1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53
54 #include <asm/tlbflush.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/migrate.h>
58
59 #include "internal.h"
60
isolate_movable_page(struct page * page,isolate_mode_t mode)61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 struct address_space *mapping;
64
65 /*
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
68 *
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
73 */
74 if (unlikely(!get_page_unless_zero(page)))
75 goto out;
76
77 /*
78 * Check PageMovable before holding a PG_lock because page's owner
79 * assumes anybody doesn't touch PG_lock of newly allocated page
80 * so unconditionally grabbing the lock ruins page's owner side.
81 */
82 if (unlikely(!__PageMovable(page)))
83 goto out_putpage;
84 /*
85 * As movable pages are not isolated from LRU lists, concurrent
86 * compaction threads can race against page migration functions
87 * as well as race against the releasing a page.
88 *
89 * In order to avoid having an already isolated movable page
90 * being (wrongly) re-isolated while it is under migration,
91 * or to avoid attempting to isolate pages being released,
92 * lets be sure we have the page lock
93 * before proceeding with the movable page isolation steps.
94 */
95 if (unlikely(!trylock_page(page)))
96 goto out_putpage;
97
98 if (!PageMovable(page) || PageIsolated(page))
99 goto out_no_isolated;
100
101 mapping = page_mapping(page);
102 VM_BUG_ON_PAGE(!mapping, page);
103
104 if (!mapping->a_ops->isolate_page(page, mode))
105 goto out_no_isolated;
106
107 /* Driver shouldn't use PG_isolated bit of page->flags */
108 WARN_ON_ONCE(PageIsolated(page));
109 SetPageIsolated(page);
110 unlock_page(page);
111
112 return 0;
113
114 out_no_isolated:
115 unlock_page(page);
116 out_putpage:
117 put_page(page);
118 out:
119 return -EBUSY;
120 }
121
putback_movable_page(struct page * page)122 static void putback_movable_page(struct page *page)
123 {
124 struct address_space *mapping;
125
126 mapping = page_mapping(page);
127 mapping->a_ops->putback_page(page);
128 ClearPageIsolated(page);
129 }
130
131 /*
132 * Put previously isolated pages back onto the appropriate lists
133 * from where they were once taken off for compaction/migration.
134 *
135 * This function shall be used whenever the isolated pageset has been
136 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
137 * and isolate_hugetlb().
138 */
putback_movable_pages(struct list_head * l)139 void putback_movable_pages(struct list_head *l)
140 {
141 struct page *page;
142 struct page *page2;
143
144 list_for_each_entry_safe(page, page2, l, lru) {
145 if (unlikely(PageHuge(page))) {
146 putback_active_hugepage(page);
147 continue;
148 }
149 list_del(&page->lru);
150 /*
151 * We isolated non-lru movable page so here we can use
152 * __PageMovable because LRU page's mapping cannot have
153 * PAGE_MAPPING_MOVABLE.
154 */
155 if (unlikely(__PageMovable(page))) {
156 VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 lock_page(page);
158 if (PageMovable(page))
159 putback_movable_page(page);
160 else
161 ClearPageIsolated(page);
162 unlock_page(page);
163 put_page(page);
164 } else {
165 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166 page_is_file_lru(page), -thp_nr_pages(page));
167 putback_lru_page(page);
168 }
169 }
170 }
171 EXPORT_SYMBOL_GPL(putback_movable_pages);
172
173 /*
174 * Restore a potential migration pte to a working pte entry
175 */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)176 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
177 unsigned long addr, void *old)
178 {
179 struct page_vma_mapped_walk pvmw = {
180 .page = old,
181 .vma = vma,
182 .address = addr,
183 .flags = PVMW_SYNC | PVMW_MIGRATION,
184 };
185 struct page *new;
186 pte_t pte;
187 swp_entry_t entry;
188
189 VM_BUG_ON_PAGE(PageTail(page), page);
190 while (page_vma_mapped_walk(&pvmw)) {
191 if (PageKsm(page))
192 new = page;
193 else
194 new = page - pvmw.page->index +
195 linear_page_index(vma, pvmw.address);
196
197 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
198 /* PMD-mapped THP migration entry */
199 if (!pvmw.pte) {
200 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
201 remove_migration_pmd(&pvmw, new);
202 continue;
203 }
204 #endif
205
206 get_page(new);
207 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
208 if (pte_swp_soft_dirty(*pvmw.pte))
209 pte = pte_mksoft_dirty(pte);
210
211 /*
212 * Recheck VMA as permissions can change since migration started
213 */
214 entry = pte_to_swp_entry(*pvmw.pte);
215 if (is_writable_migration_entry(entry))
216 pte = maybe_mkwrite(pte, vma);
217 else if (pte_swp_uffd_wp(*pvmw.pte))
218 pte = pte_mkuffd_wp(pte);
219
220 if (unlikely(is_device_private_page(new))) {
221 if (pte_write(pte))
222 entry = make_writable_device_private_entry(
223 page_to_pfn(new));
224 else
225 entry = make_readable_device_private_entry(
226 page_to_pfn(new));
227 pte = swp_entry_to_pte(entry);
228 if (pte_swp_soft_dirty(*pvmw.pte))
229 pte = pte_swp_mksoft_dirty(pte);
230 if (pte_swp_uffd_wp(*pvmw.pte))
231 pte = pte_swp_mkuffd_wp(pte);
232 }
233
234 #ifdef CONFIG_HUGETLB_PAGE
235 if (PageHuge(new)) {
236 unsigned int shift = huge_page_shift(hstate_vma(vma));
237
238 pte = pte_mkhuge(pte);
239 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
240 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
241 if (PageAnon(new))
242 hugepage_add_anon_rmap(new, vma, pvmw.address);
243 else
244 page_dup_rmap(new, true);
245 } else
246 #endif
247 {
248 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
249
250 if (PageAnon(new))
251 page_add_anon_rmap(new, vma, pvmw.address, false);
252 else
253 page_add_file_rmap(new, false);
254 }
255 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
256 mlock_vma_page(new);
257
258 if (PageTransHuge(page) && PageMlocked(page))
259 clear_page_mlock(page);
260
261 /* No need to invalidate - it was non-present before */
262 update_mmu_cache(vma, pvmw.address, pvmw.pte);
263 }
264
265 return true;
266 }
267
268 /*
269 * Get rid of all migration entries and replace them by
270 * references to the indicated page.
271 */
remove_migration_ptes(struct page * old,struct page * new,bool locked)272 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
273 {
274 struct rmap_walk_control rwc = {
275 .rmap_one = remove_migration_pte,
276 .arg = old,
277 };
278
279 if (locked)
280 rmap_walk_locked(new, &rwc);
281 else
282 rmap_walk(new, &rwc);
283 }
284
285 /*
286 * Something used the pte of a page under migration. We need to
287 * get to the page and wait until migration is finished.
288 * When we return from this function the fault will be retried.
289 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)290 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
291 spinlock_t *ptl)
292 {
293 pte_t pte;
294 swp_entry_t entry;
295 struct page *page;
296
297 spin_lock(ptl);
298 pte = *ptep;
299 if (!is_swap_pte(pte))
300 goto out;
301
302 entry = pte_to_swp_entry(pte);
303 if (!is_migration_entry(entry))
304 goto out;
305
306 page = pfn_swap_entry_to_page(entry);
307 page = compound_head(page);
308
309 /*
310 * Once page cache replacement of page migration started, page_count
311 * is zero; but we must not call put_and_wait_on_page_locked() without
312 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
313 */
314 if (!get_page_unless_zero(page))
315 goto out;
316 pte_unmap_unlock(ptep, ptl);
317 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
318 return;
319 out:
320 pte_unmap_unlock(ptep, ptl);
321 }
322
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)323 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
324 unsigned long address)
325 {
326 spinlock_t *ptl = pte_lockptr(mm, pmd);
327 pte_t *ptep = pte_offset_map(pmd, address);
328 __migration_entry_wait(mm, ptep, ptl);
329 }
330
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)331 void migration_entry_wait_huge(struct vm_area_struct *vma,
332 struct mm_struct *mm, pte_t *pte)
333 {
334 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
335 __migration_entry_wait(mm, pte, ptl);
336 }
337
338 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)339 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
340 {
341 spinlock_t *ptl;
342 struct page *page;
343
344 ptl = pmd_lock(mm, pmd);
345 if (!is_pmd_migration_entry(*pmd))
346 goto unlock;
347 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
348 if (!get_page_unless_zero(page))
349 goto unlock;
350 spin_unlock(ptl);
351 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
352 return;
353 unlock:
354 spin_unlock(ptl);
355 }
356 #endif
357
expected_page_refs(struct address_space * mapping,struct page * page)358 static int expected_page_refs(struct address_space *mapping, struct page *page)
359 {
360 int expected_count = 1;
361
362 /*
363 * Device private pages have an extra refcount as they are
364 * ZONE_DEVICE pages.
365 */
366 expected_count += is_device_private_page(page);
367 if (mapping)
368 expected_count += thp_nr_pages(page) + page_has_private(page);
369
370 return expected_count;
371 }
372
373 /*
374 * Replace the page in the mapping.
375 *
376 * The number of remaining references must be:
377 * 1 for anonymous pages without a mapping
378 * 2 for pages with a mapping
379 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
380 */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)381 int migrate_page_move_mapping(struct address_space *mapping,
382 struct page *newpage, struct page *page, int extra_count)
383 {
384 XA_STATE(xas, &mapping->i_pages, page_index(page));
385 struct zone *oldzone, *newzone;
386 int dirty;
387 int expected_count = expected_page_refs(mapping, page) + extra_count;
388 int nr = thp_nr_pages(page);
389
390 if (!mapping) {
391 /* Anonymous page without mapping */
392 if (page_count(page) != expected_count)
393 return -EAGAIN;
394
395 /* No turning back from here */
396 newpage->index = page->index;
397 newpage->mapping = page->mapping;
398 if (PageSwapBacked(page))
399 __SetPageSwapBacked(newpage);
400
401 return MIGRATEPAGE_SUCCESS;
402 }
403
404 oldzone = page_zone(page);
405 newzone = page_zone(newpage);
406
407 xas_lock_irq(&xas);
408 if (page_count(page) != expected_count || xas_load(&xas) != page) {
409 xas_unlock_irq(&xas);
410 return -EAGAIN;
411 }
412
413 if (!page_ref_freeze(page, expected_count)) {
414 xas_unlock_irq(&xas);
415 return -EAGAIN;
416 }
417
418 /*
419 * Now we know that no one else is looking at the page:
420 * no turning back from here.
421 */
422 newpage->index = page->index;
423 newpage->mapping = page->mapping;
424 page_ref_add(newpage, nr); /* add cache reference */
425 if (PageSwapBacked(page)) {
426 __SetPageSwapBacked(newpage);
427 if (PageSwapCache(page)) {
428 SetPageSwapCache(newpage);
429 set_page_private(newpage, page_private(page));
430 }
431 } else {
432 VM_BUG_ON_PAGE(PageSwapCache(page), page);
433 }
434
435 /* Move dirty while page refs frozen and newpage not yet exposed */
436 dirty = PageDirty(page);
437 if (dirty) {
438 ClearPageDirty(page);
439 SetPageDirty(newpage);
440 }
441
442 xas_store(&xas, newpage);
443 if (PageTransHuge(page)) {
444 int i;
445
446 for (i = 1; i < nr; i++) {
447 xas_next(&xas);
448 xas_store(&xas, newpage);
449 }
450 }
451
452 /*
453 * Drop cache reference from old page by unfreezing
454 * to one less reference.
455 * We know this isn't the last reference.
456 */
457 page_ref_unfreeze(page, expected_count - nr);
458
459 xas_unlock(&xas);
460 /* Leave irq disabled to prevent preemption while updating stats */
461
462 /*
463 * If moved to a different zone then also account
464 * the page for that zone. Other VM counters will be
465 * taken care of when we establish references to the
466 * new page and drop references to the old page.
467 *
468 * Note that anonymous pages are accounted for
469 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
470 * are mapped to swap space.
