• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * page fault path:
93  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
94  *   -> page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_lock
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
103  *   page lock
104  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
105  *   i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> mmap_lock
109  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
110  *
111  * writepages:
112  * transaction start -> page lock(s) -> i_data_sem (rw)
113  */
114 
115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
116 static struct file_system_type ext2_fs_type = {
117 	.owner		= THIS_MODULE,
118 	.name		= "ext2",
119 	.mount		= ext4_mount,
120 	.kill_sb	= kill_block_super,
121 	.fs_flags	= FS_REQUIRES_DEV,
122 };
123 MODULE_ALIAS_FS("ext2");
124 MODULE_ALIAS("ext2");
125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
126 #else
127 #define IS_EXT2_SB(sb) (0)
128 #endif
129 
130 
131 static struct file_system_type ext3_fs_type = {
132 	.owner		= THIS_MODULE,
133 	.name		= "ext3",
134 	.mount		= ext4_mount,
135 	.kill_sb	= kill_block_super,
136 	.fs_flags	= FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("ext3");
139 MODULE_ALIAS("ext3");
140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
141 
142 
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
144 				  bh_end_io_t *end_io)
145 {
146 	/*
147 	 * buffer's verified bit is no longer valid after reading from
148 	 * disk again due to write out error, clear it to make sure we
149 	 * recheck the buffer contents.
150 	 */
151 	clear_buffer_verified(bh);
152 
153 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
154 	get_bh(bh);
155 	submit_bh(REQ_OP_READ, op_flags, bh);
156 }
157 
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
159 			 bh_end_io_t *end_io)
160 {
161 	BUG_ON(!buffer_locked(bh));
162 
163 	if (ext4_buffer_uptodate(bh)) {
164 		unlock_buffer(bh);
165 		return;
166 	}
167 	__ext4_read_bh(bh, op_flags, end_io);
168 }
169 
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
171 {
172 	BUG_ON(!buffer_locked(bh));
173 
174 	if (ext4_buffer_uptodate(bh)) {
175 		unlock_buffer(bh);
176 		return 0;
177 	}
178 
179 	__ext4_read_bh(bh, op_flags, end_io);
180 
181 	wait_on_buffer(bh);
182 	if (buffer_uptodate(bh))
183 		return 0;
184 	return -EIO;
185 }
186 
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
188 {
189 	lock_buffer(bh);
190 	if (!wait) {
191 		ext4_read_bh_nowait(bh, op_flags, NULL);
192 		return 0;
193 	}
194 	return ext4_read_bh(bh, op_flags, NULL);
195 }
196 
197 /*
198  * This works like __bread_gfp() except it uses ERR_PTR for error
199  * returns.  Currently with sb_bread it's impossible to distinguish
200  * between ENOMEM and EIO situations (since both result in a NULL
201  * return.
202  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)203 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
204 					       sector_t block, int op_flags,
205 					       gfp_t gfp)
206 {
207 	struct buffer_head *bh;
208 	int ret;
209 
210 	bh = sb_getblk_gfp(sb, block, gfp);
211 	if (bh == NULL)
212 		return ERR_PTR(-ENOMEM);
213 	if (ext4_buffer_uptodate(bh))
214 		return bh;
215 
216 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
217 	if (ret) {
218 		put_bh(bh);
219 		return ERR_PTR(ret);
220 	}
221 	return bh;
222 }
223 
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)224 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
225 				   int op_flags)
226 {
227 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
228 }
229 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)230 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
231 					    sector_t block)
232 {
233 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
234 }
235 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)236 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
237 {
238 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
239 
240 	if (likely(bh)) {
241 		if (trylock_buffer(bh))
242 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
243 		brelse(bh);
244 	}
245 }
246 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)247 static int ext4_verify_csum_type(struct super_block *sb,
248 				 struct ext4_super_block *es)
249 {
250 	if (!ext4_has_feature_metadata_csum(sb))
251 		return 1;
252 
253 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
254 }
255 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)256 static __le32 ext4_superblock_csum(struct super_block *sb,
257 				   struct ext4_super_block *es)
258 {
259 	struct ext4_sb_info *sbi = EXT4_SB(sb);
260 	int offset = offsetof(struct ext4_super_block, s_checksum);
261 	__u32 csum;
262 
263 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
264 
265 	return cpu_to_le32(csum);
266 }
267 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)268 static int ext4_superblock_csum_verify(struct super_block *sb,
269 				       struct ext4_super_block *es)
270 {
271 	if (!ext4_has_metadata_csum(sb))
272 		return 1;
273 
274 	return es->s_checksum == ext4_superblock_csum(sb, es);
275 }
276 
ext4_superblock_csum_set(struct super_block * sb)277 void ext4_superblock_csum_set(struct super_block *sb)
278 {
279 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
280 
281 	if (!ext4_has_metadata_csum(sb))
282 		return;
283 
284 	es->s_checksum = ext4_superblock_csum(sb, es);
285 }
286 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)287 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
288 			       struct ext4_group_desc *bg)
289 {
290 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
291 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
292 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
293 }
294 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)295 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
296 			       struct ext4_group_desc *bg)
297 {
298 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
299 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
300 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
301 }
302 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)303 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
304 			      struct ext4_group_desc *bg)
305 {
306 	return le32_to_cpu(bg->bg_inode_table_lo) |
307 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
308 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
309 }
310 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)311 __u32 ext4_free_group_clusters(struct super_block *sb,
312 			       struct ext4_group_desc *bg)
313 {
314 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
315 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
316 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
317 }
318 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)319 __u32 ext4_free_inodes_count(struct super_block *sb,
320 			      struct ext4_group_desc *bg)
321 {
322 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
323 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
324 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
325 }
326 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)327 __u32 ext4_used_dirs_count(struct super_block *sb,
328 			      struct ext4_group_desc *bg)
329 {
330 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
331 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
333 }
334 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)335 __u32 ext4_itable_unused_count(struct super_block *sb,
336 			      struct ext4_group_desc *bg)
337 {
338 	return le16_to_cpu(bg->bg_itable_unused_lo) |
339 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
341 }
342 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)343 void ext4_block_bitmap_set(struct super_block *sb,
344 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
345 {
346 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
347 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
348 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
349 }
350 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)351 void ext4_inode_bitmap_set(struct super_block *sb,
352 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
353 {
354 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
355 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
356 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
357 }
358 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)359 void ext4_inode_table_set(struct super_block *sb,
360 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
361 {
362 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
363 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
364 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
365 }
366 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)367 void ext4_free_group_clusters_set(struct super_block *sb,
368 				  struct ext4_group_desc *bg, __u32 count)
369 {
370 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
371 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
372 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
373 }
374 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)375 void ext4_free_inodes_set(struct super_block *sb,
376 			  struct ext4_group_desc *bg, __u32 count)
377 {
378 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
379 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
380 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
381 }
382 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)383 void ext4_used_dirs_set(struct super_block *sb,
384 			  struct ext4_group_desc *bg, __u32 count)
385 {
386 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
387 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
389 }
390 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)391 void ext4_itable_unused_set(struct super_block *sb,
392 			  struct ext4_group_desc *bg, __u32 count)
393 {
394 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
395 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
397 }
398 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)399 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
400 {
401 	now = clamp_val(now, 0, (1ull << 40) - 1);
402 
403 	*lo = cpu_to_le32(lower_32_bits(now));
404 	*hi = upper_32_bits(now);
405 }
406 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)407 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
408 {
409 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
410 }
411 #define ext4_update_tstamp(es, tstamp) \
412 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
413 			     ktime_get_real_seconds())
414 #define ext4_get_tstamp(es, tstamp) \
415 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
416 
417 /*
418  * The del_gendisk() function uninitializes the disk-specific data
419  * structures, including the bdi structure, without telling anyone
420  * else.  Once this happens, any attempt to call mark_buffer_dirty()
421  * (for example, by ext4_commit_super), will cause a kernel OOPS.
422  * This is a kludge to prevent these oops until we can put in a proper
423  * hook in del_gendisk() to inform the VFS and file system layers.
424  */
block_device_ejected(struct super_block * sb)425 static int block_device_ejected(struct super_block *sb)
426 {
427 	struct inode *bd_inode = sb->s_bdev->bd_inode;
428 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
429 
430 	return bdi->dev == NULL;
431 }
432 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)433 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
434 {
435 	struct super_block		*sb = journal->j_private;
436 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
437 	int				error = is_journal_aborted(journal);
438 	struct ext4_journal_cb_entry	*jce;
439 
440 	BUG_ON(txn->t_state == T_FINISHED);
441 
442 	ext4_process_freed_data(sb, txn->t_tid);
443 
444 	spin_lock(&sbi->s_md_lock);
445 	while (!list_empty(&txn->t_private_list)) {
446 		jce = list_entry(txn->t_private_list.next,
447 				 struct ext4_journal_cb_entry, jce_list);
448 		list_del_init(&jce->jce_list);
449 		spin_unlock(&sbi->s_md_lock);
450 		jce->jce_func(sb, jce, error);
451 		spin_lock(&sbi->s_md_lock);
452 	}
453 	spin_unlock(&sbi->s_md_lock);
454 }
455 
456 /*
457  * This writepage callback for write_cache_pages()
458  * takes care of a few cases after page cleaning.
459  *
460  * write_cache_pages() already checks for dirty pages
461  * and calls clear_page_dirty_for_io(), which we want,
462  * to write protect the pages.
463  *
464  * However, we may have to redirty a page (see below.)
465  */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)466 static int ext4_journalled_writepage_callback(struct page *page,
467 					      struct writeback_control *wbc,
468 					      void *data)
469 {
470 	transaction_t *transaction = (transaction_t *) data;
471 	struct buffer_head *bh, *head;
472 	struct journal_head *jh;
473 
474 	bh = head = page_buffers(page);
475 	do {
476 		/*
477 		 * We have to redirty a page in these cases:
478 		 * 1) If buffer is dirty, it means the page was dirty because it
479 		 * contains a buffer that needs checkpointing. So the dirty bit
480 		 * needs to be preserved so that checkpointing writes the buffer
481 		 * properly.
482 		 * 2) If buffer is not part of the committing transaction
483 		 * (we may have just accidentally come across this buffer because
484 		 * inode range tracking is not exact) or if the currently running
485 		 * transaction already contains this buffer as well, dirty bit
486 		 * needs to be preserved so that the buffer gets writeprotected
487 		 * properly on running transaction's commit.
488 		 */
489 		jh = bh2jh(bh);
490 		if (buffer_dirty(bh) ||
491 		    (jh && (jh->b_transaction != transaction ||
492 			    jh->b_next_transaction))) {
493 			redirty_page_for_writepage(wbc, page);
494 			goto out;
495 		}
496 	} while ((bh = bh->b_this_page) != head);
497 
498 out:
499 	return AOP_WRITEPAGE_ACTIVATE;
500 }
501 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)502 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
503 {
504 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
505 	struct writeback_control wbc = {
506 		.sync_mode =  WB_SYNC_ALL,
507 		.nr_to_write = LONG_MAX,
508 		.range_start = jinode->i_dirty_start,
509 		.range_end = jinode->i_dirty_end,
510         };
511 
512 	return write_cache_pages(mapping, &wbc,
513 				 ext4_journalled_writepage_callback,
514 				 jinode->i_transaction);
515 }
516 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)517 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
518 {
519 	int ret;
520 
521 	if (ext4_should_journal_data(jinode->i_vfs_inode))
522 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
523 	else
524 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
525 
526 	return ret;
527 }
528 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)529 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
530 {
531 	int ret = 0;
532 
533 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
534 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
535 
536 	return ret;
537 }
538 
system_going_down(void)539 static bool system_going_down(void)
540 {
541 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
542 		|| system_state == SYSTEM_RESTART;
543 }
544 
545 struct ext4_err_translation {
546 	int code;
547 	int errno;
548 };
549 
550 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
551 
552 static struct ext4_err_translation err_translation[] = {
553 	EXT4_ERR_TRANSLATE(EIO),
554 	EXT4_ERR_TRANSLATE(ENOMEM),
555 	EXT4_ERR_TRANSLATE(EFSBADCRC),
556 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
557 	EXT4_ERR_TRANSLATE(ENOSPC),
558 	EXT4_ERR_TRANSLATE(ENOKEY),
559 	EXT4_ERR_TRANSLATE(EROFS),
560 	EXT4_ERR_TRANSLATE(EFBIG),
561 	EXT4_ERR_TRANSLATE(EEXIST),
562 	EXT4_ERR_TRANSLATE(ERANGE),
563 	EXT4_ERR_TRANSLATE(EOVERFLOW),
564 	EXT4_ERR_TRANSLATE(EBUSY),
565 	EXT4_ERR_TRANSLATE(ENOTDIR),
566 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
567 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
568 	EXT4_ERR_TRANSLATE(EFAULT),
569 };
570 
ext4_errno_to_code(int errno)571 static int ext4_errno_to_code(int errno)
572 {
573 	int i;
574 
575 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
576 		if (err_translation[i].errno == errno)
577 			return err_translation[i].code;
578 	return EXT4_ERR_UNKNOWN;
579 }
580 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)581 static void save_error_info(struct super_block *sb, int error,
582 			    __u32 ino, __u64 block,
583 			    const char *func, unsigned int line)
584 {
585 	struct ext4_sb_info *sbi = EXT4_SB(sb);
586 
587 	/* We default to EFSCORRUPTED error... */
588 	if (error == 0)
589 		error = EFSCORRUPTED;
590 
591 	spin_lock(&sbi->s_error_lock);
592 	sbi->s_add_error_count++;
593 	sbi->s_last_error_code = error;
594 	sbi->s_last_error_line = line;
595 	sbi->s_last_error_ino = ino;
596 	sbi->s_last_error_block = block;
597 	sbi->s_last_error_func = func;
598 	sbi->s_last_error_time = ktime_get_real_seconds();
599 	if (!sbi->s_first_error_time) {
600 		sbi->s_first_error_code = error;
601 		sbi->s_first_error_line = line;
602 		sbi->s_first_error_ino = ino;
603 		sbi->s_first_error_block = block;
604 		sbi->s_first_error_func = func;
605 		sbi->s_first_error_time = sbi->s_last_error_time;
606 	}
607 	spin_unlock(&sbi->s_error_lock);
608 }
609 
610 /* Deal with the reporting of failure conditions on a filesystem such as
611  * inconsistencies detected or read IO failures.
612  *
613  * On ext2, we can store the error state of the filesystem in the
614  * superblock.  That is not possible on ext4, because we may have other
615  * write ordering constraints on the superblock which prevent us from
616  * writing it out straight away; and given that the journal is about to
617  * be aborted, we can't rely on the current, or future, transactions to
618  * write out the superblock safely.
619  *
620  * We'll just use the jbd2_journal_abort() error code to record an error in
621  * the journal instead.  On recovery, the journal will complain about
622  * that error until we've noted it down and cleared it.
623  *
624  * If force_ro is set, we unconditionally force the filesystem into an
625  * ABORT|READONLY state, unless the error response on the fs has been set to
626  * panic in which case we take the easy way out and panic immediately. This is
627  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
628  * at a critical moment in log management.
629  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)630 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
631 			      __u32 ino, __u64 block,
632 			      const char *func, unsigned int line)
633 {
634 	journal_t *journal = EXT4_SB(sb)->s_journal;
635 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
636 
637 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
638 	if (test_opt(sb, WARN_ON_ERROR))
639 		WARN_ON_ONCE(1);
640 
641 	if (!continue_fs && !sb_rdonly(sb)) {
642 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
643 		if (journal)
644 			jbd2_journal_abort(journal, -EIO);
645 	}
646 
647 	if (!bdev_read_only(sb->s_bdev)) {
648 		save_error_info(sb, error, ino, block, func, line);
649 		/*
650 		 * In case the fs should keep running, we need to writeout
651 		 * superblock through the journal. Due to lock ordering
652 		 * constraints, it may not be safe to do it right here so we
653 		 * defer superblock flushing to a workqueue.
654 		 */
655 		if (continue_fs && journal)
656 			schedule_work(&EXT4_SB(sb)->s_error_work);
657 		else
658 			ext4_commit_super(sb);
659 	}
660 
661 	/*
662 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
663 	 * could panic during 'reboot -f' as the underlying device got already
664 	 * disabled.
665 	 */
666 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
667 		panic("EXT4-fs (device %s): panic forced after error\n",
668 			sb->s_id);
669 	}
670 
671 	if (sb_rdonly(sb) || continue_fs)
672 		return;
673 
674 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
675 	/*
676 	 * Make sure updated value of ->s_mount_flags will be visible before
677 	 * ->s_flags update
678 	 */
679 	smp_wmb();
680 	sb->s_flags |= SB_RDONLY;
681 }
682 
flush_stashed_error_work(struct work_struct * work)683 static void flush_stashed_error_work(struct work_struct *work)
684 {
685 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
686 						s_error_work);
687 	journal_t *journal = sbi->s_journal;
688 	handle_t *handle;
689 
690 	/*
691 	 * If the journal is still running, we have to write out superblock
692 	 * through the journal to avoid collisions of other journalled sb
693 	 * updates.
694 	 *
695 	 * We use directly jbd2 functions here to avoid recursing back into
696 	 * ext4 error handling code during handling of previous errors.
697 	 */
698 	if (!sb_rdonly(sbi->s_sb) && journal) {
699 		struct buffer_head *sbh = sbi->s_sbh;
700 		handle = jbd2_journal_start(journal, 1);
701 		if (IS_ERR(handle))
702 			goto write_directly;
703 		if (jbd2_journal_get_write_access(handle, sbh)) {
704 			jbd2_journal_stop(handle);
705 			goto write_directly;
706 		}
707 		ext4_update_super(sbi->s_sb);
708 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
709 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
710 				 "superblock detected");
711 			clear_buffer_write_io_error(sbh);
712 			set_buffer_uptodate(sbh);
713 		}
714 
715 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
716 			jbd2_journal_stop(handle);
717 			goto write_directly;
718 		}
719 		jbd2_journal_stop(handle);
720 		ext4_notify_error_sysfs(sbi);
721 		return;
722 	}
723 write_directly:
724 	/*
725 	 * Write through journal failed. Write sb directly to get error info
726 	 * out and hope for the best.
727 	 */
728 	ext4_commit_super(sbi->s_sb);
729 	ext4_notify_error_sysfs(sbi);
730 }
731 
732 #define ext4_error_ratelimit(sb)					\
733 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
734 			     "EXT4-fs error")
735 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)736 void __ext4_error(struct super_block *sb, const char *function,
737 		  unsigned int line, bool force_ro, int error, __u64 block,
738 		  const char *fmt, ...)
739 {
740 	struct va_format vaf;
741 	va_list args;
742 
743 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
744 		return;
745 
746 	trace_ext4_error(sb, function, line);
747 	if (ext4_error_ratelimit(sb)) {
748 		va_start(args, fmt);
749 		vaf.fmt = fmt;
750 		vaf.va = &args;
751 		printk(KERN_CRIT
752 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
753 		       sb->s_id, function, line, current->comm, &vaf);
754 		va_end(args);
755 	}
756 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
757 }
758 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)759 void __ext4_error_inode(struct inode *inode, const char *function,
760 			unsigned int line, ext4_fsblk_t block, int error,
761 			const char *fmt, ...)
762 {
763 	va_list args;
764 	struct va_format vaf;
765 
766 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
767 		return;
768 
769 	trace_ext4_error(inode->i_sb, function, line);
770 	if (ext4_error_ratelimit(inode->i_sb)) {
771 		va_start(args, fmt);
772 		vaf.fmt = fmt;
773 		vaf.va = &args;
774 		if (block)
775 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
776 			       "inode #%lu: block %llu: comm %s: %pV\n",
777 			       inode->i_sb->s_id, function, line, inode->i_ino,
778 			       block, current->comm, &vaf);
779 		else
780 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
781 			       "inode #%lu: comm %s: %pV\n",
782 			       inode->i_sb->s_id, function, line, inode->i_ino,
783 			       current->comm, &vaf);
784 		va_end(args);
785 	}
786 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
787 			  function, line);
788 }
789 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)790 void __ext4_error_file(struct file *file, const char *function,
791 		       unsigned int line, ext4_fsblk_t block,
792 		       const char *fmt, ...)
793 {
794 	va_list args;
795 	struct va_format vaf;
796 	struct inode *inode = file_inode(file);
797 	char pathname[80], *path;
798 
799 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
800 		return;
801 
802 	trace_ext4_error(inode->i_sb, function, line);
803 	if (ext4_error_ratelimit(inode->i_sb)) {
804 		path = file_path(file, pathname, sizeof(pathname));
805 		if (IS_ERR(path))
806 			path = "(unknown)";
807 		va_start(args, fmt);
808 		vaf.fmt = fmt;
809 		vaf.va = &args;
810 		if (block)
811 			printk(KERN_CRIT
812 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
813 			       "block %llu: comm %s: path %s: %pV\n",
814 			       inode->i_sb->s_id, function, line, inode->i_ino,
815 			       block, current->comm, path, &vaf);
816 		else
817 			printk(KERN_CRIT
818 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 			       "comm %s: path %s: %pV\n",
820 			       inode->i_sb->s_id, function, line, inode->i_ino,
821 			       current->comm, path, &vaf);
822 		va_end(args);
823 	}
824 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
825 			  function, line);
826 }
827 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])828 const char *ext4_decode_error(struct super_block *sb, int errno,
829 			      char nbuf[16])
830 {
831 	char *errstr = NULL;
832 
833 	switch (errno) {
834 	case -EFSCORRUPTED:
835 		errstr = "Corrupt filesystem";
836 		break;
837 	case -EFSBADCRC:
838 		errstr = "Filesystem failed CRC";
839 		break;
840 	case -EIO:
841 		errstr = "IO failure";
842 		break;
843 	case -ENOMEM:
844 		errstr = "Out of memory";
845 		break;
846 	case -EROFS:
847 		if (!sb || (EXT4_SB(sb)->s_journal &&
848 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
849 			errstr = "Journal has aborted";
850 		else
851 			errstr = "Readonly filesystem";
852 		break;
853 	default:
854 		/* If the caller passed in an extra buffer for unknown
855 		 * errors, textualise them now.  Else we just return
856 		 * NULL. */
857 		if (nbuf) {
858 			/* Check for truncated error codes... */
859 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
860 				errstr = nbuf;
861 		}
862 		break;
863 	}
864 
865 	return errstr;
866 }
867 
868 /* __ext4_std_error decodes expected errors from journaling functions
869  * automatically and invokes the appropriate error response.  */
870 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)871 void __ext4_std_error(struct super_block *sb, const char *function,
872 		      unsigned int line, int errno)
873 {
874 	char nbuf[16];
875 	const char *errstr;
876 
877 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
878 		return;
879 
880 	/* Special case: if the error is EROFS, and we're not already
881 	 * inside a transaction, then there's really no point in logging
882 	 * an error. */
883 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
884 		return;
885 
886 	if (ext4_error_ratelimit(sb)) {
887 		errstr = ext4_decode_error(sb, errno, nbuf);
888 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
889 		       sb->s_id, function, line, errstr);
890 	}
891 
892 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
893 }
894 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)895 void __ext4_msg(struct super_block *sb,
896 		const char *prefix, const char *fmt, ...)
897 {
898 	struct va_format vaf;
899 	va_list args;
900 
901 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
902 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
903 		return;
904 
905 	va_start(args, fmt);
906 	vaf.fmt = fmt;
907 	vaf.va = &args;
908 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
909 	va_end(args);
910 }
911 
ext4_warning_ratelimit(struct super_block * sb)912 static int ext4_warning_ratelimit(struct super_block *sb)
913 {
914 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
915 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
916 			    "EXT4-fs warning");
917 }
918 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)919 void __ext4_warning(struct super_block *sb, const char *function,
920 		    unsigned int line, const char *fmt, ...)
921 {
922 	struct va_format vaf;
923 	va_list args;
924 
925 	if (!ext4_warning_ratelimit(sb))
926 		return;
927 
928 	va_start(args, fmt);
929 	vaf.fmt = fmt;
930 	vaf.va = &args;
931 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
932 	       sb->s_id, function, line, &vaf);
933 	va_end(args);
934 }
935 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)936 void __ext4_warning_inode(const struct inode *inode, const char *function,
937 			  unsigned int line, const char *fmt, ...)
938 {
939 	struct va_format vaf;
940 	va_list args;
941 
942 	if (!ext4_warning_ratelimit(inode->i_sb))
943 		return;
944 
945 	va_start(args, fmt);
946 	vaf.fmt = fmt;
947 	vaf.va = &args;
948 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
949 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
950 	       function, line, inode->i_ino, current->comm, &vaf);
951 	va_end(args);
952 }
953 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)954 void __ext4_grp_locked_error(const char *function, unsigned int line,
955 			     struct super_block *sb, ext4_group_t grp,
956 			     unsigned long ino, ext4_fsblk_t block,
957 			     const char *fmt, ...)
958 __releases(bitlock)
959 __acquires(bitlock)
960 {
961 	struct va_format vaf;
962 	va_list args;
963 
964 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
965 		return;
966 
967 	trace_ext4_error(sb, function, line);
968 	if (ext4_error_ratelimit(sb)) {
969 		va_start(args, fmt);
970 		vaf.fmt = fmt;
971 		vaf.va = &args;
972 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
973 		       sb->s_id, function, line, grp);
974 		if (ino)
975 			printk(KERN_CONT "inode %lu: ", ino);
976 		if (block)
977 			printk(KERN_CONT "block %llu:",
978 			       (unsigned long long) block);
979 		printk(KERN_CONT "%pV\n", &vaf);
980 		va_end(args);
981 	}
982 
983 	if (test_opt(sb, ERRORS_CONT)) {
984 		if (test_opt(sb, WARN_ON_ERROR))
985 			WARN_ON_ONCE(1);
986 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
987 		if (!bdev_read_only(sb->s_bdev)) {
988 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
989 					line);
990 			schedule_work(&EXT4_SB(sb)->s_error_work);
991 		}
992 		return;
993 	}
994 	ext4_unlock_group(sb, grp);
995 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
996 	/*
997 	 * We only get here in the ERRORS_RO case; relocking the group
998 	 * may be dangerous, but nothing bad will happen since the
999 	 * filesystem will have already been marked read/only and the
1000 	 * journal has been aborted.  We return 1 as a hint to callers
1001 	 * who might what to use the return value from
1002 	 * ext4_grp_locked_error() to distinguish between the
1003 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1004 	 * aggressively from the ext4 function in question, with a
1005 	 * more appropriate error code.
