB(sb);
5118
5119 journal->j_commit_interval = sbi->s_commit_interval;
5120 journal->j_min_batch_time = sbi->s_min_batch_time;
5121 journal->j_max_batch_time = sbi->s_max_batch_time;
5122 ext4_fc_init(sb, journal);
5123
5124 write_lock(&journal->j_state_lock);
5125 if (test_opt(sb, BARRIER))
5126 journal->j_flags |= JBD2_BARRIER;
5127 else
5128 journal->j_flags &= ~JBD2_BARRIER;
5129 if (test_opt(sb, DATA_ERR_ABORT))
5130 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5131 else
5132 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5133 write_unlock(&journal->j_state_lock);
5134 }
5135
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5136 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5137 unsigned int journal_inum)
5138 {
5139 struct inode *journal_inode;
5140
5141 /*
5142 * Test for the existence of a valid inode on disk. Bad things
5143 * happen if we iget() an unused inode, as the subsequent iput()
5144 * will try to delete it.
5145 */
5146 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5147 if (IS_ERR(journal_inode)) {
5148 ext4_msg(sb, KERN_ERR, "no journal found");
5149 return NULL;
5150 }
5151 if (!journal_inode->i_nlink) {
5152 make_bad_inode(journal_inode);
5153 iput(journal_inode);
5154 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5155 return NULL;
5156 }
5157
5158 ext4_debug("Journal inode found at %p: %lld bytes\n",
5159 journal_inode, journal_inode->i_size);
5160 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5161 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5162 iput(journal_inode);
5163 return NULL;
5164 }
5165 return journal_inode;
5166 }
5167
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5168 static journal_t *ext4_get_journal(struct super_block *sb,
5169 unsigned int journal_inum)
5170 {
5171 struct inode *journal_inode;
5172 journal_t *journal;
5173
5174 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5175 return NULL;
5176
5177 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5178 if (!journal_inode)
5179 return NULL;
5180
5181 journal = jbd2_journal_init_inode(journal_inode);
5182 if (!journal) {
5183 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5184 iput(journal_inode);
5185 return NULL;
5186 }
5187 journal->j_private = sb;
5188 ext4_init_journal_params(sb, journal);
5189 return journal;
5190 }
5191
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5192 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5193 dev_t j_dev)
5194 {
5195 struct buffer_head *bh;
5196 journal_t *journal;
5197 ext4_fsblk_t start;
5198 ext4_fsblk_t len;
5199 int hblock, blocksize;
5200 ext4_fsblk_t sb_block;
5201 unsigned long offset;
5202 struct ext4_super_block *es;
5203 struct block_device *bdev;
5204
5205 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5206 return NULL;
5207
5208 bdev = ext4_blkdev_get(j_dev, sb);
5209 if (bdev == NULL)
5210 return NULL;
5211
5212 blocksize = sb->s_blocksize;
5213 hblock = bdev_logical_block_size(bdev);
5214 if (blocksize < hblock) {
5215 ext4_msg(sb, KERN_ERR,
5216 "blocksize too small for journal device");
5217 goto out_bdev;
5218 }
5219
5220 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5221 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5222 set_blocksize(bdev, blocksize);
5223 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5224 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5225 "external journal");
5226 goto out_bdev;
5227 }
5228
5229 es = (struct ext4_super_block *) (bh->b_data + offset);
5230 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5231 !(le32_to_cpu(es->s_feature_incompat) &
5232 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5233 ext4_msg(sb, KERN_ERR, "external journal has "
5234 "bad superblock");
5235 brelse(bh);
5236 goto out_bdev;
5237 }
5238
5239 if ((le32_to_cpu(es->s_feature_ro_compat) &
5240 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5241 es->s_checksum != ext4_superblock_csum(sb, es)) {
5242 ext4_msg(sb, KERN_ERR, "external journal has "
5243 "corrupt superblock");
5244 brelse(bh);
5245 goto out_bdev;
5246 }
5247
5248 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5249 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5250 brelse(bh);
5251 goto out_bdev;
5252 }
5253
5254 len = ext4_blocks_count(es);
5255 start = sb_block + 1;
5256 brelse(bh); /* we're done with the superblock */
5257
5258 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5259 start, len, blocksize);
5260 if (!journal) {
5261 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5262 goto out_bdev;
5263 }
5264 journal->j_private = sb;
5265 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5266 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5267 goto out_journal;
5268 }
5269 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5270 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5271 "user (unsupported) - %d",
5272 be32_to_cpu(journal->j_superblock->s_nr_users));
5273 goto out_journal;
5274 }
5275 EXT4_SB(sb)->s_journal_bdev = bdev;
5276 ext4_init_journal_params(sb, journal);
5277 return journal;
5278
5279 out_journal:
5280 jbd2_journal_destroy(journal);
5281 out_bdev:
5282 ext4_blkdev_put(bdev);
5283 return NULL;
5284 }
5285
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5286 static int ext4_load_journal(struct super_block *sb,
5287 struct ext4_super_block *es,
5288 unsigned long journal_devnum)
5289 {
5290 journal_t *journal;
5291 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5292 dev_t journal_dev;
5293 int err = 0;
5294 int really_read_only;
5295 int journal_dev_ro;
5296
5297 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5298 return -EFSCORRUPTED;
5299
5300 if (journal_devnum &&
5301 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5302 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5303 "numbers have changed");
5304 journal_dev = new_decode_dev(journal_devnum);
5305 } else
5306 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5307
5308 if (journal_inum && journal_dev) {
5309 ext4_msg(sb, KERN_ERR,
5310 "filesystem has both journal inode and journal device!");
5311 return -EINVAL;
5312 }
5313
5314 if (journal_inum) {
5315 journal = ext4_get_journal(sb, journal_inum);
5316 if (!journal)
5317 return -EINVAL;
5318 } else {
5319 journal = ext4_get_dev_journal(sb, journal_dev);
5320 if (!journal)
5321 return -EINVAL;
5322 }
5323
5324 journal_dev_ro = bdev_read_only(journal->j_dev);
5325 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5326
5327 if (journal_dev_ro && !sb_rdonly(sb)) {
5328 ext4_msg(sb, KERN_ERR,
5329 "journal device read-only, try mounting with '-o ro'");
5330 err = -EROFS;
5331 goto err_out;
5332 }
5333
5334 /*
5335 * Are we loading a blank journal or performing recovery after a
5336 * crash? For recovery, we need to check in advance whether we
5337 * can get read-write access to the device.