471 */
472 if (newzone != oldzone) {
473 struct lruvec *old_lruvec, *new_lruvec;
474 struct mem_cgroup *memcg;
475
476 memcg = page_memcg(page);
477 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
478 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
479
480 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
481 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
482 if (PageSwapBacked(page) && !PageSwapCache(page)) {
483 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
484 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
485 }
486 #ifdef CONFIG_SWAP
487 if (PageSwapCache(page)) {
488 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
489 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
490 }
491 #endif
492 if (dirty && mapping_can_writeback(mapping)) {
493 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
494 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
495 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
496 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
497 }
498 }
499 local_irq_enable();
500
501 return MIGRATEPAGE_SUCCESS;
502 }
503 EXPORT_SYMBOL(migrate_page_move_mapping);
504
505 /*
506 * The expected number of remaining references is the same as that
507 * of migrate_page_move_mapping().
508 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)509 int migrate_huge_page_move_mapping(struct address_space *mapping,
510 struct page *newpage, struct page *page)
511 {
512 XA_STATE(xas, &mapping->i_pages, page_index(page));
513 int expected_count;
514
515 xas_lock_irq(&xas);
516 expected_count = 2 + page_has_private(page);
517 if (page_count(page) != expected_count || xas_load(&xas) != page) {
518 xas_unlock_irq(&xas);
519 return -EAGAIN;
520 }
521
522 if (!page_ref_freeze(page, expected_count)) {
523 xas_unlock_irq(&xas);
524 return -EAGAIN;
525 }
526
527 newpage->index = page->index;
528 newpage->mapping = page->mapping;
529
530 get_page(newpage);
531
532 xas_store(&xas, newpage);
533
534 page_ref_unfreeze(page, expected_count - 1);
535
536 xas_unlock_irq(&xas);
537
538 return MIGRATEPAGE_SUCCESS;
539 }
540
541 /*
542 * Copy the page to its new location
543 */
migrate_page_states(struct page * newpage,struct page * page)544 void migrate_page_states(struct page *newpage, struct page *page)
545 {
546 int cpupid;
547
548 if (PageError(page))
549 SetPageError(newpage);
550 if (PageReferenced(page))
551 SetPageReferenced(newpage);
552 if (PageUptodate(page))
553 SetPageUptodate(newpage);
554 if (TestClearPageActive(page)) {
555 VM_BUG_ON_PAGE(PageUnevictable(page), page);
556 SetPageActive(newpage);
557 } else if (TestClearPageUnevictable(page))
558 SetPageUnevictable(newpage);
559 if (PageWorkingset(page))
560 SetPageWorkingset(newpage);
561 if (PageChecked(page))
562 SetPageChecked(newpage);
563 if (PageMappedToDisk(page))
564 SetPageMappedToDisk(newpage);
565
566 /* Move dirty on pages not done by migrate_page_move_mapping() */
567 if (PageDirty(page))
568 SetPageDirty(newpage);
569
570 if (page_is_young(page))
571 set_page_young(newpage);
572 if (page_is_idle(page))
573 set_page_idle(newpage);
574
575 /*
576 * Copy NUMA information to the new page, to prevent over-eager
577 * future migrations of this same page.
578 */
579 cpupid = page_cpupid_xchg_last(page, -1);
580 page_cpupid_xchg_last(newpage, cpupid);
581
582 ksm_migrate_page(newpage, page);
583 /*
584 * Please do not reorder this without considering how mm/ksm.c's
585 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
586 */
587 if (PageSwapCache(page))
588 ClearPageSwapCache(page);
589 ClearPagePrivate(page);
590
591 /* page->private contains hugetlb specific flags */
592 if (!PageHuge(page))
593 set_page_private(page, 0);
594
595 /*
596 * If any waiters have accumulated on the new page then
597 * wake them up.
598 */
599 if (PageWriteback(newpage))
600 end_page_writeback(newpage);
601
602 /*
603 * PG_readahead shares the same bit with PG_reclaim. The above
604 * end_page_writeback() may clear PG_readahead mistakenly, so set the
605 * bit after that.
606 */
607 if (PageReadahead(page))
608 SetPageReadahead(newpage);
609
610 copy_page_owner(page, newpage);
611
612 if (!PageHuge(page))
613 mem_cgroup_migrate(page, newpage);
614 }
615 EXPORT_SYMBOL(migrate_page_states);
616
migrate_page_copy(struct page * newpage,struct page * page)617 void migrate_page_copy(struct page *newpage, struct page *page)
618 {
619 if (PageHuge(page) || PageTransHuge(page))
620 copy_huge_page(newpage, page);
621 else
622 copy_highpage(newpage, page);
623
624 migrate_page_states(newpage, page);
625 }
626 EXPORT_SYMBOL(migrate_page_copy);
627
628 /************************************************************
629 * Migration functions
630 ***********************************************************/
631
632 /*
633 * Common logic to directly migrate a single LRU page suitable for
634 * pages that do not use PagePrivate/PagePrivate2.
635 *
636 * Pages are locked upon entry and exit.
637 */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)638 int migrate_page(struct address_space *mapping,
639 struct page *newpage, struct page *page,
640 enum migrate_mode mode)
641 {
642 int rc;
643
644 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
645
646 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
647
648 if (rc != MIGRATEPAGE_SUCCESS)
649 return rc;
650
651 if (mode != MIGRATE_SYNC_NO_COPY)
652 migrate_page_copy(newpage, page);
653 else
654 migrate_page_states(newpage, page);
655 return MIGRATEPAGE_SUCCESS;
656 }
657 EXPORT_SYMBOL(migrate_page);
658
659 #ifdef CONFIG_BLOCK
660 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)661 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
662 enum migrate_mode mode)
663 {
664 struct buffer_head *bh = head;
665
666 /* Simple case, sync compaction */
667 if (mode != MIGRATE_ASYNC) {
668 do {
669 lock_buffer(bh);
670 bh = bh->b_this_page;
671
672 } while (bh != head);
673
674 return true;
675 }
676
677 /* async case, we cannot block on lock_buffer so use trylock_buffer */
678 do {
679 if (!trylock_buffer(bh)) {
680 /*
681 * We failed to lock the buffer and cannot stall in
682 * async migration. Release the taken locks
683 */
684 struct buffer_head *failed_bh = bh;
685 bh = head;
686 while (bh != failed_bh) {
687 unlock_buffer(bh);
688 bh = bh->b_this_page;
689 }
690 return false;
691 }
692
693 bh = bh->b_this_page;
694 } while (bh != head);
695 return true;
696 }
697
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)698 static int __buffer_migrate_page(struct address_space *mapping,
699 struct page *newpage, struct page *page, enum migrate_mode mode,
700 bool check_refs)
701 {
702 struct buffer_head *bh, *head;
703 int rc;
704 int expected_count;
705
706 if (!page_has_buffers(page))
707 return migrate_page(mapping, newpage, page, mode);
708
709 /* Check whether page does not have extra refs before we do more work */
710 expected_count = expected_page_refs(mapping, page);
711 if (page_count(page) != expected_count)
712 return -EAGAIN;
713
714 head = page_buffers(page);
715 if (!buffer_migrate_lock_buffers(head, mode))
716 return -EAGAIN;
717
718 if (check_refs) {
719 bool busy;
720 bool invalidated = false;
721
722 recheck_buffers:
723 busy = false;
724 spin_lock(&mapping->private_lock);
725 bh = head;
726 do {
727 if (atomic_read(&bh->b_count)) {
728 busy = true;
729 break;
730 }
731 bh = bh->b_this_page;
732 } while (bh != head);
733 if (busy) {
734 if (invalidated) {
735 rc = -EAGAIN;
736 goto unlock_buffers;
737 }
738 spin_unlock(&mapping->private_lock);
739 invalidate_bh_lrus();
740 invalidated = true;
741 goto recheck_buffers;
742 }
743 }
744
745 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
746 if (rc != MIGRATEPAGE_SUCCESS)
747 goto unlock_buffers;
748
749 attach_page_private(newpage, detach_page_private(page));
750
751 bh = head;
752 do {
753 set_bh_page(bh, newpage, bh_offset(bh));
754 bh = bh->b_this_page;
755
756 } while (bh != head);
757
758 if (mode != MIGRATE_SYNC_NO_COPY)
759 migrate_page_copy(newpage, page);
760 else
761 migrate_page_states(newpage, page);
762
763 rc = MIGRATEPAGE_SUCCESS;
764 unlock_buffers:
765 if (check_refs)
766 spin_unlock(&mapping->private_lock);
767 bh = head;
768 do {
769 unlock_buffer(bh);
770 bh = bh->b_this_page;
771
772 } while (bh != head);
773
774 return rc;
775 }
776
777 /*
778 * Migration function for pages with buffers. This function can only be used
779 * if the underlying filesystem guarantees that no other references to "page"
780 * exist. For example attached buffer heads are accessed only under page lock.
781 */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)782 int buffer_migrate_page(struct address_space *mapping,
783 struct page *newpage, struct page *page, enum migrate_mode mode)
784 {
785 return __buffer_migrate_page(mapping, newpage, page, mode, false);
786 }
787 EXPORT_SYMBOL(buffer_migrate_page);
788
789 /*
790 * Same as above except that this variant is more careful and checks that there
791 * are also no buffer head references. This function is the right one for
792 * mappings where buffer heads are directly looked up and referenced (such as
793 * block device mappings).
794 */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)795 int buffer_migrate_page_norefs(struct address_space *mapping,
796 struct page *newpage, struct page *page, enum migrate_mode mode)
797 {
798 return __buffer_migrate_page(mapping, newpage, page, mode, true);
799 }
800 #endif
801
802 /*
803 * Writeback a page to clean the dirty state
804 */
writeout(struct address_space * mapping,struct page * page)805 static int writeout(struct address_space *mapping, struct page *page)
806 {
807 struct writeback_control wbc = {
808 .sync_mode = WB_SYNC_NONE,
809 .nr_to_write = 1,
810 .range_start = 0,
811 .range_end = LLONG_MAX,
812 .for_reclaim = 1
813 };
814 int rc;
815
816 if (!mapping->a_ops->writepage)
817 /* No write method for the address space */
818 return -EINVAL;
819
820 if (!clear_page_dirty_for_io(page))
821 /* Someone else already triggered a write */
822 return -EAGAIN;
823
824 /*
825 * A dirty page may imply that the underlying filesystem has
826 * the page on some queue. So the page must be clean for
827 * migration. Writeout may mean we loose the lock and the
828 * page state is no longer what we checked for earlier.
829 * At this point we know that the migration attempt cannot
830 * be successful.
831 */
832 remove_migration_ptes(page, page, false);
833
834 rc = mapping->a_ops->writepage(page, &wbc);
835
836 if (rc != AOP_WRITEPAGE_ACTIVATE)
837 /* unlocked. Relock */
838 lock_page(page);
839
840 return (rc < 0) ? -EIO : -EAGAIN;
841 }
842
843 /*
844 * Default handling if a filesystem does not provide a migration function.
845 */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)846 static int fallback_migrate_page(struct address_space *mapping,
847 struct page *newpage, struct page *page, enum migrate_mode mode)
848 {
849 if (PageDirty(page)) {
850 /* Only writeback pages in full synchronous migration */
851 switch (mode) {
852 case MIGRATE_SYNC:
853 case MIGRATE_SYNC_NO_COPY:
854 break;
855 default:
856 return -EBUSY;
857 }
858 return writeout(mapping, page);
859 }
860
861 /*
862 * Buffers may be managed in a filesystem specific way.
863 * We must have no buffers or drop them.
864 */
865 if (page_has_private(page) &&
866 !try_to_release_page(page, GFP_KERNEL))
867 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
868
869 return migrate_page(mapping, newpage, page, mode);
870 }
871
872 /*
873 * Move a page to a newly allocated page
874 * The page is locked and all ptes have been successfully removed.
875 *
876 * The new page will have replaced the old page if this function
877 * is successful.
878 *
879 * Return value:
880 * < 0 - error code
881 * MIGRATEPAGE_SUCCESS - success
882 */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)883 static int move_to_new_page(struct page *newpage, struct page *page,
884 enum migrate_mode mode)
885 {
886 struct address_space *mapping;
887 int rc = -EAGAIN;
888 bool is_lru = !__PageMovable(page);
889
890 VM_BUG_ON_PAGE(!PageLocked(page), page);
891 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
892
893 mapping = page_mapping(page);
894
895 if (likely(is_lru)) {
896 if (!mapping)
897 rc = migrate_page(mapping, newpage, page, mode);
898 else if (mapping->a_ops->migratepage)
899 /*
900 * Most pages have a mapping and most filesystems
901 * provide a migratepage callback. Anonymous pages
902 * are part of swap space which also has its own
903 * migratepage callback. This is the most common path
904 * for page migration.