1006 	 */
1007 	ext4_lock_group(sb, grp);
1008 	return;
1009 }
1010 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1011 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1012 				     ext4_group_t group,
1013 				     unsigned int flags)
1014 {
1015 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1016 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1017 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1018 	int ret;
1019 
1020 	if (!grp || !gdp)
1021 		return;
1022 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1023 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1024 					    &grp->bb_state);
1025 		if (!ret)
1026 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1027 					   grp->bb_free);
1028 	}
1029 
1030 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1031 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1032 					    &grp->bb_state);
1033 		if (!ret && gdp) {
1034 			int count;
1035 
1036 			count = ext4_free_inodes_count(sb, gdp);
1037 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1038 					   count);
1039 		}
1040 	}
1041 }
1042 
ext4_update_dynamic_rev(struct super_block * sb)1043 void ext4_update_dynamic_rev(struct super_block *sb)
1044 {
1045 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1046 
1047 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1048 		return;
1049 
1050 	ext4_warning(sb,
1051 		     "updating to rev %d because of new feature flag, "
1052 		     "running e2fsck is recommended",
1053 		     EXT4_DYNAMIC_REV);
1054 
1055 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1056 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1057 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1058 	/* leave es->s_feature_*compat flags alone */
1059 	/* es->s_uuid will be set by e2fsck if empty */
1060 
1061 	/*
1062 	 * The rest of the superblock fields should be zero, and if not it
1063 	 * means they are likely already in use, so leave them alone.  We
1064 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1065 	 */
1066 }
1067 
1068 /*
1069  * Open the external journal device
1070  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1071 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1072 {
1073 	struct block_device *bdev;
1074 
1075 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1076 	if (IS_ERR(bdev))
1077 		goto fail;
1078 	return bdev;
1079 
1080 fail:
1081 	ext4_msg(sb, KERN_ERR,
1082 		 "failed to open journal device unknown-block(%u,%u) %ld",
1083 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1084 	return NULL;
1085 }
1086 
1087 /*
1088  * Release the journal device
1089  */
ext4_blkdev_put(struct block_device * bdev)1090 static void ext4_blkdev_put(struct block_device *bdev)
1091 {
1092 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1093 }
1094 
ext4_blkdev_remove(struct ext4_sb_info * sbi)1095 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1096 {
1097 	struct block_device *bdev;
1098 	bdev = sbi->s_journal_bdev;
1099 	if (bdev) {
1100 		/*
1101 		 * Invalidate the journal device's buffers.  We don't want them
1102 		 * floating about in memory - the physical journal device may
1103 		 * hotswapped, and it breaks the `ro-after' testing code.
1104 		 */
1105 		invalidate_bdev(bdev);
1106 		ext4_blkdev_put(bdev);
1107 		sbi->s_journal_bdev = NULL;
1108 	}
1109 }
1110 
orphan_list_entry(struct list_head * l)1111 static inline struct inode *orphan_list_entry(struct list_head *l)
1112 {
1113 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1114 }
1115 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1116 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1117 {
1118 	struct list_head *l;
1119 
1120 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1121 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1122 
1123 	printk(KERN_ERR "sb_info orphan list:\n");
1124 	list_for_each(l, &sbi->s_orphan) {
1125 		struct inode *inode = orphan_list_entry(l);
1126 		printk(KERN_ERR "  "
1127 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1128 		       inode->i_sb->s_id, inode->i_ino, inode,
1129 		       inode->i_mode, inode->i_nlink,
1130 		       NEXT_ORPHAN(inode));
1131 	}
1132 }
1133 
1134 #ifdef CONFIG_QUOTA
1135 static int ext4_quota_off(struct super_block *sb, int type);
1136 
ext4_quota_off_umount(struct super_block * sb)1137 static inline void ext4_quota_off_umount(struct super_block *sb)
1138 {
1139 	int type;
1140 
1141 	/* Use our quota_off function to clear inode flags etc. */
1142 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1143 		ext4_quota_off(sb, type);
1144 }
1145 
1146 /*
1147  * This is a helper function which is used in the mount/remount
1148  * codepaths (which holds s_umount) to fetch the quota file name.
1149  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1150 static inline char *get_qf_name(struct super_block *sb,
1151 				struct ext4_sb_info *sbi,
1152 				int type)
1153 {
1154 	return rcu_dereference_protected(sbi->s_qf_names[type],
1155 					 lockdep_is_held(&sb->s_umount));
1156 }
1157 #else
ext4_quota_off_umount(struct super_block * sb)1158 static inline void ext4_quota_off_umount(struct super_block *sb)
1159 {
1160 }
1161 #endif
1162 
ext4_put_super(struct super_block * sb)1163 static void ext4_put_super(struct super_block *sb)
1164 {
1165 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1166 	struct ext4_super_block *es = sbi->s_es;
1167 	struct buffer_head **group_desc;
1168 	struct flex_groups **flex_groups;
1169 	int aborted = 0;
1170 	int i, err;
1171 
1172 	/*
1173 	 * Unregister sysfs before destroying jbd2 journal.
1174 	 * Since we could still access attr_journal_task attribute via sysfs
1175 	 * path which could have sbi->s_journal->j_task as NULL
1176 	 * Unregister sysfs before flush sbi->s_error_work.
1177 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1178 	 * read metadata verify failed then will queue error work.
1179 	 * flush_stashed_error_work will call start_this_handle may trigger
1180 	 * BUG_ON.
1181 	 */
1182 	ext4_unregister_sysfs(sb);
1183 
1184 	ext4_unregister_li_request(sb);
1185 	ext4_quota_off_umount(sb);
1186 
1187 	flush_work(&sbi->s_error_work);
1188 	destroy_workqueue(sbi->rsv_conversion_wq);
1189 	ext4_release_orphan_info(sb);
1190 
1191 	if (sbi->s_journal) {
1192 		aborted = is_journal_aborted(sbi->s_journal);
1193 		err = jbd2_journal_destroy(sbi->s_journal);
1194 		sbi->s_journal = NULL;
1195 		if ((err < 0) && !aborted) {
1196 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1197 		}
1198 	}
1199 
1200 	ext4_es_unregister_shrinker(sbi);
1201 	del_timer_sync(&sbi->s_err_report);
1202 	ext4_release_system_zone(sb);
1203 	ext4_mb_release(sb);
1204 	ext4_ext_release(sb);
1205 
1206 	if (!sb_rdonly(sb) && !aborted) {
1207 		ext4_clear_feature_journal_needs_recovery(sb);
1208 		ext4_clear_feature_orphan_present(sb);
1209 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1210 	}
1211 	if (!sb_rdonly(sb))
1212 		ext4_commit_super(sb);
1213 
1214 	rcu_read_lock();
1215 	group_desc = rcu_dereference(sbi->s_group_desc);
1216 	for (i = 0; i < sbi->s_gdb_count; i++)
1217 		brelse(group_desc[i]);
1218 	kvfree(group_desc);
1219 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1220 	if (flex_groups) {
1221 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1222 			kvfree(flex_groups[i]);
1223 		kvfree(flex_groups);
1224 	}
1225 	rcu_read_unlock();
1226 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1227 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1228 	percpu_counter_destroy(&sbi->s_dirs_counter);
1229 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1230 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1231 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1232 #ifdef CONFIG_QUOTA
1233 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1234 		kfree(get_qf_name(sb, sbi, i));
1235 #endif
1236 
1237 	/* Debugging code just in case the in-memory inode orphan list
1238 	 * isn't empty.  The on-disk one can be non-empty if we've
1239 	 * detected an error and taken the fs readonly, but the
1240 	 * in-memory list had better be clean by this point. */
1241 	if (!list_empty(&sbi->s_orphan))
1242 		dump_orphan_list(sb, sbi);
1243 	ASSERT(list_empty(&sbi->s_orphan));
1244 
1245 	sync_blockdev(sb->s_bdev);
1246 	invalidate_bdev(sb->s_bdev);
1247 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1248 		sync_blockdev(sbi->s_journal_bdev);
1249 		ext4_blkdev_remove(sbi);
1250 	}
1251 
1252 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1253 	sbi->s_ea_inode_cache = NULL;
1254 
1255 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1256 	sbi->s_ea_block_cache = NULL;
1257 
1258 	ext4_stop_mmpd(sbi);
1259 
1260 	brelse(sbi->s_sbh);
1261 	sb->s_fs_info = NULL;
1262 	/*
1263 	 * Now that we are completely done shutting down the
1264 	 * superblock, we need to actually destroy the kobject.
1265 	 */
1266 	kobject_put(&sbi->s_kobj);
1267 	wait_for_completion(&sbi->s_kobj_unregister);
1268 	if (sbi->s_chksum_driver)
1269 		crypto_free_shash(sbi->s_chksum_driver);
1270 	kfree(sbi->s_blockgroup_lock);
1271 	fs_put_dax(sbi->s_daxdev);
1272 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1273 #ifdef CONFIG_UNICODE
1274 	utf8_unload(sb->s_encoding);
1275 #endif
1276 	kfree(sbi);
1277 }
1278 
1279 static struct kmem_cache *ext4_inode_cachep;
1280 
1281 /*
1282  * Called inside transaction, so use GFP_NOFS
1283  */
ext4_alloc_inode(struct super_block * sb)1284 static struct inode *ext4_alloc_inode(struct super_block *sb)
1285 {
1286 	struct ext4_inode_info *ei;
1287 
1288 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1289 	if (!ei)
1290 		return NULL;
1291 
1292 	inode_set_iversion(&ei->vfs_inode, 1);
1293 	ei->i_flags = 0;
1294 	spin_lock_init(&ei->i_raw_lock);
1295 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1296 	atomic_set(&ei->i_prealloc_active, 0);
1297 	spin_lock_init(&ei->i_prealloc_lock);
1298 	ext4_es_init_tree(&ei->i_es_tree);
1299 	rwlock_init(&ei->i_es_lock);
1300 	INIT_LIST_HEAD(&ei->i_es_list);
1301 	ei->i_es_all_nr = 0;
1302 	ei->i_es_shk_nr = 0;
1303 	ei->i_es_shrink_lblk = 0;
1304 	ei->i_reserved_data_blocks = 0;
1305 	spin_lock_init(&(ei->i_block_reservation_lock));
1306 	ext4_init_pending_tree(&ei->i_pending_tree);
1307 #ifdef CONFIG_QUOTA
1308 	ei->i_reserved_quota = 0;
1309 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1310 #endif
1311 	ei->jinode = NULL;
1312 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1313 	spin_lock_init(&ei->i_completed_io_lock);
1314 	ei->i_sync_tid = 0;
1315 	ei->i_datasync_tid = 0;
1316 	atomic_set(&ei->i_unwritten, 0);
1317 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1318 	ext4_fc_init_inode(&ei->vfs_inode);
1319 	mutex_init(&ei->i_fc_lock);
1320 	return &ei->vfs_inode;
1321 }
1322 
ext4_drop_inode(struct inode * inode)1323 static int ext4_drop_inode(struct inode *inode)
1324 {
1325 	int drop = generic_drop_inode(inode);
1326 
1327 	if (!drop)
1328 		drop = fscrypt_drop_inode(inode);
1329 
1330 	trace_ext4_drop_inode(inode, drop);
1331 	return drop;
1332 }
1333 
ext4_free_in_core_inode(struct inode * inode)1334 static void ext4_free_in_core_inode(struct inode *inode)
1335 {
1336 	fscrypt_free_inode(inode);
1337 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1338 		pr_warn("%s: inode %ld still in fc list",
1339 			__func__, inode->i_ino);
1340 	}
1341 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1342 }
1343 
ext4_destroy_inode(struct inode * inode)1344 static void ext4_destroy_inode(struct inode *inode)
1345 {
1346 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1347 		ext4_msg(inode->i_sb, KERN_ERR,
1348 			 "Inode %lu (%p): orphan list check failed!",
1349 			 inode->i_ino, EXT4_I(inode));
1350 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1351 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1352 				true);
1353 		dump_stack();
1354 	}
1355 
1356 	if (EXT4_I(inode)->i_reserved_data_blocks)
1357 		ext4_msg(inode->i_sb, KERN_ERR,
1358 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1359 			 inode->i_ino, EXT4_I(inode),
1360 			 EXT4_I(inode)->i_reserved_data_blocks);
1361 }
1362 
init_once(void * foo)1363 static void init_once(void *foo)
1364 {
1365 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1366 
1367 	INIT_LIST_HEAD(&ei->i_orphan);
1368 	init_rwsem(&ei->xattr_sem);
1369 	init_rwsem(&ei->i_data_sem);
1370 	inode_init_once(&ei->vfs_inode);
1371 	ext4_fc_init_inode(&ei->vfs_inode);
1372 }
1373 
init_inodecache(void)1374 static int __init init_inodecache(void)
1375 {
1376 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377 				sizeof(struct ext4_inode_info), 0,
1378 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379 					SLAB_ACCOUNT),
1380 				offsetof(struct ext4_inode_info, i_data),
1381 				sizeof_field(struct ext4_inode_info, i_data),
1382 				init_once);
1383 	if (ext4_inode_cachep == NULL)
1384 		return -ENOMEM;
1385 	return 0;
1386 }
1387 
destroy_inodecache(void)1388 static void destroy_inodecache(void)
1389 {
1390 	/*
1391 	 * Make sure all delayed rcu free inodes are flushed before we
1392 	 * destroy cache.
1393 	 */
1394 	rcu_barrier();
1395 	kmem_cache_destroy(ext4_inode_cachep);
1396 }
1397 
ext4_clear_inode(struct inode * inode)1398 void ext4_clear_inode(struct inode *inode)
1399 {
1400 	ext4_fc_del(inode);
1401 	invalidate_inode_buffers(inode);
1402 	clear_inode(inode);
1403 	ext4_discard_preallocations(inode, 0);
1404 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405 	dquot_drop(inode);
1406 	if (EXT4_I(inode)->jinode) {
1407 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408 					       EXT4_I(inode)->jinode);
1409 		jbd2_free_inode(EXT4_I(inode)->jinode);
1410 		EXT4_I(inode)->jinode = NULL;
1411 	}
1412 	fscrypt_put_encryption_info(inode);
1413 	fsverity_cleanup_inode(inode);
1414 }
1415 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1416 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417 					u64 ino, u32 generation)
1418 {
1419 	struct inode *inode;
1420 
1421 	/*
1422 	 * Currently we don't know the generation for parent directory, so
1423 	 * a generation of 0 means "accept any"
1424 	 */
1425 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426 	if (IS_ERR(inode))
1427 		return ERR_CAST(inode);
1428 	if (generation && inode->i_generation != generation) {
1429 		iput(inode);
1430 		return ERR_PTR(-ESTALE);
1431 	}
1432 
1433 	return inode;
1434 }
1435 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1436 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437 					int fh_len, int fh_type)
1438 {
1439 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440 				    ext4_nfs_get_inode);
1441 }
1442 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1443 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444 					int fh_len, int fh_type)
1445 {
1446 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447 				    ext4_nfs_get_inode);
1448 }
1449 
ext4_nfs_commit_metadata(struct inode * inode)1450 static int ext4_nfs_commit_metadata(struct inode *inode)
1451 {
1452 	struct writeback_control wbc = {
1453 		.sync_mode = WB_SYNC_ALL
1454 	};
1455 
1456 	trace_ext4_nfs_commit_metadata(inode);
1457 	return ext4_write_inode(inode, &wbc);
1458 }
1459 
1460 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1461 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1462 {
1463 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1464 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1465 }
1466 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1467 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1468 							void *fs_data)
1469 {
1470 	handle_t *handle = fs_data;
1471 	int res, res2, credits, retries = 0;
1472 
1473 	/*
1474 	 * Encrypting the root directory is not allowed because e2fsck expects
1475 	 * lost+found to exist and be unencrypted, and encrypting the root
1476 	 * directory would imply encrypting the lost+found directory as well as
1477 	 * the filename "lost+found" itself.
1478 	 */
1479 	if (inode->i_ino == EXT4_ROOT_INO)
1480 		return -EPERM;
1481 
1482 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1483 		return -EINVAL;
1484 
1485 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1486 		return -EOPNOTSUPP;
1487 
1488 	res = ext4_convert_inline_data(inode);
1489 	if (res)
1490 		return res;
1491 
1492 	/*
1493 	 * If a journal handle was specified, then the encryption context is
1494 	 * being set on a new inode via inheritance and is part of a larger
1495 	 * transaction to create the inode.  Otherwise the encryption context is
1496 	 * being set on an existing inode in its own transaction.  Only in the
1497 	 * latter case should the "retry on ENOSPC" logic be used.
1498 	 */
1499 
1500 	if (handle) {
1501 		res = ext4_xattr_set_handle(handle, inode,
1502 					    EXT4_XATTR_INDEX_ENCRYPTION,
1503 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1504 					    ctx, len, 0);
1505 		if (!res) {
1506 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1507 			ext4_clear_inode_state(inode,
1508 					EXT4_STATE_MAY_INLINE_DATA);
1509 			/*
1510 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1511 			 * S_DAX may be disabled
1512 			 */
1513 			ext4_set_inode_flags(inode, false);
1514 		}
1515 		return res;
1516 	}
1517 
1518 	res = dquot_initialize(inode);
1519 	if (res)
1520 		return res;
1521 retry:
1522 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1523 				     &credits);
1524 	if (res)
1525 		return res;
1526 
1527 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1528 	if (IS_ERR(handle))
1529 		return PTR_ERR(handle);
1530 
1531 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1532 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1533 				    ctx, len, 0);
1534 	if (!res) {
1535 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1536 		/*
1537 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1538 		 * S_DAX may be disabled
1539 		 */
1540 		ext4_set_inode_flags(inode, false);
1541 		res = ext4_mark_inode_dirty(handle, inode);
1542 		if (res)
1543 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1544 	}
1545 	res2 = ext4_journal_stop(handle);
1546 
1547 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1548 		goto retry;
1549 	if (!res)
1550 		res = res2;
1551 	return res;
1552 }
1553 
ext4_get_dummy_policy(struct super_block * sb)1554 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1555 {
1556 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1557 }
1558 
ext4_has_stable_inodes(struct super_block * sb)1559 static bool ext4_has_stable_inodes(struct super_block *sb)
1560 {
1561 	return ext4_has_feature_stable_inodes(sb);
1562 }
1563 
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1564 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1565 				       int *ino_bits_ret, int *lblk_bits_ret)
1566 {
1567 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1568 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1569 }
1570 
1571 static const struct fscrypt_operations ext4_cryptops = {
1572 	.flags			= FS_CFLG_SUPPORTS_SUBBLOCK_DATA_UNITS,
1573 	.key_prefix		= "ext4:",
1574 	.get_context		= ext4_get_context,
1575 	.set_context		= ext4_set_context,
1576 	.get_dummy_policy	= ext4_get_dummy_policy,
1577 	.empty_dir		= ext4_empty_dir,
1578 	.has_stable_inodes	= ext4_has_stable_inodes,
1579 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1580 };
1581 #endif
1582 
1583 #ifdef CONFIG_QUOTA
1584 static const char * const quotatypes[] = INITQFNAMES;
1585 #define QTYPE2NAME(t) (quotatypes[t])
1586 
1587 static int ext4_write_dquot(struct dquot *dquot);
1588 static int ext4_acquire_dquot(struct dquot *dquot);
1589 static int ext4_release_dquot(struct dquot *dquot);
1590 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1591 static int ext4_write_info(struct super_block *sb, int type);
1592 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1593 			 const struct path *path);
1594 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1595 			       size_t len, loff_t off);
1596 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1597 				const char *data, size_t len, loff_t off);
1598 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1599 			     unsigned int flags);
1600 
ext4_get_dquots(struct inode * inode)1601 static struct dquot **ext4_get_dquots(struct inode *inode)
1602 {
1603 	return EXT4_I(inode)->i_dquot;
1604 }
1605 
1606 static const struct dquot_operations ext4_quota_operations = {
1607 	.get_reserved_space	= ext4_get_reserved_space,
1608 	.write_dquot		= ext4_write_dquot,
1609 	.acquire_dquot		= ext4_acquire_dquot,
1610 	.release_dquot		= ext4_release_dquot,
1611 	.mark_dirty		= ext4_mark_dquot_dirty,
1612 	.write_info		= ext4_write_info,
1613 	.alloc_dquot		= dquot_alloc,
1614 	.destroy_dquot		= dquot_destroy,
1615 	.get_projid		= ext4_get_projid,
1616 	.get_inode_usage	= ext4_get_inode_usage,
1617 	.get_next_id		= dquot_get_next_id,
1618 };
1619 
1620 static const struct quotactl_ops ext4_qctl_operations = {
1621 	.quota_on	= ext4_quota_on,
1622 	.quota_off	= ext4_quota_off,
1623 	.quota_sync	= dquot_quota_sync,
1624 	.get_state	= dquot_get_state,
1625 	.set_info	= dquot_set_dqinfo,
1626 	.get_dqblk	= dquot_get_dqblk,
1627 	.set_dqblk	= dquot_set_dqblk,
1628 	.get_nextdqblk	= dquot_get_next_dqblk,
1629 };
1630 #endif
1631 
1632 static const struct super_operations ext4_sops = {
1633 	.alloc_inode	= ext4_alloc_inode,
1634 	.free_inode	= ext4_free_in_core_inode,
1635 	.destroy_inode	= ext4_destroy_inode,
1636 	.write_inode	= ext4_write_inode,
1637 	.dirty_inode	= ext4_dirty_inode,
1638 	.drop_inode	= ext4_drop_inode,
1639 	.evict_inode	= ext4_evict_inode,
1640 	.put_super	= ext4_put_super,
1641 	.sync_fs	= ext4_sync_fs,
1642 	.freeze_fs	= ext4_freeze,
1643 	.unfreeze_fs	= ext4_unfreeze,
1644 	.statfs		= ext4_statfs,
1645 	.remount_fs	= ext4_remount,
1646 	.show_options	= ext4_show_options,
1647 #ifdef CONFIG_QUOTA
1648 	.quota_read	= ext4_quota_read,
1649 	.quota_write	= ext4_quota_write,
1650 	.get_dquots	= ext4_get_dquots,
1651 #endif
1652 };
1653 
1654 static const struct export_operations ext4_export_ops = {
1655 	.fh_to_dentry = ext4_fh_to_dentry,
1656 	.fh_to_parent = ext4_fh_to_parent,
1657 	.get_parent = ext4_get_parent,
1658 	.commit_metadata = ext4_nfs_commit_metadata,
1659 };
1660 
1661 enum {
1662 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1663 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1664 	Opt_nouid32, Opt_debug, Opt_removed,
1665 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1666 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1667 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1668 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1669 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1670 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1671 	Opt_inlinecrypt,
1672 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1673 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1674 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1675 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1676 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1677 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1678 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1679 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1680 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 	Opt_dioread_nolock, Opt_dioread_lock,
1683 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 #ifdef CONFIG_EXT4_DEBUG
1687 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1688 #endif
1689 };
1690 
1691 static const match_table_t tokens = {
1692 	{Opt_bsd_df, "bsddf"},
1693 	{Opt_minix_df, "minixdf"},
1694 	{Opt_grpid, "grpid"},
1695 	{Opt_grpid, "bsdgroups"},
1696 	{Opt_nogrpid, "nogrpid"},
1697 	{Opt_nogrpid, "sysvgroups"},
1698 	{Opt_resgid, "resgid=%u"},
1699 	{Opt_resuid, "resuid=%u"},
1700 	{Opt_sb, "sb=%u"},
1701 	{Opt_err_cont, "errors=continue"},
1702 	{Opt_err_panic, "errors=panic"},
1703 	{Opt_err_ro, "errors=remount-ro"},
1704 	{Opt_nouid32, "nouid32"},
1705 	{Opt_debug, "debug"},
1706 	{Opt_removed, "oldalloc"},
1707 	{Opt_removed, "orlov"},
1708 	{Opt_user_xattr, "user_xattr"},
1709 	{Opt_nouser_xattr, "nouser_xattr"},
1710 	{Opt_acl, "acl"},
1711 	{Opt_noacl, "noacl"},
1712 	{Opt_noload, "norecovery"},
1713 	{Opt_noload, "noload"},
1714 	{Opt_removed, "nobh"},
1715 	{Opt_removed, "bh"},
1716 	{Opt_commit, "commit=%u"},
1717 	{Opt_min_batch_time, "min_batch_time=%u"},
1718 	{Opt_max_batch_time, "max_batch_time=%u"},
1719 	{Opt_journal_dev, "journal_dev=%u"},
1720 	{Opt_journal_path, "journal_path=%s"},
1721 	{Opt_journal_checksum, "journal_checksum"},
1722 	{Opt_nojournal_checksum, "nojournal_checksum"},
1723 	{Opt_journal_async_commit, "journal_async_commit"},
1724 	{Opt_abort, "abort"},
1725 	{Opt_data_journal, "data=journal"},
1726 	{Opt_data_ordered, "data=ordered"},
1727 	{Opt_data_writeback, "data=writeback"},
1728 	{Opt_data_err_abort, "data_err=abort"},
1729 	{Opt_data_err_ignore, "data_err=ignore"},
1730 	{Opt_offusrjquota, "usrjquota="},
1731 	{Opt_usrjquota, "usrjquota=%s"},
1732 	{Opt_offgrpjquota, "grpjquota="},
1733 	{Opt_grpjquota, "grpjquota=%s"},
1734 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1735 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1736 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1737 	{Opt_grpquota, "grpquota"},
1738 	{Opt_noquota, "noquota"},
1739 	{Opt_quota, "quota"},
1740 	{Opt_usrquota, "usrquota"},
1741 	{Opt_prjquota, "prjquota"},
1742 	{Opt_barrier, "barrier=%u"},
1743 	{Opt_barrier, "barrier"},
1744 	{Opt_nobarrier, "nobarrier"},
1745 	{Opt_i_version, "i_version"},
1746 	{Opt_dax, "dax"},