5338 */
5339 if (ext4_has_feature_journal_needs_recovery(sb)) {
5340 if (sb_rdonly(sb)) {
5341 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5342 "required on readonly filesystem");
5343 if (really_read_only) {
5344 ext4_msg(sb, KERN_ERR, "write access "
5345 "unavailable, cannot proceed "
5346 "(try mounting with noload)");
5347 err = -EROFS;
5348 goto err_out;
5349 }
5350 ext4_msg(sb, KERN_INFO, "write access will "
5351 "be enabled during recovery");
5352 }
5353 }
5354
5355 if (!(journal->j_flags & JBD2_BARRIER))
5356 ext4_msg(sb, KERN_INFO, "barriers disabled");
5357
5358 if (!ext4_has_feature_journal_needs_recovery(sb))
5359 err = jbd2_journal_wipe(journal, !really_read_only);
5360 if (!err) {
5361 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5362 if (save)
5363 memcpy(save, ((char *) es) +
5364 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5365 err = jbd2_journal_load(journal);
5366 if (save)
5367 memcpy(((char *) es) + EXT4_S_ERR_START,
5368 save, EXT4_S_ERR_LEN);
5369 kfree(save);
5370 }
5371
5372 if (err) {
5373 ext4_msg(sb, KERN_ERR, "error loading journal");
5374 goto err_out;
5375 }
5376
5377 EXT4_SB(sb)->s_journal = journal;
5378 err = ext4_clear_journal_err(sb, es);
5379 if (err) {
5380 EXT4_SB(sb)->s_journal = NULL;
5381 jbd2_journal_destroy(journal);
5382 return err;
5383 }
5384
5385 if (!really_read_only && journal_devnum &&
5386 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5387 es->s_journal_dev = cpu_to_le32(journal_devnum);
5388 ext4_commit_super(sb);
5389 }
5390 if (!really_read_only && journal_inum &&
5391 journal_inum != le32_to_cpu(es->s_journal_inum)) {
5392 es->s_journal_inum = cpu_to_le32(journal_inum);
5393 ext4_commit_super(sb);
5394 }
5395
5396 return 0;
5397
5398 err_out:
5399 jbd2_journal_destroy(journal);
5400 return err;
5401 }
5402
5403 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5404 static void ext4_update_super(struct super_block *sb)
5405 {
5406 struct ext4_sb_info *sbi = EXT4_SB(sb);
5407 struct ext4_super_block *es = sbi->s_es;
5408 struct buffer_head *sbh = sbi->s_sbh;
5409
5410 lock_buffer(sbh);
5411 /*
5412 * If the file system is mounted read-only, don't update the
5413 * superblock write time. This avoids updating the superblock
5414 * write time when we are mounting the root file system
5415 * read/only but we need to replay the journal; at that point,
5416 * for people who are east of GMT and who make their clock
5417 * tick in localtime for Windows bug-for-bug compatibility,
5418 * the clock is set in the future, and this will cause e2fsck
5419 * to complain and force a full file system check.
5420 */
5421 if (!(sb->s_flags & SB_RDONLY))
5422 ext4_update_tstamp(es, s_wtime);
5423 es->s_kbytes_written =
5424 cpu_to_le64(sbi->s_kbytes_written +
5425 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5426 sbi->s_sectors_written_start) >> 1));
5427 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5428 ext4_free_blocks_count_set(es,
5429 EXT4_C2B(sbi, percpu_counter_sum_positive(
5430 &sbi->s_freeclusters_counter)));
5431 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5432 es->s_free_inodes_count =
5433 cpu_to_le32(percpu_counter_sum_positive(
5434 &sbi->s_freeinodes_counter));
5435 /* Copy error information to the on-disk superblock */
5436 spin_lock(&sbi->s_error_lock);
5437 if (sbi->s_add_error_count > 0) {
5438 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5439 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5440 __ext4_update_tstamp(&es->s_first_error_time,
5441 &es->s_first_error_time_hi,
5442 sbi->s_first_error_time);
5443 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5444 sizeof(es->s_first_error_func));
5445 es->s_first_error_line =
5446 cpu_to_le32(sbi->s_first_error_line);
5447 es->s_first_error_ino =
5448 cpu_to_le32(sbi->s_first_error_ino);
5449 es->s_first_error_block =
5450 cpu_to_le64(sbi->s_first_error_block);
5451 es->s_first_error_errcode =
5452 ext4_errno_to_code(sbi->s_first_error_code);
5453 }
5454 __ext4_update_tstamp(&es->s_last_error_time,
5455 &es->s_last_error_time_hi,
5456 sbi->s_last_error_time);
5457 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5458 sizeof(es->s_last_error_func));
5459 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5460 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5461 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5462 es->s_last_error_errcode =
5463 ext4_errno_to_code(sbi->s_last_error_code);
5464 /*
5465 * Start the daily error reporting function if it hasn't been
5466 * started already
5467 */
5468 if (!es->s_error_count)
5469 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5470 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5471 sbi->s_add_error_count = 0;
5472 }
5473 spin_unlock(&sbi->s_error_lock);
5474
5475 ext4_superblock_csum_set(sb);
5476 unlock_buffer(sbh);
5477 }
5478
ext4_commit_super(struct super_block * sb)5479 static int ext4_commit_super(struct super_block *sb)
5480 {
5481 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5482 int error = 0;
5483
5484 if (!sbh)
5485 return -EINVAL;
5486 if (block_device_ejected(sb))
5487 return -ENODEV;
5488
5489 ext4_update_super(sb);
5490
5491 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5492 /*
5493 * Oh, dear. A previous attempt to write the
5494 * superblock failed. This could happen because the
5495 * USB device was yanked out. Or it could happen to
5496 * be a transient write error and maybe the block will
5497 * be remapped. Nothing we can do but to retry the
5498 * write and hope for the best.
5499 */
5500 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5501 "superblock detected");
5502 clear_buffer_write_io_error(sbh);
5503 set_buffer_uptodate(sbh);
5504 }
5505 BUFFER_TRACE(sbh, "marking dirty");
5506 mark_buffer_dirty(sbh);
5507 error = __sync_dirty_buffer(sbh,
5508 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5509 if (buffer_write_io_error(sbh)) {
5510 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5511 "superblock");
5512 clear_buffer_write_io_error(sbh);
5513 set_buffer_uptodate(sbh);
5514 }
5515 return error;
5516 }
5517
5518 /*
5519 * Have we just finished recovery? If so, and if we are mounting (or
5520 * remounting) the filesystem readonly, then we will end up with a
5521 * consistent fs on disk. Record that fact.