905 */
906 rc = mapping->a_ops->migratepage(mapping, newpage,
907 page, mode);
908 else
909 rc = fallback_migrate_page(mapping, newpage,
910 page, mode);
911 } else {
912 /*
913 * In case of non-lru page, it could be released after
914 * isolation step. In that case, we shouldn't try migration.
915 */
916 VM_BUG_ON_PAGE(!PageIsolated(page), page);
917 if (!PageMovable(page)) {
918 rc = MIGRATEPAGE_SUCCESS;
919 ClearPageIsolated(page);
920 goto out;
921 }
922
923 rc = mapping->a_ops->migratepage(mapping, newpage,
924 page, mode);
925 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
926 !PageIsolated(page));
927 }
928
929 /*
930 * When successful, old pagecache page->mapping must be cleared before
931 * page is freed; but stats require that PageAnon be left as PageAnon.
932 */
933 if (rc == MIGRATEPAGE_SUCCESS) {
934 if (__PageMovable(page)) {
935 VM_BUG_ON_PAGE(!PageIsolated(page), page);
936
937 /*
938 * We clear PG_movable under page_lock so any compactor
939 * cannot try to migrate this page.
940 */
941 ClearPageIsolated(page);
942 }
943
944 /*
945 * Anonymous and movable page->mapping will be cleared by
946 * free_pages_prepare so don't reset it here for keeping
947 * the type to work PageAnon, for example.
948 */
949 if (!PageMappingFlags(page))
950 page->mapping = NULL;
951
952 if (likely(!is_zone_device_page(newpage))) {
953 int i, nr = compound_nr(newpage);
954
955 for (i = 0; i < nr; i++)
956 flush_dcache_page(newpage + i);
957 }
958 }
959 out:
960 return rc;
961 }
962
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)963 static int __unmap_and_move(struct page *page, struct page *newpage,
964 int force, enum migrate_mode mode)
965 {
966 int rc = -EAGAIN;
967 bool page_was_mapped = false;
968 struct anon_vma *anon_vma = NULL;
969 bool is_lru = !__PageMovable(page);
970
971 if (!trylock_page(page)) {
972 if (!force || mode == MIGRATE_ASYNC)
973 goto out;
974
975 /*
976 * It's not safe for direct compaction to call lock_page.
977 * For example, during page readahead pages are added locked
978 * to the LRU. Later, when the IO completes the pages are
979 * marked uptodate and unlocked. However, the queueing
980 * could be merging multiple pages for one bio (e.g.
981 * mpage_readahead). If an allocation happens for the
982 * second or third page, the process can end up locking
983 * the same page twice and deadlocking. Rather than
984 * trying to be clever about what pages can be locked,
985 * avoid the use of lock_page for direct compaction
986 * altogether.
987 */
988 if (current->flags & PF_MEMALLOC)
989 goto out;
990
991 lock_page(page);
992 }
993
994 if (PageWriteback(page)) {
995 /*
996 * Only in the case of a full synchronous migration is it
997 * necessary to wait for PageWriteback. In the async case,
998 * the retry loop is too short and in the sync-light case,
999 * the overhead of stalling is too much
1000 */
1001 switch (mode) {
1002 case MIGRATE_SYNC:
1003 case MIGRATE_SYNC_NO_COPY:
1004 break;
1005 default:
1006 rc = -EBUSY;
1007 goto out_unlock;
1008 }
1009 if (!force)
1010 goto out_unlock;
1011 wait_on_page_writeback(page);
1012 }
1013
1014 /*
1015 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1016 * we cannot notice that anon_vma is freed while we migrates a page.
1017 * This get_anon_vma() delays freeing anon_vma pointer until the end
1018 * of migration. File cache pages are no problem because of page_lock()
1019 * File Caches may use write_page() or lock_page() in migration, then,
1020 * just care Anon page here.
1021 *
1022 * Only page_get_anon_vma() understands the subtleties of
1023 * getting a hold on an anon_vma from outside one of its mms.
1024 * But if we cannot get anon_vma, then we won't need it anyway,
1025 * because that implies that the anon page is no longer mapped
1026 * (and cannot be remapped so long as we hold the page lock).
1027 */
1028 if (PageAnon(page) && !PageKsm(page))
1029 anon_vma = page_get_anon_vma(page);
1030
1031 /*
1032 * Block others from accessing the new page when we get around to
1033 * establishing additional references. We are usually the only one
1034 * holding a reference to newpage at this point. We used to have a BUG
1035 * here if trylock_page(newpage) fails, but would like to allow for
1036 * cases where there might be a race with the previous use of newpage.
1037 * This is much like races on refcount of oldpage: just don't BUG().
1038 */
1039 if (unlikely(!trylock_page(newpage)))
1040 goto out_unlock;
1041
1042 if (unlikely(!is_lru)) {
1043 rc = move_to_new_page(newpage, page, mode);
1044 goto out_unlock_both;
1045 }
1046
1047 /*
1048 * Corner case handling:
1049 * 1. When a new swap-cache page is read into, it is added to the LRU
1050 * and treated as swapcache but it has no rmap yet.
1051 * Calling try_to_unmap() against a page->mapping==NULL page will
1052 * trigger a BUG. So handle it here.
1053 * 2. An orphaned page (see truncate_cleanup_page) might have
1054 * fs-private metadata. The page can be picked up due to memory
1055 * offlining. Everywhere else except page reclaim, the page is
1056 * invisible to the vm, so the page can not be migrated. So try to
1057 * free the metadata, so the page can be freed.
1058 */
1059 if (!page->mapping) {
1060 VM_BUG_ON_PAGE(PageAnon(page), page);
1061 if (page_has_private(page)) {
1062 try_to_free_buffers(page);
1063 goto out_unlock_both;
1064 }
1065 } else if (page_mapped(page)) {
1066 /* Establish migration ptes */
1067 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1068 page);
1069 try_to_migrate(page, 0);
1070 page_was_mapped = true;
1071 }
1072
1073 if (!page_mapped(page))
1074 rc = move_to_new_page(newpage, page, mode);
1075
1076 if (page_was_mapped)
1077 remove_migration_ptes(page,
1078 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1079
1080 out_unlock_both:
1081 unlock_page(newpage);
1082 out_unlock:
1083 /* Drop an anon_vma reference if we took one */
1084 if (anon_vma)
1085 put_anon_vma(anon_vma);
1086 unlock_page(page);
1087 out:
1088 /*
1089 * If migration is successful, decrease refcount of the newpage
1090 * which will not free the page because new page owner increased
1091 * refcounter. As well, if it is LRU page, add the page to LRU
1092 * list in here. Use the old state of the isolated source page to
1093 * determine if we migrated a LRU page. newpage was already unlocked
1094 * and possibly modified by its owner - don't rely on the page
1095 * state.
1096 */
1097 if (rc == MIGRATEPAGE_SUCCESS) {
1098 if (unlikely(!is_lru))
1099 put_page(newpage);
1100 else
1101 putback_lru_page(newpage);
1102 }
1103
1104 return rc;
1105 }
1106
1107
1108 /*
1109 * node_demotion[] example:
1110 *
1111 * Consider a system with two sockets. Each socket has
1112 * three classes of memory attached: fast, medium and slow.
1113 * Each memory class is placed in its own NUMA node. The
1114 * CPUs are placed in the node with the "fast" memory. The
1115 * 6 NUMA nodes (0-5) might be split among the sockets like
1116 * this:
1117 *
1118 * Socket A: 0, 1, 2
1119 * Socket B: 3, 4, 5
1120 *
1121 * When Node 0 fills up, its memory should be migrated to
1122 * Node 1. When Node 1 fills up, it should be migrated to
1123 * Node 2. The migration path start on the nodes with the
1124 * processors (since allocations default to this node) and
1125 * fast memory, progress through medium and end with the
1126 * slow memory:
1127 *
1128 * 0 -> 1 -> 2 -> stop
1129 * 3 -> 4 -> 5 -> stop
1130 *
1131 * This is represented in the node_demotion[] like this:
1132 *
1133 * { 1, // Node 0 migrates to 1
1134 * 2, // Node 1 migrates to 2
1135 * -1, // Node 2 does not migrate
1136 * 4, // Node 3 migrates to 4
1137 * 5, // Node 4 migrates to 5
1138 * -1} // Node 5 does not migrate
1139 */
1140
1141 /*
1142 * Writes to this array occur without locking. Cycles are
1143 * not allowed: Node X demotes to Y which demotes to X...
1144 *
1145 * If multiple reads are performed, a single rcu_read_lock()
1146 * must be held over all reads to ensure that no cycles are
1147 * observed.
1148 */
1149 static int node_demotion[MAX_NUMNODES] __read_mostly =
1150 {[0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE};
1151
1152 /**
1153 * next_demotion_node() - Get the next node in the demotion path
1154 * @node: The starting node to lookup the next node
1155 *
1156 * Return: node id for next memory node in the demotion path hierarchy
1157 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
1158 * @node online or guarantee that it *continues* to be the next demotion
1159 * target.
1160 */
next_demotion_node(int node)1161 int next_demotion_node(int node)
1162 {
1163 int target;
1164
1165 /*
1166 * node_demotion[] is updated without excluding this
1167 * function from running. RCU doesn't provide any
1168 * compiler barriers, so the READ_ONCE() is required
1169 * to avoid compiler reordering or read merging.
1170 *
1171 * Make sure to use RCU over entire code blocks if
1172 * node_demotion[] reads need to be consistent.
1173 */
1174 rcu_read_lock();
1175 target = READ_ONCE(node_demotion[node]);
1176 rcu_read_unlock();
1177
1178 return target;
1179 }
1180
1181 /*
1182 * Obtain the lock on page, remove all ptes and migrate the page
1183 * to the newly allocated page in newpage.
1184 */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1185 static int unmap_and_move(new_page_t get_new_page,
1186 free_page_t put_new_page,
1187 unsigned long private, struct page *page,
1188 int force, enum migrate_mode mode,
1189 enum migrate_reason reason,
1190 struct list_head *ret)
1191 {
1192 int rc = MIGRATEPAGE_SUCCESS;
1193 struct page *newpage = NULL;
1194
1195 if (!thp_migration_supported() && PageTransHuge(page))
1196 return -ENOSYS;
1197
1198 if (page_count(page) == 1) {
1199 /* page was freed from under us. So we are done. */
1200 ClearPageActive(page);
1201 ClearPageUnevictable(page);
1202 if (unlikely(__PageMovable(page))) {
1203 lock_page(page);
1204 if (!PageMovable(page))
1205 ClearPageIsolated(page);
1206 unlock_page(page);
1207 }
1208 goto out;
1209 }
1210
1211 newpage = get_new_page(page, private);
1212 if (!newpage)
1213 return -ENOMEM;
1214
1215 rc = __unmap_and_move(page, newpage, force, mode);
1216 if (rc == MIGRATEPAGE_SUCCESS)
1217 set_page_owner_migrate_reason(newpage, reason);
1218
1219 out:
1220 if (rc != -EAGAIN) {
1221 /*
1222 * A page that has been migrated has all references
1223 * removed and will be freed. A page that has not been
1224 * migrated will have kept its references and be restored.
1225 */
1226 list_del(&page->lru);
1227 }
1228
1229 /*
1230 * If migration is successful, releases reference grabbed during
1231 * isolation. Otherwise, restore the page to right list unless
1232 * we want to retry.
1233 */
1234 if (rc == MIGRATEPAGE_SUCCESS) {
1235 /*
1236 * Compaction can migrate also non-LRU pages which are
1237 * not accounted to NR_ISOLATED_*. They can be recognized
1238 * as __PageMovable
1239 */
1240 if (likely(!__PageMovable(page)))
1241 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1242 page_is_file_lru(page), -thp_nr_pages(page));
1243
1244 if (reason != MR_MEMORY_FAILURE)
1245 /*
1246 * We release the page in page_handle_poison.