1747 	{Opt_dax_always, "dax=always"},
1748 	{Opt_dax_inode, "dax=inode"},
1749 	{Opt_dax_never, "dax=never"},
1750 	{Opt_stripe, "stripe=%u"},
1751 	{Opt_delalloc, "delalloc"},
1752 	{Opt_warn_on_error, "warn_on_error"},
1753 	{Opt_nowarn_on_error, "nowarn_on_error"},
1754 	{Opt_lazytime, "lazytime"},
1755 	{Opt_nolazytime, "nolazytime"},
1756 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1757 	{Opt_nodelalloc, "nodelalloc"},
1758 	{Opt_removed, "mblk_io_submit"},
1759 	{Opt_removed, "nomblk_io_submit"},
1760 	{Opt_block_validity, "block_validity"},
1761 	{Opt_noblock_validity, "noblock_validity"},
1762 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1763 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1764 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1765 	{Opt_auto_da_alloc, "auto_da_alloc"},
1766 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1767 	{Opt_dioread_nolock, "dioread_nolock"},
1768 	{Opt_dioread_lock, "nodioread_nolock"},
1769 	{Opt_dioread_lock, "dioread_lock"},
1770 	{Opt_discard, "discard"},
1771 	{Opt_nodiscard, "nodiscard"},
1772 	{Opt_init_itable, "init_itable=%u"},
1773 	{Opt_init_itable, "init_itable"},
1774 	{Opt_noinit_itable, "noinit_itable"},
1775 #ifdef CONFIG_EXT4_DEBUG
1776 	{Opt_fc_debug_force, "fc_debug_force"},
1777 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1778 #endif
1779 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1780 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1781 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1782 	{Opt_inlinecrypt, "inlinecrypt"},
1783 	{Opt_nombcache, "nombcache"},
1784 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1785 	{Opt_removed, "prefetch_block_bitmaps"},
1786 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1787 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1788 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1789 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1790 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1791 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1792 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1793 	{Opt_err, NULL},
1794 };
1795 
get_sb_block(void ** data)1796 static ext4_fsblk_t get_sb_block(void **data)
1797 {
1798 	ext4_fsblk_t	sb_block;
1799 	char		*options = (char *) *data;
1800 
1801 	if (!options || strncmp(options, "sb=", 3) != 0)
1802 		return 1;	/* Default location */
1803 
1804 	options += 3;
1805 	/* TODO: use simple_strtoll with >32bit ext4 */
1806 	sb_block = simple_strtoul(options, &options, 0);
1807 	if (*options && *options != ',') {
1808 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1809 		       (char *) *data);
1810 		return 1;
1811 	}
1812 	if (*options == ',')
1813 		options++;
1814 	*data = (void *) options;
1815 
1816 	return sb_block;
1817 }
1818 
1819 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1820 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1821 
1822 static const char deprecated_msg[] =
1823 	"Mount option \"%s\" will be removed by %s\n"
1824 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1825 
1826 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1827 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1828 {
1829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1830 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1831 	int ret = -1;
1832 
1833 	if (sb_any_quota_loaded(sb) && !old_qname) {
1834 		ext4_msg(sb, KERN_ERR,
1835 			"Cannot change journaled "
1836 			"quota options when quota turned on");
1837 		return -1;
1838 	}
1839 	if (ext4_has_feature_quota(sb)) {
1840 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1841 			 "ignored when QUOTA feature is enabled");
1842 		return 1;
1843 	}
1844 	qname = match_strdup(args);
1845 	if (!qname) {
1846 		ext4_msg(sb, KERN_ERR,
1847 			"Not enough memory for storing quotafile name");
1848 		return -1;
1849 	}
1850 	if (old_qname) {
1851 		if (strcmp(old_qname, qname) == 0)
1852 			ret = 1;
1853 		else
1854 			ext4_msg(sb, KERN_ERR,
1855 				 "%s quota file already specified",
1856 				 QTYPE2NAME(qtype));
1857 		goto errout;
1858 	}
1859 	if (strchr(qname, '/')) {
1860 		ext4_msg(sb, KERN_ERR,
1861 			"quotafile must be on filesystem root");
1862 		goto errout;
1863 	}
1864 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1865 	set_opt(sb, QUOTA);
1866 	return 1;
1867 errout:
1868 	kfree(qname);
1869 	return ret;
1870 }
1871 
clear_qf_name(struct super_block * sb,int qtype)1872 static int clear_qf_name(struct super_block *sb, int qtype)
1873 {
1874 
1875 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1876 	char *old_qname = get_qf_name(sb, sbi, qtype);
1877 
1878 	if (sb_any_quota_loaded(sb) && old_qname) {
1879 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1880 			" when quota turned on");
1881 		return -1;
1882 	}
1883 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1884 	synchronize_rcu();
1885 	kfree(old_qname);
1886 	return 1;
1887 }
1888 #endif
1889 
1890 #define MOPT_SET	0x0001
1891 #define MOPT_CLEAR	0x0002
1892 #define MOPT_NOSUPPORT	0x0004
1893 #define MOPT_EXPLICIT	0x0008
1894 #define MOPT_CLEAR_ERR	0x0010
1895 #define MOPT_GTE0	0x0020
1896 #ifdef CONFIG_QUOTA
1897 #define MOPT_Q		0
1898 #define MOPT_QFMT	0x0040
1899 #else
1900 #define MOPT_Q		MOPT_NOSUPPORT
1901 #define MOPT_QFMT	MOPT_NOSUPPORT
1902 #endif
1903 #define MOPT_DATAJ	0x0080
1904 #define MOPT_NO_EXT2	0x0100
1905 #define MOPT_NO_EXT3	0x0200
1906 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1907 #define MOPT_STRING	0x0400
1908 #define MOPT_SKIP	0x0800
1909 #define	MOPT_2		0x1000
1910 
1911 static const struct mount_opts {
1912 	int	token;
1913 	int	mount_opt;
1914 	int	flags;
1915 } ext4_mount_opts[] = {
1916 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1917 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1918 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1919 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1920 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1921 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1922 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1923 	 MOPT_EXT4_ONLY | MOPT_SET},
1924 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1925 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1926 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1927 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1928 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1929 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1930 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1931 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1932 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1933 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1934 	{Opt_commit, 0, MOPT_NO_EXT2},
1935 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1936 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1937 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1938 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1940 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1941 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1942 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1943 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1944 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1945 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1946 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1947 	 MOPT_NO_EXT2},
1948 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1949 	 MOPT_NO_EXT2},
1950 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1951 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1952 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1953 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1954 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1955 	{Opt_commit, 0, MOPT_GTE0},
1956 	{Opt_max_batch_time, 0, MOPT_GTE0},
1957 	{Opt_min_batch_time, 0, MOPT_GTE0},
1958 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1959 	{Opt_init_itable, 0, MOPT_GTE0},
1960 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1961 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1962 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1963 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1964 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1965 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1966 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1967 	{Opt_stripe, 0, MOPT_GTE0},
1968 	{Opt_resuid, 0, MOPT_GTE0},
1969 	{Opt_resgid, 0, MOPT_GTE0},
1970 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1971 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1972 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1973 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1974 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1976 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1977 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1978 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1979 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1980 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1981 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1982 #else
1983 	{Opt_acl, 0, MOPT_NOSUPPORT},
1984 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1985 #endif
1986 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1987 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1988 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1989 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1990 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1991 							MOPT_SET | MOPT_Q},
1992 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1993 							MOPT_SET | MOPT_Q},
1994 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1995 							MOPT_SET | MOPT_Q},
1996 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1997 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1998 							MOPT_CLEAR | MOPT_Q},
1999 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2000 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2001 	{Opt_offusrjquota, 0, MOPT_Q},
2002 	{Opt_offgrpjquota, 0, MOPT_Q},
2003 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2004 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2005 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2006 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2007 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2008 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2009 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2010 	 MOPT_SET},
2011 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2012 #ifdef CONFIG_EXT4_DEBUG
2013 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2014 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2015 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2016 #endif
2017 	{Opt_err, 0, 0}
2018 };
2019 
2020 #ifdef CONFIG_UNICODE
2021 static const struct ext4_sb_encodings {
2022 	__u16 magic;
2023 	char *name;
2024 	char *version;
2025 } ext4_sb_encoding_map[] = {
2026 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2027 };
2028 
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2029 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2030 				 const struct ext4_sb_encodings **encoding,
2031 				 __u16 *flags)
2032 {
2033 	__u16 magic = le16_to_cpu(es->s_encoding);
2034 	int i;
2035 
2036 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2037 		if (magic == ext4_sb_encoding_map[i].magic)
2038 			break;
2039 
2040 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2041 		return -EINVAL;
2042 
2043 	*encoding = &ext4_sb_encoding_map[i];
2044 	*flags = le16_to_cpu(es->s_encoding_flags);
2045 
2046 	return 0;
2047 }
2048 #endif
2049 
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2050 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2051 					  const char *opt,
2052 					  const substring_t *arg,
2053 					  bool is_remount)
2054 {
2055 #ifdef CONFIG_FS_ENCRYPTION
2056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2057 	int err;
2058 
2059 	if (!ext4_has_feature_encrypt(sb)) {
2060 		ext4_msg(sb, KERN_WARNING,
2061 			 "test_dummy_encryption requires encrypt feature");
2062 		return -1;
2063 	}
2064 
2065 	/*
2066 	 * This mount option is just for testing, and it's not worthwhile to
2067 	 * implement the extra complexity (e.g. RCU protection) that would be
2068 	 * needed to allow it to be set or changed during remount.  We do allow
2069 	 * it to be specified during remount, but only if there is no change.
2070 	 */
2071 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2072 		ext4_msg(sb, KERN_WARNING,
2073 			 "Can't set test_dummy_encryption on remount");
2074 		return -1;
2075 	}
2076 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2077 						&sbi->s_dummy_enc_policy);
2078 	if (err) {
2079 		if (err == -EEXIST)
2080 			ext4_msg(sb, KERN_WARNING,
2081 				 "Can't change test_dummy_encryption on remount");
2082 		else if (err == -EINVAL)
2083 			ext4_msg(sb, KERN_WARNING,
2084 				 "Value of option \"%s\" is unrecognized", opt);
2085 		else
2086 			ext4_msg(sb, KERN_WARNING,
2087 				 "Error processing option \"%s\" [%d]",
2088 				 opt, err);
2089 		return -1;
2090 	}
2091 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2092 	return 1;
2093 #else
2094 	ext4_msg(sb, KERN_WARNING,
2095 		 "test_dummy_encryption option not supported");
2096 	return -1;
2097 
2098 #endif
2099 }
2100 
2101 struct ext4_parsed_options {
2102 	unsigned long journal_devnum;
2103 	unsigned int journal_ioprio;
2104 	int mb_optimize_scan;
2105 };
2106 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,struct ext4_parsed_options * parsed_opts,int is_remount)2107 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2108 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2109 			    int is_remount)
2110 {
2111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2112 	const struct mount_opts *m;
2113 	kuid_t uid;
2114 	kgid_t gid;
2115 	int arg = 0;
2116 
2117 #ifdef CONFIG_QUOTA
2118 	if (token == Opt_usrjquota)
2119 		return set_qf_name(sb, USRQUOTA, &args[0]);
2120 	else if (token == Opt_grpjquota)
2121 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2122 	else if (token == Opt_offusrjquota)
2123 		return clear_qf_name(sb, USRQUOTA);
2124 	else if (token == Opt_offgrpjquota)
2125 		return clear_qf_name(sb, GRPQUOTA);
2126 #endif
2127 	switch (token) {
2128 	case Opt_noacl:
2129 	case Opt_nouser_xattr:
2130 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2131 		break;
2132 	case Opt_sb:
2133 		return 1;	/* handled by get_sb_block() */
2134 	case Opt_removed:
2135 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2136 		return 1;
2137 	case Opt_abort:
2138 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2139 		return 1;
2140 	case Opt_i_version:
2141 		sb->s_flags |= SB_I_VERSION;
2142 		return 1;
2143 	case Opt_lazytime:
2144 		sb->s_flags |= SB_LAZYTIME;
2145 		return 1;
2146 	case Opt_nolazytime:
2147 		sb->s_flags &= ~SB_LAZYTIME;
2148 		return 1;
2149 	case Opt_inlinecrypt:
2150 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2151 		sb->s_flags |= SB_INLINECRYPT;
2152 #else
2153 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2154 #endif
2155 		return 1;
2156 	}
2157 
2158 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2159 		if (token == m->token)
2160 			break;
2161 
2162 	if (m->token == Opt_err) {
2163 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2164 			 "or missing value", opt);
2165 		return -1;
2166 	}
2167 
2168 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2169 		ext4_msg(sb, KERN_ERR,
2170 			 "Mount option \"%s\" incompatible with ext2", opt);
2171 		return -1;
2172 	}
2173 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2174 		ext4_msg(sb, KERN_ERR,
2175 			 "Mount option \"%s\" incompatible with ext3", opt);
2176 		return -1;
2177 	}
2178 
2179 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2180 		return -1;
2181 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2182 		return -1;
2183 	if (m->flags & MOPT_EXPLICIT) {
2184 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2185 			set_opt2(sb, EXPLICIT_DELALLOC);
2186 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2187 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2188 		} else
2189 			return -1;
2190 	}
2191 	if (m->flags & MOPT_CLEAR_ERR)
2192 		clear_opt(sb, ERRORS_MASK);
2193 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2194 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2195 			 "options when quota turned on");
2196 		return -1;
2197 	}
2198 
2199 	if (m->flags & MOPT_NOSUPPORT) {
2200 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2201 	} else if (token == Opt_commit) {
2202 		if (arg == 0)
2203 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2204 		else if (arg > INT_MAX / HZ) {
2205 			ext4_msg(sb, KERN_ERR,
2206 				 "Invalid commit interval %d, "
2207 				 "must be smaller than %d",
2208 				 arg, INT_MAX / HZ);
2209 			return -1;
2210 		}
2211 		sbi->s_commit_interval = HZ * arg;
2212 	} else if (token == Opt_debug_want_extra_isize) {
2213 		if ((arg & 1) ||
2214 		    (arg < 4) ||
2215 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2216 			ext4_msg(sb, KERN_ERR,
2217 				 "Invalid want_extra_isize %d", arg);
2218 			return -1;
2219 		}
2220 		sbi->s_want_extra_isize = arg;
2221 	} else if (token == Opt_max_batch_time) {
2222 		sbi->s_max_batch_time = arg;
2223 	} else if (token == Opt_min_batch_time) {
2224 		sbi->s_min_batch_time = arg;
2225 	} else if (token == Opt_inode_readahead_blks) {
2226 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2227 			ext4_msg(sb, KERN_ERR,
2228 				 "EXT4-fs: inode_readahead_blks must be "
2229 				 "0 or a power of 2 smaller than 2^31");
2230 			return -1;
2231 		}
2232 		sbi->s_inode_readahead_blks = arg;
2233 	} else if (token == Opt_init_itable) {
2234 		set_opt(sb, INIT_INODE_TABLE);
2235 		if (!args->from)
2236 			arg = EXT4_DEF_LI_WAIT_MULT;
2237 		sbi->s_li_wait_mult = arg;
2238 	} else if (token == Opt_max_dir_size_kb) {
2239 		sbi->s_max_dir_size_kb = arg;
2240 #ifdef CONFIG_EXT4_DEBUG
2241 	} else if (token == Opt_fc_debug_max_replay) {
2242 		sbi->s_fc_debug_max_replay = arg;
2243 #endif
2244 	} else if (token == Opt_stripe) {
2245 		sbi->s_stripe = arg;
2246 	} else if (token == Opt_resuid) {
2247 		uid = make_kuid(current_user_ns(), arg);
2248 		if (!uid_valid(uid)) {
2249 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2250 			return -1;
2251 		}
2252 		sbi->s_resuid = uid;
2253 	} else if (token == Opt_resgid) {
2254 		gid = make_kgid(current_user_ns(), arg);
2255 		if (!gid_valid(gid)) {
2256 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2257 			return -1;
2258 		}
2259 		sbi->s_resgid = gid;
2260 	} else if (token == Opt_journal_dev) {
2261 		if (is_remount) {
2262 			ext4_msg(sb, KERN_ERR,
2263 				 "Cannot specify journal on remount");
2264 			return -1;
2265 		}
2266 		parsed_opts->journal_devnum = arg;
2267 	} else if (token == Opt_journal_path) {
2268 		char *journal_path;
2269 		struct inode *journal_inode;
2270 		struct path path;
2271 		int error;
2272 
2273 		if (is_remount) {
2274 			ext4_msg(sb, KERN_ERR,
2275 				 "Cannot specify journal on remount");
2276 			return -1;
2277 		}
2278 		journal_path = match_strdup(&args[0]);
2279 		if (!journal_path) {
2280 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2281 				"journal device string");
2282 			return -1;
2283 		}
2284 
2285 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2286 		if (error) {
2287 			ext4_msg(sb, KERN_ERR, "error: could not find "
2288 				"journal device path: error %d", error);
2289 			kfree(journal_path);
2290 			return -1;
2291 		}
2292 
2293 		journal_inode = d_inode(path.dentry);
2294 		if (!S_ISBLK(journal_inode->i_mode)) {
2295 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2296 				"is not a block device", journal_path);
2297 			path_put(&path);
2298 			kfree(journal_path);
2299 			return -1;
2300 		}
2301 
2302 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2303 		path_put(&path);
2304 		kfree(journal_path);
2305 	} else if (token == Opt_journal_ioprio) {
2306 		if (arg > 7) {
2307 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2308 				 " (must be 0-7)");
2309 			return -1;
2310 		}
2311 		parsed_opts->journal_ioprio =
2312 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2313 	} else if (token == Opt_test_dummy_encryption) {
2314 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2315 						      is_remount);
2316 	} else if (m->flags & MOPT_DATAJ) {
2317 		if (is_remount) {
2318 			if (!sbi->s_journal)
2319 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2320 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2321 				ext4_msg(sb, KERN_ERR,
2322 					 "Cannot change data mode on remount");
2323 				return -1;
2324 			}
2325 		} else {
2326 			clear_opt(sb, DATA_FLAGS);
2327 			sbi->s_mount_opt |= m->mount_opt;
2328 		}
2329 #ifdef CONFIG_QUOTA
2330 	} else if (m->flags & MOPT_QFMT) {
2331 		if (sb_any_quota_loaded(sb) &&
2332 		    sbi->s_jquota_fmt != m->mount_opt) {
2333 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2334 				 "quota options when quota turned on");
2335 			return -1;
2336 		}
2337 		if (ext4_has_feature_quota(sb)) {
2338 			ext4_msg(sb, KERN_INFO,
2339 				 "Quota format mount options ignored "
2340 				 "when QUOTA feature is enabled");
2341 			return 1;
2342 		}
2343 		sbi->s_jquota_fmt = m->mount_opt;
2344 #endif
2345 	} else if (token == Opt_dax || token == Opt_dax_always ||
2346 		   token == Opt_dax_inode || token == Opt_dax_never) {
2347 #ifdef CONFIG_FS_DAX
2348 		switch (token) {
2349 		case Opt_dax:
2350 		case Opt_dax_always:
2351 			if (is_remount &&
2352 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2353 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2354 			fail_dax_change_remount:
2355 				ext4_msg(sb, KERN_ERR, "can't change "
2356 					 "dax mount option while remounting");
2357 				return -1;
2358 			}
2359 			if (is_remount &&
2360 			    (test_opt(sb, DATA_FLAGS) ==
2361 			     EXT4_MOUNT_JOURNAL_DATA)) {
2362 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2363 					     "both data=journal and dax");
2364 				    return -1;
2365 			}
2366 			ext4_msg(sb, KERN_WARNING,
2367 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2368 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2369 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2370 			break;
2371 		case Opt_dax_never:
2372 			if (is_remount &&
2373 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2374 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2375 				goto fail_dax_change_remount;
2376 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2377 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2378 			break;
2379 		case Opt_dax_inode:
2380 			if (is_remount &&
2381 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2382 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2383 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2384 				goto fail_dax_change_remount;
2385 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2386 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2387 			/* Strictly for printing options */
2388 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2389 			break;
2390 		}
2391 #else
2392 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2393 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2394 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2395 		return -1;
2396 #endif
2397 	} else if (token == Opt_data_err_abort) {
2398 		sbi->s_mount_opt |= m->mount_opt;
2399 	} else if (token == Opt_data_err_ignore) {
2400 		sbi->s_mount_opt &= ~m->mount_opt;
2401 	} else if (token == Opt_mb_optimize_scan) {
2402 		if (arg != 0 && arg != 1) {
2403 			ext4_msg(sb, KERN_WARNING,
2404 				 "mb_optimize_scan should be set to 0 or 1.");
2405 			return -1;
2406 		}
2407 		parsed_opts->mb_optimize_scan = arg;
2408 	} else {
2409 		if (!args->from)
2410 			arg = 1;
2411 		if (m->flags & MOPT_CLEAR)
2412 			arg = !arg;
2413 		else if (unlikely(!(m->flags & MOPT_SET))) {
2414 			ext4_msg(sb, KERN_WARNING,
2415 				 "buggy handling of option %s", opt);
2416 			WARN_ON(1);
2417 			return -1;
2418 		}
2419 		if (m->flags & MOPT_2) {
2420 			if (arg != 0)
2421 				sbi->s_mount_opt2 |= m->mount_opt;
2422 			else
2423 				sbi->s_mount_opt2 &= ~m->mount_opt;
2424 		} else {
2425 			if (arg != 0)
2426 				sbi->s_mount_opt |= m->mount_opt;
2427 			else
2428 				sbi->s_mount_opt &= ~m->mount_opt;
2429 		}
2430 	}
2431 	return 1;
2432 }
2433 
parse_options(char * options,struct super_block * sb,struct ext4_parsed_options * ret_opts,int is_remount)2434 static int parse_options(char *options, struct super_block *sb,
2435 			 struct ext4_parsed_options *ret_opts,
2436 			 int is_remount)
2437 {
2438 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2439 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2440 	substring_t args[MAX_OPT_ARGS];
2441 	int token;
2442 
2443 	if (!options)
2444 		return 1;
2445 
2446 	while ((p = strsep(&options, ",")) != NULL) {
2447 		if (!*p)
2448 			continue;
2449 		/*
2450 		 * Initialize args struct so we know whether arg was
2451 		 * found; some options take optional arguments.
2452 		 */
2453 		args[0].to = args[0].from = NULL;
2454 		token = match_token(p, tokens, args);
2455 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2456 				     is_remount) < 0)
2457 			return 0;
2458 	}
2459 #ifdef CONFIG_QUOTA
2460 	/*
2461 	 * We do the test below only for project quotas. 'usrquota' and
2462 	 * 'grpquota' mount options are allowed even without quota feature
2463 	 * to support legacy quotas in quota files.