5522 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5523 static int ext4_mark_recovery_complete(struct super_block *sb,
5524 struct ext4_super_block *es)
5525 {
5526 int err;
5527 journal_t *journal = EXT4_SB(sb)->s_journal;
5528
5529 if (!ext4_has_feature_journal(sb)) {
5530 if (journal != NULL) {
5531 ext4_error(sb, "Journal got removed while the fs was "
5532 "mounted!");
5533 return -EFSCORRUPTED;
5534 }
5535 return 0;
5536 }
5537 jbd2_journal_lock_updates(journal);
5538 err = jbd2_journal_flush(journal, 0);
5539 if (err < 0)
5540 goto out;
5541
5542 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5543 ext4_has_feature_orphan_present(sb))) {
5544 if (!ext4_orphan_file_empty(sb)) {
5545 ext4_error(sb, "Orphan file not empty on read-only fs.");
5546 err = -EFSCORRUPTED;
5547 goto out;
5548 }
5549 ext4_clear_feature_journal_needs_recovery(sb);
5550 ext4_clear_feature_orphan_present(sb);
5551 ext4_commit_super(sb);
5552 }
5553 out:
5554 jbd2_journal_unlock_updates(journal);
5555 return err;
5556 }
5557
5558 /*
5559 * If we are mounting (or read-write remounting) a filesystem whose journal
5560 * has recorded an error from a previous lifetime, move that error to the
5561 * main filesystem now.
5562 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5563 static int ext4_clear_journal_err(struct super_block *sb,
5564 struct ext4_super_block *es)
5565 {
5566 journal_t *journal;
5567 int j_errno;
5568 const char *errstr;
5569
5570 if (!ext4_has_feature_journal(sb)) {
5571 ext4_error(sb, "Journal got removed while the fs was mounted!");
5572 return -EFSCORRUPTED;
5573 }
5574
5575 journal = EXT4_SB(sb)->s_journal;
5576
5577 /*
5578 * Now check for any error status which may have been recorded in the
5579 * journal by a prior ext4_error() or ext4_abort()
5580 */
5581
5582 j_errno = jbd2_journal_errno(journal);
5583 if (j_errno) {
5584 char nbuf[16];
5585
5586 errstr = ext4_decode_error(sb, j_errno, nbuf);
5587 ext4_warning(sb, "Filesystem error recorded "
5588 "from previous mount: %s", errstr);
5589 ext4_warning(sb, "Marking fs in need of filesystem check.");
5590
5591 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5592 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5593 ext4_commit_super(sb);
5594
5595 jbd2_journal_clear_err(journal);
5596 jbd2_journal_update_sb_errno(journal);
5597 }
5598 return 0;
5599 }
5600
5601 /*
5602 * Force the running and committing transactions to commit,
5603 * and wait on the commit.
5604 */
ext4_force_commit(struct super_block * sb)5605 int ext4_force_commit(struct super_block *sb)
5606 {
5607 journal_t *journal;
5608
5609 if (sb_rdonly(sb))
5610 return 0;
5611
5612 journal = EXT4_SB(sb)->s_journal;
5613 return ext4_journal_force_commit(journal);
5614 }
5615
ext4_sync_fs(struct super_block * sb,int wait)5616 static int ext4_sync_fs(struct super_block *sb, int wait)
5617 {
5618 int ret = 0;
5619 tid_t target;
5620 bool needs_barrier = false;
5621 struct ext4_sb_info *sbi = EXT4_SB(sb);
5622
5623 if (unlikely(ext4_forced_shutdown(sbi)))
5624 return 0;
5625
5626 trace_ext4_sync_fs(sb, wait);
5627 flush_workqueue(sbi->rsv_conversion_wq);
5628 /*
5629 * Writeback quota in non-journalled quota case - journalled quota has
5630 * no dirty dquots
5631 */
5632 dquot_writeback_dquots(sb, -1);
5633 /*
5634 * Data writeback is possible w/o journal transaction, so barrier must
5635 * being sent at the end of the function. But we can skip it if
5636 * transaction_commit will do it for us.
5637 */
5638 if (sbi->s_journal) {
5639 target = jbd2_get_latest_transaction(sbi->s_journal);
5640 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5641 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5642 needs_barrier = true;
5643
5644 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5645 if (wait)
5646 ret = jbd2_log_wait_commit(sbi->s_journal,
5647 target);
5648 }
5649 } else if (wait && test_opt(sb, BARRIER))
5650 needs_barrier = true;
5651 if (needs_barrier) {
5652 int err;
5653 err = blkdev_issue_flush(sb->s_bdev);
5654 if (!ret)
5655 ret = err;
5656 }
5657
5658 return ret;
5659 }
5660
5661 /*
5662 * LVM calls this function before a (read-only) snapshot is created. This
5663 * gives us a chance to flush the journal completely and mark the fs clean.
5664 *
5665 * Note that only this function cannot bring a filesystem to be in a clean
5666 * state independently. It relies on upper layer to stop all data & metadata
5667 * modifications.
5668 */
ext4_freeze(struct super_block * sb)5669 static int ext4_freeze(struct super_block *sb)
5670 {
5671 int error = 0;
5672 journal_t *journal;
5673
5674 if (sb_rdonly(sb))
5675 return 0;
5676
5677 journal = EXT4_SB(sb)->s_journal;
5678
5679 if (journal) {
5680 /* Now we set up the journal barrier. */
5681 jbd2_journal_lock_updates(journal);
5682
5683 /*
5684 * Don't clear the needs_recovery flag if we failed to
5685 * flush the journal.
5686 */
5687 error = jbd2_journal_flush(journal, 0);
5688 if (error < 0)
5689 goto out;
5690
5691 /* Journal blocked and flushed, clear needs_recovery flag. */
5692 ext4_clear_feature_journal_needs_recovery(sb);
5693 if (ext4_orphan_file_empty(sb))
5694 ext4_clear_feature_orphan_present(sb);
5695 }
5696
5697 error = ext4_commit_super(sb);
5698 out:
5699 if (journal)
5700 /* we rely on upper layer to stop further updates */
5701 jbd2_journal_unlock_updates(journal);
5702 return error;
5703 }
5704
5705 /*
5706 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5707 * flag here, even though the filesystem is not technically dirty yet.