1247 */
1248 put_page(page);
1249 } else {
1250 if (rc != -EAGAIN)
1251 list_add_tail(&page->lru, ret);
1252
1253 if (put_new_page)
1254 put_new_page(newpage, private);
1255 else
1256 put_page(newpage);
1257 }
1258
1259 return rc;
1260 }
1261
1262 /*
1263 * Counterpart of unmap_and_move_page() for hugepage migration.
1264 *
1265 * This function doesn't wait the completion of hugepage I/O
1266 * because there is no race between I/O and migration for hugepage.
1267 * Note that currently hugepage I/O occurs only in direct I/O
1268 * where no lock is held and PG_writeback is irrelevant,
1269 * and writeback status of all subpages are counted in the reference
1270 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1271 * under direct I/O, the reference of the head page is 512 and a bit more.)
1272 * This means that when we try to migrate hugepage whose subpages are
1273 * doing direct I/O, some references remain after try_to_unmap() and
1274 * hugepage migration fails without data corruption.
1275 *
1276 * There is also no race when direct I/O is issued on the page under migration,
1277 * because then pte is replaced with migration swap entry and direct I/O code
1278 * will wait in the page fault for migration to complete.
1279 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason,struct list_head * ret)1280 static int unmap_and_move_huge_page(new_page_t get_new_page,
1281 free_page_t put_new_page, unsigned long private,
1282 struct page *hpage, int force,
1283 enum migrate_mode mode, int reason,
1284 struct list_head *ret)
1285 {
1286 int rc = -EAGAIN;
1287 int page_was_mapped = 0;
1288 struct page *new_hpage;
1289 struct anon_vma *anon_vma = NULL;
1290 struct address_space *mapping = NULL;
1291
1292 /*
1293 * Migratability of hugepages depends on architectures and their size.
1294 * This check is necessary because some callers of hugepage migration
1295 * like soft offline and memory hotremove don't walk through page
1296 * tables or check whether the hugepage is pmd-based or not before
1297 * kicking migration.
1298 */
1299 if (!hugepage_migration_supported(page_hstate(hpage))) {
1300 list_move_tail(&hpage->lru, ret);
1301 return -ENOSYS;
1302 }
1303
1304 if (page_count(hpage) == 1) {
1305 /* page was freed from under us. So we are done. */
1306 putback_active_hugepage(hpage);
1307 return MIGRATEPAGE_SUCCESS;
1308 }
1309
1310 new_hpage = get_new_page(hpage, private);
1311 if (!new_hpage)
1312 return -ENOMEM;
1313
1314 if (!trylock_page(hpage)) {
1315 if (!force)
1316 goto out;
1317 switch (mode) {
1318 case MIGRATE_SYNC:
1319 case MIGRATE_SYNC_NO_COPY:
1320 break;
1321 default:
1322 goto out;
1323 }
1324 lock_page(hpage);
1325 }
1326
1327 /*
1328 * Check for pages which are in the process of being freed. Without
1329 * page_mapping() set, hugetlbfs specific move page routine will not
1330 * be called and we could leak usage counts for subpools.
1331 */
1332 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1333 rc = -EBUSY;
1334 goto out_unlock;
1335 }
1336
1337 if (PageAnon(hpage))
1338 anon_vma = page_get_anon_vma(hpage);
1339
1340 if (unlikely(!trylock_page(new_hpage)))
1341 goto put_anon;
1342
1343 if (page_mapped(hpage)) {
1344 bool mapping_locked = false;
1345 enum ttu_flags ttu = 0;
1346
1347 if (!PageAnon(hpage)) {
1348 /*
1349 * In shared mappings, try_to_unmap could potentially
1350 * call huge_pmd_unshare. Because of this, take
1351 * semaphore in write mode here and set TTU_RMAP_LOCKED
1352 * to let lower levels know we have taken the lock.
1353 */
1354 mapping = hugetlb_page_mapping_lock_write(hpage);
1355 if (unlikely(!mapping))
1356 goto unlock_put_anon;
1357
1358 mapping_locked = true;
1359 ttu |= TTU_RMAP_LOCKED;
1360 }
1361
1362 try_to_migrate(hpage, ttu);
1363 page_was_mapped = 1;
1364
1365 if (mapping_locked)
1366 i_mmap_unlock_write(mapping);
1367 }
1368
1369 if (!page_mapped(hpage))
1370 rc = move_to_new_page(new_hpage, hpage, mode);
1371
1372 if (page_was_mapped)
1373 remove_migration_ptes(hpage,
1374 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1375
1376 unlock_put_anon:
1377 unlock_page(new_hpage);
1378
1379 put_anon:
1380 if (anon_vma)
1381 put_anon_vma(anon_vma);
1382
1383 if (rc == MIGRATEPAGE_SUCCESS) {
1384 move_hugetlb_state(hpage, new_hpage, reason);
1385 put_new_page = NULL;
1386 }
1387
1388 out_unlock:
1389 unlock_page(hpage);
1390 out:
1391 if (rc == MIGRATEPAGE_SUCCESS)
1392 putback_active_hugepage(hpage);
1393 else if (rc != -EAGAIN)
1394 list_move_tail(&hpage->lru, ret);
1395
1396 /*
1397 * If migration was not successful and there's a freeing callback, use
1398 * it. Otherwise, put_page() will drop the reference grabbed during
1399 * isolation.
1400 */
1401 if (put_new_page)
1402 put_new_page(new_hpage, private);
1403 else
1404 putback_active_hugepage(new_hpage);
1405
1406 return rc;
1407 }
1408
try_split_thp(struct page * page,struct page ** page2,struct list_head * from)1409 static inline int try_split_thp(struct page *page, struct page **page2,
1410 struct list_head *from)
1411 {
1412 int rc = 0;
1413
1414 lock_page(page);
1415 rc = split_huge_page_to_list(page, from);
1416 unlock_page(page);
1417 if (!rc)
1418 list_safe_reset_next(page, *page2, lru);
1419
1420 return rc;
1421 }
1422
1423 /*
1424 * migrate_pages - migrate the pages specified in a list, to the free pages
1425 * supplied as the target for the page migration
1426 *
1427 * @from: The list of pages to be migrated.
1428 * @get_new_page: The function used to allocate free pages to be used
1429 * as the target of the page migration.
1430 * @put_new_page: The function used to free target pages if migration
1431 * fails, or NULL if no special handling is necessary.
1432 * @private: Private data to be passed on to get_new_page()
1433 * @mode: The migration mode that specifies the constraints for
1434 * page migration, if any.
1435 * @reason: The reason for page migration.
1436 * @ret_succeeded: Set to the number of pages migrated successfully if
1437 * the caller passes a non-NULL pointer.
1438 *
1439 * The function returns after 10 attempts or if no pages are movable any more
1440 * because the list has become empty or no retryable pages exist any more.
1441 * It is caller's responsibility to call putback_movable_pages() to return pages
1442 * to the LRU or free list only if ret != 0.
1443 *
1444 * Returns the number of pages that were not migrated, or an error code.
1445 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason,unsigned int * ret_succeeded)1446 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1447 free_page_t put_new_page, unsigned long private,
1448 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1449 {
1450 int retry = 1;
1451 int thp_retry = 1;
1452 int nr_failed = 0;
1453 int nr_succeeded = 0;
1454 int nr_thp_succeeded = 0;
1455 int nr_thp_failed = 0;
1456 int nr_thp_split = 0;
1457 int pass = 0;
1458 bool is_thp = false;
1459 struct page *page;
1460 struct page *page2;
1461 int swapwrite = current->flags & PF_SWAPWRITE;
1462 int rc, nr_subpages;
1463 LIST_HEAD(ret_pages);
1464 bool nosplit = (reason == MR_NUMA_MISPLACED);
1465
1466 trace_mm_migrate_pages_start(mode, reason);
1467
1468 if (!swapwrite)
1469 current->flags |= PF_SWAPWRITE;
1470
1471 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1472 retry = 0;
1473 thp_retry = 0;
1474
1475 list_for_each_entry_safe(page, page2, from, lru) {
1476 retry:
1477 /*
1478 * THP statistics is based on the source huge page.
1479 * Capture required information that might get lost
1480 * during migration.
1481 */
1482 is_thp = PageTransHuge(page) && !PageHuge(page);
1483 nr_subpages = thp_nr_pages(page);
1484 cond_resched();
1485
1486 if (PageHuge(page))
1487 rc = unmap_and_move_huge_page(get_new_page,
1488 put_new_page, private, page,
1489 pass > 2, mode, reason,
1490 &ret_pages);
1491 else
1492 rc = unmap_and_move(get_new_page, put_new_page,
1493 private, page, pass > 2, mode,
1494 reason, &ret_pages);
1495 /*
1496 * The rules are:
1497 * Success: non hugetlb page will be freed, hugetlb
1498 * page will be put back
1499 * -EAGAIN: stay on the from list
1500 * -ENOMEM: stay on the from list
1501 * Other errno: put on ret_pages list then splice to
1502 * from list
1503 */
1504 switch(rc) {
1505 /*
1506 * THP migration might be unsupported or the
1507 * allocation could've failed so we should
1508 * retry on the same page with the THP split
1509 * to base pages.
1510 *
1511 * Head page is retried immediately and tail
1512 * pages are added to the tail of the list so
1513 * we encounter them after the rest of the list
1514 * is processed.
1515 */
1516 case -ENOSYS:
1517 /* THP migration is unsupported */
1518 if (is_thp) {
1519 if (!try_split_thp(page, &page2, from)) {
1520 nr_thp_split++;
1521 goto retry;
1522 }
1523
1524 nr_thp_failed++;
1525 nr_failed += nr_subpages;
1526 break;
1527 }
1528
1529 /* Hugetlb migration is unsupported */
1530 nr_failed++;
1531 break;
1532 case -ENOMEM:
1533 /*
1534 * When memory is low, don't bother to try to migrate
1535 * other pages, just exit.
1536 * THP NUMA faulting doesn't split THP to retry.
1537 */
1538 if (is_thp && !nosplit) {
1539 if (!try_split_thp(page, &page2, from)) {
1540 nr_thp_split++;
1541 goto retry;
1542 }
1543
1544 nr_thp_failed++;
1545 nr_failed += nr_subpages;
1546 goto out;
1547 }
1548 nr_failed++;
1549 goto out;
1550 case -EAGAIN:
1551 if (is_thp) {
1552 thp_retry++;
1553 break;
1554 }
1555 retry++;
1556 break;
1557 case MIGRATEPAGE_SUCCESS:
1558 if (is_thp) {
1559 nr_thp_succeeded++;
1560 nr_succeeded += nr_subpages;
1561 break;
1562 }
1563 nr_succeeded++;
1564 break;
1565 default:
1566 /*
1567 * Permanent failure (-EBUSY, etc.):
1568 * unlike -EAGAIN case, the failed page is
1569 * removed from migration page list and not
1570 * retried in the next outer loop.
1571 */
1572 if (is_thp) {
1573 nr_thp_failed++;
1574 nr_failed += nr_subpages;
1575 break;
1576 }
1577 nr_failed++;
1578 break;
1579 }
1580 }
1581 }
1582 nr_failed += retry + thp_retry;
1583 nr_thp_failed += thp_retry;
1584 rc = nr_failed;
1585 out:
1586 /*
1587 * Put the permanent failure page back to migration list, they
1588 * will be put back to the right list by the caller.
1589 */
1590 list_splice(&ret_pages, from);
1591
1592 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1593 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1594 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1595 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1596 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1597 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1598 nr_thp_failed, nr_thp_split, mode, reason);
1599
1600 if (!swapwrite)
1601 current->flags &= ~PF_SWAPWRITE;
1602
1603 if (ret_succeeded)
1604 *ret_succeeded = nr_succeeded;
1605
1606 return rc;
1607 }
1608 EXPORT_SYMBOL_GPL(migrate_pages);
1609
alloc_migration_target(struct page * page,unsigned long private)1610 struct page *alloc_migration_target(struct page *page, unsigned long private)
1611 {
1612 struct migration_target_control *mtc;
1613 gfp_t gfp_mask;
1614 unsigned int order = 0;
1615 struct page *new_page = NULL;
1616 int nid;
1617 int zidx;
1618
1619 mtc = (struct migration_target_control *)private;
1620 gfp_mask = mtc->gfp_mask;
1621 nid = mtc->nid;
1622 if (nid == NUMA_NO_NODE)
1623 nid = page_to_nid(page);
1624
1625 if (PageHuge(page)) {
1626 struct hstate *h = page_hstate(compound_head(page));
1627
1628 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1629 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1630 }
1631
1632 if (PageTransHuge(page)) {
1633 /*
1634 * clear __GFP_RECLAIM to make the migration callback
1635 * consistent with regular THP allocations.