2464 	 */
2465 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2466 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2467 			 "Cannot enable project quota enforcement.");
2468 		return 0;
2469 	}
2470 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2471 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2472 	if (usr_qf_name || grp_qf_name) {
2473 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2474 			clear_opt(sb, USRQUOTA);
2475 
2476 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2477 			clear_opt(sb, GRPQUOTA);
2478 
2479 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2480 			ext4_msg(sb, KERN_ERR, "old and new quota "
2481 					"format mixing");
2482 			return 0;
2483 		}
2484 
2485 		if (!sbi->s_jquota_fmt) {
2486 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2487 					"not specified");
2488 			return 0;
2489 		}
2490 	}
2491 #endif
2492 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2493 		int blocksize =
2494 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2495 		if (blocksize < PAGE_SIZE)
2496 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2497 				 "experimental mount option 'dioread_nolock' "
2498 				 "for blocksize < PAGE_SIZE");
2499 	}
2500 	return 1;
2501 }
2502 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2503 static inline void ext4_show_quota_options(struct seq_file *seq,
2504 					   struct super_block *sb)
2505 {
2506 #if defined(CONFIG_QUOTA)
2507 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2508 	char *usr_qf_name, *grp_qf_name;
2509 
2510 	if (sbi->s_jquota_fmt) {
2511 		char *fmtname = "";
2512 
2513 		switch (sbi->s_jquota_fmt) {
2514 		case QFMT_VFS_OLD:
2515 			fmtname = "vfsold";
2516 			break;
2517 		case QFMT_VFS_V0:
2518 			fmtname = "vfsv0";
2519 			break;
2520 		case QFMT_VFS_V1:
2521 			fmtname = "vfsv1";
2522 			break;
2523 		}
2524 		seq_printf(seq, ",jqfmt=%s", fmtname);
2525 	}
2526 
2527 	rcu_read_lock();
2528 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2529 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2530 	if (usr_qf_name)
2531 		seq_show_option(seq, "usrjquota", usr_qf_name);
2532 	if (grp_qf_name)
2533 		seq_show_option(seq, "grpjquota", grp_qf_name);
2534 	rcu_read_unlock();
2535 #endif
2536 }
2537 
token2str(int token)2538 static const char *token2str(int token)
2539 {
2540 	const struct match_token *t;
2541 
2542 	for (t = tokens; t->token != Opt_err; t++)
2543 		if (t->token == token && !strchr(t->pattern, '='))
2544 			break;
2545 	return t->pattern;
2546 }
2547 
2548 /*
2549  * Show an option if
2550  *  - it's set to a non-default value OR
2551  *  - if the per-sb default is different from the global default
2552  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2553 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2554 			      int nodefs)
2555 {
2556 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2557 	struct ext4_super_block *es = sbi->s_es;
2558 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2559 	const struct mount_opts *m;
2560 	char sep = nodefs ? '\n' : ',';
2561 
2562 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2563 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2564 
2565 	if (sbi->s_sb_block != 1)
2566 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2567 
2568 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2569 		int want_set = m->flags & MOPT_SET;
2570 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2571 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2572 			continue;
2573 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2574 			continue; /* skip if same as the default */
2575 		if ((want_set &&
2576 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2577 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2578 			continue; /* select Opt_noFoo vs Opt_Foo */
2579 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2580 	}
2581 
2582 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2583 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2584 		SEQ_OPTS_PRINT("resuid=%u",
2585 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2586 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2587 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2588 		SEQ_OPTS_PRINT("resgid=%u",
2589 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2590 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2591 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2592 		SEQ_OPTS_PUTS("errors=remount-ro");
2593 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2594 		SEQ_OPTS_PUTS("errors=continue");
2595 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2596 		SEQ_OPTS_PUTS("errors=panic");
2597 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2598 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2599 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2600 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2601 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2602 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2603 	if (sb->s_flags & SB_I_VERSION)
2604 		SEQ_OPTS_PUTS("i_version");
2605 	if (nodefs || sbi->s_stripe)
2606 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2607 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2608 			(sbi->s_mount_opt ^ def_mount_opt)) {
2609 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2610 			SEQ_OPTS_PUTS("data=journal");
2611 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2612 			SEQ_OPTS_PUTS("data=ordered");
2613 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2614 			SEQ_OPTS_PUTS("data=writeback");
2615 	}
2616 	if (nodefs ||
2617 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2618 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2619 			       sbi->s_inode_readahead_blks);
2620 
2621 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2622 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2623 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2624 	if (nodefs || sbi->s_max_dir_size_kb)
2625 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2626 	if (test_opt(sb, DATA_ERR_ABORT))
2627 		SEQ_OPTS_PUTS("data_err=abort");
2628 
2629 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2630 
2631 	if (sb->s_flags & SB_INLINECRYPT)
2632 		SEQ_OPTS_PUTS("inlinecrypt");
2633 
2634 	if (test_opt(sb, DAX_ALWAYS)) {
2635 		if (IS_EXT2_SB(sb))
2636 			SEQ_OPTS_PUTS("dax");
2637 		else
2638 			SEQ_OPTS_PUTS("dax=always");
2639 	} else if (test_opt2(sb, DAX_NEVER)) {
2640 		SEQ_OPTS_PUTS("dax=never");
2641 	} else if (test_opt2(sb, DAX_INODE)) {
2642 		SEQ_OPTS_PUTS("dax=inode");
2643 	}
2644 	ext4_show_quota_options(seq, sb);
2645 	return 0;
2646 }
2647 
ext4_show_options(struct seq_file * seq,struct dentry * root)2648 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2649 {
2650 	return _ext4_show_options(seq, root->d_sb, 0);
2651 }
2652 
ext4_seq_options_show(struct seq_file * seq,void * offset)2653 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2654 {
2655 	struct super_block *sb = seq->private;
2656 	int rc;
2657 
2658 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2659 	rc = _ext4_show_options(seq, sb, 1);
2660 	seq_puts(seq, "\n");
2661 	return rc;
2662 }
2663 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2664 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2665 			    int read_only)
2666 {
2667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2668 	int err = 0;
2669 
2670 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2671 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2672 			 "forcing read-only mode");
2673 		err = -EROFS;
2674 		goto done;
2675 	}
2676 	if (read_only)
2677 		goto done;
2678 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2679 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2680 			 "running e2fsck is recommended");
2681 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2682 		ext4_msg(sb, KERN_WARNING,
2683 			 "warning: mounting fs with errors, "
2684 			 "running e2fsck is recommended");
2685 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2686 		 le16_to_cpu(es->s_mnt_count) >=
2687 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2688 		ext4_msg(sb, KERN_WARNING,
2689 			 "warning: maximal mount count reached, "
2690 			 "running e2fsck is recommended");
2691 	else if (le32_to_cpu(es->s_checkinterval) &&
2692 		 (ext4_get_tstamp(es, s_lastcheck) +
2693 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2694 		ext4_msg(sb, KERN_WARNING,
2695 			 "warning: checktime reached, "
2696 			 "running e2fsck is recommended");
2697 	if (!sbi->s_journal)
2698 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2699 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2700 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2701 	le16_add_cpu(&es->s_mnt_count, 1);
2702 	ext4_update_tstamp(es, s_mtime);
2703 	if (sbi->s_journal) {
2704 		ext4_set_feature_journal_needs_recovery(sb);
2705 		if (ext4_has_feature_orphan_file(sb))
2706 			ext4_set_feature_orphan_present(sb);
2707 	}
2708 
2709 	err = ext4_commit_super(sb);
2710 done:
2711 	if (test_opt(sb, DEBUG))
2712 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2713 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2714 			sb->s_blocksize,
2715 			sbi->s_groups_count,
2716 			EXT4_BLOCKS_PER_GROUP(sb),
2717 			EXT4_INODES_PER_GROUP(sb),
2718 			sbi->s_mount_opt, sbi->s_mount_opt2);
2719 
2720 	cleancache_init_fs(sb);
2721 	return err;
2722 }
2723 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2724 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2725 {
2726 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2727 	struct flex_groups **old_groups, **new_groups;
2728 	int size, i, j;
2729 
2730 	if (!sbi->s_log_groups_per_flex)
2731 		return 0;
2732 
2733 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2734 	if (size <= sbi->s_flex_groups_allocated)
2735 		return 0;
2736 
2737 	new_groups = kvzalloc(roundup_pow_of_two(size *
2738 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2739 	if (!new_groups) {
2740 		ext4_msg(sb, KERN_ERR,
2741 			 "not enough memory for %d flex group pointers", size);
2742 		return -ENOMEM;
2743 	}
2744 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2745 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2746 					 sizeof(struct flex_groups)),
2747 					 GFP_KERNEL);
2748 		if (!new_groups[i]) {
2749 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2750 				kvfree(new_groups[j]);
2751 			kvfree(new_groups);
2752 			ext4_msg(sb, KERN_ERR,
2753 				 "not enough memory for %d flex groups", size);
2754 			return -ENOMEM;
2755 		}
2756 	}
2757 	rcu_read_lock();
2758 	old_groups = rcu_dereference(sbi->s_flex_groups);
2759 	if (old_groups)
2760 		memcpy(new_groups, old_groups,
2761 		       (sbi->s_flex_groups_allocated *
2762 			sizeof(struct flex_groups *)));
2763 	rcu_read_unlock();
2764 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2765 	sbi->s_flex_groups_allocated = size;
2766 	if (old_groups)
2767 		ext4_kvfree_array_rcu(old_groups);
2768 	return 0;
2769 }
2770 
ext4_fill_flex_info(struct super_block * sb)2771 static int ext4_fill_flex_info(struct super_block *sb)
2772 {
2773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2774 	struct ext4_group_desc *gdp = NULL;
2775 	struct flex_groups *fg;
2776 	ext4_group_t flex_group;
2777 	int i, err;
2778 
2779 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2780 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2781 		sbi->s_log_groups_per_flex = 0;
2782 		return 1;
2783 	}
2784 
2785 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2786 	if (err)
2787 		goto failed;
2788 
2789 	for (i = 0; i < sbi->s_groups_count; i++) {
2790 		gdp = ext4_get_group_desc(sb, i, NULL);
2791 
2792 		flex_group = ext4_flex_group(sbi, i);
2793 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2794 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2795 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2796 			     &fg->free_clusters);
2797 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2798 	}
2799 
2800 	return 1;
2801 failed:
2802 	return 0;
2803 }
2804 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2805 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2806 				   struct ext4_group_desc *gdp)
2807 {
2808 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2809 	__u16 crc = 0;
2810 	__le32 le_group = cpu_to_le32(block_group);
2811 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2812 
2813 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2814 		/* Use new metadata_csum algorithm */
2815 		__u32 csum32;
2816 		__u16 dummy_csum = 0;
2817 
2818 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2819 				     sizeof(le_group));
2820 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2821 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2822 				     sizeof(dummy_csum));
2823 		offset += sizeof(dummy_csum);
2824 		if (offset < sbi->s_desc_size)
2825 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2826 					     sbi->s_desc_size - offset);
2827 
2828 		crc = csum32 & 0xFFFF;
2829 		goto out;
2830 	}
2831 
2832 	/* old crc16 code */
2833 	if (!ext4_has_feature_gdt_csum(sb))
2834 		return 0;
2835 
2836 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2837 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2838 	crc = crc16(crc, (__u8 *)gdp, offset);
2839 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2840 	/* for checksum of struct ext4_group_desc do the rest...*/
2841 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2842 		crc = crc16(crc, (__u8 *)gdp + offset,
2843 			    sbi->s_desc_size - offset);
2844 
2845 out:
2846 	return cpu_to_le16(crc);
2847 }
2848 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2849 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2850 				struct ext4_group_desc *gdp)
2851 {
2852 	if (ext4_has_group_desc_csum(sb) &&
2853 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2854 		return 0;
2855 
2856 	return 1;
2857 }
2858 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2859 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2860 			      struct ext4_group_desc *gdp)
2861 {
2862 	if (!ext4_has_group_desc_csum(sb))
2863 		return;
2864 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2865 }
2866 
2867 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2868 static int ext4_check_descriptors(struct super_block *sb,
2869 				  ext4_fsblk_t sb_block,
2870 				  ext4_group_t *first_not_zeroed)
2871 {
2872 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2873 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2874 	ext4_fsblk_t last_block;
2875 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2876 	ext4_fsblk_t block_bitmap;
2877 	ext4_fsblk_t inode_bitmap;
2878 	ext4_fsblk_t inode_table;
2879 	int flexbg_flag = 0;
2880 	ext4_group_t i, grp = sbi->s_groups_count;
2881 
2882 	if (ext4_has_feature_flex_bg(sb))
2883 		flexbg_flag = 1;
2884 
2885 	ext4_debug("Checking group descriptors");
2886 
2887 	for (i = 0; i < sbi->s_groups_count; i++) {
2888 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2889 
2890 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2891 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2892 		else
2893 			last_block = first_block +
2894 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2895 
2896 		if ((grp == sbi->s_groups_count) &&
2897 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2898 			grp = i;
2899 
2900 		block_bitmap = ext4_block_bitmap(sb, gdp);
2901 		if (block_bitmap == sb_block) {
2902 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 				 "Block bitmap for group %u overlaps "
2904 				 "superblock", i);
2905 			if (!sb_rdonly(sb))
2906 				return 0;
2907 		}
2908 		if (block_bitmap >= sb_block + 1 &&
2909 		    block_bitmap <= last_bg_block) {
2910 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 				 "Block bitmap for group %u overlaps "
2912 				 "block group descriptors", i);
2913 			if (!sb_rdonly(sb))
2914 				return 0;
2915 		}
2916 		if (block_bitmap < first_block || block_bitmap > last_block) {
2917 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918 			       "Block bitmap for group %u not in group "
2919 			       "(block %llu)!", i, block_bitmap);
2920 			return 0;
2921 		}
2922 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2923 		if (inode_bitmap == sb_block) {
2924 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 				 "Inode bitmap for group %u overlaps "
2926 				 "superblock", i);
2927 			if (!sb_rdonly(sb))
2928 				return 0;
2929 		}
2930 		if (inode_bitmap >= sb_block + 1 &&
2931 		    inode_bitmap <= last_bg_block) {
2932 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 				 "Inode bitmap for group %u overlaps "
2934 				 "block group descriptors", i);
2935 			if (!sb_rdonly(sb))
2936 				return 0;
2937 		}
2938 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2939 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2940 			       "Inode bitmap for group %u not in group "
2941 			       "(block %llu)!", i, inode_bitmap);
2942 			return 0;
2943 		}
2944 		inode_table = ext4_inode_table(sb, gdp);
2945 		if (inode_table == sb_block) {
2946 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2947 				 "Inode table for group %u overlaps "
2948 				 "superblock", i);
2949 			if (!sb_rdonly(sb))
2950 				return 0;
2951 		}
2952 		if (inode_table >= sb_block + 1 &&
2953 		    inode_table <= last_bg_block) {
2954 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955 				 "Inode table for group %u overlaps "
2956 				 "block group descriptors", i);
2957 			if (!sb_rdonly(sb))
2958 				return 0;
2959 		}
2960 		if (inode_table < first_block ||
2961 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2962 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2963 			       "Inode table for group %u not in group "
2964 			       "(block %llu)!", i, inode_table);
2965 			return 0;
2966 		}
2967 		ext4_lock_group(sb, i);
2968 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2969 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2970 				 "Checksum for group %u failed (%u!=%u)",
2971 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2972 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2973 			if (!sb_rdonly(sb)) {
2974 				ext4_unlock_group(sb, i);
2975 				return 0;
2976 			}
2977 		}
2978 		ext4_unlock_group(sb, i);
2979 		if (!flexbg_flag)
2980 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2981 	}
2982 	if (NULL != first_not_zeroed)
2983 		*first_not_zeroed = grp;
2984 	return 1;
2985 }
2986 
2987 /*
2988  * Maximal extent format file size.
2989  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2990  * extent format containers, within a sector_t, and within i_blocks
2991  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2992  * so that won't be a limiting factor.
2993  *
2994  * However there is other limiting factor. We do store extents in the form
2995  * of starting block and length, hence the resulting length of the extent
2996  * covering maximum file size must fit into on-disk format containers as
2997  * well. Given that length is always by 1 unit bigger than max unit (because
2998  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2999  *
3000  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3001  */
ext4_max_size(int blkbits,int has_huge_files)3002 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3003 {
3004 	loff_t res;
3005 	loff_t upper_limit = MAX_LFS_FILESIZE;
3006 
3007 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3008 
3009 	if (!has_huge_files) {
3010 		upper_limit = (1LL << 32) - 1;
3011 
3012 		/* total blocks in file system block size */
3013 		upper_limit >>= (blkbits - 9);
3014 		upper_limit <<= blkbits;
3015 	}
3016 
3017 	/*
3018 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3019 	 * by one fs block, so ee_len can cover the extent of maximum file
3020 	 * size
3021 	 */
3022 	res = (1LL << 32) - 1;
3023 	res <<= blkbits;
3024 
3025 	/* Sanity check against vm- & vfs- imposed limits */
3026 	if (res > upper_limit)
3027 		res = upper_limit;
3028 
3029 	return res;
3030 }
3031 
3032 /*
3033  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3034  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3035  * We need to be 1 filesystem block less than the 2^48 sector limit.
3036  */
ext4_max_bitmap_size(int bits,int has_huge_files)3037 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3038 {
3039 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3040 	int meta_blocks;
3041 
3042 	/*
3043 	 * This is calculated to be the largest file size for a dense, block
3044 	 * mapped file such that the file's total number of 512-byte sectors,
3045 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3046 	 *
3047 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3048 	 * number of 512-byte sectors of the file.
3049 	 */
3050 	if (!has_huge_files) {
3051 		/*
3052 		 * !has_huge_files or implies that the inode i_block field
3053 		 * represents total file blocks in 2^32 512-byte sectors ==
3054 		 * size of vfs inode i_blocks * 8
3055 		 */
3056 		upper_limit = (1LL << 32) - 1;
3057 
3058 		/* total blocks in file system block size */
3059 		upper_limit >>= (bits - 9);
3060 
3061 	} else {
3062 		/*
3063 		 * We use 48 bit ext4_inode i_blocks
3064 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3065 		 * represent total number of blocks in
3066 		 * file system block size
3067 		 */
3068 		upper_limit = (1LL << 48) - 1;
3069 
3070 	}
3071 
3072 	/* indirect blocks */
3073 	meta_blocks = 1;
3074 	/* double indirect blocks */
3075 	meta_blocks += 1 + (1LL << (bits-2));
3076 	/* tripple indirect blocks */
3077 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3078 
3079 	upper_limit -= meta_blocks;
3080 	upper_limit <<= bits;
3081 
3082 	res += 1LL << (bits-2);
3083 	res += 1LL << (2*(bits-2));
3084 	res += 1LL << (3*(bits-2));
3085 	res <<= bits;
3086 	if (res > upper_limit)
3087 		res = upper_limit;
3088 
3089 	if (res > MAX_LFS_FILESIZE)
3090 		res = MAX_LFS_FILESIZE;
3091 
3092 	return (loff_t)res;
3093 }
3094 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3095 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3096 				   ext4_fsblk_t logical_sb_block, int nr)
3097 {
3098 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 	ext4_group_t bg, first_meta_bg;
3100 	int has_super = 0;
3101 
3102 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3103 
3104 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3105 		return logical_sb_block + nr + 1;
3106 	bg = sbi->s_desc_per_block * nr;
3107 	if (ext4_bg_has_super(sb, bg))
3108 		has_super = 1;
3109 
3110 	/*
3111 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3112 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3113 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3114 	 * compensate.
3115 	 */
3116 	if (sb->s_blocksize == 1024 && nr == 0 &&
3117 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3118 		has_super++;
3119 
3120 	return (has_super + ext4_group_first_block_no(sb, bg));
3121 }
3122 
3123 /**
3124  * ext4_get_stripe_size: Get the stripe size.
3125  * @sbi: In memory super block info
3126  *
3127  * If we have specified it via mount option, then
3128  * use the mount option value. If the value specified at mount time is
3129  * greater than the blocks per group use the super block value.
3130  * If the super block value is greater than blocks per group return 0.
3131  * Allocator needs it be less than blocks per group.
3132  *
3133  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3134 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3135 {
3136 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3137 	unsigned long stripe_width =
3138 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3139 	int ret;
3140 
3141 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3142 		ret = sbi->s_stripe;
3143 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3144 		ret = stripe_width;
3145 	else if (stride && stride <= sbi->s_blocks_per_group)
3146 		ret = stride;
3147 	else
3148 		ret = 0;
3149 
3150 	/*
3151 	 * If the stripe width is 1, this makes no sense and
3152 	 * we set it to 0 to turn off stripe handling code.
3153 	 */
3154 	if (ret <= 1)
3155 		ret = 0;
3156 
3157 	return ret;
3158 }
3159 
3160 /*
3161  * Check whether this filesystem can be mounted based on
3162  * the features present and the RDONLY/RDWR mount requested.
3163  * Returns 1 if this filesystem can be mounted as requested,
3164  * 0 if it cannot be.
3165  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3166 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3167 {
3168 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3169 		ext4_msg(sb, KERN_ERR,
3170 			"Couldn't mount because of "
3171 			"unsupported optional features (%x)",
3172 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3173 			~EXT4_FEATURE_INCOMPAT_SUPP));
3174 		return 0;
3175 	}
3176 
3177 #ifndef CONFIG_UNICODE
3178 	if (ext4_has_feature_casefold(sb)) {
3179 		ext4_msg(sb, KERN_ERR,
3180 			 "Filesystem with casefold feature cannot be "
3181 			 "mounted without CONFIG_UNICODE");
3182 		return 0;
3183 	}
3184 #endif
3185 
3186 	if (readonly)
3187 		return 1;
3188 
3189 	if (ext4_has_feature_readonly(sb)) {
3190 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3191 		sb->s_flags |= SB_RDONLY;
3192 		return 1;
3193 	}
3194 
3195 	/* Check that feature set is OK for a read-write mount */
3196 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3197 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3198 			 "unsupported optional features (%x)",
3199 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3200 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3201 		return 0;
3202 	}
3203 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3204 		ext4_msg(sb, KERN_ERR,
3205 			 "Can't support bigalloc feature without "
3206 			 "extents feature\n");
3207 		return 0;
3208 	}
3209 
3210 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3211 	if (!readonly && (ext4_has_feature_quota(sb) ||
3212 			  ext4_has_feature_project(sb))) {
3213 		ext4_msg(sb, KERN_ERR,
3214 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3215 		return 0;
3216 	}
3217 #endif  /* CONFIG_QUOTA */
3218 	return 1;
3219 }
3220 
3221 /*
3222  * This function is called once a day if we have errors logged
3223  * on the file system
3224  */
print_daily_error_info(struct timer_list * t)3225 static void print_daily_error_info(struct timer_list *t)
3226 {
3227 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3228 	struct super_block *sb = sbi->s_sb;
3229 	struct ext4_super_block *es = sbi->s_es;
3230 
3231 	if (es->s_error_count)
3232 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3233 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3234 			 le32_to_cpu(es->s_error_count));
3235 	if (es->s_first_error_time) {
3236 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3237 		       sb->s_id,
3238 		       ext4_get_tstamp(es, s_first_error_time),
3239 		       (int) sizeof(es->s_first_error_func),
3240 		       es->s_first_error_func,
3241 		       le32_to_cpu(es->s_first_error_line));
3242 		if (es->s_first_error_ino)
3243 			printk(KERN_CONT ": inode %u",
3244 			       le32_to_cpu(es->s_first_error_ino));
3245 		if (es->s_first_error_block)
3246 			printk(KERN_CONT ": block %llu", (unsigned long long)
3247 			       le64_to_cpu(es->s_first_error_block));
3248 		printk(KERN_CONT "\n");
3249 	}
3250 	if (es->s_last_error_time) {
3251 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3252 		       sb->s_id,
3253 		       ext4_get_tstamp(es, s_last_error_time),
3254 		       (int) sizeof(es->s_last_error_func),
3255 		       es->s_last_error_func,
3256 		       le32_to_cpu(es->s_last_error_line));
3257 		if (es->s_last_error_ino)
3258 			printk(KERN_CONT ": inode %u",
3259 			       le32_to_cpu(es->s_last_error_ino));
3260 		if (es->s_last_error_block)
3261 			printk(KERN_CONT ": block %llu", (unsigned long long)
3262 			       le64_to_cpu(es->s_last_error_block));
3263 		printk(KERN_CONT "\n");
3264 	}
3265 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3266 }
3267 
3268 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3269 static int ext4_run_li_request(struct ext4_li_request *elr)
3270 {
3271 	struct ext4_group_desc *gdp = NULL;
3272 	struct super_block *sb = elr->lr_super;
3273 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3274 	ext4_group_t group = elr->lr_next_group;
3275 	unsigned int prefetch_ios = 0;
3276 	int ret = 0;
3277 	u64 start_time;
3278 
3279 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3280 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3281 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3282 		if (prefetch_ios)
3283 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3284 					      prefetch_ios);
3285 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3286 					    prefetch_ios);
3287 		if (group >= elr->lr_next_group) {
3288 			ret = 1;
3289 			if (elr->lr_first_not_zeroed != ngroups &&
3290 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3291 				elr->lr_next_group = elr->lr_first_not_zeroed;
3292 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3293 				ret = 0;
3294 			}
3295 		}
3296 		return ret;
3297 	}
3298 
3299 	for (; group < ngroups; group++) {
3300 		gdp = ext4_get_group_desc(sb, group, NULL);
3301 		if (!gdp) {
3302 			ret = 1;
3303 			break;
3304 		}
3305 
3306 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3307 			break;
3308 	}
3309 
3310 	if (group >= ngroups)
3311 		ret = 1;
3312 
3313 	if (!ret) {
3314 		start_time = ktime_get_real_ns();
3315 		ret = ext4_init_inode_table(sb, group,
3316 					    elr->lr_timeout ? 0 : 1);
3317 		trace_ext4_lazy_itable_init(sb, group);
3318 		if (elr->lr_timeout == 0) {
3319 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3320 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3321 		}
3322 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3323 		elr->lr_next_group = group + 1;
3324 	}
3325 	return ret;
3326 }
3327 
3328 /*
3329  * Remove lr_request from the list_request and free the
3330  * request structure. Should be called with li_list_mtx held
3331  */
ext4_remove_li_request(struct ext4_li_request * elr)3332 static void ext4_remove_li_request(struct ext4_li_request *elr)
3333 {
3334 	if (!elr)
3335 		return;
3336 
3337 	list_del(&elr->lr_request);
3338 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3339 	kfree(elr);
3340 }
3341 
ext4_unregister_li_request(struct super_block * sb)3342 static void ext4_unregister_li_request(struct super_block *sb)
3343 {
3344 	mutex_lock(&ext4_li_mtx);
3345 	if (!ext4_li_info) {
3346 		mutex_unlock(&ext4_li_mtx);
3347 		return;
3348 	}
3349 
3350 	mutex_lock(&ext4_li_info->li_list_mtx);
3351 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3352 	mutex_unlock(&ext4_li_info->li_list_mtx);
3353 	mutex_unlock(&ext4_li_mtx);
3354 }
3355 
3356 static struct task_struct *ext4_lazyinit_task;
3357 
3358 /*
3359  * This is the function where ext4lazyinit thread lives. It walks
3360  * through the request list searching for next scheduled filesystem.
3361  * When such a fs is found, run the lazy initialization request
3362  * (ext4_rn_li_request) and keep track of the time spend in this
3363  * function. Based on that time we compute next schedule time of
3364  * the request. When walking through the list is complete, compute
3365  * next waking time and put itself into sleep.
3366  */
ext4_lazyinit_thread(void * arg)3367 static int ext4_lazyinit_thread(void *arg)
3368 {
3369 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3370 	struct list_head *pos, *n;
3371 	struct ext4_li_request *elr;
3372 	unsigned long next_wakeup, cur;
3373 
3374 	BUG_ON(NULL == eli);
3375 	set_freezable();
3376 
3377 cont_thread:
3378 	while (true) {
3379 		next_wakeup = MAX_JIFFY_OFFSET;
3380 
3381 		mutex_lock(&eli->li_list_mtx);
3382 		if (list_empty(&eli->li_request_list)) {
3383 			mutex_unlock(&eli->li_list_mtx);
3384 			goto exit_thread;
3385 		}
3386 		list_for_each_safe(pos, n, &eli->li_request_list) {
3387 			int err = 0;
3388 			int progress = 0;
3389 			elr = list_entry(pos, struct ext4_li_request,
3390 					 lr_request);
3391 
3392 			if (time_before(jiffies, elr->lr_next_sched)) {
3393 				if (time_before(elr->lr_next_sched, next_wakeup))
3394 					next_wakeup = elr->lr_next_sched;
3395 				continue;
3396 			}
3397 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3398 				if (sb_start_write_trylock(elr->lr_super)) {
3399 					progress = 1;
3400 					/*
3401 					 * We hold sb->s_umount, sb can not
3402 					 * be removed from the list, it is
3403 					 * now safe to drop li_list_mtx
3404 					 */
3405 					mutex_unlock(&eli->li_list_mtx);
3406 					err = ext4_run_li_request(elr);
3407 					sb_end_write(elr->lr_super);
3408 					mutex_lock(&eli->li_list_mtx);
3409 					n = pos->next;
3410 				}
3411 				up_read((&elr->lr_super->s_umount));
3412 			}
3413 			/* error, remove the lazy_init job */
3414 			if (err) {
3415 				ext4_remove_li_request(elr);
3416 				continue;
3417 			}
3418 			if (!progress) {
3419 				elr->lr_next_sched = jiffies +
3420 					(prandom_u32()
3421 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3422 			}
3423 			if (time_before(elr->lr_next_sched, next_wakeup))
3424 				next_wakeup = elr->lr_next_sched;
3425 		}
3426 		mutex_unlock(&eli->li_list_mtx);
3427 
3428 		try_to_freeze();
3429 
3430 		cur = jiffies;
3431 		if ((time_after_eq(cur, next_wakeup)) ||
3432 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3433 			cond_resched();
3434 			continue;
3435 		}
3436 
3437 		schedule_timeout_interruptible(next_wakeup - cur);
3438 
3439 		if (kthread_should_stop()) {
3440 			ext4_clear_request_list();
3441 			goto exit_thread;
3442 		}
3443 	}
3444 
3445 exit_thread:
3446 	/*
3447 	 * It looks like the request list is empty, but we need
3448 	 * to check it under the li_list_mtx lock, to prevent any
3449 	 * additions into it, and of course we should lock ext4_li_mtx
3450 	 * to atomically free the list and ext4_li_info, because at
3451 	 * this point another ext4 filesystem could be registering
3452 	 * new one.