5708 */
ext4_unfreeze(struct super_block * sb)5709 static int ext4_unfreeze(struct super_block *sb)
5710 {
5711 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5712 return 0;
5713
5714 if (EXT4_SB(sb)->s_journal) {
5715 /* Reset the needs_recovery flag before the fs is unlocked. */
5716 ext4_set_feature_journal_needs_recovery(sb);
5717 if (ext4_has_feature_orphan_file(sb))
5718 ext4_set_feature_orphan_present(sb);
5719 }
5720
5721 ext4_commit_super(sb);
5722 return 0;
5723 }
5724
5725 /*
5726 * Structure to save mount options for ext4_remount's benefit
5727 */
5728 struct ext4_mount_options {
5729 unsigned long s_mount_opt;
5730 unsigned long s_mount_opt2;
5731 kuid_t s_resuid;
5732 kgid_t s_resgid;
5733 unsigned long s_commit_interval;
5734 u32 s_min_batch_time, s_max_batch_time;
5735 #ifdef CONFIG_QUOTA
5736 int s_jquota_fmt;
5737 char *s_qf_names[EXT4_MAXQUOTAS];
5738 #endif
5739 };
5740
ext4_remount(struct super_block * sb,int * flags,char * data)5741 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5742 {
5743 struct ext4_super_block *es;
5744 struct ext4_sb_info *sbi = EXT4_SB(sb);
5745 unsigned long old_sb_flags, vfs_flags;
5746 struct ext4_mount_options old_opts;
5747 ext4_group_t g;
5748 int err = 0;
5749 #ifdef CONFIG_QUOTA
5750 int enable_quota = 0;
5751 int i, j;
5752 char *to_free[EXT4_MAXQUOTAS];
5753 #endif
5754 char *orig_data = kstrdup(data, GFP_KERNEL);
5755 struct ext4_parsed_options parsed_opts;
5756
5757 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5758 parsed_opts.journal_devnum = 0;
5759
5760 if (data && !orig_data)
5761 return -ENOMEM;
5762
5763 /* Store the original options */
5764 old_sb_flags = sb->s_flags;
5765 old_opts.s_mount_opt = sbi->s_mount_opt;
5766 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5767 old_opts.s_resuid = sbi->s_resuid;
5768 old_opts.s_resgid = sbi->s_resgid;
5769 old_opts.s_commit_interval = sbi->s_commit_interval;
5770 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5771 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5772 #ifdef CONFIG_QUOTA
5773 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5774 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5775 if (sbi->s_qf_names[i]) {
5776 char *qf_name = get_qf_name(sb, sbi, i);
5777
5778 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5779 if (!old_opts.s_qf_names[i]) {
5780 for (j = 0; j < i; j++)
5781 kfree(old_opts.s_qf_names[j]);
5782 kfree(orig_data);
5783 return -ENOMEM;
5784 }
5785 } else
5786 old_opts.s_qf_names[i] = NULL;
5787 #endif
5788 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5789 parsed_opts.journal_ioprio =
5790 sbi->s_journal->j_task->io_context->ioprio;
5791
5792 /*
5793 * Some options can be enabled by ext4 and/or by VFS mount flag
5794 * either way we need to make sure it matches in both *flags and
5795 * s_flags. Copy those selected flags from *flags to s_flags
5796 */
5797 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5798 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5799
5800 if (!parse_options(data, sb, &parsed_opts, 1)) {
5801 err = -EINVAL;
5802 goto restore_opts;
5803 }
5804
5805 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5806 test_opt(sb, JOURNAL_CHECKSUM)) {
5807 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5808 "during remount not supported; ignoring");
5809 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5810 }
5811
5812 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5813 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5814 ext4_msg(sb, KERN_ERR, "can't mount with "
5815 "both data=journal and delalloc");
5816 err = -EINVAL;
5817 goto restore_opts;
5818 }
5819 if (test_opt(sb, DIOREAD_NOLOCK)) {
5820 ext4_msg(sb, KERN_ERR, "can't mount with "
5821 "both data=journal and dioread_nolock");
5822 err = -EINVAL;
5823 goto restore_opts;
5824 }
5825 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5826 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5827 ext4_msg(sb, KERN_ERR, "can't mount with "
5828 "journal_async_commit in data=ordered mode");
5829 err = -EINVAL;
5830 goto restore_opts;
5831 }
5832 }
5833
5834 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5835 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5836 err = -EINVAL;
5837 goto restore_opts;
5838 }
5839
5840 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5841 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5842
5843 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5844 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5845
5846 es = sbi->s_es;
5847
5848 if (sbi->s_journal) {
5849 ext4_init_journal_params(sb, sbi->s_journal);
5850 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5851 }
5852
5853 /* Flush outstanding errors before changing fs state */
5854 flush_work(&sbi->s_error_work);
5855
5856 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5857 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5858 err = -EROFS;
5859 goto restore_opts;
5860 }
5861
5862 if (*flags & SB_RDONLY) {
5863 err = sync_filesystem(sb);
5864 if (err < 0)
5865 goto restore_opts;
5866 err = dquot_suspend(sb, -1);
5867 if (err < 0)
5868 goto restore_opts;
5869
5870 /*
5871 * First of all, the unconditional stuff we have to do
5872 * to disable replay of the journal when we next remount
5873 */
5874 sb->s_flags |= SB_RDONLY;
5875
5876 /*
5877 * OK, test if we are remounting a valid rw partition
5878 * readonly, and if so set the rdonly flag and then
5879 * mark the partition as valid again.
5880 */
5881 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5882 (sbi->s_mount_state & EXT4_VALID_FS))
5883 es->s_state = cpu_to_le16(sbi->s_mount_state);
5884
5885 if (sbi->s_journal) {
5886 /*
5887 * We let remount-ro finish even if marking fs
5888 * as clean failed...
5889 */
5890 ext4_mark_recovery_complete(sb, es);
5891 }
5892 } else {
5893 /* Make sure we can mount this feature set readwrite */
5894 if (ext4_has_feature_readonly(sb) ||
5895 !ext4_feature_set_ok(sb, 0)) {
5896 err = -EROFS;
5897 goto restore_opts;
5898 }
5899 /*
5900 * Make sure the group descriptor checksums
5901 * are sane. If they aren't, refuse to remount r/w.