1636 */
1637 gfp_mask &= ~__GFP_RECLAIM;
1638 gfp_mask |= GFP_TRANSHUGE;
1639 order = HPAGE_PMD_ORDER;
1640 }
1641 zidx = zone_idx(page_zone(page));
1642 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1643 gfp_mask |= __GFP_HIGHMEM;
1644
1645 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1646
1647 if (new_page && PageTransHuge(new_page))
1648 prep_transhuge_page(new_page);
1649
1650 return new_page;
1651 }
1652
1653 #ifdef CONFIG_NUMA
1654
store_status(int __user * status,int start,int value,int nr)1655 static int store_status(int __user *status, int start, int value, int nr)
1656 {
1657 while (nr-- > 0) {
1658 if (put_user(value, status + start))
1659 return -EFAULT;
1660 start++;
1661 }
1662
1663 return 0;
1664 }
1665
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1666 static int do_move_pages_to_node(struct mm_struct *mm,
1667 struct list_head *pagelist, int node)
1668 {
1669 int err;
1670 struct migration_target_control mtc = {
1671 .nid = node,
1672 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1673 };
1674
1675 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1676 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1677 if (err)
1678 putback_movable_pages(pagelist);
1679 return err;
1680 }
1681
1682 /*
1683 * Resolves the given address to a struct page, isolates it from the LRU and
1684 * puts it to the given pagelist.
1685 * Returns:
1686 * errno - if the page cannot be found/isolated
1687 * 0 - when it doesn't have to be migrated because it is already on the
1688 * target node
1689 * 1 - when it has been queued
1690 */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1691 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1692 int node, struct list_head *pagelist, bool migrate_all)
1693 {
1694 struct vm_area_struct *vma;
1695 struct page *page;
1696 unsigned int follflags;
1697 int err;
1698
1699 mmap_read_lock(mm);
1700 err = -EFAULT;
1701 vma = find_vma(mm, addr);
1702 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1703 goto out;
1704
1705 /* FOLL_DUMP to ignore special (like zero) pages */
1706 follflags = FOLL_GET | FOLL_DUMP;
1707 page = follow_page(vma, addr, follflags);
1708
1709 err = PTR_ERR(page);
1710 if (IS_ERR(page))
1711 goto out;
1712
1713 err = -ENOENT;
1714 if (!page)
1715 goto out;
1716
1717 err = 0;
1718 if (page_to_nid(page) == node)
1719 goto out_putpage;
1720
1721 err = -EACCES;
1722 if (page_mapcount(page) > 1 && !migrate_all)
1723 goto out_putpage;
1724
1725 if (PageHuge(page)) {
1726 if (PageHead(page)) {
1727 err = isolate_hugetlb(page, pagelist);
1728 if (!err)
1729 err = 1;
1730 }
1731 } else {
1732 struct page *head;
1733
1734 head = compound_head(page);
1735 err = isolate_lru_page(head);
1736 if (err)
1737 goto out_putpage;
1738
1739 err = 1;
1740 list_add_tail(&head->lru, pagelist);
1741 mod_node_page_state(page_pgdat(head),
1742 NR_ISOLATED_ANON + page_is_file_lru(head),
1743 thp_nr_pages(head));
1744 }
1745 out_putpage:
1746 /*
1747 * Either remove the duplicate refcount from
1748 * isolate_lru_page() or drop the page ref if it was
1749 * not isolated.
1750 */
1751 put_page(page);
1752 out:
1753 mmap_read_unlock(mm);
1754 return err;
1755 }
1756
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1757 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1758 struct list_head *pagelist, int __user *status,
1759 int start, int i, unsigned long nr_pages)
1760 {
1761 int err;
1762
1763 if (list_empty(pagelist))
1764 return 0;
1765
1766 err = do_move_pages_to_node(mm, pagelist, node);
1767 if (err) {
1768 /*
1769 * Positive err means the number of failed
1770 * pages to migrate. Since we are going to
1771 * abort and return the number of non-migrated
1772 * pages, so need to include the rest of the
1773 * nr_pages that have not been attempted as
1774 * well.
1775 */
1776 if (err > 0)
1777 err += nr_pages - i - 1;
1778 return err;
1779 }
1780 return store_status(status, start, node, i - start);
1781 }
1782
1783 /*
1784 * Migrate an array of page address onto an array of nodes and fill
1785 * the corresponding array of status.
1786 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1787 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1788 unsigned long nr_pages,
1789 const void __user * __user *pages,
1790 const int __user *nodes,
1791 int __user *status, int flags)
1792 {
1793 compat_uptr_t __user *compat_pages = (void __user *)pages;
1794 int current_node = NUMA_NO_NODE;
1795 LIST_HEAD(pagelist);
1796 int start, i;
1797 int err = 0, err1;
1798
1799 lru_cache_disable();
1800
1801 for (i = start = 0; i < nr_pages; i++) {
1802 const void __user *p;
1803 unsigned long addr;
1804 int node;
1805
1806 err = -EFAULT;
1807 if (in_compat_syscall()) {
1808 compat_uptr_t cp;
1809
1810 if (get_user(cp, compat_pages + i))
1811 goto out_flush;
1812
1813 p = compat_ptr(cp);
1814 } else {
1815 if (get_user(p, pages + i))
1816 goto out_flush;
1817 }
1818 if (get_user(node, nodes + i))
1819 goto out_flush;
1820 addr = (unsigned long)untagged_addr(p);
1821
1822 err = -ENODEV;
1823 if (node < 0 || node >= MAX_NUMNODES)
1824 goto out_flush;
1825 if (!node_state(node, N_MEMORY))
1826 goto out_flush;
1827
1828 err = -EACCES;
1829 if (!node_isset(node, task_nodes))
1830 goto out_flush;
1831
1832 if (current_node == NUMA_NO_NODE) {
1833 current_node = node;
1834 start = i;
1835 } else if (node != current_node) {
1836 err = move_pages_and_store_status(mm, current_node,
1837 &pagelist, status, start, i, nr_pages);
1838 if (err)
1839 goto out;
1840 start = i;
1841 current_node = node;
1842 }
1843
1844 /*
1845 * Errors in the page lookup or isolation are not fatal and we simply
1846 * report them via status
1847 */
1848 err = add_page_for_migration(mm, addr, current_node,
1849 &pagelist, flags & MPOL_MF_MOVE_ALL);
1850
1851 if (err > 0) {
1852 /* The page is successfully queued for migration */
1853 continue;
1854 }
1855
1856 /*
1857 * If the page is already on the target node (!err), store the
1858 * node, otherwise, store the err.
1859 */
1860 err = store_status(status, i, err ? : current_node, 1);
1861 if (err)
1862 goto out_flush;
1863
1864 err = move_pages_and_store_status(mm, current_node, &pagelist,
1865 status, start, i, nr_pages);
1866 if (err)
1867 goto out;
1868 current_node = NUMA_NO_NODE;
1869 }
1870 out_flush:
1871 /* Make sure we do not overwrite the existing error */
1872 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1873 status, start, i, nr_pages);
1874 if (err >= 0)
1875 err = err1;
1876 out:
1877 lru_cache_enable();
1878 return err;
1879 }
1880
1881 /*
1882 * Determine the nodes of an array of pages and store it in an array of status.
1883 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1884 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1885 const void __user **pages, int *status)
1886 {
1887 unsigned long i;
1888
1889 mmap_read_lock(mm);
1890
1891 for (i = 0; i < nr_pages; i++) {
1892 unsigned long addr = (unsigned long)(*pages);
1893 struct vm_area_struct *vma;
1894 struct page *page;
1895 int err = -EFAULT;
1896
1897 vma = vma_lookup(mm, addr);
1898 if (!vma)
1899 goto set_status;
1900
1901 /* FOLL_DUMP to ignore special (like zero) pages */
1902 page = follow_page(vma, addr, FOLL_DUMP);
1903
1904 err = PTR_ERR(page);
1905 if (IS_ERR(page))
1906 goto set_status;
1907
1908 err = page ? page_to_nid(page) : -ENOENT;
1909 set_status:
1910 *status = err;
1911
1912 pages++;
1913 status++;
1914 }
1915
1916 mmap_read_unlock(mm);
1917 }
1918
get_compat_pages_array(const void __user * chunk_pages[],const void __user * __user * pages,unsigned long chunk_nr)1919 static int get_compat_pages_array(const void __user *chunk_pages[],
1920 const void __user * __user *pages,
1921 unsigned long chunk_nr)
1922 {
1923 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1924 compat_uptr_t p;
1925 int i;
1926
1927 for (i = 0; i < chunk_nr; i++) {
1928 if (get_user(p, pages32 + i))
1929 return -EFAULT;
1930 chunk_pages[i] = compat_ptr(p);
1931 }
1932
1933 return 0;
1934 }
1935
1936 /*
1937 * Determine the nodes of a user array of pages and store it in
1938 * a user array of status.
1939 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1940 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1941 const void __user * __user *pages,
1942 int __user *status)
1943 {
1944 #define DO_PAGES_STAT_CHUNK_NR 16
1945 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1946 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1947
1948 while (nr_pages) {
1949 unsigned long chunk_nr;
1950
1951 chunk_nr = nr_pages;
1952 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1953 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1954
1955 if (in_compat_syscall()) {
1956 if (get_compat_pages_array(chunk_pages, pages,
1957 chunk_nr))
1958 break;
1959 } else {
1960 if (copy_from_user(chunk_pages, pages,
1961 chunk_nr * sizeof(*chunk_pages)))
1962 break;
1963 }
1964
1965 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1966
1967 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1968 break;
1969
1970 pages += chunk_nr;
1971 status += chunk_nr;
1972 nr_pages -= chunk_nr;
1973 }
1974 return nr_pages ? -EFAULT : 0;
1975 }
1976
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1977 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1978 {
1979 struct task_struct *task;
1980 struct mm_struct *mm;
1981
1982 /*
1983 * There is no need to check if current process has the right to modify
1984 * the specified process when they are same.
1985 */
1986 if (!pid) {
1987 mmget(current->mm);
1988 *mem_nodes = cpuset_mems_allowed(current);
1989 return current->mm;
1990 }
1991
1992 /* Find the mm_struct */
1993 rcu_read_lock();
1994 task = find_task_by_vpid(pid);
1995 if (!task) {
1996 rcu_read_unlock();
1997 return ERR_PTR(-ESRCH);
1998 }
1999 get_task_struct(task);
2000
2001 /*
2002 * Check if this process has the right to modify the specified
2003 * process. Use the regular "ptrace_may_access()" checks.
2004 */
2005 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2006 rcu_read_unlock();
2007 mm = ERR_PTR(-EPERM);
2008 goto out;
2009 }
2010 rcu_read_unlock();
2011
2012 mm = ERR_PTR(security_task_movememory(task));
2013 if (IS_ERR(mm))
2014 goto out;
2015 *mem_nodes = cpuset_mems_allowed(task);
2016 mm = get_task_mm(task);
2017 out:
2018 put_task_struct(task);
2019 if (!mm)
2020 mm = ERR_PTR(-EINVAL);
2021 return mm;
2022 }
2023
2024 /*
2025 * Move a list of pages in the address space of the currently executing
2026 * process.