3453 	 */
3454 	mutex_lock(&ext4_li_mtx);
3455 	mutex_lock(&eli->li_list_mtx);
3456 	if (!list_empty(&eli->li_request_list)) {
3457 		mutex_unlock(&eli->li_list_mtx);
3458 		mutex_unlock(&ext4_li_mtx);
3459 		goto cont_thread;
3460 	}
3461 	mutex_unlock(&eli->li_list_mtx);
3462 	kfree(ext4_li_info);
3463 	ext4_li_info = NULL;
3464 	mutex_unlock(&ext4_li_mtx);
3465 
3466 	return 0;
3467 }
3468 
ext4_clear_request_list(void)3469 static void ext4_clear_request_list(void)
3470 {
3471 	struct list_head *pos, *n;
3472 	struct ext4_li_request *elr;
3473 
3474 	mutex_lock(&ext4_li_info->li_list_mtx);
3475 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3476 		elr = list_entry(pos, struct ext4_li_request,
3477 				 lr_request);
3478 		ext4_remove_li_request(elr);
3479 	}
3480 	mutex_unlock(&ext4_li_info->li_list_mtx);
3481 }
3482 
ext4_run_lazyinit_thread(void)3483 static int ext4_run_lazyinit_thread(void)
3484 {
3485 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3486 					 ext4_li_info, "ext4lazyinit");
3487 	if (IS_ERR(ext4_lazyinit_task)) {
3488 		int err = PTR_ERR(ext4_lazyinit_task);
3489 		ext4_clear_request_list();
3490 		kfree(ext4_li_info);
3491 		ext4_li_info = NULL;
3492 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3493 				 "initialization thread\n",
3494 				 err);
3495 		return err;
3496 	}
3497 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3498 	return 0;
3499 }
3500 
3501 /*
3502  * Check whether it make sense to run itable init. thread or not.
3503  * If there is at least one uninitialized inode table, return
3504  * corresponding group number, else the loop goes through all
3505  * groups and return total number of groups.
3506  */
ext4_has_uninit_itable(struct super_block * sb)3507 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3508 {
3509 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3510 	struct ext4_group_desc *gdp = NULL;
3511 
3512 	if (!ext4_has_group_desc_csum(sb))
3513 		return ngroups;
3514 
3515 	for (group = 0; group < ngroups; group++) {
3516 		gdp = ext4_get_group_desc(sb, group, NULL);
3517 		if (!gdp)
3518 			continue;
3519 
3520 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3521 			break;
3522 	}
3523 
3524 	return group;
3525 }
3526 
ext4_li_info_new(void)3527 static int ext4_li_info_new(void)
3528 {
3529 	struct ext4_lazy_init *eli = NULL;
3530 
3531 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3532 	if (!eli)
3533 		return -ENOMEM;
3534 
3535 	INIT_LIST_HEAD(&eli->li_request_list);
3536 	mutex_init(&eli->li_list_mtx);
3537 
3538 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3539 
3540 	ext4_li_info = eli;
3541 
3542 	return 0;
3543 }
3544 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3545 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3546 					    ext4_group_t start)
3547 {
3548 	struct ext4_li_request *elr;
3549 
3550 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3551 	if (!elr)
3552 		return NULL;
3553 
3554 	elr->lr_super = sb;
3555 	elr->lr_first_not_zeroed = start;
3556 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3557 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3558 		elr->lr_next_group = start;
3559 	} else {
3560 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3561 	}
3562 
3563 	/*
3564 	 * Randomize first schedule time of the request to
3565 	 * spread the inode table initialization requests
3566 	 * better.
3567 	 */
3568 	elr->lr_next_sched = jiffies + (prandom_u32() %
3569 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3570 	return elr;
3571 }
3572 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3573 int ext4_register_li_request(struct super_block *sb,
3574 			     ext4_group_t first_not_zeroed)
3575 {
3576 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3577 	struct ext4_li_request *elr = NULL;
3578 	ext4_group_t ngroups = sbi->s_groups_count;
3579 	int ret = 0;
3580 
3581 	mutex_lock(&ext4_li_mtx);
3582 	if (sbi->s_li_request != NULL) {
3583 		/*
3584 		 * Reset timeout so it can be computed again, because
3585 		 * s_li_wait_mult might have changed.
3586 		 */
3587 		sbi->s_li_request->lr_timeout = 0;
3588 		goto out;
3589 	}
3590 
3591 	if (sb_rdonly(sb) ||
3592 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3593 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3594 		goto out;
3595 
3596 	elr = ext4_li_request_new(sb, first_not_zeroed);
3597 	if (!elr) {
3598 		ret = -ENOMEM;
3599 		goto out;
3600 	}
3601 
3602 	if (NULL == ext4_li_info) {
3603 		ret = ext4_li_info_new();
3604 		if (ret)
3605 			goto out;
3606 	}
3607 
3608 	mutex_lock(&ext4_li_info->li_list_mtx);
3609 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3610 	mutex_unlock(&ext4_li_info->li_list_mtx);
3611 
3612 	sbi->s_li_request = elr;
3613 	/*
3614 	 * set elr to NULL here since it has been inserted to
3615 	 * the request_list and the removal and free of it is
3616 	 * handled by ext4_clear_request_list from now on.
3617 	 */
3618 	elr = NULL;
3619 
3620 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3621 		ret = ext4_run_lazyinit_thread();
3622 		if (ret)
3623 			goto out;
3624 	}
3625 out:
3626 	mutex_unlock(&ext4_li_mtx);
3627 	if (ret)
3628 		kfree(elr);
3629 	return ret;
3630 }
3631 
3632 /*
3633  * We do not need to lock anything since this is called on
3634  * module unload.
3635  */
ext4_destroy_lazyinit_thread(void)3636 static void ext4_destroy_lazyinit_thread(void)
3637 {
3638 	/*
3639 	 * If thread exited earlier
3640 	 * there's nothing to be done.
3641 	 */
3642 	if (!ext4_li_info || !ext4_lazyinit_task)
3643 		return;
3644 
3645 	kthread_stop(ext4_lazyinit_task);
3646 }
3647 
set_journal_csum_feature_set(struct super_block * sb)3648 static int set_journal_csum_feature_set(struct super_block *sb)
3649 {
3650 	int ret = 1;
3651 	int compat, incompat;
3652 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3653 
3654 	if (ext4_has_metadata_csum(sb)) {
3655 		/* journal checksum v3 */
3656 		compat = 0;
3657 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3658 	} else {
3659 		/* journal checksum v1 */
3660 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3661 		incompat = 0;
3662 	}
3663 
3664 	jbd2_journal_clear_features(sbi->s_journal,
3665 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3666 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3667 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3668 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3669 		ret = jbd2_journal_set_features(sbi->s_journal,
3670 				compat, 0,
3671 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3672 				incompat);
3673 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3674 		ret = jbd2_journal_set_features(sbi->s_journal,
3675 				compat, 0,
3676 				incompat);
3677 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3678 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3679 	} else {
3680 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3681 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3682 	}
3683 
3684 	return ret;
3685 }
3686 
3687 /*
3688  * Note: calculating the overhead so we can be compatible with
3689  * historical BSD practice is quite difficult in the face of
3690  * clusters/bigalloc.  This is because multiple metadata blocks from
3691  * different block group can end up in the same allocation cluster.
3692  * Calculating the exact overhead in the face of clustered allocation
3693  * requires either O(all block bitmaps) in memory or O(number of block
3694  * groups**2) in time.  We will still calculate the superblock for
3695  * older file systems --- and if we come across with a bigalloc file
3696  * system with zero in s_overhead_clusters the estimate will be close to
3697  * correct especially for very large cluster sizes --- but for newer
3698  * file systems, it's better to calculate this figure once at mkfs
3699  * time, and store it in the superblock.  If the superblock value is
3700  * present (even for non-bigalloc file systems), we will use it.
3701  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3702 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3703 			  char *buf)
3704 {
3705 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3706 	struct ext4_group_desc	*gdp;
3707 	ext4_fsblk_t		first_block, last_block, b;
3708 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3709 	int			s, j, count = 0;
3710 	int			has_super = ext4_bg_has_super(sb, grp);
3711 
3712 	if (!ext4_has_feature_bigalloc(sb))
3713 		return (has_super + ext4_bg_num_gdb(sb, grp) +
3714 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3715 			sbi->s_itb_per_group + 2);
3716 
3717 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3718 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3719 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3720 	for (i = 0; i < ngroups; i++) {
3721 		gdp = ext4_get_group_desc(sb, i, NULL);
3722 		b = ext4_block_bitmap(sb, gdp);
3723 		if (b >= first_block && b <= last_block) {
3724 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3725 			count++;
3726 		}
3727 		b = ext4_inode_bitmap(sb, gdp);
3728 		if (b >= first_block && b <= last_block) {
3729 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3730 			count++;
3731 		}
3732 		b = ext4_inode_table(sb, gdp);
3733 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3734 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3735 				int c = EXT4_B2C(sbi, b - first_block);
3736 				ext4_set_bit(c, buf);
3737 				count++;
3738 			}
3739 		if (i != grp)
3740 			continue;
3741 		s = 0;
3742 		if (ext4_bg_has_super(sb, grp)) {
3743 			ext4_set_bit(s++, buf);
3744 			count++;
3745 		}
3746 		j = ext4_bg_num_gdb(sb, grp);
3747 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3748 			ext4_error(sb, "Invalid number of block group "
3749 				   "descriptor blocks: %d", j);
3750 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3751 		}
3752 		count += j;
3753 		for (; j > 0; j--)
3754 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3755 	}
3756 	if (!count)
3757 		return 0;
3758 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3759 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3760 }
3761 
3762 /*
3763  * Compute the overhead and stash it in sbi->s_overhead
3764  */
ext4_calculate_overhead(struct super_block * sb)3765 int ext4_calculate_overhead(struct super_block *sb)
3766 {
3767 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3768 	struct ext4_super_block *es = sbi->s_es;
3769 	struct inode *j_inode;
3770 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3771 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3772 	ext4_fsblk_t overhead = 0;
3773 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3774 
3775 	if (!buf)
3776 		return -ENOMEM;
3777 
3778 	/*
3779 	 * Compute the overhead (FS structures).  This is constant
3780 	 * for a given filesystem unless the number of block groups
3781 	 * changes so we cache the previous value until it does.
3782 	 */
3783 
3784 	/*
3785 	 * All of the blocks before first_data_block are overhead
3786 	 */
3787 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3788 
3789 	/*
3790 	 * Add the overhead found in each block group
3791 	 */
3792 	for (i = 0; i < ngroups; i++) {
3793 		int blks;
3794 
3795 		blks = count_overhead(sb, i, buf);
3796 		overhead += blks;
3797 		if (blks)
3798 			memset(buf, 0, PAGE_SIZE);
3799 		cond_resched();
3800 	}
3801 
3802 	/*
3803 	 * Add the internal journal blocks whether the journal has been
3804 	 * loaded or not
3805 	 */
3806 	if (sbi->s_journal && !sbi->s_journal_bdev)
3807 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3808 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3809 		/* j_inum for internal journal is non-zero */
3810 		j_inode = ext4_get_journal_inode(sb, j_inum);
3811 		if (j_inode) {
3812 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3813 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3814 			iput(j_inode);
3815 		} else {
3816 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3817 		}
3818 	}
3819 	sbi->s_overhead = overhead;
3820 	smp_wmb();
3821 	free_page((unsigned long) buf);
3822 	return 0;
3823 }
3824 
ext4_set_resv_clusters(struct super_block * sb)3825 static void ext4_set_resv_clusters(struct super_block *sb)
3826 {
3827 	ext4_fsblk_t resv_clusters;
3828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3829 
3830 	/*
3831 	 * There's no need to reserve anything when we aren't using extents.
3832 	 * The space estimates are exact, there are no unwritten extents,
3833 	 * hole punching doesn't need new metadata... This is needed especially
3834 	 * to keep ext2/3 backward compatibility.
3835 	 */
3836 	if (!ext4_has_feature_extents(sb))
3837 		return;
3838 	/*
3839 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3840 	 * This should cover the situations where we can not afford to run
3841 	 * out of space like for example punch hole, or converting
3842 	 * unwritten extents in delalloc path. In most cases such
3843 	 * allocation would require 1, or 2 blocks, higher numbers are
3844 	 * very rare.
3845 	 */
3846 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3847 			 sbi->s_cluster_bits);
3848 
3849 	do_div(resv_clusters, 50);
3850 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3851 
3852 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3853 }
3854 
ext4_quota_mode(struct super_block * sb)3855 static const char *ext4_quota_mode(struct super_block *sb)
3856 {
3857 #ifdef CONFIG_QUOTA
3858 	if (!ext4_quota_capable(sb))
3859 		return "none";
3860 
3861 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3862 		return "journalled";
3863 	else
3864 		return "writeback";
3865 #else
3866 	return "disabled";
3867 #endif
3868 }
3869 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))3870 static void ext4_setup_csum_trigger(struct super_block *sb,
3871 				    enum ext4_journal_trigger_type type,
3872 				    void (*trigger)(
3873 					struct jbd2_buffer_trigger_type *type,
3874 					struct buffer_head *bh,
3875 					void *mapped_data,
3876 					size_t size))
3877 {
3878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3879 
3880 	sbi->s_journal_triggers[type].sb = sb;
3881 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3882 }
3883 
ext4_fill_super(struct super_block * sb,void * data,int silent)3884 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3885 {
3886 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3887 	char *orig_data = kstrdup(data, GFP_KERNEL);
3888 	struct buffer_head *bh, **group_desc;
3889 	struct ext4_super_block *es = NULL;
3890 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3891 	struct flex_groups **flex_groups;
3892 	ext4_fsblk_t block;
3893 	ext4_fsblk_t sb_block = get_sb_block(&data);
3894 	ext4_fsblk_t logical_sb_block;
3895 	unsigned long offset = 0;
3896 	unsigned long def_mount_opts;
3897 	struct inode *root;
3898 	const char *descr;
3899 	int ret = -ENOMEM;
3900 	int blocksize, clustersize;
3901 	unsigned int db_count;
3902 	unsigned int i;
3903 	int needs_recovery, has_huge_files;
3904 	__u64 blocks_count;
3905 	int err = 0;
3906 	ext4_group_t first_not_zeroed;
3907 	struct ext4_parsed_options parsed_opts;
3908 
3909 	/* Set defaults for the variables that will be set during parsing */
3910 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3911 	parsed_opts.journal_devnum = 0;
3912 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3913 
3914 	if ((data && !orig_data) || !sbi)
3915 		goto out_free_base;
3916 
3917 	sbi->s_daxdev = dax_dev;
3918 	sbi->s_blockgroup_lock =
3919 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3920 	if (!sbi->s_blockgroup_lock)
3921 		goto out_free_base;
3922 
3923 	sb->s_fs_info = sbi;
3924 	sbi->s_sb = sb;
3925 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3926 	sbi->s_sb_block = sb_block;
3927 	sbi->s_sectors_written_start =
3928 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3929 
3930 	/* Cleanup superblock name */
3931 	strreplace(sb->s_id, '/', '!');
3932 
3933 	/* -EINVAL is default */
3934 	ret = -EINVAL;
3935 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3936 	if (!blocksize) {
3937 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3938 		goto out_fail;
3939 	}
3940 
3941 	/*
3942 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3943 	 * block sizes.  We need to calculate the offset from buffer start.
3944 	 */
3945 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3946 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3947 		offset = do_div(logical_sb_block, blocksize);
3948 	} else {
3949 		logical_sb_block = sb_block;
3950 	}
3951 
3952 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3953 	if (IS_ERR(bh)) {
3954 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3955 		ret = PTR_ERR(bh);
3956 		goto out_fail;
3957 	}
3958 	/*
3959 	 * Note: s_es must be initialized as soon as possible because
3960 	 *       some ext4 macro-instructions depend on its value
3961 	 */
3962 	es = (struct ext4_super_block *) (bh->b_data + offset);
3963 	sbi->s_es = es;
3964 	sb->s_magic = le16_to_cpu(es->s_magic);
3965 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3966 		goto cantfind_ext4;
3967 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3968 
3969 	/* Warn if metadata_csum and gdt_csum are both set. */
3970 	if (ext4_has_feature_metadata_csum(sb) &&
3971 	    ext4_has_feature_gdt_csum(sb))
3972 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3973 			     "redundant flags; please run fsck.");
3974 
3975 	/* Check for a known checksum algorithm */
3976 	if (!ext4_verify_csum_type(sb, es)) {
3977 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3978 			 "unknown checksum algorithm.");
3979 		silent = 1;
3980 		goto cantfind_ext4;
3981 	}
3982 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3983 				ext4_orphan_file_block_trigger);
3984 
3985 	/* Load the checksum driver */
3986 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3987 	if (IS_ERR(sbi->s_chksum_driver)) {
3988 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3989 		ret = PTR_ERR(sbi->s_chksum_driver);
3990 		sbi->s_chksum_driver = NULL;
3991 		goto failed_mount;
3992 	}
3993 
3994 	/* Check superblock checksum */
3995 	if (!ext4_superblock_csum_verify(sb, es)) {
3996 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3997 			 "invalid superblock checksum.  Run e2fsck?");
3998 		silent = 1;
3999 		ret = -EFSBADCRC;
4000 		goto cantfind_ext4;
4001 	}
4002 
4003 	/* Precompute checksum seed for all metadata */
4004 	if (ext4_has_feature_csum_seed(sb))
4005 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4006 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4007 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4008 					       sizeof(es->s_uuid));
4009 
4010 	/* Set defaults before we parse the mount options */
4011 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4012 	set_opt(sb, INIT_INODE_TABLE);
4013 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4014 		set_opt(sb, DEBUG);
4015 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4016 		set_opt(sb, GRPID);
4017 	if (def_mount_opts & EXT4_DEFM_UID16)
4018 		set_opt(sb, NO_UID32);
4019 	/* xattr user namespace & acls are now defaulted on */
4020 	set_opt(sb, XATTR_USER);
4021 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4022 	set_opt(sb, POSIX_ACL);
4023 #endif
4024 	if (ext4_has_feature_fast_commit(sb))
4025 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4026 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4027 	if (ext4_has_metadata_csum(sb))
4028 		set_opt(sb, JOURNAL_CHECKSUM);
4029 
4030 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4031 		set_opt(sb, JOURNAL_DATA);
4032 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4033 		set_opt(sb, ORDERED_DATA);
4034 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4035 		set_opt(sb, WRITEBACK_DATA);
4036 
4037 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4038 		set_opt(sb, ERRORS_PANIC);
4039 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4040 		set_opt(sb, ERRORS_CONT);
4041 	else
4042 		set_opt(sb, ERRORS_RO);
4043 	/* block_validity enabled by default; disable with noblock_validity */
4044 	set_opt(sb, BLOCK_VALIDITY);
4045 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4046 		set_opt(sb, DISCARD);
4047 
4048 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4049 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4050 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4051 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4052 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4053 
4054 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4055 		set_opt(sb, BARRIER);
4056 
4057 	/*
4058 	 * enable delayed allocation by default
4059 	 * Use -o nodelalloc to turn it off
4060 	 */
4061 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4062 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4063 		set_opt(sb, DELALLOC);
4064 
4065 	/*
4066 	 * set default s_li_wait_mult for lazyinit, for the case there is
4067 	 * no mount option specified.
4068 	 */
4069 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4070 
4071 	if (le32_to_cpu(es->s_log_block_size) >
4072 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4073 		ext4_msg(sb, KERN_ERR,
4074 			 "Invalid log block size: %u",
4075 			 le32_to_cpu(es->s_log_block_size));
4076 		goto failed_mount;
4077 	}
4078 	if (le32_to_cpu(es->s_log_cluster_size) >
4079 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4080 		ext4_msg(sb, KERN_ERR,
4081 			 "Invalid log cluster size: %u",
4082 			 le32_to_cpu(es->s_log_cluster_size));
4083 		goto failed_mount;
4084 	}
4085 
4086 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4087 
4088 	if (blocksize == PAGE_SIZE)
4089 		set_opt(sb, DIOREAD_NOLOCK);
4090 
4091 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4092 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4093 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4094 	} else {
4095 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4096 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4097 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4098 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4099 				 sbi->s_first_ino);
4100 			goto failed_mount;
4101 		}
4102 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4103 		    (!is_power_of_2(sbi->s_inode_size)) ||
4104 		    (sbi->s_inode_size > blocksize)) {
4105 			ext4_msg(sb, KERN_ERR,
4106 			       "unsupported inode size: %d",
4107 			       sbi->s_inode_size);
4108 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4109 			goto failed_mount;
4110 		}
4111 		/*
4112 		 * i_atime_extra is the last extra field available for
4113 		 * [acm]times in struct ext4_inode. Checking for that
4114 		 * field should suffice to ensure we have extra space
4115 		 * for all three.
4116 		 */
4117 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4118 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4119 			sb->s_time_gran = 1;
4120 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4121 		} else {
4122 			sb->s_time_gran = NSEC_PER_SEC;
4123 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4124 		}
4125 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4126 	}
4127 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4128 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4129 			EXT4_GOOD_OLD_INODE_SIZE;
4130 		if (ext4_has_feature_extra_isize(sb)) {
4131 			unsigned v, max = (sbi->s_inode_size -
4132 					   EXT4_GOOD_OLD_INODE_SIZE);
4133 
4134 			v = le16_to_cpu(es->s_want_extra_isize);
4135 			if (v > max) {
4136 				ext4_msg(sb, KERN_ERR,
4137 					 "bad s_want_extra_isize: %d", v);
4138 				goto failed_mount;
4139 			}
4140 			if (sbi->s_want_extra_isize < v)
4141 				sbi->s_want_extra_isize = v;
4142 
4143 			v = le16_to_cpu(es->s_min_extra_isize);
4144 			if (v > max) {
4145 				ext4_msg(sb, KERN_ERR,
4146 					 "bad s_min_extra_isize: %d", v);
4147 				goto failed_mount;
4148 			}
4149 			if (sbi->s_want_extra_isize < v)
4150 				sbi->s_want_extra_isize = v;
4151 		}
4152 	}
4153 
4154 	if (sbi->s_es->s_mount_opts[0]) {
4155 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4156 					      sizeof(sbi->s_es->s_mount_opts),
4157 					      GFP_KERNEL);
4158 		if (!s_mount_opts)
4159 			goto failed_mount;
4160 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4161 			ext4_msg(sb, KERN_WARNING,
4162 				 "failed to parse options in superblock: %s",
4163 				 s_mount_opts);
4164 		}
4165 		kfree(s_mount_opts);
4166 	}
4167 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4168 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4169 		goto failed_mount;
4170 
4171 #ifdef CONFIG_UNICODE
4172 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4173 		const struct ext4_sb_encodings *encoding_info;
4174 		struct unicode_map *encoding;
4175 		__u16 encoding_flags;
4176 
4177 		if (ext4_sb_read_encoding(es, &encoding_info,
4178 					  &encoding_flags)) {
4179 			ext4_msg(sb, KERN_ERR,
4180 				 "Encoding requested by superblock is unknown");
4181 			goto failed_mount;
4182 		}
4183 
4184 		encoding = utf8_load(encoding_info->version);
4185 		if (IS_ERR(encoding)) {
4186 			ext4_msg(sb, KERN_ERR,
4187 				 "can't mount with superblock charset: %s-%s "
4188 				 "not supported by the kernel. flags: 0x%x.",
4189 				 encoding_info->name, encoding_info->version,
4190 				 encoding_flags);
4191 			goto failed_mount;
4192 		}
4193 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4194 			 "%s-%s with flags 0x%hx", encoding_info->name,
4195 			 encoding_info->version?:"\b", encoding_flags);
4196 
4197 		sb->s_encoding = encoding;
4198 		sb->s_encoding_flags = encoding_flags;
4199 	}
4200 #endif
4201 
4202 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4203 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4204 		/* can't mount with both data=journal and dioread_nolock. */
4205 		clear_opt(sb, DIOREAD_NOLOCK);
4206 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4207 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4208 			ext4_msg(sb, KERN_ERR, "can't mount with "
4209 				 "both data=journal and delalloc");
4210 			goto failed_mount;
4211 		}
4212 		if (test_opt(sb, DAX_ALWAYS)) {
4213 			ext4_msg(sb, KERN_ERR, "can't mount with "
4214 				 "both data=journal and dax");
4215 			goto failed_mount;
4216 		}
4217 		if (ext4_has_feature_encrypt(sb)) {
4218 			ext4_msg(sb, KERN_WARNING,
4219 				 "encrypted files will use data=ordered "
4220 				 "instead of data journaling mode");
4221 		}
4222 		if (test_opt(sb, DELALLOC))
4223 			clear_opt(sb, DELALLOC);
4224 	} else {
4225 		sb->s_iflags |= SB_I_CGROUPWB;
4226 	}
4227 
4228 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4229 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4230 
4231 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4232 	    (ext4_has_compat_features(sb) ||
4233 	     ext4_has_ro_compat_features(sb) ||
4234 	     ext4_has_incompat_features(sb)))
4235 		ext4_msg(sb, KERN_WARNING,
4236 		       "feature flags set on rev 0 fs, "
4237 		       "running e2fsck is recommended");
4238 
4239 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4240 		set_opt2(sb, HURD_COMPAT);
4241 		if (ext4_has_feature_64bit(sb)) {
4242 			ext4_msg(sb, KERN_ERR,
4243 				 "The Hurd can't support 64-bit file systems");
4244 			goto failed_mount;
4245 		}
4246 
4247 		/*
4248 		 * ea_inode feature uses l_i_version field which is not
4249 		 * available in HURD_COMPAT mode.
4250 		 */
4251 		if (ext4_has_feature_ea_inode(sb)) {
4252 			ext4_msg(sb, KERN_ERR,
4253 				 "ea_inode feature is not supported for Hurd");
4254 			goto failed_mount;
4255 		}
4256 	}
4257 
4258 	if (IS_EXT2_SB(sb)) {
4259 		if (ext2_feature_set_ok(sb))
4260 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4261 				 "using the ext4 subsystem");
4262 		else {
4263 			/*
4264 			 * If we're probing be silent, if this looks like
4265 			 * it's actually an ext[34] filesystem.