5902 */
5903 for (g = 0; g < sbi->s_groups_count; g++) {
5904 struct ext4_group_desc *gdp =
5905 ext4_get_group_desc(sb, g, NULL);
5906
5907 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5908 ext4_msg(sb, KERN_ERR,
5909 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5910 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5911 le16_to_cpu(gdp->bg_checksum));
5912 err = -EFSBADCRC;
5913 goto restore_opts;
5914 }
5915 }
5916
5917 /*
5918 * If we have an unprocessed orphan list hanging
5919 * around from a previously readonly bdev mount,
5920 * require a full umount/remount for now.
5921 */
5922 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5923 ext4_msg(sb, KERN_WARNING, "Couldn't "
5924 "remount RDWR because of unprocessed "
5925 "orphan inode list. Please "
5926 "umount/remount instead");
5927 err = -EINVAL;
5928 goto restore_opts;
5929 }
5930
5931 /*
5932 * Mounting a RDONLY partition read-write, so reread
5933 * and store the current valid flag. (It may have
5934 * been changed by e2fsck since we originally mounted
5935 * the partition.)
5936 */
5937 if (sbi->s_journal) {
5938 err = ext4_clear_journal_err(sb, es);
5939 if (err)
5940 goto restore_opts;
5941 }
5942 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
5943 ~EXT4_FC_REPLAY);
5944
5945 err = ext4_setup_super(sb, es, 0);
5946 if (err)
5947 goto restore_opts;
5948
5949 sb->s_flags &= ~SB_RDONLY;
5950 if (ext4_has_feature_mmp(sb)) {
5951 err = ext4_multi_mount_protect(sb,
5952 le64_to_cpu(es->s_mmp_block));
5953 if (err)
5954 goto restore_opts;
5955 }
5956 #ifdef CONFIG_QUOTA
5957 enable_quota = 1;
5958 #endif
5959 }
5960 }
5961
5962 /*
5963 * Handle creation of system zone data early because it can fail.
5964 * Releasing of existing data is done when we are sure remount will
5965 * succeed.
5966 */
5967 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5968 err = ext4_setup_system_zone(sb);
5969 if (err)
5970 goto restore_opts;
5971 }
5972
5973 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5974 err = ext4_commit_super(sb);
5975 if (err)
5976 goto restore_opts;
5977 }
5978
5979 #ifdef CONFIG_QUOTA
5980 if (enable_quota) {
5981 if (sb_any_quota_suspended(sb))
5982 dquot_resume(sb, -1);
5983 else if (ext4_has_feature_quota(sb)) {
5984 err = ext4_enable_quotas(sb);
5985 if (err)
5986 goto restore_opts;
5987 }
5988 }
5989 /* Release old quota file names */
5990 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5991 kfree(old_opts.s_qf_names[i]);
5992 #endif
5993 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5994 ext4_release_system_zone(sb);
5995
5996 /*
5997 * Reinitialize lazy itable initialization thread based on
5998 * current settings
5999 */
6000 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6001 ext4_unregister_li_request(sb);
6002 else {
6003 ext4_group_t first_not_zeroed;
6004 first_not_zeroed = ext4_has_uninit_itable(sb);
6005 ext4_register_li_request(sb, first_not_zeroed);
6006 }
6007
6008 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6009 ext4_stop_mmpd(sbi);
6010
6011 /*
6012 * Some options can be enabled by ext4 and/or by VFS mount flag
6013 * either way we need to make sure it matches in both *flags and
6014 * s_flags. Copy those selected flags from s_flags to *flags
6015 */
6016 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6017
6018 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6019 orig_data, ext4_quota_mode(sb));
6020 kfree(orig_data);
6021 return 0;
6022
6023 restore_opts:
6024 /*
6025 * If there was a failing r/w to ro transition, we may need to
6026 * re-enable quota
6027 */
6028 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6029 sb_any_quota_suspended(sb))
6030 dquot_resume(sb, -1);
6031 sb->s_flags = old_sb_flags;
6032 sbi->s_mount_opt = old_opts.s_mount_opt;
6033 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6034 sbi->s_resuid = old_opts.s_resuid;
6035 sbi->s_resgid = old_opts.s_resgid;
6036 sbi->s_commit_interval = old_opts.s_commit_interval;
6037 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6038 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6039 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6040 ext4_release_system_zone(sb);
6041 #ifdef CONFIG_QUOTA
6042 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6043 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6044 to_free[i] = get_qf_name(sb, sbi, i);
6045 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6046 }
6047 synchronize_rcu();
6048 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6049 kfree(to_free[i]);
6050 #endif
6051 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6052 ext4_stop_mmpd(sbi);
6053 kfree(orig_data);
6054 return err;
6055 }
6056
6057 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6058 static int ext4_statfs_project(struct super_block *sb,
6059 kprojid_t projid, struct kstatfs *buf)
6060 {
6061 struct kqid qid;
6062 struct dquot *dquot;
6063 u64 limit;
6064 u64 curblock;
6065
6066 qid = make_kqid_projid(projid);
6067 dquot = dqget(sb, qid);
6068 if (IS_ERR(dquot))
6069 return PTR_ERR(dquot);
6070 spin_lock(&dquot->dq_dqb_lock);
6071
6072 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6073 dquot->dq_dqb.dqb_bhardlimit);
6074 limit >>= sb->s_blocksize_bits;
6075
6076 if (limit && buf->f_blocks > limit) {
6077 curblock = (dquot->dq_dqb.dqb_curspace +
6078 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6079 buf->f_blocks = limit;
6080 buf->f_bfree = buf->f_bavail =
6081 (buf->f_blocks > curblock) ?