2027 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2028 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2029 const void __user * __user *pages,
2030 const int __user *nodes,
2031 int __user *status, int flags)
2032 {
2033 struct mm_struct *mm;
2034 int err;
2035 nodemask_t task_nodes;
2036
2037 /* Check flags */
2038 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2039 return -EINVAL;
2040
2041 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2042 return -EPERM;
2043
2044 mm = find_mm_struct(pid, &task_nodes);
2045 if (IS_ERR(mm))
2046 return PTR_ERR(mm);
2047
2048 if (nodes)
2049 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2050 nodes, status, flags);
2051 else
2052 err = do_pages_stat(mm, nr_pages, pages, status);
2053
2054 mmput(mm);
2055 return err;
2056 }
2057
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)2058 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2059 const void __user * __user *, pages,
2060 const int __user *, nodes,
2061 int __user *, status, int, flags)
2062 {
2063 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2064 }
2065
2066 #ifdef CONFIG_NUMA_BALANCING
2067 /*
2068 * Returns true if this is a safe migration target node for misplaced NUMA
2069 * pages. Currently it only checks the watermarks which crude
2070 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2071 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2072 unsigned long nr_migrate_pages)
2073 {
2074 int z;
2075
2076 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2077 struct zone *zone = pgdat->node_zones + z;
2078
2079 if (!populated_zone(zone))
2080 continue;
2081
2082 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2083 if (!zone_watermark_ok(zone, 0,
2084 high_wmark_pages(zone) +
2085 nr_migrate_pages,
2086 ZONE_MOVABLE, 0))
2087 continue;
2088 return true;
2089 }
2090 return false;
2091 }
2092
alloc_misplaced_dst_page(struct page * page,unsigned long data)2093 static struct page *alloc_misplaced_dst_page(struct page *page,
2094 unsigned long data)
2095 {
2096 int nid = (int) data;
2097 struct page *newpage;
2098
2099 newpage = __alloc_pages_node(nid,
2100 (GFP_HIGHUSER_MOVABLE |
2101 __GFP_THISNODE | __GFP_NOMEMALLOC |
2102 __GFP_NORETRY | __GFP_NOWARN) &
2103 ~__GFP_RECLAIM, 0);
2104
2105 return newpage;
2106 }
2107
alloc_misplaced_dst_page_thp(struct page * page,unsigned long data)2108 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2109 unsigned long data)
2110 {
2111 int nid = (int) data;
2112 struct page *newpage;
2113
2114 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2115 HPAGE_PMD_ORDER);
2116 if (!newpage)
2117 goto out;
2118
2119 prep_transhuge_page(newpage);
2120
2121 out:
2122 return newpage;
2123 }
2124
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2125 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2126 {
2127 int page_lru;
2128 int nr_pages = thp_nr_pages(page);
2129
2130 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2131
2132 /* Do not migrate THP mapped by multiple processes */
2133 if (PageTransHuge(page) && total_mapcount(page) > 1)
2134 return 0;
2135
2136 /* Avoid migrating to a node that is nearly full */
2137 if (!migrate_balanced_pgdat(pgdat, nr_pages))
2138 return 0;
2139
2140 if (isolate_lru_page(page))
2141 return 0;
2142
2143 page_lru = page_is_file_lru(page);
2144 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2145 nr_pages);
2146
2147 /*
2148 * Isolating the page has taken another reference, so the
2149 * caller's reference can be safely dropped without the page
2150 * disappearing underneath us during migration.
2151 */
2152 put_page(page);
2153 return 1;
2154 }
2155
2156 /*
2157 * Attempt to migrate a misplaced page to the specified destination
2158 * node. Caller is expected to have an elevated reference count on
2159 * the page that will be dropped by this function before returning.
2160 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2161 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2162 int node)
2163 {
2164 pg_data_t *pgdat = NODE_DATA(node);
2165 int isolated;
2166 int nr_remaining;
2167 LIST_HEAD(migratepages);
2168 new_page_t *new;
2169 bool compound;
2170 int nr_pages = thp_nr_pages(page);
2171
2172 /*
2173 * PTE mapped THP or HugeTLB page can't reach here so the page could
2174 * be either base page or THP. And it must be head page if it is
2175 * THP.
2176 */
2177 compound = PageTransHuge(page);
2178
2179 if (compound)
2180 new = alloc_misplaced_dst_page_thp;
2181 else
2182 new = alloc_misplaced_dst_page;
2183
2184 /*
2185 * Don't migrate file pages that are mapped in multiple processes
2186 * with execute permissions as they are probably shared libraries.
2187 */
2188 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2189 (vma->vm_flags & VM_EXEC))
2190 goto out;
2191
2192 /*
2193 * Also do not migrate dirty pages as not all filesystems can move
2194 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2195 */
2196 if (page_is_file_lru(page) && PageDirty(page))
2197 goto out;
2198
2199 isolated = numamigrate_isolate_page(pgdat, page);
2200 if (!isolated)
2201 goto out;
2202
2203 list_add(&page->lru, &migratepages);
2204 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2205 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2206 if (nr_remaining) {
2207 if (!list_empty(&migratepages)) {
2208 list_del(&page->lru);
2209 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2210 page_is_file_lru(page), -nr_pages);
2211 putback_lru_page(page);
2212 }
2213 isolated = 0;
2214 } else
2215 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2216 BUG_ON(!list_empty(&migratepages));
2217 return isolated;
2218
2219 out:
2220 put_page(page);
2221 return 0;
2222 }
2223 #endif /* CONFIG_NUMA_BALANCING */
2224 #endif /* CONFIG_NUMA */
2225
2226 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2227 static int migrate_vma_collect_skip(unsigned long start,
2228 unsigned long end,
2229 struct mm_walk *walk)
2230 {
2231 struct migrate_vma *migrate = walk->private;
2232 unsigned long addr;
2233
2234 for (addr = start; addr < end; addr += PAGE_SIZE) {
2235 migrate->dst[migrate->npages] = 0;
2236 migrate->src[migrate->npages++] = 0;
2237 }
2238
2239 return 0;
2240 }
2241
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2242 static int migrate_vma_collect_hole(unsigned long start,
2243 unsigned long end,
2244 __always_unused int depth,
2245 struct mm_walk *walk)
2246 {
2247 struct migrate_vma *migrate = walk->private;
2248 unsigned long addr;
2249
2250 /* Only allow populating anonymous memory. */
2251 if (!vma_is_anonymous(walk->vma))
2252 return migrate_vma_collect_skip(start, end, walk);
2253
2254 for (addr = start; addr < end; addr += PAGE_SIZE) {
2255 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2256 migrate->dst[migrate->npages] = 0;
2257 migrate->npages++;
2258 migrate->cpages++;
2259 }
2260
2261 return 0;
2262 }
2263
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2264 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2265 unsigned long start,
2266 unsigned long end,
2267 struct mm_walk *walk)
2268 {
2269 struct migrate_vma *migrate = walk->private;
2270 struct vm_area_struct *vma = walk->vma;
2271 struct mm_struct *mm = vma->vm_mm;
2272 unsigned long addr = start, unmapped = 0;
2273 spinlock_t *ptl;
2274 pte_t *ptep;
2275
2276 again:
2277 if (pmd_none(*pmdp))
2278 return migrate_vma_collect_hole(start, end, -1, walk);
2279
2280 if (pmd_trans_huge(*pmdp)) {
2281 struct page *page;
2282
2283 ptl = pmd_lock(mm, pmdp);
2284 if (unlikely(!pmd_trans_huge(*pmdp))) {
2285 spin_unlock(ptl);
2286 goto again;
2287 }
2288
2289 page = pmd_page(*pmdp);
2290 if (is_huge_zero_page(page)) {
2291 spin_unlock(ptl);
2292 split_huge_pmd(vma, pmdp, addr);
2293 if (pmd_trans_unstable(pmdp))
2294 return migrate_vma_collect_skip(start, end,
2295 walk);
2296 } else {
2297 int ret;
2298
2299 get_page(page);
2300 spin_unlock(ptl);
2301 if (unlikely(!trylock_page(page)))
2302 return migrate_vma_collect_skip(start, end,
2303 walk);
2304 ret = split_huge_page(page);
2305 unlock_page(page);
2306 put_page(page);
2307 if (ret)
2308 return migrate_vma_collect_skip(start, end,
2309 walk);
2310 if (pmd_none(*pmdp))
2311 return migrate_vma_collect_hole(start, end, -1,
2312 walk);
2313 }
2314 }
2315
2316 if (unlikely(pmd_bad(*pmdp)))
2317 return migrate_vma_collect_skip(start, end, walk);
2318
2319 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2320 arch_enter_lazy_mmu_mode();
2321
2322 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2323 unsigned long mpfn = 0, pfn;
2324 struct page *page;
2325 swp_entry_t entry;
2326 pte_t pte;
2327
2328 pte = *ptep;
2329
2330 if (pte_none(pte)) {
2331 if (vma_is_anonymous(vma)) {
2332 mpfn = MIGRATE_PFN_MIGRATE;
2333 migrate->cpages++;
2334 }
2335 goto next;
2336 }
2337
2338 if (!pte_present(pte)) {
2339 /*
2340 * Only care about unaddressable device page special
2341 * page table entry. Other special swap entries are not
2342 * migratable, and we ignore regular swapped page.
2343 */
2344 entry = pte_to_swp_entry(pte);
2345 if (!is_device_private_entry(entry))
2346 goto next;
2347
2348 page = pfn_swap_entry_to_page(entry);
2349 if (!(migrate->flags &
2350 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2351 page->pgmap->owner != migrate->pgmap_owner)
2352 goto next;
2353
2354 mpfn = migrate_pfn(page_to_pfn(page)) |
2355 MIGRATE_PFN_MIGRATE;
2356 if (is_writable_device_private_entry(entry))
2357 mpfn |= MIGRATE_PFN_WRITE;
2358 } else {
2359 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2360 goto next;
2361 pfn = pte_pfn(pte);
2362 if (is_zero_pfn(pfn)) {
2363 mpfn = MIGRATE_PFN_MIGRATE;
2364 migrate->cpages++;
2365 goto next;
2366 }
2367 page = vm_normal_page(migrate->vma, addr, pte);
2368 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2369 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2370 }
2371
2372 /* FIXME support THP */
2373 if (!page || !page->mapping || PageTransCompound(page)) {
2374 mpfn = 0;
2375 goto next;
2376 }
2377
2378 /*
2379 * By getting a reference on the page we pin it and that blocks
2380 * any kind of migration. Side effect is that it "freezes" the
2381 * pte.
2382 *
2383 * We drop this reference after isolating the page from the lru
2384 * for non device page (device page are not on the lru and thus
2385 * can't be dropped from it).
2386 */
2387 get_page(page);
2388 migrate->cpages++;
2389
2390 /*
2391 * Optimize for the common case where page is only mapped once
2392 * in one process. If we can lock the page, then we can safely
2393 * set up a special migration page table entry now.
2394 */
2395 if (trylock_page(page)) {
2396 pte_t swp_pte;
2397
2398 mpfn |= MIGRATE_PFN_LOCKED;
2399 ptep_get_and_clear(mm, addr, ptep);
2400
2401 /* Setup special migration page table entry */
2402 if (mpfn & MIGRATE_PFN_WRITE)
2403 entry = make_writable_migration_entry(
2404 page_to_pfn(page));
2405 else
2406 entry = make_readable_migration_entry(
2407 page_to_pfn(page));
2408 swp_pte = swp_entry_to_pte(entry);
2409 if (pte_present(pte)) {
2410 if (pte_soft_dirty(pte))
2411 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2412 if (pte_uffd_wp(pte))
2413 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2414 } else {
2415 if (pte_swp_soft_dirty(pte))
2416 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2417 if (pte_swp_uffd_wp(pte))
2418 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2419 }
2420 set_pte_at(mm, addr, ptep, swp_pte);
2421
2422 /*
2423 * This is like regular unmap: we remove the rmap and
2424 * drop page refcount. Page won't be freed, as we took
2425 * a reference just above.
2426 */
2427 page_remove_rmap(page, false);
2428 put_page(page);
2429
2430 if (pte_present(pte))
2431 unmapped++;
2432 }
2433
2434 next:
2435 migrate->dst[migrate->npages] = 0;
2436 migrate->src[migrate->npages++] = mpfn;
2437 }
2438
2439 /* Only flush the TLB if we actually modified any entries */
2440 if (unmapped)
2441 flush_tlb_range(walk->vma, start, end);
2442
2443 arch_leave_lazy_mmu_mode();
2444 pte_unmap_unlock(ptep - 1, ptl);
2445
2446 return 0;
2447 }
2448
2449 static const struct mm_walk_ops migrate_vma_walk_ops = {
2450 .pmd_entry = migrate_vma_collect_pmd,
2451 .pte_hole = migrate_vma_collect_hole,
2452 };
2453
2454 /*
2455 * migrate_vma_collect() - collect pages over a range of virtual addresses
2456 * @migrate: migrate struct containing all migration information
2457 *
2458 * This will walk the CPU page table. For each virtual address backed by a
2459 * valid page, it updates the src array and takes a reference on the page, in
2460 * order to pin the page until we lock it and unmap it.