4266 			 */
4267 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4268 				goto failed_mount;
4269 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4270 				 "to feature incompatibilities");
4271 			goto failed_mount;
4272 		}
4273 	}
4274 
4275 	if (IS_EXT3_SB(sb)) {
4276 		if (ext3_feature_set_ok(sb))
4277 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4278 				 "using the ext4 subsystem");
4279 		else {
4280 			/*
4281 			 * If we're probing be silent, if this looks like
4282 			 * it's actually an ext4 filesystem.
4283 			 */
4284 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4285 				goto failed_mount;
4286 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4287 				 "to feature incompatibilities");
4288 			goto failed_mount;
4289 		}
4290 	}
4291 
4292 	/*
4293 	 * Check feature flags regardless of the revision level, since we
4294 	 * previously didn't change the revision level when setting the flags,
4295 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4296 	 */
4297 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4298 		goto failed_mount;
4299 
4300 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4301 		ext4_msg(sb, KERN_ERR,
4302 			 "Number of reserved GDT blocks insanely large: %d",
4303 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4304 		goto failed_mount;
4305 	}
4306 
4307 	if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0,
4308 			bdev_nr_sectors(sb->s_bdev)))
4309 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4310 
4311 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4312 		if (ext4_has_feature_inline_data(sb)) {
4313 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4314 					" that may contain inline data");
4315 			goto failed_mount;
4316 		}
4317 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4318 			ext4_msg(sb, KERN_ERR,
4319 				"DAX unsupported by block device.");
4320 			goto failed_mount;
4321 		}
4322 	}
4323 
4324 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4325 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4326 			 es->s_encryption_level);
4327 		goto failed_mount;
4328 	}
4329 
4330 	if (sb->s_blocksize != blocksize) {
4331 		/*
4332 		 * bh must be released before kill_bdev(), otherwise
4333 		 * it won't be freed and its page also. kill_bdev()
4334 		 * is called by sb_set_blocksize().
4335 		 */
4336 		brelse(bh);
4337 		/* Validate the filesystem blocksize */
4338 		if (!sb_set_blocksize(sb, blocksize)) {
4339 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4340 					blocksize);
4341 			bh = NULL;
4342 			goto failed_mount;
4343 		}
4344 
4345 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4346 		offset = do_div(logical_sb_block, blocksize);
4347 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4348 		if (IS_ERR(bh)) {
4349 			ext4_msg(sb, KERN_ERR,
4350 			       "Can't read superblock on 2nd try");
4351 			ret = PTR_ERR(bh);
4352 			bh = NULL;
4353 			goto failed_mount;
4354 		}
4355 		es = (struct ext4_super_block *)(bh->b_data + offset);
4356 		sbi->s_es = es;
4357 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4358 			ext4_msg(sb, KERN_ERR,
4359 			       "Magic mismatch, very weird!");
4360 			goto failed_mount;
4361 		}
4362 	}
4363 
4364 	has_huge_files = ext4_has_feature_huge_file(sb);
4365 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4366 						      has_huge_files);
4367 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4368 
4369 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4370 	if (ext4_has_feature_64bit(sb)) {
4371 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4372 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4373 		    !is_power_of_2(sbi->s_desc_size)) {
4374 			ext4_msg(sb, KERN_ERR,
4375 			       "unsupported descriptor size %lu",
4376 			       sbi->s_desc_size);
4377 			goto failed_mount;
4378 		}
4379 	} else
4380 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4381 
4382 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4383 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4384 
4385 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4386 	if (sbi->s_inodes_per_block == 0)
4387 		goto cantfind_ext4;
4388 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4389 	    sbi->s_inodes_per_group > blocksize * 8) {
4390 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4391 			 sbi->s_inodes_per_group);
4392 		goto failed_mount;
4393 	}
4394 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4395 					sbi->s_inodes_per_block;
4396 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4397 	sbi->s_sbh = bh;
4398 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4399 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4400 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4401 
4402 	for (i = 0; i < 4; i++)
4403 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4404 	sbi->s_def_hash_version = es->s_def_hash_version;
4405 	if (ext4_has_feature_dir_index(sb)) {
4406 		i = le32_to_cpu(es->s_flags);
4407 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4408 			sbi->s_hash_unsigned = 3;
4409 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4410 #ifdef __CHAR_UNSIGNED__
4411 			if (!sb_rdonly(sb))
4412 				es->s_flags |=
4413 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4414 			sbi->s_hash_unsigned = 3;
4415 #else
4416 			if (!sb_rdonly(sb))
4417 				es->s_flags |=
4418 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4419 #endif
4420 		}
4421 	}
4422 
4423 	/* Handle clustersize */
4424 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4425 	if (ext4_has_feature_bigalloc(sb)) {
4426 		if (clustersize < blocksize) {
4427 			ext4_msg(sb, KERN_ERR,
4428 				 "cluster size (%d) smaller than "
4429 				 "block size (%d)", clustersize, blocksize);
4430 			goto failed_mount;
4431 		}
4432 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4433 			le32_to_cpu(es->s_log_block_size);
4434 		sbi->s_clusters_per_group =
4435 			le32_to_cpu(es->s_clusters_per_group);
4436 		if (sbi->s_clusters_per_group > blocksize * 8) {
4437 			ext4_msg(sb, KERN_ERR,
4438 				 "#clusters per group too big: %lu",
4439 				 sbi->s_clusters_per_group);
4440 			goto failed_mount;
4441 		}
4442 		if (sbi->s_blocks_per_group !=
4443 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4444 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4445 				 "clusters per group (%lu) inconsistent",
4446 				 sbi->s_blocks_per_group,
4447 				 sbi->s_clusters_per_group);
4448 			goto failed_mount;
4449 		}
4450 	} else {
4451 		if (clustersize != blocksize) {
4452 			ext4_msg(sb, KERN_ERR,
4453 				 "fragment/cluster size (%d) != "
4454 				 "block size (%d)", clustersize, blocksize);
4455 			goto failed_mount;
4456 		}
4457 		if (sbi->s_blocks_per_group > blocksize * 8) {
4458 			ext4_msg(sb, KERN_ERR,
4459 				 "#blocks per group too big: %lu",
4460 				 sbi->s_blocks_per_group);
4461 			goto failed_mount;
4462 		}
4463 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4464 		sbi->s_cluster_bits = 0;
4465 	}
4466 	sbi->s_cluster_ratio = clustersize / blocksize;
4467 
4468 	/* Do we have standard group size of clustersize * 8 blocks ? */
4469 	if (sbi->s_blocks_per_group == clustersize << 3)
4470 		set_opt2(sb, STD_GROUP_SIZE);
4471 
4472 	/*
4473 	 * Test whether we have more sectors than will fit in sector_t,
4474 	 * and whether the max offset is addressable by the page cache.
4475 	 */
4476 	err = generic_check_addressable(sb->s_blocksize_bits,
4477 					ext4_blocks_count(es));
4478 	if (err) {
4479 		ext4_msg(sb, KERN_ERR, "filesystem"
4480 			 " too large to mount safely on this system");
4481 		goto failed_mount;
4482 	}
4483 
4484 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4485 		goto cantfind_ext4;
4486 
4487 	/* check blocks count against device size */
4488 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4489 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4490 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4491 		       "exceeds size of device (%llu blocks)",
4492 		       ext4_blocks_count(es), blocks_count);
4493 		goto failed_mount;
4494 	}
4495 
4496 	/*
4497 	 * It makes no sense for the first data block to be beyond the end
4498 	 * of the filesystem.
4499 	 */
4500 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4501 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4502 			 "block %u is beyond end of filesystem (%llu)",
4503 			 le32_to_cpu(es->s_first_data_block),
4504 			 ext4_blocks_count(es));
4505 		goto failed_mount;
4506 	}
4507 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4508 	    (sbi->s_cluster_ratio == 1)) {
4509 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4510 			 "block is 0 with a 1k block and cluster size");
4511 		goto failed_mount;
4512 	}
4513 
4514 	blocks_count = (ext4_blocks_count(es) -
4515 			le32_to_cpu(es->s_first_data_block) +
4516 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4517 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4518 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4519 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4520 		       "(block count %llu, first data block %u, "
4521 		       "blocks per group %lu)", blocks_count,
4522 		       ext4_blocks_count(es),
4523 		       le32_to_cpu(es->s_first_data_block),
4524 		       EXT4_BLOCKS_PER_GROUP(sb));
4525 		goto failed_mount;
4526 	}
4527 	sbi->s_groups_count = blocks_count;
4528 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4529 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4530 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4531 	    le32_to_cpu(es->s_inodes_count)) {
4532 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4533 			 le32_to_cpu(es->s_inodes_count),
4534 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4535 		ret = -EINVAL;
4536 		goto failed_mount;
4537 	}
4538 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4539 		   EXT4_DESC_PER_BLOCK(sb);
4540 	if (ext4_has_feature_meta_bg(sb)) {
4541 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4542 			ext4_msg(sb, KERN_WARNING,
4543 				 "first meta block group too large: %u "
4544 				 "(group descriptor block count %u)",
4545 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4546 			goto failed_mount;
4547 		}
4548 	}
4549 	rcu_assign_pointer(sbi->s_group_desc,
4550 			   kvmalloc_array(db_count,
4551 					  sizeof(struct buffer_head *),
4552 					  GFP_KERNEL));
4553 	if (sbi->s_group_desc == NULL) {
4554 		ext4_msg(sb, KERN_ERR, "not enough memory");
4555 		ret = -ENOMEM;
4556 		goto failed_mount;
4557 	}
4558 
4559 	bgl_lock_init(sbi->s_blockgroup_lock);
4560 
4561 	/* Pre-read the descriptors into the buffer cache */
4562 	for (i = 0; i < db_count; i++) {
4563 		block = descriptor_loc(sb, logical_sb_block, i);
4564 		ext4_sb_breadahead_unmovable(sb, block);
4565 	}
4566 
4567 	for (i = 0; i < db_count; i++) {
4568 		struct buffer_head *bh;
4569 
4570 		block = descriptor_loc(sb, logical_sb_block, i);
4571 		bh = ext4_sb_bread_unmovable(sb, block);
4572 		if (IS_ERR(bh)) {
4573 			ext4_msg(sb, KERN_ERR,
4574 			       "can't read group descriptor %d", i);
4575 			db_count = i;
4576 			ret = PTR_ERR(bh);
4577 			goto failed_mount2;
4578 		}
4579 		rcu_read_lock();
4580 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4581 		rcu_read_unlock();
4582 	}
4583 	sbi->s_gdb_count = db_count;
4584 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4585 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4586 		ret = -EFSCORRUPTED;
4587 		goto failed_mount2;
4588 	}
4589 
4590 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4591 	spin_lock_init(&sbi->s_error_lock);
4592 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4593 
4594 	/* Register extent status tree shrinker */
4595 	if (ext4_es_register_shrinker(sbi))
4596 		goto failed_mount3;
4597 
4598 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4599 	sbi->s_extent_max_zeroout_kb = 32;
4600 
4601 	/*
4602 	 * set up enough so that it can read an inode
4603 	 */
4604 	sb->s_op = &ext4_sops;
4605 	sb->s_export_op = &ext4_export_ops;
4606 	sb->s_xattr = ext4_xattr_handlers;
4607 #ifdef CONFIG_FS_ENCRYPTION
4608 	sb->s_cop = &ext4_cryptops;
4609 #endif
4610 #ifdef CONFIG_FS_VERITY
4611 	sb->s_vop = &ext4_verityops;
4612 #endif
4613 #ifdef CONFIG_QUOTA
4614 	sb->dq_op = &ext4_quota_operations;
4615 	if (ext4_has_feature_quota(sb))
4616 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4617 	else
4618 		sb->s_qcop = &ext4_qctl_operations;
4619 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4620 #endif
4621 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4622 
4623 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4624 	mutex_init(&sbi->s_orphan_lock);
4625 
4626 	/* Initialize fast commit stuff */
4627 	atomic_set(&sbi->s_fc_subtid, 0);
4628 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4629 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4630 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4631 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4632 	sbi->s_fc_bytes = 0;
4633 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4634 	sbi->s_fc_ineligible_tid = 0;
4635 	spin_lock_init(&sbi->s_fc_lock);
4636 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4637 	sbi->s_fc_replay_state.fc_regions = NULL;
4638 	sbi->s_fc_replay_state.fc_regions_size = 0;
4639 	sbi->s_fc_replay_state.fc_regions_used = 0;
4640 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4641 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4642 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4643 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4644 
4645 	sb->s_root = NULL;
4646 
4647 	needs_recovery = (es->s_last_orphan != 0 ||
4648 			  ext4_has_feature_orphan_present(sb) ||
4649 			  ext4_has_feature_journal_needs_recovery(sb));
4650 
4651 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4652 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4653 		if (err)
4654 			goto failed_mount3a;
4655 	}
4656 
4657 	/*
4658 	 * The first inode we look at is the journal inode.  Don't try
4659 	 * root first: it may be modified in the journal!
4660 	 */
4661 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4662 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4663 		if (err)
4664 			goto failed_mount3a;
4665 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4666 		   ext4_has_feature_journal_needs_recovery(sb)) {
4667 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4668 		       "suppressed and not mounted read-only");
4669 		goto failed_mount3a;
4670 	} else {
4671 		/* Nojournal mode, all journal mount options are illegal */
4672 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4673 			ext4_msg(sb, KERN_ERR, "can't mount with "
4674 				 "journal_async_commit, fs mounted w/o journal");
4675 			goto failed_mount3a;
4676 		}
4677 
4678 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4679 			ext4_msg(sb, KERN_ERR, "can't mount with "
4680 				 "journal_checksum, fs mounted w/o journal");
4681 			goto failed_mount3a;
4682 		}
4683 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4684 			ext4_msg(sb, KERN_ERR, "can't mount with "
4685 				 "commit=%lu, fs mounted w/o journal",
4686 				 sbi->s_commit_interval / HZ);
4687 			goto failed_mount3a;
4688 		}
4689 		if (EXT4_MOUNT_DATA_FLAGS &
4690 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4691 			ext4_msg(sb, KERN_ERR, "can't mount with "
4692 				 "data=, fs mounted w/o journal");
4693 			goto failed_mount3a;
4694 		}
4695 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4696 		clear_opt(sb, JOURNAL_CHECKSUM);
4697 		clear_opt(sb, DATA_FLAGS);
4698 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4699 		sbi->s_journal = NULL;
4700 		needs_recovery = 0;
4701 		goto no_journal;
4702 	}
4703 
4704 	if (ext4_has_feature_64bit(sb) &&
4705 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4706 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4707 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4708 		goto failed_mount_wq;
4709 	}
4710 
4711 	if (!set_journal_csum_feature_set(sb)) {
4712 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4713 			 "feature set");
4714 		goto failed_mount_wq;
4715 	}
4716 
4717 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4718 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4719 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4720 		ext4_msg(sb, KERN_ERR,
4721 			"Failed to set fast commit journal feature");
4722 		goto failed_mount_wq;
4723 	}
4724 
4725 	/* We have now updated the journal if required, so we can
4726 	 * validate the data journaling mode. */
4727 	switch (test_opt(sb, DATA_FLAGS)) {
4728 	case 0:
4729 		/* No mode set, assume a default based on the journal
4730 		 * capabilities: ORDERED_DATA if the journal can
4731 		 * cope, else JOURNAL_DATA
4732 		 */
4733 		if (jbd2_journal_check_available_features
4734 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4735 			set_opt(sb, ORDERED_DATA);
4736 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4737 		} else {
4738 			set_opt(sb, JOURNAL_DATA);
4739 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4740 		}
4741 		break;
4742 
4743 	case EXT4_MOUNT_ORDERED_DATA:
4744 	case EXT4_MOUNT_WRITEBACK_DATA:
4745 		if (!jbd2_journal_check_available_features
4746 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4747 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4748 			       "requested data journaling mode");
4749 			goto failed_mount_wq;
4750 		}
4751 		break;
4752 	default:
4753 		break;
4754 	}
4755 
4756 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4757 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4758 		ext4_msg(sb, KERN_ERR, "can't mount with "
4759 			"journal_async_commit in data=ordered mode");
4760 		goto failed_mount_wq;
4761 	}
4762 
4763 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4764 
4765 	sbi->s_journal->j_submit_inode_data_buffers =
4766 		ext4_journal_submit_inode_data_buffers;
4767 	sbi->s_journal->j_finish_inode_data_buffers =
4768 		ext4_journal_finish_inode_data_buffers;
4769 
4770 no_journal:
4771 	if (!test_opt(sb, NO_MBCACHE)) {
4772 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4773 		if (!sbi->s_ea_block_cache) {
4774 			ext4_msg(sb, KERN_ERR,
4775 				 "Failed to create ea_block_cache");
4776 			goto failed_mount_wq;
4777 		}
4778 
4779 		if (ext4_has_feature_ea_inode(sb)) {
4780 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4781 			if (!sbi->s_ea_inode_cache) {
4782 				ext4_msg(sb, KERN_ERR,
4783 					 "Failed to create ea_inode_cache");
4784 				goto failed_mount_wq;
4785 			}
4786 		}
4787 	}
4788 
4789 	/*
4790 	 * Get the # of file system overhead blocks from the
4791 	 * superblock if present.
4792 	 */
4793 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4794 	/* ignore the precalculated value if it is ridiculous */
4795 	if (sbi->s_overhead > ext4_blocks_count(es))
4796 		sbi->s_overhead = 0;
4797 	/*
4798 	 * If the bigalloc feature is not enabled recalculating the
4799 	 * overhead doesn't take long, so we might as well just redo
4800 	 * it to make sure we are using the correct value.
4801 	 */
4802 	if (!ext4_has_feature_bigalloc(sb))
4803 		sbi->s_overhead = 0;
4804 	if (sbi->s_overhead == 0) {
4805 		err = ext4_calculate_overhead(sb);
4806 		if (err)
4807 			goto failed_mount_wq;
4808 	}
4809 
4810 	/*
4811 	 * The maximum number of concurrent works can be high and
4812 	 * concurrency isn't really necessary.  Limit it to 1.
4813 	 */
4814 	EXT4_SB(sb)->rsv_conversion_wq =
4815 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4816 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4817 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4818 		ret = -ENOMEM;
4819 		goto failed_mount4;
4820 	}
4821 
4822 	/*
4823 	 * The jbd2_journal_load will have done any necessary log recovery,
4824 	 * so we can safely mount the rest of the filesystem now.
4825 	 */
4826 
4827 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4828 	if (IS_ERR(root)) {
4829 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4830 		ret = PTR_ERR(root);
4831 		root = NULL;
4832 		goto failed_mount4;
4833 	}
4834 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4835 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4836 		iput(root);
4837 		goto failed_mount4;
4838 	}
4839 
4840 	sb->s_root = d_make_root(root);
4841 	if (!sb->s_root) {
4842 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4843 		ret = -ENOMEM;
4844 		goto failed_mount4;
4845 	}
4846 
4847 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4848 	if (ret == -EROFS) {
4849 		sb->s_flags |= SB_RDONLY;
4850 		ret = 0;
4851 	} else if (ret)
4852 		goto failed_mount4a;
4853 
4854 	ext4_set_resv_clusters(sb);
4855 
4856 	if (test_opt(sb, BLOCK_VALIDITY)) {
4857 		err = ext4_setup_system_zone(sb);
4858 		if (err) {
4859 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4860 				 "zone (%d)", err);
4861 			goto failed_mount4a;
4862 		}
4863 	}
4864 	ext4_fc_replay_cleanup(sb);
4865 
4866 	ext4_ext_init(sb);
4867 
4868 	/*
4869 	 * Enable optimize_scan if number of groups is > threshold. This can be
4870 	 * turned off by passing "mb_optimize_scan=0". This can also be
4871 	 * turned on forcefully by passing "mb_optimize_scan=1".
4872 	 */
4873 	if (parsed_opts.mb_optimize_scan == 1)
4874 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4875 	else if (parsed_opts.mb_optimize_scan == 0)
4876 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
4877 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4878 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4879 
4880 	err = ext4_mb_init(sb);
4881 	if (err) {
4882 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4883 			 err);
4884 		goto failed_mount5;
4885 	}
4886 
4887 	/*
4888 	 * We can only set up the journal commit callback once
4889 	 * mballoc is initialized
4890 	 */
4891 	if (sbi->s_journal)
4892 		sbi->s_journal->j_commit_callback =
4893 			ext4_journal_commit_callback;
4894 
4895 	block = ext4_count_free_clusters(sb);
4896 	ext4_free_blocks_count_set(sbi->s_es,
4897 				   EXT4_C2B(sbi, block));
4898 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4899 				  GFP_KERNEL);
4900 	if (!err) {
4901 		unsigned long freei = ext4_count_free_inodes(sb);
4902 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4903 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4904 					  GFP_KERNEL);
4905 	}
4906 	if (!err)
4907 		err = percpu_counter_init(&sbi->s_dirs_counter,
4908 					  ext4_count_dirs(sb), GFP_KERNEL);
4909 	if (!err)
4910 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4911 					  GFP_KERNEL);
4912 	if (!err)
4913 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4914 					  GFP_KERNEL);
4915 	if (!err)
4916 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4917 
4918 	if (err) {
4919 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4920 		goto failed_mount6;
4921 	}
4922 
4923 	if (ext4_has_feature_flex_bg(sb))
4924 		if (!ext4_fill_flex_info(sb)) {
4925 			ext4_msg(sb, KERN_ERR,
4926 			       "unable to initialize "
4927 			       "flex_bg meta info!");
4928 			ret = -ENOMEM;
4929 			goto failed_mount6;
4930 		}
4931 
4932 	err = ext4_register_li_request(sb, first_not_zeroed);
4933 	if (err)
4934 		goto failed_mount6;
4935 
4936 	err = ext4_register_sysfs(sb);
4937 	if (err)
4938 		goto failed_mount7;
4939 
4940 	err = ext4_init_orphan_info(sb);
4941 	if (err)
4942 		goto failed_mount8;
4943 #ifdef CONFIG_QUOTA
4944 	/* Enable quota usage during mount. */
4945 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4946 		err = ext4_enable_quotas(sb);
4947 		if (err)
4948 			goto failed_mount9;
4949 	}
4950 #endif  /* CONFIG_QUOTA */
4951 
4952 	/*
4953 	 * Save the original bdev mapping's wb_err value which could be
4954 	 * used to detect the metadata async write error.
4955 	 */
4956 	spin_lock_init(&sbi->s_bdev_wb_lock);
4957 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4958 				 &sbi->s_bdev_wb_err);
4959 	sb->s_bdev->bd_super = sb;
4960 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4961 	ext4_orphan_cleanup(sb, es);
4962 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4963 	/*
4964 	 * Update the checksum after updating free space/inode counters and
4965 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
4966 	 * checksum in the buffer cache until it is written out and
4967 	 * e2fsprogs programs trying to open a file system immediately
4968 	 * after it is mounted can fail.
4969 	 */
4970 	ext4_superblock_csum_set(sb);
4971 	if (needs_recovery) {
4972 		ext4_msg(sb, KERN_INFO, "recovery complete");
4973 		err = ext4_mark_recovery_complete(sb, es);
4974 		if (err)
4975 			goto failed_mount10;
4976 	}
4977 	if (EXT4_SB(sb)->s_journal) {
4978 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4979 			descr = " journalled data mode";
4980 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4981 			descr = " ordered data mode";
4982 		else
4983 			descr = " writeback data mode";
4984 	} else
4985 		descr = "out journal";
4986 
4987 	if (test_opt(sb, DISCARD)) {
4988 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4989 		if (!blk_queue_discard(q))
4990 			ext4_msg(sb, KERN_WARNING,
4991 				 "mounting with \"discard\" option, but "
4992 				 "the device does not support discard");
4993 	}
4994 
4995 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4996 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4997 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
4998 			 (int) sizeof(sbi->s_es->s_mount_opts),
4999 			 sbi->s_es->s_mount_opts,
5000 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5001 			 ext4_quota_mode(sb));
5002 
5003 	if (es->s_error_count)
5004 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5005 
5006 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5007 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5008 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5009 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5010 	atomic_set(&sbi->s_warning_count, 0);
5011 	atomic_set(&sbi->s_msg_count, 0);
5012 
5013 	kfree(orig_data);
5014 	return 0;
5015 
5016 cantfind_ext4:
5017 	if (!silent)
5018 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5019 	goto failed_mount;
5020 
5021 failed_mount10:
5022 	ext4_quota_off_umount(sb);
5023 failed_mount9: __maybe_unused
5024 	ext4_release_orphan_info(sb);
5025 failed_mount8:
5026 	ext4_unregister_sysfs(sb);
5027 	kobject_put(&sbi->s_kobj);
5028 failed_mount7:
5029 	ext4_unregister_li_request(sb);
5030 failed_mount6:
5031 	ext4_mb_release(sb);
5032 	rcu_read_lock();
5033 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5034 	if (flex_groups) {
5035 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5036 			kvfree(flex_groups[i]);
5037 		kvfree(flex_groups);
5038 	}
5039 	rcu_read_unlock();
5040 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5041 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5042 	percpu_counter_destroy(&sbi->s_dirs_counter);
5043 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5044 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5045 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5046 failed_mount5:
5047 	ext4_ext_release(sb);
5048 	ext4_release_system_zone(sb);
5049 failed_mount4a:
5050 	dput(sb->s_root);
5051 	sb->s_root = NULL;
5052 failed_mount4:
5053 	ext4_msg(sb, KERN_ERR, "mount failed");
5054 	if (EXT4_SB(sb)->rsv_conversion_wq)
5055 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5056 failed_mount_wq:
5057 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5058 	sbi->s_ea_inode_cache = NULL;
5059 
5060 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5061 	sbi->s_ea_block_cache = NULL;
5062 
5063 	if (sbi->s_journal) {
5064 		/* flush s_error_work before journal destroy. */
5065 		flush_work(&sbi->s_error_work);
5066 		jbd2_journal_destroy(sbi->s_journal);
5067 		sbi->s_journal = NULL;
5068 	}
5069 failed_mount3a:
5070 	ext4_es_unregister_shrinker(sbi);
5071 failed_mount3:
5072 	/* flush s_error_work before sbi destroy */
5073 	flush_work(&sbi->s_error_work);
5074 	del_timer_sync(&sbi->s_err_report);
5075 	ext4_stop_mmpd(sbi);
5076 failed_mount2:
5077 	rcu_read_lock();
5078 	group_desc = rcu_dereference(sbi->s_group_desc);
5079 	for (i = 0; i < db_count; i++)
5080 		brelse(group_desc[i]);
5081 	kvfree(group_desc);
5082 	rcu_read_unlock();
5083 failed_mount:
5084 	if (sbi->s_chksum_driver)
5085 		crypto_free_shash(sbi->s_chksum_driver);
5086 
5087 #ifdef CONFIG_UNICODE
5088 	utf8_unload(sb->s_encoding);
5089 #endif
5090 
5091 #ifdef CONFIG_QUOTA
5092 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5093 		kfree(get_qf_name(sb, sbi, i));
5094 #endif
5095 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5096 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5097 	brelse(bh);
5098 	ext4_blkdev_remove(sbi);
5099 out_fail:
5100 	invalidate_bdev(sb->s_bdev);
5101 	sb->s_fs_info = NULL;
5102 	kfree(sbi->s_blockgroup_lock);
5103 out_free_base:
5104 	kfree(sbi);
5105 	kfree(orig_data);
5106 	fs_put_dax(dax_dev);
5107 	return err ? err : ret;
5108 }
5109 
5110 /*
5111  * Setup any per-fs journal parameters now.  We'll do this both on
5112  * initial mount, once the journal has been initialised but before we've
5113  * done any recovery; and again on any subsequent remount.