6082 (buf->f_blocks - curblock) : 0;
6083 }
6084
6085 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6086 dquot->dq_dqb.dqb_ihardlimit);
6087 if (limit && buf->f_files > limit) {
6088 buf->f_files = limit;
6089 buf->f_ffree =
6090 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6091 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6092 }
6093
6094 spin_unlock(&dquot->dq_dqb_lock);
6095 dqput(dquot);
6096 return 0;
6097 }
6098 #endif
6099
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6100 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6101 {
6102 struct super_block *sb = dentry->d_sb;
6103 struct ext4_sb_info *sbi = EXT4_SB(sb);
6104 struct ext4_super_block *es = sbi->s_es;
6105 ext4_fsblk_t overhead = 0, resv_blocks;
6106 s64 bfree;
6107 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6108
6109 if (!test_opt(sb, MINIX_DF))
6110 overhead = sbi->s_overhead;
6111
6112 buf->f_type = EXT4_SUPER_MAGIC;
6113 buf->f_bsize = sb->s_blocksize;
6114 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6115 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6116 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6117 /* prevent underflow in case that few free space is available */
6118 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6119 buf->f_bavail = buf->f_bfree -
6120 (ext4_r_blocks_count(es) + resv_blocks);
6121 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6122 buf->f_bavail = 0;
6123 buf->f_files = le32_to_cpu(es->s_inodes_count);
6124 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6125 buf->f_namelen = EXT4_NAME_LEN;
6126 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6127
6128 #ifdef CONFIG_QUOTA
6129 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6130 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6131 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6132 #endif
6133 return 0;
6134 }
6135
6136
6137 #ifdef CONFIG_QUOTA
6138
6139 /*
6140 * Helper functions so that transaction is started before we acquire dqio_sem
6141 * to keep correct lock ordering of transaction > dqio_sem
6142 */
dquot_to_inode(struct dquot * dquot)6143 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6144 {
6145 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6146 }
6147
ext4_write_dquot(struct dquot * dquot)6148 static int ext4_write_dquot(struct dquot *dquot)
6149 {
6150 int ret, err;
6151 handle_t *handle;
6152 struct inode *inode;
6153
6154 inode = dquot_to_inode(dquot);
6155 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6156 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6157 if (IS_ERR(handle))
6158 return PTR_ERR(handle);
6159 ret = dquot_commit(dquot);
6160 err = ext4_journal_stop(handle);
6161 if (!ret)
6162 ret = err;
6163 return ret;
6164 }
6165
ext4_acquire_dquot(struct dquot * dquot)6166 static int ext4_acquire_dquot(struct dquot *dquot)
6167 {
6168 int ret, err;
6169 handle_t *handle;
6170
6171 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6172 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6173 if (IS_ERR(handle))
6174 return PTR_ERR(handle);
6175 ret = dquot_acquire(dquot);
6176 err = ext4_journal_stop(handle);
6177 if (!ret)
6178 ret = err;
6179 return ret;
6180 }
6181
ext4_release_dquot(struct dquot * dquot)6182 static int ext4_release_dquot(struct dquot *dquot)
6183 {
6184 int ret, err;
6185 handle_t *handle;
6186
6187 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6188 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6189 if (IS_ERR(handle)) {
6190 /* Release dquot anyway to avoid endless cycle in dqput() */
6191 dquot_release(dquot);
6192 return PTR_ERR(handle);
6193 }
6194 ret = dquot_release(dquot);
6195 err = ext4_journal_stop(handle);
6196 if (!ret)
6197 ret = err;
6198 return ret;
6199 }
6200
ext4_mark_dquot_dirty(struct dquot * dquot)6201 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6202 {
6203 struct super_block *sb = dquot->dq_sb;
6204
6205 if (ext4_is_quota_journalled(sb)) {
6206 dquot_mark_dquot_dirty(dquot);
6207 return ext4_write_dquot(dquot);
6208 } else {
6209 return dquot_mark_dquot_dirty(dquot);
6210 }
6211 }
6212
ext4_write_info(struct super_block * sb,int type)6213 static int ext4_write_info(struct super_block *sb, int type)
6214 {
6215 int ret, err;
6216 handle_t *handle;
6217
6218 /* Data block + inode block */
6219 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6220 if (IS_ERR(handle))
6221 return PTR_ERR(handle);
6222 ret = dquot_commit_info(sb, type);
6223 err = ext4_journal_stop(handle);
6224 if (!ret)
6225 ret = err;
6226 return ret;
6227 }
6228
lockdep_set_quota_inode(struct inode * inode,int subclass)6229 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6230 {
6231 struct ext4_inode_info *ei = EXT4_I(inode);
6232
6233 /* The first argument of lockdep_set_subclass has to be
6234 * *exactly* the same as the argument to init_rwsem() --- in
6235 * this case, in init_once() --- or lockdep gets unhappy
6236 * because the name of the lock is set using the
6237 * stringification of the argument to init_rwsem().
6238 */
6239 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6240 lockdep_set_subclass(&ei->i_data_sem, subclass);
6241 }
6242
6243 /*
6244 * Standard function to be called on quota_on
6245 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6246 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6247 const struct path *path)
6248 {
6249 int err;
6250
6251 if (!test_opt(sb, QUOTA))
6252 return -EINVAL;
6253
6254 /* Quotafile not on the same filesystem? */
6255 if (path->dentry->d_sb != sb)
6256 return -EXDEV;
6257
6258 /* Quota already enabled for this file? */
6259 if (IS_NOQUOTA(d_inode(path->dentry)))
6260 return -EBUSY;
6261
6262 /* Journaling quota? */
6263 if (EXT4_SB(sb)->s_qf_names[type]) {
6264 /* Quotafile not in fs root? */
6265 if (path->dentry->d_parent != sb->s_root)
6266 ext4_msg(sb, KERN_WARNING,
6267 "Quota file not on filesystem root. "
6268 "Journaled quota will not work");
6269 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6270 } else {
6271 /*
6272 * Clear the flag just in case mount options changed since
6273 * last time.
6274 */
6275 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6276 }
6277
6278 /*
6279 * When we journal data on quota file, we have to flush journal to see
6280 * all updates to the file when we bypass pagecache...
6281 */
6282 if (EXT4_SB(sb)->s_journal &&
6283 ext4_should_journal_data(d_inode(path->dentry))) {
6284 /*
6285 * We don't need to lock updates but journal_flush() could
6286 * otherwise be livelocked...
6287 */
6288 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6289 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6290 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6291 if (err)
6292 return err;
6293 }
6294
6295 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6296 err = dquot_quota_on(sb, type, format_id, path);
6297 if (!err) {
6298 struct inode *inode = d_inode(path->dentry);
6299 handle_t *handle;
6300
6301 /*
6302 * Set inode flags to prevent userspace from messing with quota
6303 * files. If this fails, we return success anyway since quotas
6304 * are already enabled and this is not a hard failure.