2461 */
migrate_vma_collect(struct migrate_vma * migrate)2462 static void migrate_vma_collect(struct migrate_vma *migrate)
2463 {
2464 struct mmu_notifier_range range;
2465
2466 /*
2467 * Note that the pgmap_owner is passed to the mmu notifier callback so
2468 * that the registered device driver can skip invalidating device
2469 * private page mappings that won't be migrated.
2470 */
2471 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2472 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2473 migrate->pgmap_owner);
2474 mmu_notifier_invalidate_range_start(&range);
2475
2476 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2477 &migrate_vma_walk_ops, migrate);
2478
2479 mmu_notifier_invalidate_range_end(&range);
2480 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2481 }
2482
2483 /*
2484 * migrate_vma_check_page() - check if page is pinned or not
2485 * @page: struct page to check
2486 *
2487 * Pinned pages cannot be migrated. This is the same test as in
2488 * migrate_page_move_mapping(), except that here we allow migration of a
2489 * ZONE_DEVICE page.
2490 */
migrate_vma_check_page(struct page * page)2491 static bool migrate_vma_check_page(struct page *page)
2492 {
2493 /*
2494 * One extra ref because caller holds an extra reference, either from
2495 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2496 * a device page.
2497 */
2498 int extra = 1;
2499
2500 /*
2501 * FIXME support THP (transparent huge page), it is bit more complex to
2502 * check them than regular pages, because they can be mapped with a pmd
2503 * or with a pte (split pte mapping).
2504 */
2505 if (PageCompound(page))
2506 return false;
2507
2508 /* Page from ZONE_DEVICE have one extra reference */
2509 if (is_zone_device_page(page)) {
2510 /*
2511 * Private page can never be pin as they have no valid pte and
2512 * GUP will fail for those. Yet if there is a pending migration
2513 * a thread might try to wait on the pte migration entry and
2514 * will bump the page reference count. Sadly there is no way to
2515 * differentiate a regular pin from migration wait. Hence to
2516 * avoid 2 racing thread trying to migrate back to CPU to enter
2517 * infinite loop (one stopping migration because the other is
2518 * waiting on pte migration entry). We always return true here.
2519 *
2520 * FIXME proper solution is to rework migration_entry_wait() so
2521 * it does not need to take a reference on page.
2522 */
2523 return is_device_private_page(page);
2524 }
2525
2526 /* For file back page */
2527 if (page_mapping(page))
2528 extra += 1 + page_has_private(page);
2529
2530 if ((page_count(page) - extra) > page_mapcount(page))
2531 return false;
2532
2533 return true;
2534 }
2535
2536 /*
2537 * migrate_vma_prepare() - lock pages and isolate them from the lru
2538 * @migrate: migrate struct containing all migration information
2539 *
2540 * This locks pages that have been collected by migrate_vma_collect(). Once each
2541 * page is locked it is isolated from the lru (for non-device pages). Finally,
2542 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2543 * migrated by concurrent kernel threads.
2544 */
migrate_vma_prepare(struct migrate_vma * migrate)2545 static void migrate_vma_prepare(struct migrate_vma *migrate)
2546 {
2547 const unsigned long npages = migrate->npages;
2548 const unsigned long start = migrate->start;
2549 unsigned long addr, i, restore = 0;
2550 bool allow_drain = true;
2551
2552 lru_add_drain();
2553
2554 for (i = 0; (i < npages) && migrate->cpages; i++) {
2555 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2556 bool remap = true;
2557
2558 if (!page)
2559 continue;
2560
2561 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2562 /*
2563 * Because we are migrating several pages there can be
2564 * a deadlock between 2 concurrent migration where each
2565 * are waiting on each other page lock.
2566 *
2567 * Make migrate_vma() a best effort thing and backoff
2568 * for any page we can not lock right away.
2569 */
2570 if (!trylock_page(page)) {
2571 migrate->src[i] = 0;
2572 migrate->cpages--;
2573 put_page(page);
2574 continue;
2575 }
2576 remap = false;
2577 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2578 }
2579
2580 /* ZONE_DEVICE pages are not on LRU */
2581 if (!is_zone_device_page(page)) {
2582 if (!PageLRU(page) && allow_drain) {
2583 /* Drain CPU's pagevec */
2584 lru_add_drain_all();
2585 allow_drain = false;
2586 }
2587
2588 if (isolate_lru_page(page)) {
2589 if (remap) {
2590 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2591 migrate->cpages--;
2592 restore++;
2593 } else {
2594 migrate->src[i] = 0;
2595 unlock_page(page);
2596 migrate->cpages--;
2597 put_page(page);
2598 }
2599 continue;
2600 }
2601
2602 /* Drop the reference we took in collect */
2603 put_page(page);
2604 }
2605
2606 if (!migrate_vma_check_page(page)) {
2607 if (remap) {
2608 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2609 migrate->cpages--;
2610 restore++;
2611
2612 if (!is_zone_device_page(page)) {
2613 get_page(page);
2614 putback_lru_page(page);
2615 }
2616 } else {
2617 migrate->src[i] = 0;
2618 unlock_page(page);
2619 migrate->cpages--;
2620
2621 if (!is_zone_device_page(page))
2622 putback_lru_page(page);
2623 else
2624 put_page(page);
2625 }
2626 }
2627 }
2628
2629 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2630 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2631
2632 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2633 continue;
2634
2635 remove_migration_pte(page, migrate->vma, addr, page);
2636
2637 migrate->src[i] = 0;
2638 unlock_page(page);
2639 put_page(page);
2640 restore--;
2641 }
2642 }
2643
2644 /*
2645 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2646 * @migrate: migrate struct containing all migration information
2647 *
2648 * Replace page mapping (CPU page table pte) with a special migration pte entry
2649 * and check again if it has been pinned. Pinned pages are restored because we
2650 * cannot migrate them.
2651 *
2652 * This is the last step before we call the device driver callback to allocate
2653 * destination memory and copy contents of original page over to new page.
2654 */
migrate_vma_unmap(struct migrate_vma * migrate)2655 static void migrate_vma_unmap(struct migrate_vma *migrate)
2656 {
2657 const unsigned long npages = migrate->npages;
2658 const unsigned long start = migrate->start;
2659 unsigned long addr, i, restore = 0;
2660
2661 for (i = 0; i < npages; i++) {
2662 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2663
2664 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2665 continue;
2666
2667 if (page_mapped(page)) {
2668 try_to_migrate(page, 0);
2669 if (page_mapped(page))
2670 goto restore;
2671 }
2672
2673 if (migrate_vma_check_page(page))
2674 continue;
2675
2676 restore:
2677 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2678 migrate->cpages--;
2679 restore++;
2680 }
2681
2682 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2683 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684
2685 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686 continue;
2687
2688 remove_migration_ptes(page, page, false);
2689
2690 migrate->src[i] = 0;
2691 unlock_page(page);
2692 restore--;
2693
2694 if (is_zone_device_page(page))
2695 put_page(page);
2696 else
2697 putback_lru_page(page);
2698 }
2699 }
2700
2701 /**
2702 * migrate_vma_setup() - prepare to migrate a range of memory
2703 * @args: contains the vma, start, and pfns arrays for the migration
2704 *
2705 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2706 * without an error.
2707 *
2708 * Prepare to migrate a range of memory virtual address range by collecting all
2709 * the pages backing each virtual address in the range, saving them inside the
2710 * src array. Then lock those pages and unmap them. Once the pages are locked
2711 * and unmapped, check whether each page is pinned or not. Pages that aren't
2712 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2713 * corresponding src array entry. Then restores any pages that are pinned, by
2714 * remapping and unlocking those pages.
2715 *
2716 * The caller should then allocate destination memory and copy source memory to
2717 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2718 * flag set). Once these are allocated and copied, the caller must update each
2719 * corresponding entry in the dst array with the pfn value of the destination
2720 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2721 * (destination pages must have their struct pages locked, via lock_page()).
2722 *
2723 * Note that the caller does not have to migrate all the pages that are marked
2724 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2725 * device memory to system memory. If the caller cannot migrate a device page
2726 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2727 * consequences for the userspace process, so it must be avoided if at all
2728 * possible.
2729 *
2730 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2731 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2732 * allowing the caller to allocate device memory for those unbacked virtual
2733 * addresses. For this the caller simply has to allocate device memory and
2734 * properly set the destination entry like for regular migration. Note that
2735 * this can still fail, and thus inside the device driver you must check if the
2736 * migration was successful for those entries after calling migrate_vma_pages(),
2737 * just like for regular migration.
2738 *
2739 * After that, the callers must call migrate_vma_pages() to go over each entry
2740 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2741 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2742 * then migrate_vma_pages() to migrate struct page information from the source
2743 * struct page to the destination struct page. If it fails to migrate the
2744 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2745 * src array.
2746 *
2747 * At this point all successfully migrated pages have an entry in the src
2748 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2749 * array entry with MIGRATE_PFN_VALID flag set.
2750 *
2751 * Once migrate_vma_pages() returns the caller may inspect which pages were
2752 * successfully migrated, and which were not. Successfully migrated pages will
2753 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2754 *
2755 * It is safe to update device page table after migrate_vma_pages() because
2756 * both destination and source page are still locked, and the mmap_lock is held
2757 * in read mode (hence no one can unmap the range being migrated).
2758 *
2759 * Once the caller is done cleaning up things and updating its page table (if it
2760 * chose to do so, this is not an obligation) it finally calls
2761 * migrate_vma_finalize() to update the CPU page table to point to new pages
2762 * for successfully migrated pages or otherwise restore the CPU page table to
2763 * point to the original source pages.
2764 */
migrate_vma_setup(struct migrate_vma * args)2765 int migrate_vma_setup(struct migrate_vma *args)
2766 {
2767 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2768
2769 args->start &= PAGE_MASK;
2770 args->end &= PAGE_MASK;
2771 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2772 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2773 return -EINVAL;
2774 if (nr_pages <= 0)
2775 return -EINVAL;
2776 if (args->start < args->vma->vm_start ||
2777 args->start >= args->vma->vm_end)
2778 return -EINVAL;
2779 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2780 return -EINVAL;
2781 if (!args->src || !args->dst)
2782 return -EINVAL;
2783
2784 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2785 args->cpages = 0;
2786 args->npages = 0;
2787
2788 migrate_vma_collect(args);
2789
2790 if (args->cpages)
2791 migrate_vma_prepare(args);
2792 if (args->cpages)
2793 migrate_vma_unmap(args);
2794
2795 /*
2796 * At this point pages are locked and unmapped, and thus they have
2797 * stable content and can safely be copied to destination memory that
2798 * is allocated by the drivers.
2799 */
2800 return 0;
2801
2802 }
2803 EXPORT_SYMBOL(migrate_vma_setup);
2804
2805 /*
2806 * This code closely matches the code in:
2807 * __handle_mm_fault()
2808 * handle_pte_fault()
2809 * do_anonymous_page()
2810 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2811 * private page.
2812 */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src)2813 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2814 unsigned long addr,
2815 struct page *page,
2816 unsigned long *src)
2817 {
2818 struct vm_area_struct *vma = migrate->vma;
2819 struct mm_struct *mm = vma->vm_mm;
2820 bool flush = false;
2821 spinlock_t *ptl;
2822 pte_t entry;
2823 pgd_t *pgdp;
2824 p4d_t *p4dp;
2825 pud_t *pudp;
2826 pmd_t *pmdp;
2827 pte_t *ptep;
2828
2829 /* Only allow populating anonymous memory */
2830 if (!vma_is_anonymous(vma))
2831 goto abort;
2832
2833 pgdp = pgd_offset(mm, addr);
2834 p4dp = p4d_alloc(mm, pgdp, addr);
2835 if (!p4dp)
2836 goto abort;
2837 pudp = pud_alloc(mm, p4dp, addr);
2838 if (!pudp)
2839 goto abort;
2840 pmdp = pmd_alloc(mm, pudp, addr);
2841 if (!pmdp)
2842 goto abort;
2843
2844 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2845 goto abort;
2846
2847 /*
2848 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2849 * pte_offset_map() on pmds where a huge pmd might be created
2850 * from a different thread.
2851 *
2852 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2853 * parallel threads are excluded by other means.