5114  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5115 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5116 {
5117 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5118 
5119 	journal->j_commit_interval = sbi->s_commit_interval;
5120 	journal->j_min_batch_time = sbi->s_min_batch_time;
5121 	journal->j_max_batch_time = sbi->s_max_batch_time;
5122 	ext4_fc_init(sb, journal);
5123 
5124 	write_lock(&journal->j_state_lock);
5125 	if (test_opt(sb, BARRIER))
5126 		journal->j_flags |= JBD2_BARRIER;
5127 	else
5128 		journal->j_flags &= ~JBD2_BARRIER;
5129 	if (test_opt(sb, DATA_ERR_ABORT))
5130 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5131 	else
5132 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5133 	write_unlock(&journal->j_state_lock);
5134 }
5135 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5136 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5137 					     unsigned int journal_inum)
5138 {
5139 	struct inode *journal_inode;
5140 
5141 	/*
5142 	 * Test for the existence of a valid inode on disk.  Bad things
5143 	 * happen if we iget() an unused inode, as the subsequent iput()
5144 	 * will try to delete it.
5145 	 */
5146 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5147 	if (IS_ERR(journal_inode)) {
5148 		ext4_msg(sb, KERN_ERR, "no journal found");
5149 		return NULL;
5150 	}
5151 	if (!journal_inode->i_nlink) {
5152 		make_bad_inode(journal_inode);
5153 		iput(journal_inode);
5154 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5155 		return NULL;
5156 	}
5157 
5158 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5159 		  journal_inode, journal_inode->i_size);
5160 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5161 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5162 		iput(journal_inode);
5163 		return NULL;
5164 	}
5165 	return journal_inode;
5166 }
5167 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5168 static journal_t *ext4_get_journal(struct super_block *sb,
5169 				   unsigned int journal_inum)
5170 {
5171 	struct inode *journal_inode;
5172 	journal_t *journal;
5173 
5174 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5175 		return NULL;
5176 
5177 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5178 	if (!journal_inode)
5179 		return NULL;
5180 
5181 	journal = jbd2_journal_init_inode(journal_inode);
5182 	if (!journal) {
5183 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5184 		iput(journal_inode);
5185 		return NULL;
5186 	}
5187 	journal->j_private = sb;
5188 	ext4_init_journal_params(sb, journal);
5189 	return journal;
5190 }
5191 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5192 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5193 				       dev_t j_dev)
5194 {
5195 	struct buffer_head *bh;
5196 	journal_t *journal;
5197 	ext4_fsblk_t start;
5198 	ext4_fsblk_t len;
5199 	int hblock, blocksize;
5200 	ext4_fsblk_t sb_block;
5201 	unsigned long offset;
5202 	struct ext4_super_block *es;
5203 	struct block_device *bdev;
5204 
5205 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5206 		return NULL;
5207 
5208 	bdev = ext4_blkdev_get(j_dev, sb);
5209 	if (bdev == NULL)
5210 		return NULL;
5211 
5212 	blocksize = sb->s_blocksize;
5213 	hblock = bdev_logical_block_size(bdev);
5214 	if (blocksize < hblock) {
5215 		ext4_msg(sb, KERN_ERR,
5216 			"blocksize too small for journal device");
5217 		goto out_bdev;
5218 	}
5219 
5220 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5221 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5222 	set_blocksize(bdev, blocksize);
5223 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5224 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5225 		       "external journal");
5226 		goto out_bdev;
5227 	}
5228 
5229 	es = (struct ext4_super_block *) (bh->b_data + offset);
5230 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5231 	    !(le32_to_cpu(es->s_feature_incompat) &
5232 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5233 		ext4_msg(sb, KERN_ERR, "external journal has "
5234 					"bad superblock");
5235 		brelse(bh);
5236 		goto out_bdev;
5237 	}
5238 
5239 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5240 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5241 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5242 		ext4_msg(sb, KERN_ERR, "external journal has "
5243 				       "corrupt superblock");
5244 		brelse(bh);
5245 		goto out_bdev;
5246 	}
5247 
5248 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5249 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5250 		brelse(bh);
5251 		goto out_bdev;
5252 	}
5253 
5254 	len = ext4_blocks_count(es);
5255 	start = sb_block + 1;
5256 	brelse(bh);	/* we're done with the superblock */
5257 
5258 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5259 					start, len, blocksize);
5260 	if (!journal) {
5261 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5262 		goto out_bdev;
5263 	}
5264 	journal->j_private = sb;
5265 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5266 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5267 		goto out_journal;
5268 	}
5269 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5270 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5271 					"user (unsupported) - %d",
5272 			be32_to_cpu(journal->j_superblock->s_nr_users));
5273 		goto out_journal;
5274 	}
5275 	EXT4_SB(sb)->s_journal_bdev = bdev;
5276 	ext4_init_journal_params(sb, journal);
5277 	return journal;
5278 
5279 out_journal:
5280 	jbd2_journal_destroy(journal);
5281 out_bdev:
5282 	ext4_blkdev_put(bdev);
5283 	return NULL;
5284 }
5285 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5286 static int ext4_load_journal(struct super_block *sb,
5287 			     struct ext4_super_block *es,
5288 			     unsigned long journal_devnum)
5289 {
5290 	journal_t *journal;
5291 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5292 	dev_t journal_dev;
5293 	int err = 0;
5294 	int really_read_only;
5295 	int journal_dev_ro;
5296 
5297 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5298 		return -EFSCORRUPTED;
5299 
5300 	if (journal_devnum &&
5301 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5302 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5303 			"numbers have changed");
5304 		journal_dev = new_decode_dev(journal_devnum);
5305 	} else
5306 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5307 
5308 	if (journal_inum && journal_dev) {
5309 		ext4_msg(sb, KERN_ERR,
5310 			 "filesystem has both journal inode and journal device!");
5311 		return -EINVAL;
5312 	}
5313 
5314 	if (journal_inum) {
5315 		journal = ext4_get_journal(sb, journal_inum);
5316 		if (!journal)
5317 			return -EINVAL;
5318 	} else {
5319 		journal = ext4_get_dev_journal(sb, journal_dev);
5320 		if (!journal)
5321 			return -EINVAL;
5322 	}
5323 
5324 	journal_dev_ro = bdev_read_only(journal->j_dev);
5325 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5326 
5327 	if (journal_dev_ro && !sb_rdonly(sb)) {
5328 		ext4_msg(sb, KERN_ERR,
5329 			 "journal device read-only, try mounting with '-o ro'");
5330 		err = -EROFS;
5331 		goto err_out;
5332 	}
5333 
5334 	/*
5335 	 * Are we loading a blank journal or performing recovery after a
5336 	 * crash?  For recovery, we need to check in advance whether we
5337 	 * can get read-write access to the device.
5338 	 */
5339 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5340 		if (sb_rdonly(sb)) {
5341 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5342 					"required on readonly filesystem");
5343 			if (really_read_only) {
5344 				ext4_msg(sb, KERN_ERR, "write access "
5345 					"unavailable, cannot proceed "
5346 					"(try mounting with noload)");
5347 				err = -EROFS;
5348 				goto err_out;
5349 			}
5350 			ext4_msg(sb, KERN_INFO, "write access will "
5351 			       "be enabled during recovery");
5352 		}
5353 	}
5354 
5355 	if (!(journal->j_flags & JBD2_BARRIER))
5356 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5357 
5358 	if (!ext4_has_feature_journal_needs_recovery(sb))
5359 		err = jbd2_journal_wipe(journal, !really_read_only);
5360 	if (!err) {
5361 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5362 		if (save)
5363 			memcpy(save, ((char *) es) +
5364 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5365 		err = jbd2_journal_load(journal);
5366 		if (save)
5367 			memcpy(((char *) es) + EXT4_S_ERR_START,
5368 			       save, EXT4_S_ERR_LEN);
5369 		kfree(save);
5370 	}
5371 
5372 	if (err) {
5373 		ext4_msg(sb, KERN_ERR, "error loading journal");
5374 		goto err_out;
5375 	}
5376 
5377 	EXT4_SB(sb)->s_journal = journal;
5378 	err = ext4_clear_journal_err(sb, es);
5379 	if (err) {
5380 		EXT4_SB(sb)->s_journal = NULL;
5381 		jbd2_journal_destroy(journal);
5382 		return err;
5383 	}
5384 
5385 	if (!really_read_only && journal_devnum &&
5386 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5387 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5388 		ext4_commit_super(sb);
5389 	}
5390 	if (!really_read_only && journal_inum &&
5391 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
5392 		es->s_journal_inum = cpu_to_le32(journal_inum);
5393 		ext4_commit_super(sb);
5394 	}
5395 
5396 	return 0;
5397 
5398 err_out:
5399 	jbd2_journal_destroy(journal);
5400 	return err;
5401 }
5402 
5403 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5404 static void ext4_update_super(struct super_block *sb)
5405 {
5406 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5407 	struct ext4_super_block *es = sbi->s_es;
5408 	struct buffer_head *sbh = sbi->s_sbh;
5409 
5410 	lock_buffer(sbh);
5411 	/*
5412 	 * If the file system is mounted read-only, don't update the
5413 	 * superblock write time.  This avoids updating the superblock
5414 	 * write time when we are mounting the root file system
5415 	 * read/only but we need to replay the journal; at that point,
5416 	 * for people who are east of GMT and who make their clock
5417 	 * tick in localtime for Windows bug-for-bug compatibility,
5418 	 * the clock is set in the future, and this will cause e2fsck
5419 	 * to complain and force a full file system check.
5420 	 */
5421 	if (!(sb->s_flags & SB_RDONLY))
5422 		ext4_update_tstamp(es, s_wtime);
5423 	es->s_kbytes_written =
5424 		cpu_to_le64(sbi->s_kbytes_written +
5425 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5426 		      sbi->s_sectors_written_start) >> 1));
5427 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5428 		ext4_free_blocks_count_set(es,
5429 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5430 				&sbi->s_freeclusters_counter)));
5431 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5432 		es->s_free_inodes_count =
5433 			cpu_to_le32(percpu_counter_sum_positive(
5434 				&sbi->s_freeinodes_counter));
5435 	/* Copy error information to the on-disk superblock */
5436 	spin_lock(&sbi->s_error_lock);
5437 	if (sbi->s_add_error_count > 0) {
5438 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5439 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5440 			__ext4_update_tstamp(&es->s_first_error_time,
5441 					     &es->s_first_error_time_hi,
5442 					     sbi->s_first_error_time);
5443 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5444 				sizeof(es->s_first_error_func));
5445 			es->s_first_error_line =
5446 				cpu_to_le32(sbi->s_first_error_line);
5447 			es->s_first_error_ino =
5448 				cpu_to_le32(sbi->s_first_error_ino);
5449 			es->s_first_error_block =
5450 				cpu_to_le64(sbi->s_first_error_block);
5451 			es->s_first_error_errcode =
5452 				ext4_errno_to_code(sbi->s_first_error_code);
5453 		}
5454 		__ext4_update_tstamp(&es->s_last_error_time,
5455 				     &es->s_last_error_time_hi,
5456 				     sbi->s_last_error_time);
5457 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5458 			sizeof(es->s_last_error_func));
5459 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5460 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5461 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5462 		es->s_last_error_errcode =
5463 				ext4_errno_to_code(sbi->s_last_error_code);
5464 		/*
5465 		 * Start the daily error reporting function if it hasn't been
5466 		 * started already
5467 		 */
5468 		if (!es->s_error_count)
5469 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5470 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5471 		sbi->s_add_error_count = 0;
5472 	}
5473 	spin_unlock(&sbi->s_error_lock);
5474 
5475 	ext4_superblock_csum_set(sb);
5476 	unlock_buffer(sbh);
5477 }
5478 
ext4_commit_super(struct super_block * sb)5479 static int ext4_commit_super(struct super_block *sb)
5480 {
5481 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5482 	int error = 0;
5483 
5484 	if (!sbh)
5485 		return -EINVAL;
5486 	if (block_device_ejected(sb))
5487 		return -ENODEV;
5488 
5489 	ext4_update_super(sb);
5490 
5491 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5492 		/*
5493 		 * Oh, dear.  A previous attempt to write the
5494 		 * superblock failed.  This could happen because the
5495 		 * USB device was yanked out.  Or it could happen to
5496 		 * be a transient write error and maybe the block will
5497 		 * be remapped.  Nothing we can do but to retry the
5498 		 * write and hope for the best.
5499 		 */
5500 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5501 		       "superblock detected");
5502 		clear_buffer_write_io_error(sbh);
5503 		set_buffer_uptodate(sbh);
5504 	}
5505 	BUFFER_TRACE(sbh, "marking dirty");
5506 	mark_buffer_dirty(sbh);
5507 	error = __sync_dirty_buffer(sbh,
5508 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5509 	if (buffer_write_io_error(sbh)) {
5510 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5511 		       "superblock");
5512 		clear_buffer_write_io_error(sbh);
5513 		set_buffer_uptodate(sbh);
5514 	}
5515 	return error;
5516 }
5517 
5518 /*
5519  * Have we just finished recovery?  If so, and if we are mounting (or
5520  * remounting) the filesystem readonly, then we will end up with a
5521  * consistent fs on disk.  Record that fact.
5522  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5523 static int ext4_mark_recovery_complete(struct super_block *sb,
5524 				       struct ext4_super_block *es)
5525 {
5526 	int err;
5527 	journal_t *journal = EXT4_SB(sb)->s_journal;
5528 
5529 	if (!ext4_has_feature_journal(sb)) {
5530 		if (journal != NULL) {
5531 			ext4_error(sb, "Journal got removed while the fs was "
5532 				   "mounted!");
5533 			return -EFSCORRUPTED;
5534 		}
5535 		return 0;
5536 	}
5537 	jbd2_journal_lock_updates(journal);
5538 	err = jbd2_journal_flush(journal, 0);
5539 	if (err < 0)
5540 		goto out;
5541 
5542 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5543 	    ext4_has_feature_orphan_present(sb))) {
5544 		if (!ext4_orphan_file_empty(sb)) {
5545 			ext4_error(sb, "Orphan file not empty on read-only fs.");
5546 			err = -EFSCORRUPTED;
5547 			goto out;
5548 		}
5549 		ext4_clear_feature_journal_needs_recovery(sb);
5550 		ext4_clear_feature_orphan_present(sb);
5551 		ext4_commit_super(sb);
5552 	}
5553 out:
5554 	jbd2_journal_unlock_updates(journal);
5555 	return err;
5556 }
5557 
5558 /*
5559  * If we are mounting (or read-write remounting) a filesystem whose journal
5560  * has recorded an error from a previous lifetime, move that error to the
5561  * main filesystem now.
5562  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5563 static int ext4_clear_journal_err(struct super_block *sb,
5564 				   struct ext4_super_block *es)
5565 {
5566 	journal_t *journal;
5567 	int j_errno;
5568 	const char *errstr;
5569 
5570 	if (!ext4_has_feature_journal(sb)) {
5571 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5572 		return -EFSCORRUPTED;
5573 	}
5574 
5575 	journal = EXT4_SB(sb)->s_journal;
5576 
5577 	/*
5578 	 * Now check for any error status which may have been recorded in the
5579 	 * journal by a prior ext4_error() or ext4_abort()
5580 	 */
5581 
5582 	j_errno = jbd2_journal_errno(journal);
5583 	if (j_errno) {
5584 		char nbuf[16];
5585 
5586 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5587 		ext4_warning(sb, "Filesystem error recorded "
5588 			     "from previous mount: %s", errstr);
5589 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5590 
5591 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5592 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5593 		ext4_commit_super(sb);
5594 
5595 		jbd2_journal_clear_err(journal);
5596 		jbd2_journal_update_sb_errno(journal);
5597 	}
5598 	return 0;
5599 }
5600 
5601 /*
5602  * Force the running and committing transactions to commit,
5603  * and wait on the commit.
5604  */
ext4_force_commit(struct super_block * sb)5605 int ext4_force_commit(struct super_block *sb)
5606 {
5607 	journal_t *journal;
5608 
5609 	if (sb_rdonly(sb))
5610 		return 0;
5611 
5612 	journal = EXT4_SB(sb)->s_journal;
5613 	return ext4_journal_force_commit(journal);
5614 }
5615 
ext4_sync_fs(struct super_block * sb,int wait)5616 static int ext4_sync_fs(struct super_block *sb, int wait)
5617 {
5618 	int ret = 0;
5619 	tid_t target;
5620 	bool needs_barrier = false;
5621 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5622 
5623 	if (unlikely(ext4_forced_shutdown(sbi)))
5624 		return 0;
5625 
5626 	trace_ext4_sync_fs(sb, wait);
5627 	flush_workqueue(sbi->rsv_conversion_wq);
5628 	/*
5629 	 * Writeback quota in non-journalled quota case - journalled quota has
5630 	 * no dirty dquots
5631 	 */
5632 	dquot_writeback_dquots(sb, -1);
5633 	/*
5634 	 * Data writeback is possible w/o journal transaction, so barrier must
5635 	 * being sent at the end of the function. But we can skip it if
5636 	 * transaction_commit will do it for us.
5637 	 */
5638 	if (sbi->s_journal) {
5639 		target = jbd2_get_latest_transaction(sbi->s_journal);
5640 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5641 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5642 			needs_barrier = true;
5643 
5644 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5645 			if (wait)
5646 				ret = jbd2_log_wait_commit(sbi->s_journal,
5647 							   target);
5648 		}
5649 	} else if (wait && test_opt(sb, BARRIER))
5650 		needs_barrier = true;
5651 	if (needs_barrier) {
5652 		int err;
5653 		err = blkdev_issue_flush(sb->s_bdev);
5654 		if (!ret)
5655 			ret = err;
5656 	}
5657 
5658 	return ret;
5659 }
5660 
5661 /*
5662  * LVM calls this function before a (read-only) snapshot is created.  This
5663  * gives us a chance to flush the journal completely and mark the fs clean.
5664  *
5665  * Note that only this function cannot bring a filesystem to be in a clean
5666  * state independently. It relies on upper layer to stop all data & metadata
5667  * modifications.
5668  */
ext4_freeze(struct super_block * sb)5669 static int ext4_freeze(struct super_block *sb)
5670 {
5671 	int error = 0;
5672 	journal_t *journal;
5673 
5674 	if (sb_rdonly(sb))
5675 		return 0;
5676 
5677 	journal = EXT4_SB(sb)->s_journal;
5678 
5679 	if (journal) {
5680 		/* Now we set up the journal barrier. */
5681 		jbd2_journal_lock_updates(journal);
5682 
5683 		/*
5684 		 * Don't clear the needs_recovery flag if we failed to
5685 		 * flush the journal.
5686 		 */
5687 		error = jbd2_journal_flush(journal, 0);
5688 		if (error < 0)
5689 			goto out;
5690 
5691 		/* Journal blocked and flushed, clear needs_recovery flag. */
5692 		ext4_clear_feature_journal_needs_recovery(sb);
5693 		if (ext4_orphan_file_empty(sb))
5694 			ext4_clear_feature_orphan_present(sb);
5695 	}
5696 
5697 	error = ext4_commit_super(sb);
5698 out:
5699 	if (journal)
5700 		/* we rely on upper layer to stop further updates */
5701 		jbd2_journal_unlock_updates(journal);
5702 	return error;
5703 }
5704 
5705 /*
5706  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5707  * flag here, even though the filesystem is not technically dirty yet.
5708  */
ext4_unfreeze(struct super_block * sb)5709 static int ext4_unfreeze(struct super_block *sb)
5710 {
5711 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5712 		return 0;
5713 
5714 	if (EXT4_SB(sb)->s_journal) {
5715 		/* Reset the needs_recovery flag before the fs is unlocked. */
5716 		ext4_set_feature_journal_needs_recovery(sb);
5717 		if (ext4_has_feature_orphan_file(sb))
5718 			ext4_set_feature_orphan_present(sb);
5719 	}
5720 
5721 	ext4_commit_super(sb);
5722 	return 0;
5723 }
5724 
5725 /*
5726  * Structure to save mount options for ext4_remount's benefit
5727  */
5728 struct ext4_mount_options {
5729 	unsigned long s_mount_opt;
5730 	unsigned long s_mount_opt2;
5731 	kuid_t s_resuid;
5732 	kgid_t s_resgid;
5733 	unsigned long s_commit_interval;
5734 	u32 s_min_batch_time, s_max_batch_time;
5735 #ifdef CONFIG_QUOTA
5736 	int s_jquota_fmt;
5737 	char *s_qf_names[EXT4_MAXQUOTAS];
5738 #endif
5739 };
5740 
ext4_remount(struct super_block * sb,int * flags,char * data)5741 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5742 {
5743 	struct ext4_super_block *es;
5744 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5745 	unsigned long old_sb_flags, vfs_flags;
5746 	struct ext4_mount_options old_opts;
5747 	ext4_group_t g;
5748 	int err = 0;
5749 #ifdef CONFIG_QUOTA
5750 	int enable_quota = 0;
5751 	int i, j;
5752 	char *to_free[EXT4_MAXQUOTAS];
5753 #endif
5754 	char *orig_data = kstrdup(data, GFP_KERNEL);
5755 	struct ext4_parsed_options parsed_opts;
5756 
5757 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5758 	parsed_opts.journal_devnum = 0;
5759 
5760 	if (data && !orig_data)
5761 		return -ENOMEM;
5762 
5763 	/* Store the original options */
5764 	old_sb_flags = sb->s_flags;
5765 	old_opts.s_mount_opt = sbi->s_mount_opt;
5766 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5767 	old_opts.s_resuid = sbi->s_resuid;
5768 	old_opts.s_resgid = sbi->s_resgid;
5769 	old_opts.s_commit_interval = sbi->s_commit_interval;
5770 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5771 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5772 #ifdef CONFIG_QUOTA
5773 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5774 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5775 		if (sbi->s_qf_names[i]) {
5776 			char *qf_name = get_qf_name(sb, sbi, i);
5777 
5778 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5779 			if (!old_opts.s_qf_names[i]) {
5780 				for (j = 0; j < i; j++)
5781 					kfree(old_opts.s_qf_names[j]);
5782 				kfree(orig_data);
5783 				return -ENOMEM;
5784 			}
5785 		} else
5786 			old_opts.s_qf_names[i] = NULL;
5787 #endif
5788 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5789 		parsed_opts.journal_ioprio =
5790 			sbi->s_journal->j_task->io_context->ioprio;
5791 
5792 	/*
5793 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5794 	 * either way we need to make sure it matches in both *flags and
5795 	 * s_flags. Copy those selected flags from *flags to s_flags
5796 	 */
5797 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5798 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5799 
5800 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5801 		err = -EINVAL;
5802 		goto restore_opts;
5803 	}
5804 
5805 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5806 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5807 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5808 			 "during remount not supported; ignoring");
5809 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5810 	}
5811 
5812 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5813 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5814 			ext4_msg(sb, KERN_ERR, "can't mount with "
5815 				 "both data=journal and delalloc");
5816 			err = -EINVAL;
5817 			goto restore_opts;
5818 		}
5819 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5820 			ext4_msg(sb, KERN_ERR, "can't mount with "
5821 				 "both data=journal and dioread_nolock");
5822 			err = -EINVAL;
5823 			goto restore_opts;
5824 		}
5825 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5826 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5827 			ext4_msg(sb, KERN_ERR, "can't mount with "
5828 				"journal_async_commit in data=ordered mode");
5829 			err = -EINVAL;
5830 			goto restore_opts;
5831 		}
5832 	}
5833 
5834 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5835 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5836 		err = -EINVAL;
5837 		goto restore_opts;
5838 	}
5839 
5840 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5841 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5842 
5843 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5844 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5845 
5846 	es = sbi->s_es;
5847 
5848 	if (sbi->s_journal) {
5849 		ext4_init_journal_params(sb, sbi->s_journal);
5850 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5851 	}
5852 
5853 	/* Flush outstanding errors before changing fs state */
5854 	flush_work(&sbi->s_error_work);
5855 
5856 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5857 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5858 			err = -EROFS;
5859 			goto restore_opts;
5860 		}
5861 
5862 		if (*flags & SB_RDONLY) {
5863 			err = sync_filesystem(sb);
5864 			if (err < 0)
5865 				goto restore_opts;
5866 			err = dquot_suspend(sb, -1);
5867 			if (err < 0)
5868 				goto restore_opts;
5869 
5870 			/*
5871 			 * First of all, the unconditional stuff we have to do
5872 			 * to disable replay of the journal when we next remount
5873 			 */
5874 			sb->s_flags |= SB_RDONLY;
5875 
5876 			/*
5877 			 * OK, test if we are remounting a valid rw partition
5878 			 * readonly, and if so set the rdonly flag and then
5879 			 * mark the partition as valid again.
5880 			 */
5881 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5882 			    (sbi->s_mount_state & EXT4_VALID_FS))
5883 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5884 
5885 			if (sbi->s_journal) {
5886 				/*
5887 				 * We let remount-ro finish even if marking fs
5888 				 * as clean failed...