6305 */
6306 inode_lock(inode);
6307 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6308 if (IS_ERR(handle))
6309 goto unlock_inode;
6310 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6311 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6312 S_NOATIME | S_IMMUTABLE);
6313 err = ext4_mark_inode_dirty(handle, inode);
6314 ext4_journal_stop(handle);
6315 unlock_inode:
6316 inode_unlock(inode);
6317 if (err)
6318 dquot_quota_off(sb, type);
6319 }
6320 if (err)
6321 lockdep_set_quota_inode(path->dentry->d_inode,
6322 I_DATA_SEM_NORMAL);
6323 return err;
6324 }
6325
ext4_check_quota_inum(int type,unsigned long qf_inum)6326 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6327 {
6328 switch (type) {
6329 case USRQUOTA:
6330 return qf_inum == EXT4_USR_QUOTA_INO;
6331 case GRPQUOTA:
6332 return qf_inum == EXT4_GRP_QUOTA_INO;
6333 case PRJQUOTA:
6334 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6335 default:
6336 BUG();
6337 }
6338 }
6339
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6340 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6341 unsigned int flags)
6342 {
6343 int err;
6344 struct inode *qf_inode;
6345 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6346 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6347 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6348 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6349 };
6350
6351 BUG_ON(!ext4_has_feature_quota(sb));
6352
6353 if (!qf_inums[type])
6354 return -EPERM;
6355
6356 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6357 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6358 qf_inums[type], type);
6359 return -EUCLEAN;
6360 }
6361
6362 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6363 if (IS_ERR(qf_inode)) {
6364 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6365 qf_inums[type], type);
6366 return PTR_ERR(qf_inode);
6367 }
6368
6369 /* Don't account quota for quota files to avoid recursion */
6370 qf_inode->i_flags |= S_NOQUOTA;
6371 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6372 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6373 if (err)
6374 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6375 iput(qf_inode);
6376
6377 return err;
6378 }
6379
6380 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6381 int ext4_enable_quotas(struct super_block *sb)
6382 {
6383 int type, err = 0;
6384 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6385 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6386 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6387 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6388 };
6389 bool quota_mopt[EXT4_MAXQUOTAS] = {
6390 test_opt(sb, USRQUOTA),
6391 test_opt(sb, GRPQUOTA),
6392 test_opt(sb, PRJQUOTA),
6393 };
6394
6395 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6396 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6397 if (qf_inums[type]) {
6398 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6399 DQUOT_USAGE_ENABLED |
6400 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6401 if (err) {
6402 ext4_warning(sb,
6403 "Failed to enable quota tracking "
6404 "(type=%d, err=%d, ino=%lu). "
6405 "Please run e2fsck to fix.", type,
6406 err, qf_inums[type]);
6407 for (type--; type >= 0; type--) {
6408 struct inode *inode;
6409
6410 inode = sb_dqopt(sb)->files[type];
6411 if (inode)
6412 inode = igrab(inode);
6413 dquot_quota_off(sb, type);
6414 if (inode) {
6415 lockdep_set_quota_inode(inode,
6416 I_DATA_SEM_NORMAL);
6417 iput(inode);
6418 }
6419 }
6420
6421 return err;
6422 }
6423 }
6424 }
6425 return 0;
6426 }
6427
ext4_quota_off(struct super_block * sb,int type)6428 static int ext4_quota_off(struct super_block *sb, int type)
6429 {
6430 struct inode *inode = sb_dqopt(sb)->files[type];
6431 handle_t *handle;
6432 int err;
6433
6434 /* Force all delayed allocation blocks to be allocated.
6435 * Caller already holds s_umount sem */
6436 if (test_opt(sb, DELALLOC))
6437 sync_filesystem(sb);
6438
6439 if (!inode || !igrab(inode))
6440 goto out;
6441
6442 err = dquot_quota_off(sb, type);
6443 if (err || ext4_has_feature_quota(sb))
6444 goto out_put;
6445
6446 inode_lock(inode);
6447 /*
6448 * Update modification times of quota files when userspace can
6449 * start looking at them. If we fail, we return success anyway since
6450 * this is not a hard failure and quotas are already disabled.
6451 */
6452 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6453 if (IS_ERR(handle)) {
6454 err = PTR_ERR(handle);
6455 goto out_unlock;
6456 }
6457 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6458 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6459 inode->i_mtime = inode->i_ctime = current_time(inode);
6460 err = ext4_mark_inode_dirty(handle, inode);
6461 ext4_journal_stop(handle);
6462 out_unlock:
6463 inode_unlock(inode);
6464 out_put:
6465 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6466 iput(inode);
6467 return err;
6468 out:
6469 return dquot_quota_off(sb, type);
6470 }
6471
6472 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6473 * acquiring the locks... As quota files are never truncated and quota code
6474 * itself serializes the operations (and no one else should touch the files)
6475 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6476 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6477 size_t len, loff_t off)
6478 {
6479 struct inode *inode = sb_dqopt(sb)->files[type];
6480 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6481 int offset = off & (sb->s_blocksize - 1);
6482 int tocopy;
6483 size_t toread;
6484 struct buffer_head *bh;
6485 loff_t i_size = i_size_read(inode);
6486
6487 if (off > i_size)
6488 return 0;
6489 if (off+len > i_size)
6490 len = i_size-off;
6491 toread = len;
6492 while (toread > 0) {
6493 tocopy = sb->s_blocksize - offset < toread ?
6494 sb->s_blocksize - offset : toread;
6495 bh = ext4_bread(NULL, inode, blk, 0);
6496 if (IS_ERR(bh))
6497 return PTR_ERR(bh);
6498 if (!bh) /* A hole? */
6499 memset(data, 0, tocopy);
6500 else
6501 memcpy(data, bh->b_data+offset, tocopy);
6502 brelse(bh);
6503 offset = 0;
6504 toread -= tocopy;
6505 data += tocopy;
6506 blk++;
6507 }
6508 return len;
6509 }
6510
6511 /* Write to quotafile (we know the transaction is already started and has
6512 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6513 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6514 const char *data, size_t len, loff_t off)
6515 {
6516 struct inode *inode = sb_dqopt(sb)->files[type];
6517 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6518 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6519 int retries = 0;
6520 struct buffer_head *bh;
6521 handle_t *handle = journal_current_handle();
6522
6523 if (!handle) {
6524 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6525 " cancelled because transaction is not started",
6526 (unsigned long long)off, (unsigned long long)len);
6527 return -EIO;
6528 }
6529 /*
6530 * Since we account only one data block in transaction credits,
6531 * then it is impossible to cross a block boundary.
6532 */
6533 if (sb->s_blocksize - offset < len) {
6534 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6535 " cancelled because not block aligned",
6536 (unsigned long long)off, (unsigned long long)len);
6537 return -EIO;
6538 }
6539
6540 do {
6541 bh = ext4_bread(handle, inode, blk,
6542 EXT4_GET_BLOCKS_CREATE |
6543 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6544 } while (PTR_ERR(bh) == -ENOSPC &&
6545 ext4_should_retry_alloc(inode->i_sb, &retries));
6546 if (IS_ERR(bh))
6547 return PTR_ERR(bh);
6548 if (!bh)
6549 goto out;
6550 BUFFER_TRACE(bh, "get write access");
6551 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6552 if (err) {
6553 brelse(bh);
6554 return err;
6555 }
6556 lock_buffer(bh);
6557 memcpy(bh->b_data+offset, data, len);
6558 flush_dcache_page(bh->b_page);
6559 unlock_buffer(bh);
6560 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6561 brelse(bh);
6562 out:
6563 if (inode->i_size < off + len) {
6564 i_size_write(inode, off + len);
6565 EXT4_I(inode)->i_disksize = inode->i_size;
6566 err2 = ext4_mark_inode_dirty(handle, inode);
6567 if (unlikely(err2 && !err))
6568 err = err2;
6569 }
6570 return err ? err : len;
6571 }
6572 #endif
6573
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6574 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6575 const char *dev_name, void *data)
6576 {
6577 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6578 }
6579
6580 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6581 static inline void register_as_ext2(void)
6582 {
6583 int err = register_filesystem(&ext2_fs_type);
6584 if (err)
6585 printk(KERN_WARNING
6586 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6587 }
6588
unregister_as_ext2(void)6589 static inline void unregister_as_ext2(void)
6590 {
6591 unregister_filesystem(&ext2_fs_type);
6592 }
6593
ext2_feature_set_ok(struct super_block * sb)6594 static inline int ext2_feature_set_ok(struct super_block *sb)
6595 {
6596 if (ext4_has_unknown_ext2_incompat_features(sb))
6597 return 0;
6598 if (sb_rdonly(sb))
6599 return 1;
6600 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6601 return 0;
6602 return 1;
6603 }
6604 #else
register_as_ext2(void)6605 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6606 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6607 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6608 #endif
6609
register_as_ext3(void)6610 static inline void register_as_ext3(void)
6611 {
6612 int err = register_filesystem(&ext3_fs_type);
6613 if (err)
6614 printk(KERN_WARNING
6615 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6616 }
6617
unregister_as_ext3(void)6618 static inline void unregister_as_ext3(void)
6619 {
6620 unregister_filesystem(&ext3_fs_type);
6621 }
6622
ext3_feature_set_ok(struct super_block * sb)6623 static inline int ext3_feature_set_ok(struct super_block *sb)
6624 {
6625 if (ext4_has_unknown_ext3_incompat_features(sb))
6626 return 0;
6627 if (!ext4_has_feature_journal(sb))
6628 return 0;
6629 if (sb_rdonly(sb))
6630 return 1;
6631 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6632 return 0;
6633 return 1;
6634 }
6635
6636 static struct file_system_type ext4_fs_type = {
6637 .owner = THIS_MODULE,
6638 .name = "ext4",
6639 .mount = ext4_mount,
6640 .kill_sb = kill_block_super,
6641 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6642 };
6643 MODULE_ALIAS_FS("ext4");
6644
6645 /* Shared across all ext4 file systems */
6646 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6647
ext4_init_fs(void)6648 static int __init ext4_init_fs(void)
6649 {
6650 int i, err;
6651
6652 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6653 ext4_li_info = NULL;
6654
6655 /* Build-time check for flags consistency */
6656 ext4_check_flag_values();
6657
6658 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6659 init_waitqueue_head(&ext4__ioend_wq[i]);
6660
6661 err = ext4_init_es();
6662 if (err)
6663 return err;
6664
6665 err = ext4_init_pending();
6666 if (err)
6667 goto out7;
6668
6669 err = ext4_init_post_read_processing();
6670 if (err)
6671 goto out6;
6672
6673 err = ext4_init_pageio();
6674 if (err)
6675 goto out5;
6676
6677 err = ext4_init_system_zone();
6678 if (err)
6679 goto out4;
6680
6681 err = ext4_init_sysfs();
6682 if (err)
6683 goto out3;
6684
6685 err = ext4_init_mballoc();
6686 if (err)
6687 goto out2;
6688 err = init_inodecache();
6689 if (err)
6690 goto out1;
6691
6692 err = ext4_fc_init_dentry_cache();
6693 if (err)
6694 goto out05;
6695
6696 register_as_ext3();
6697 register_as_ext2();
6698 err = register_filesystem(&ext4_fs_type);
6699 if (err)
6700 goto out;
6701
6702 return 0;
6703 out:
6704 unregister_as_ext2();
6705 unregister_as_ext3();
6706 ext4_fc_destroy_dentry_cache();
6707 out05:
6708 destroy_inodecache();
6709 out1:
6710 ext4_exit_mballoc();
6711 out2:
6712 ext4_exit_sysfs();
6713 out3:
6714 ext4_exit_system_zone();
6715 out4:
6716 ext4_exit_pageio();
6717 out5:
6718 ext4_exit_post_read_processing();
6719 out6:
6720 ext4_exit_pending();
6721 out7:
6722 ext4_exit_es();
6723
6724 return err;
6725 }
6726
ext4_exit_fs(void)6727 static void __exit ext4_exit_fs(void)
6728 {
6729 ext4_destroy_lazyinit_thread();
6730 unregister_as_ext2();
6731 unregister_as_ext3();
6732 unregister_filesystem(&ext4_fs_type);
6733 ext4_fc_destroy_dentry_cache();
6734 destroy_inodecache();
6735 ext4_exit_mballoc();
6736 ext4_exit_sysfs();
6737 ext4_exit_system_zone();
6738 ext4_exit_pageio();
6739 ext4_exit_post_read_processing();
6740 ext4_exit_es();
6741 ext4_exit_pending();
6742 }
6743
6744 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6745 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6746 MODULE_LICENSE("GPL");
6747 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
6748 MODULE_SOFTDEP("pre: crc32c");
6749 module_init(ext4_init_fs)
6750 module_exit(ext4_exit_fs)
6751