5889 				 */
5890 				ext4_mark_recovery_complete(sb, es);
5891 			}
5892 		} else {
5893 			/* Make sure we can mount this feature set readwrite */
5894 			if (ext4_has_feature_readonly(sb) ||
5895 			    !ext4_feature_set_ok(sb, 0)) {
5896 				err = -EROFS;
5897 				goto restore_opts;
5898 			}
5899 			/*
5900 			 * Make sure the group descriptor checksums
5901 			 * are sane.  If they aren't, refuse to remount r/w.
5902 			 */
5903 			for (g = 0; g < sbi->s_groups_count; g++) {
5904 				struct ext4_group_desc *gdp =
5905 					ext4_get_group_desc(sb, g, NULL);
5906 
5907 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5908 					ext4_msg(sb, KERN_ERR,
5909 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5910 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5911 					       le16_to_cpu(gdp->bg_checksum));
5912 					err = -EFSBADCRC;
5913 					goto restore_opts;
5914 				}
5915 			}
5916 
5917 			/*
5918 			 * If we have an unprocessed orphan list hanging
5919 			 * around from a previously readonly bdev mount,
5920 			 * require a full umount/remount for now.
5921 			 */
5922 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5923 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5924 				       "remount RDWR because of unprocessed "
5925 				       "orphan inode list.  Please "
5926 				       "umount/remount instead");
5927 				err = -EINVAL;
5928 				goto restore_opts;
5929 			}
5930 
5931 			/*
5932 			 * Mounting a RDONLY partition read-write, so reread
5933 			 * and store the current valid flag.  (It may have
5934 			 * been changed by e2fsck since we originally mounted
5935 			 * the partition.)
5936 			 */
5937 			if (sbi->s_journal) {
5938 				err = ext4_clear_journal_err(sb, es);
5939 				if (err)
5940 					goto restore_opts;
5941 			}
5942 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
5943 					      ~EXT4_FC_REPLAY);
5944 
5945 			err = ext4_setup_super(sb, es, 0);
5946 			if (err)
5947 				goto restore_opts;
5948 
5949 			sb->s_flags &= ~SB_RDONLY;
5950 			if (ext4_has_feature_mmp(sb)) {
5951 				err = ext4_multi_mount_protect(sb,
5952 						le64_to_cpu(es->s_mmp_block));
5953 				if (err)
5954 					goto restore_opts;
5955 			}
5956 #ifdef CONFIG_QUOTA
5957 			enable_quota = 1;
5958 #endif
5959 		}
5960 	}
5961 
5962 	/*
5963 	 * Handle creation of system zone data early because it can fail.
5964 	 * Releasing of existing data is done when we are sure remount will
5965 	 * succeed.
5966 	 */
5967 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5968 		err = ext4_setup_system_zone(sb);
5969 		if (err)
5970 			goto restore_opts;
5971 	}
5972 
5973 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5974 		err = ext4_commit_super(sb);
5975 		if (err)
5976 			goto restore_opts;
5977 	}
5978 
5979 #ifdef CONFIG_QUOTA
5980 	if (enable_quota) {
5981 		if (sb_any_quota_suspended(sb))
5982 			dquot_resume(sb, -1);
5983 		else if (ext4_has_feature_quota(sb)) {
5984 			err = ext4_enable_quotas(sb);
5985 			if (err)
5986 				goto restore_opts;
5987 		}
5988 	}
5989 	/* Release old quota file names */
5990 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5991 		kfree(old_opts.s_qf_names[i]);
5992 #endif
5993 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5994 		ext4_release_system_zone(sb);
5995 
5996 	/*
5997 	 * Reinitialize lazy itable initialization thread based on
5998 	 * current settings
5999 	 */
6000 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6001 		ext4_unregister_li_request(sb);
6002 	else {
6003 		ext4_group_t first_not_zeroed;
6004 		first_not_zeroed = ext4_has_uninit_itable(sb);
6005 		ext4_register_li_request(sb, first_not_zeroed);
6006 	}
6007 
6008 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6009 		ext4_stop_mmpd(sbi);
6010 
6011 	/*
6012 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6013 	 * either way we need to make sure it matches in both *flags and
6014 	 * s_flags. Copy those selected flags from s_flags to *flags
6015 	 */
6016 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6017 
6018 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6019 		 orig_data, ext4_quota_mode(sb));
6020 	kfree(orig_data);
6021 	return 0;
6022 
6023 restore_opts:
6024 	/*
6025 	 * If there was a failing r/w to ro transition, we may need to
6026 	 * re-enable quota
6027 	 */
6028 	if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6029 	    sb_any_quota_suspended(sb))
6030 		dquot_resume(sb, -1);
6031 	sb->s_flags = old_sb_flags;
6032 	sbi->s_mount_opt = old_opts.s_mount_opt;
6033 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6034 	sbi->s_resuid = old_opts.s_resuid;
6035 	sbi->s_resgid = old_opts.s_resgid;
6036 	sbi->s_commit_interval = old_opts.s_commit_interval;
6037 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6038 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6039 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6040 		ext4_release_system_zone(sb);
6041 #ifdef CONFIG_QUOTA
6042 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6043 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6044 		to_free[i] = get_qf_name(sb, sbi, i);
6045 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6046 	}
6047 	synchronize_rcu();
6048 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6049 		kfree(to_free[i]);
6050 #endif
6051 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6052 		ext4_stop_mmpd(sbi);
6053 	kfree(orig_data);
6054 	return err;
6055 }
6056 
6057 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6058 static int ext4_statfs_project(struct super_block *sb,
6059 			       kprojid_t projid, struct kstatfs *buf)
6060 {
6061 	struct kqid qid;
6062 	struct dquot *dquot;
6063 	u64 limit;
6064 	u64 curblock;
6065 
6066 	qid = make_kqid_projid(projid);
6067 	dquot = dqget(sb, qid);
6068 	if (IS_ERR(dquot))
6069 		return PTR_ERR(dquot);
6070 	spin_lock(&dquot->dq_dqb_lock);
6071 
6072 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6073 			     dquot->dq_dqb.dqb_bhardlimit);
6074 	limit >>= sb->s_blocksize_bits;
6075 
6076 	if (limit && buf->f_blocks > limit) {
6077 		curblock = (dquot->dq_dqb.dqb_curspace +
6078 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6079 		buf->f_blocks = limit;
6080 		buf->f_bfree = buf->f_bavail =
6081 			(buf->f_blocks > curblock) ?
6082 			 (buf->f_blocks - curblock) : 0;
6083 	}
6084 
6085 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6086 			     dquot->dq_dqb.dqb_ihardlimit);
6087 	if (limit && buf->f_files > limit) {
6088 		buf->f_files = limit;
6089 		buf->f_ffree =
6090 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6091 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6092 	}
6093 
6094 	spin_unlock(&dquot->dq_dqb_lock);
6095 	dqput(dquot);
6096 	return 0;
6097 }
6098 #endif
6099 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6100 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6101 {
6102 	struct super_block *sb = dentry->d_sb;
6103 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6104 	struct ext4_super_block *es = sbi->s_es;
6105 	ext4_fsblk_t overhead = 0, resv_blocks;
6106 	s64 bfree;
6107 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6108 
6109 	if (!test_opt(sb, MINIX_DF))
6110 		overhead = sbi->s_overhead;
6111 
6112 	buf->f_type = EXT4_SUPER_MAGIC;
6113 	buf->f_bsize = sb->s_blocksize;
6114 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6115 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6116 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6117 	/* prevent underflow in case that few free space is available */
6118 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6119 	buf->f_bavail = buf->f_bfree -
6120 			(ext4_r_blocks_count(es) + resv_blocks);
6121 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6122 		buf->f_bavail = 0;
6123 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6124 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6125 	buf->f_namelen = EXT4_NAME_LEN;
6126 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6127 
6128 #ifdef CONFIG_QUOTA
6129 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6130 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6131 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6132 #endif
6133 	return 0;
6134 }
6135 
6136 
6137 #ifdef CONFIG_QUOTA
6138 
6139 /*
6140  * Helper functions so that transaction is started before we acquire dqio_sem
6141  * to keep correct lock ordering of transaction > dqio_sem
6142  */
dquot_to_inode(struct dquot * dquot)6143 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6144 {
6145 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6146 }
6147 
ext4_write_dquot(struct dquot * dquot)6148 static int ext4_write_dquot(struct dquot *dquot)
6149 {
6150 	int ret, err;
6151 	handle_t *handle;
6152 	struct inode *inode;
6153 
6154 	inode = dquot_to_inode(dquot);
6155 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6156 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6157 	if (IS_ERR(handle))
6158 		return PTR_ERR(handle);
6159 	ret = dquot_commit(dquot);
6160 	err = ext4_journal_stop(handle);
6161 	if (!ret)
6162 		ret = err;
6163 	return ret;
6164 }
6165 
ext4_acquire_dquot(struct dquot * dquot)6166 static int ext4_acquire_dquot(struct dquot *dquot)
6167 {
6168 	int ret, err;
6169 	handle_t *handle;
6170 
6171 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6172 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6173 	if (IS_ERR(handle))
6174 		return PTR_ERR(handle);
6175 	ret = dquot_acquire(dquot);
6176 	err = ext4_journal_stop(handle);
6177 	if (!ret)
6178 		ret = err;
6179 	return ret;
6180 }
6181 
ext4_release_dquot(struct dquot * dquot)6182 static int ext4_release_dquot(struct dquot *dquot)
6183 {
6184 	int ret, err;
6185 	handle_t *handle;
6186 
6187 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6188 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6189 	if (IS_ERR(handle)) {
6190 		/* Release dquot anyway to avoid endless cycle in dqput() */
6191 		dquot_release(dquot);
6192 		return PTR_ERR(handle);
6193 	}
6194 	ret = dquot_release(dquot);
6195 	err = ext4_journal_stop(handle);
6196 	if (!ret)
6197 		ret = err;
6198 	return ret;
6199 }
6200 
ext4_mark_dquot_dirty(struct dquot * dquot)6201 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6202 {
6203 	struct super_block *sb = dquot->dq_sb;
6204 
6205 	if (ext4_is_quota_journalled(sb)) {
6206 		dquot_mark_dquot_dirty(dquot);
6207 		return ext4_write_dquot(dquot);
6208 	} else {
6209 		return dquot_mark_dquot_dirty(dquot);
6210 	}
6211 }
6212 
ext4_write_info(struct super_block * sb,int type)6213 static int ext4_write_info(struct super_block *sb, int type)
6214 {
6215 	int ret, err;
6216 	handle_t *handle;
6217 
6218 	/* Data block + inode block */
6219 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6220 	if (IS_ERR(handle))
6221 		return PTR_ERR(handle);
6222 	ret = dquot_commit_info(sb, type);
6223 	err = ext4_journal_stop(handle);
6224 	if (!ret)
6225 		ret = err;
6226 	return ret;
6227 }
6228 
lockdep_set_quota_inode(struct inode * inode,int subclass)6229 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6230 {
6231 	struct ext4_inode_info *ei = EXT4_I(inode);
6232 
6233 	/* The first argument of lockdep_set_subclass has to be
6234 	 * *exactly* the same as the argument to init_rwsem() --- in
6235 	 * this case, in init_once() --- or lockdep gets unhappy
6236 	 * because the name of the lock is set using the
6237 	 * stringification of the argument to init_rwsem().
6238 	 */
6239 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6240 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6241 }
6242 
6243 /*
6244  * Standard function to be called on quota_on
6245  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6246 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6247 			 const struct path *path)
6248 {
6249 	int err;
6250 
6251 	if (!test_opt(sb, QUOTA))
6252 		return -EINVAL;
6253 
6254 	/* Quotafile not on the same filesystem? */
6255 	if (path->dentry->d_sb != sb)
6256 		return -EXDEV;
6257 
6258 	/* Quota already enabled for this file? */
6259 	if (IS_NOQUOTA(d_inode(path->dentry)))
6260 		return -EBUSY;
6261 
6262 	/* Journaling quota? */
6263 	if (EXT4_SB(sb)->s_qf_names[type]) {
6264 		/* Quotafile not in fs root? */
6265 		if (path->dentry->d_parent != sb->s_root)
6266 			ext4_msg(sb, KERN_WARNING,
6267 				"Quota file not on filesystem root. "
6268 				"Journaled quota will not work");
6269 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6270 	} else {
6271 		/*
6272 		 * Clear the flag just in case mount options changed since
6273 		 * last time.
6274 		 */
6275 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6276 	}
6277 
6278 	/*
6279 	 * When we journal data on quota file, we have to flush journal to see
6280 	 * all updates to the file when we bypass pagecache...
6281 	 */
6282 	if (EXT4_SB(sb)->s_journal &&
6283 	    ext4_should_journal_data(d_inode(path->dentry))) {
6284 		/*
6285 		 * We don't need to lock updates but journal_flush() could
6286 		 * otherwise be livelocked...
6287 		 */
6288 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6289 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6290 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6291 		if (err)
6292 			return err;
6293 	}
6294 
6295 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6296 	err = dquot_quota_on(sb, type, format_id, path);
6297 	if (!err) {
6298 		struct inode *inode = d_inode(path->dentry);
6299 		handle_t *handle;
6300 
6301 		/*
6302 		 * Set inode flags to prevent userspace from messing with quota
6303 		 * files. If this fails, we return success anyway since quotas
6304 		 * are already enabled and this is not a hard failure.
6305 		 */
6306 		inode_lock(inode);
6307 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6308 		if (IS_ERR(handle))
6309 			goto unlock_inode;
6310 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6311 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6312 				S_NOATIME | S_IMMUTABLE);
6313 		err = ext4_mark_inode_dirty(handle, inode);
6314 		ext4_journal_stop(handle);
6315 	unlock_inode:
6316 		inode_unlock(inode);
6317 		if (err)
6318 			dquot_quota_off(sb, type);
6319 	}
6320 	if (err)
6321 		lockdep_set_quota_inode(path->dentry->d_inode,
6322 					     I_DATA_SEM_NORMAL);
6323 	return err;
6324 }
6325 
ext4_check_quota_inum(int type,unsigned long qf_inum)6326 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6327 {
6328 	switch (type) {
6329 	case USRQUOTA:
6330 		return qf_inum == EXT4_USR_QUOTA_INO;
6331 	case GRPQUOTA:
6332 		return qf_inum == EXT4_GRP_QUOTA_INO;
6333 	case PRJQUOTA:
6334 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6335 	default:
6336 		BUG();
6337 	}
6338 }
6339 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6340 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6341 			     unsigned int flags)
6342 {
6343 	int err;
6344 	struct inode *qf_inode;
6345 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6346 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6347 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6348 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6349 	};
6350 
6351 	BUG_ON(!ext4_has_feature_quota(sb));
6352 
6353 	if (!qf_inums[type])
6354 		return -EPERM;
6355 
6356 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6357 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6358 				qf_inums[type], type);
6359 		return -EUCLEAN;
6360 	}
6361 
6362 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6363 	if (IS_ERR(qf_inode)) {
6364 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6365 				qf_inums[type], type);
6366 		return PTR_ERR(qf_inode);
6367 	}
6368 
6369 	/* Don't account quota for quota files to avoid recursion */
6370 	qf_inode->i_flags |= S_NOQUOTA;
6371 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6372 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6373 	if (err)
6374 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6375 	iput(qf_inode);
6376 
6377 	return err;
6378 }
6379 
6380 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6381 int ext4_enable_quotas(struct super_block *sb)
6382 {
6383 	int type, err = 0;
6384 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6385 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6386 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6387 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6388 	};
6389 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6390 		test_opt(sb, USRQUOTA),
6391 		test_opt(sb, GRPQUOTA),
6392 		test_opt(sb, PRJQUOTA),
6393 	};
6394 
6395 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6396 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6397 		if (qf_inums[type]) {
6398 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6399 				DQUOT_USAGE_ENABLED |
6400 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6401 			if (err) {
6402 				ext4_warning(sb,
6403 					"Failed to enable quota tracking "
6404 					"(type=%d, err=%d, ino=%lu). "
6405 					"Please run e2fsck to fix.", type,
6406 					err, qf_inums[type]);
6407 				for (type--; type >= 0; type--) {
6408 					struct inode *inode;
6409 
6410 					inode = sb_dqopt(sb)->files[type];
6411 					if (inode)
6412 						inode = igrab(inode);
6413 					dquot_quota_off(sb, type);
6414 					if (inode) {
6415 						lockdep_set_quota_inode(inode,
6416 							I_DATA_SEM_NORMAL);
6417 						iput(inode);
6418 					}
6419 				}
6420 
6421 				return err;
6422 			}
6423 		}
6424 	}
6425 	return 0;
6426 }
6427 
ext4_quota_off(struct super_block * sb,int type)6428 static int ext4_quota_off(struct super_block *sb, int type)
6429 {
6430 	struct inode *inode = sb_dqopt(sb)->files[type];
6431 	handle_t *handle;
6432 	int err;
6433 
6434 	/* Force all delayed allocation blocks to be allocated.
6435 	 * Caller already holds s_umount sem */
6436 	if (test_opt(sb, DELALLOC))
6437 		sync_filesystem(sb);
6438 
6439 	if (!inode || !igrab(inode))
6440 		goto out;
6441 
6442 	err = dquot_quota_off(sb, type);
6443 	if (err || ext4_has_feature_quota(sb))
6444 		goto out_put;
6445 
6446 	inode_lock(inode);
6447 	/*
6448 	 * Update modification times of quota files when userspace can
6449 	 * start looking at them. If we fail, we return success anyway since
6450 	 * this is not a hard failure and quotas are already disabled.
6451 	 */
6452 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6453 	if (IS_ERR(handle)) {
6454 		err = PTR_ERR(handle);
6455 		goto out_unlock;
6456 	}
6457 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6458 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6459 	inode->i_mtime = inode->i_ctime = current_time(inode);
6460 	err = ext4_mark_inode_dirty(handle, inode);
6461 	ext4_journal_stop(handle);
6462 out_unlock:
6463 	inode_unlock(inode);
6464 out_put:
6465 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6466 	iput(inode);
6467 	return err;
6468 out:
6469 	return dquot_quota_off(sb, type);
6470 }
6471 
6472 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6473  * acquiring the locks... As quota files are never truncated and quota code
6474  * itself serializes the operations (and no one else should touch the files)
6475  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6476 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6477 			       size_t len, loff_t off)
6478 {
6479 	struct inode *inode = sb_dqopt(sb)->files[type];
6480 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6481 	int offset = off & (sb->s_blocksize - 1);
6482 	int tocopy;
6483 	size_t toread;
6484 	struct buffer_head *bh;
6485 	loff_t i_size = i_size_read(inode);
6486 
6487 	if (off > i_size)
6488 		return 0;
6489 	if (off+len > i_size)
6490 		len = i_size-off;
6491 	toread = len;
6492 	while (toread > 0) {
6493 		tocopy = sb->s_blocksize - offset < toread ?
6494 				sb->s_blocksize - offset : toread;
6495 		bh = ext4_bread(NULL, inode, blk, 0);
6496 		if (IS_ERR(bh))
6497 			return PTR_ERR(bh);
6498 		if (!bh)	/* A hole? */
6499 			memset(data, 0, tocopy);
6500 		else
6501 			memcpy(data, bh->b_data+offset, tocopy);
6502 		brelse(bh);
6503 		offset = 0;
6504 		toread -= tocopy;
6505 		data += tocopy;
6506 		blk++;
6507 	}
6508 	return len;
6509 }
6510 
6511 /* Write to quotafile (we know the transaction is already started and has
6512  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6513 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6514 				const char *data, size_t len, loff_t off)
6515 {
6516 	struct inode *inode = sb_dqopt(sb)->files[type];
6517 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6518 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6519 	int retries = 0;
6520 	struct buffer_head *bh;
6521 	handle_t *handle = journal_current_handle();
6522 
6523 	if (!handle) {
6524 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6525 			" cancelled because transaction is not started",
6526 			(unsigned long long)off, (unsigned long long)len);
6527 		return -EIO;
6528 	}
6529 	/*
6530 	 * Since we account only one data block in transaction credits,
6531 	 * then it is impossible to cross a block boundary.
6532 	 */
6533 	if (sb->s_blocksize - offset < len) {
6534 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6535 			" cancelled because not block aligned",
6536 			(unsigned long long)off, (unsigned long long)len);
6537 		return -EIO;
6538 	}
6539 
6540 	do {
6541 		bh = ext4_bread(handle, inode, blk,
6542 				EXT4_GET_BLOCKS_CREATE |
6543 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6544 	} while (PTR_ERR(bh) == -ENOSPC &&
6545 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6546 	if (IS_ERR(bh))
6547 		return PTR_ERR(bh);
6548 	if (!bh)
6549 		goto out;
6550 	BUFFER_TRACE(bh, "get write access");
6551 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6552 	if (err) {
6553 		brelse(bh);
6554 		return err;
6555 	}
6556 	lock_buffer(bh);
6557 	memcpy(bh->b_data+offset, data, len);
6558 	flush_dcache_page(bh->b_page);
6559 	unlock_buffer(bh);
6560 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6561 	brelse(bh);
6562 out:
6563 	if (inode->i_size < off + len) {
6564 		i_size_write(inode, off + len);
6565 		EXT4_I(inode)->i_disksize = inode->i_size;
6566 		err2 = ext4_mark_inode_dirty(handle, inode);
6567 		if (unlikely(err2 && !err))
6568 			err = err2;
6569 	}
6570 	return err ? err : len;
6571 }
6572 #endif
6573 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6574 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6575 		       const char *dev_name, void *data)
6576 {
6577 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6578 }
6579 
6580 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6581 static inline void register_as_ext2(void)
6582 {
6583 	int err = register_filesystem(&ext2_fs_type);
6584 	if (err)
6585 		printk(KERN_WARNING
6586 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6587 }
6588 
unregister_as_ext2(void)6589 static inline void unregister_as_ext2(void)
6590 {
6591 	unregister_filesystem(&ext2_fs_type);
6592 }
6593 
ext2_feature_set_ok(struct super_block * sb)6594 static inline int ext2_feature_set_ok(struct super_block *sb)
6595 {
6596 	if (ext4_has_unknown_ext2_incompat_features(sb))
6597 		return 0;
6598 	if (sb_rdonly(sb))
6599 		return 1;
6600 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6601 		return 0;
6602 	return 1;
6603 }
6604 #else
register_as_ext2(void)6605 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6606 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6607 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6608 #endif
6609 
register_as_ext3(void)6610 static inline void register_as_ext3(void)
6611 {
6612 	int err = register_filesystem(&ext3_fs_type);
6613 	if (err)
6614 		printk(KERN_WARNING
6615 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6616 }
6617 
unregister_as_ext3(void)6618 static inline void unregister_as_ext3(void)
6619 {
6620 	unregister_filesystem(&ext3_fs_type);
6621 }
6622 
ext3_feature_set_ok(struct super_block * sb)6623 static inline int ext3_feature_set_ok(struct super_block *sb)
6624 {
6625 	if (ext4_has_unknown_ext3_incompat_features(sb))
6626 		return 0;
6627 	if (!ext4_has_feature_journal(sb))
6628 		return 0;
6629 	if (sb_rdonly(sb))
6630 		return 1;
6631 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6632 		return 0;
6633 	return 1;
6634 }
6635 
6636 static struct file_system_type ext4_fs_type = {
6637 	.owner		= THIS_MODULE,
6638 	.name		= "ext4",
6639 	.mount		= ext4_mount,
6640 	.kill_sb	= kill_block_super,
6641 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6642 };
6643 MODULE_ALIAS_FS("ext4");
6644 
6645 /* Shared across all ext4 file systems */
6646 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6647 
ext4_init_fs(void)6648 static int __init ext4_init_fs(void)
6649 {
6650 	int i, err;
6651 
6652 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6653 	ext4_li_info = NULL;
6654 
6655 	/* Build-time check for flags consistency */
6656 	ext4_check_flag_values();
6657 
6658 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6659 		init_waitqueue_head(&ext4__ioend_wq[i]);
6660 
6661 	err = ext4_init_es();
6662 	if (err)
6663 		return err;
6664 
6665 	err = ext4_init_pending();
6666 	if (err)
6667 		goto out7;
6668 
6669 	err = ext4_init_post_read_processing();
6670 	if (err)
6671 		goto out6;
6672 
6673 	err = ext4_init_pageio();
6674 	if (err)
6675 		goto out5;
6676 
6677 	err = ext4_init_system_zone();
6678 	if (err)
6679 		goto out4;
6680 
6681 	err = ext4_init_sysfs();
6682 	if (err)
6683 		goto out3;
6684 
6685 	err = ext4_init_mballoc();
6686 	if (err)
6687 		goto out2;
6688 	err = init_inodecache();
6689 	if (err)
6690 		goto out1;
6691 
6692 	err = ext4_fc_init_dentry_cache();
6693 	if (err)
6694 		goto out05;
6695 
6696 	register_as_ext3();
6697 	register_as_ext2();
6698 	err = register_filesystem(&ext4_fs_type);
6699 	if (err)
6700 		goto out;
6701 
6702 	return 0;
6703 out:
6704 	unregister_as_ext2();
6705 	unregister_as_ext3();
6706 	ext4_fc_destroy_dentry_cache();
6707 out05:
6708 	destroy_inodecache();
6709 out1:
6710 	ext4_exit_mballoc();
6711 out2:
6712 	ext4_exit_sysfs();
6713 out3:
6714 	ext4_exit_system_zone();
6715 out4:
6716 	ext4_exit_pageio();
6717 out5:
6718 	ext4_exit_post_read_processing();
6719 out6:
6720 	ext4_exit_pending();
6721 out7:
6722 	ext4_exit_es();
6723 
6724 	return err;
6725 }
6726 
ext4_exit_fs(void)6727 static void __exit ext4_exit_fs(void)
6728 {
6729 	ext4_destroy_lazyinit_thread();
6730 	unregister_as_ext2();
6731 	unregister_as_ext3();
6732 	unregister_filesystem(&ext4_fs_type);
6733 	ext4_fc_destroy_dentry_cache();
6734 	destroy_inodecache();
6735 	ext4_exit_mballoc();
6736 	ext4_exit_sysfs();
6737 	ext4_exit_system_zone();
6738 	ext4_exit_pageio();
6739 	ext4_exit_post_read_processing();
6740 	ext4_exit_es();
6741 	ext4_exit_pending();
6742 }
6743 
6744 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6745 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6746 MODULE_LICENSE("GPL");
6747 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
6748 MODULE_SOFTDEP("pre: crc32c");
6749 module_init(ext4_init_fs)
6750 module_exit(ext4_exit_fs)
6751