2854 *
2855 * Here we only have mmap_read_lock(mm).
2856 */
2857 if (pte_alloc(mm, pmdp))
2858 goto abort;
2859
2860 /* See the comment in pte_alloc_one_map() */
2861 if (unlikely(pmd_trans_unstable(pmdp)))
2862 goto abort;
2863
2864 if (unlikely(anon_vma_prepare(vma)))
2865 goto abort;
2866 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2867 goto abort;
2868
2869 /*
2870 * The memory barrier inside __SetPageUptodate makes sure that
2871 * preceding stores to the page contents become visible before
2872 * the set_pte_at() write.
2873 */
2874 __SetPageUptodate(page);
2875
2876 if (is_zone_device_page(page)) {
2877 if (is_device_private_page(page)) {
2878 swp_entry_t swp_entry;
2879
2880 if (vma->vm_flags & VM_WRITE)
2881 swp_entry = make_writable_device_private_entry(
2882 page_to_pfn(page));
2883 else
2884 swp_entry = make_readable_device_private_entry(
2885 page_to_pfn(page));
2886 entry = swp_entry_to_pte(swp_entry);
2887 } else {
2888 /*
2889 * For now we only support migrating to un-addressable
2890 * device memory.
2891 */
2892 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2893 goto abort;
2894 }
2895 } else {
2896 entry = mk_pte(page, vma->vm_page_prot);
2897 if (vma->vm_flags & VM_WRITE)
2898 entry = pte_mkwrite(pte_mkdirty(entry));
2899 }
2900
2901 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2902
2903 if (check_stable_address_space(mm))
2904 goto unlock_abort;
2905
2906 if (pte_present(*ptep)) {
2907 unsigned long pfn = pte_pfn(*ptep);
2908
2909 if (!is_zero_pfn(pfn))
2910 goto unlock_abort;
2911 flush = true;
2912 } else if (!pte_none(*ptep))
2913 goto unlock_abort;
2914
2915 /*
2916 * Check for userfaultfd but do not deliver the fault. Instead,
2917 * just back off.
2918 */
2919 if (userfaultfd_missing(vma))
2920 goto unlock_abort;
2921
2922 inc_mm_counter(mm, MM_ANONPAGES);
2923 page_add_new_anon_rmap(page, vma, addr, false);
2924 if (!is_zone_device_page(page))
2925 lru_cache_add_inactive_or_unevictable(page, vma);
2926 get_page(page);
2927
2928 if (flush) {
2929 flush_cache_page(vma, addr, pte_pfn(*ptep));
2930 ptep_clear_flush_notify(vma, addr, ptep);
2931 set_pte_at_notify(mm, addr, ptep, entry);
2932 update_mmu_cache(vma, addr, ptep);
2933 } else {
2934 /* No need to invalidate - it was non-present before */
2935 set_pte_at(mm, addr, ptep, entry);
2936 update_mmu_cache(vma, addr, ptep);
2937 }
2938
2939 pte_unmap_unlock(ptep, ptl);
2940 *src = MIGRATE_PFN_MIGRATE;
2941 return;
2942
2943 unlock_abort:
2944 pte_unmap_unlock(ptep, ptl);
2945 abort:
2946 *src &= ~MIGRATE_PFN_MIGRATE;
2947 }
2948
2949 /**
2950 * migrate_vma_pages() - migrate meta-data from src page to dst page
2951 * @migrate: migrate struct containing all migration information
2952 *
2953 * This migrates struct page meta-data from source struct page to destination
2954 * struct page. This effectively finishes the migration from source page to the
2955 * destination page.
2956 */
migrate_vma_pages(struct migrate_vma * migrate)2957 void migrate_vma_pages(struct migrate_vma *migrate)
2958 {
2959 const unsigned long npages = migrate->npages;
2960 const unsigned long start = migrate->start;
2961 struct mmu_notifier_range range;
2962 unsigned long addr, i;
2963 bool notified = false;
2964
2965 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2966 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2967 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2968 struct address_space *mapping;
2969 int r;
2970
2971 if (!newpage) {
2972 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2973 continue;
2974 }
2975
2976 if (!page) {
2977 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2978 continue;
2979 if (!notified) {
2980 notified = true;
2981
2982 mmu_notifier_range_init_owner(&range,
2983 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2984 migrate->vma->vm_mm, addr, migrate->end,
2985 migrate->pgmap_owner);
2986 mmu_notifier_invalidate_range_start(&range);
2987 }
2988 migrate_vma_insert_page(migrate, addr, newpage,
2989 &migrate->src[i]);
2990 continue;
2991 }
2992
2993 mapping = page_mapping(page);
2994
2995 if (is_zone_device_page(newpage)) {
2996 if (is_device_private_page(newpage)) {
2997 /*
2998 * For now only support private anonymous when
2999 * migrating to un-addressable device memory.
3000 */
3001 if (mapping) {
3002 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3003 continue;
3004 }
3005 } else {
3006 /*
3007 * Other types of ZONE_DEVICE page are not
3008 * supported.
3009 */
3010 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3011 continue;
3012 }
3013 }
3014
3015 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3016 if (r != MIGRATEPAGE_SUCCESS)
3017 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3018 }
3019
3020 /*
3021 * No need to double call mmu_notifier->invalidate_range() callback as
3022 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3023 * did already call it.
3024 */
3025 if (notified)
3026 mmu_notifier_invalidate_range_only_end(&range);
3027 }
3028 EXPORT_SYMBOL(migrate_vma_pages);
3029
3030 /**
3031 * migrate_vma_finalize() - restore CPU page table entry
3032 * @migrate: migrate struct containing all migration information
3033 *
3034 * This replaces the special migration pte entry with either a mapping to the
3035 * new page if migration was successful for that page, or to the original page
3036 * otherwise.
3037 *
3038 * This also unlocks the pages and puts them back on the lru, or drops the extra
3039 * refcount, for device pages.
3040 */
migrate_vma_finalize(struct migrate_vma * migrate)3041 void migrate_vma_finalize(struct migrate_vma *migrate)
3042 {
3043 const unsigned long npages = migrate->npages;
3044 unsigned long i;
3045
3046 for (i = 0; i < npages; i++) {
3047 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3048 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3049
3050 if (!page) {
3051 if (newpage) {
3052 unlock_page(newpage);
3053 put_page(newpage);
3054 }
3055 continue;
3056 }
3057
3058 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3059 if (newpage) {
3060 unlock_page(newpage);
3061 put_page(newpage);
3062 }
3063 newpage = page;
3064 }
3065
3066 remove_migration_ptes(page, newpage, false);
3067 unlock_page(page);
3068
3069 if (is_zone_device_page(page))
3070 put_page(page);
3071 else
3072 putback_lru_page(page);
3073
3074 if (newpage != page) {
3075 unlock_page(newpage);
3076 if (is_zone_device_page(newpage))
3077 put_page(newpage);
3078 else
3079 putback_lru_page(newpage);
3080 }
3081 }
3082 }
3083 EXPORT_SYMBOL(migrate_vma_finalize);
3084 #endif /* CONFIG_DEVICE_PRIVATE */
3085
3086 #if defined(CONFIG_HOTPLUG_CPU)
3087 /* Disable reclaim-based migration. */
__disable_all_migrate_targets(void)3088 static void __disable_all_migrate_targets(void)
3089 {
3090 int node;
3091
3092 for_each_online_node(node)
3093 node_demotion[node] = NUMA_NO_NODE;
3094 }
3095
disable_all_migrate_targets(void)3096 static void disable_all_migrate_targets(void)
3097 {
3098 __disable_all_migrate_targets();
3099
3100 /*
3101 * Ensure that the "disable" is visible across the system.
3102 * Readers will see either a combination of before+disable
3103 * state or disable+after. They will never see before and
3104 * after state together.
3105 *
3106 * The before+after state together might have cycles and
3107 * could cause readers to do things like loop until this
3108 * function finishes. This ensures they can only see a
3109 * single "bad" read and would, for instance, only loop
3110 * once.
3111 */
3112 synchronize_rcu();
3113 }
3114
3115 /*
3116 * Find an automatic demotion target for 'node'.
3117 * Failing here is OK. It might just indicate
3118 * being at the end of a chain.
3119 */
establish_migrate_target(int node,nodemask_t * used)3120 static int establish_migrate_target(int node, nodemask_t *used)
3121 {
3122 int migration_target;
3123
3124 /*
3125 * Can not set a migration target on a
3126 * node with it already set.
3127 *
3128 * No need for READ_ONCE() here since this
3129 * in the write path for node_demotion[].
3130 * This should be the only thread writing.
3131 */
3132 if (node_demotion[node] != NUMA_NO_NODE)
3133 return NUMA_NO_NODE;
3134
3135 migration_target = find_next_best_node(node, used);
3136 if (migration_target == NUMA_NO_NODE)
3137 return NUMA_NO_NODE;
3138
3139 node_demotion[node] = migration_target;
3140
3141 return migration_target;
3142 }
3143
3144 /*
3145 * When memory fills up on a node, memory contents can be
3146 * automatically migrated to another node instead of
3147 * discarded at reclaim.
3148 *
3149 * Establish a "migration path" which will start at nodes
3150 * with CPUs and will follow the priorities used to build the
3151 * page allocator zonelists.
3152 *
3153 * The difference here is that cycles must be avoided. If
3154 * node0 migrates to node1, then neither node1, nor anything
3155 * node1 migrates to can migrate to node0.
3156 *
3157 * This function can run simultaneously with readers of
3158 * node_demotion[]. However, it can not run simultaneously
3159 * with itself. Exclusion is provided by memory hotplug events
3160 * being single-threaded.
3161 */
__set_migration_target_nodes(void)3162 static void __set_migration_target_nodes(void)
3163 {
3164 nodemask_t next_pass = NODE_MASK_NONE;
3165 nodemask_t this_pass = NODE_MASK_NONE;
3166 nodemask_t used_targets = NODE_MASK_NONE;
3167 int node;
3168
3169 /*
3170 * Avoid any oddities like cycles that could occur
3171 * from changes in the topology. This will leave
3172 * a momentary gap when migration is disabled.
3173 */
3174 disable_all_migrate_targets();
3175
3176 /*
3177 * Allocations go close to CPUs, first. Assume that
3178 * the migration path starts at the nodes with CPUs.
3179 */
3180 next_pass = node_states[N_CPU];
3181 again:
3182 this_pass = next_pass;
3183 next_pass = NODE_MASK_NONE;
3184 /*
3185 * To avoid cycles in the migration "graph", ensure
3186 * that migration sources are not future targets by
3187 * setting them in 'used_targets'. Do this only
3188 * once per pass so that multiple source nodes can
3189 * share a target node.
3190 *
3191 * 'used_targets' will become unavailable in future
3192 * passes. This limits some opportunities for
3193 * multiple source nodes to share a destination.
3194 */
3195 nodes_or(used_targets, used_targets, this_pass);
3196 for_each_node_mask(node, this_pass) {
3197 int target_node = establish_migrate_target(node, &used_targets);
3198
3199 if (target_node == NUMA_NO_NODE)
3200 continue;
3201
3202 /*
3203 * Visit targets from this pass in the next pass.
3204 * Eventually, every node will have been part of
3205 * a pass, and will become set in 'used_targets'.
3206 */
3207 node_set(target_node, next_pass);
3208 }
3209 /*
3210 * 'next_pass' contains nodes which became migration
3211 * targets in this pass. Make additional passes until
3212 * no more migrations targets are available.
3213 */
3214 if (!nodes_empty(next_pass))
3215 goto again;
3216 }
3217
3218 /*
3219 * For callers that do not hold get_online_mems() already.
3220 */
set_migration_target_nodes(void)3221 static void set_migration_target_nodes(void)
3222 {
3223 get_online_mems();
3224 __set_migration_target_nodes();
3225 put_online_mems();
3226 }
3227
3228 /*
3229 * This leaves migrate-on-reclaim transiently disabled between
3230 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
3231 * whether reclaim-based migration is enabled or not, which
3232 * ensures that the user can turn reclaim-based migration at
3233 * any time without needing to recalculate migration targets.
3234 *
3235 * These callbacks already hold get_online_mems(). That is why
3236 * __set_migration_target_nodes() can be used as opposed to
3237 * set_migration_target_nodes().
3238 */
migrate_on_reclaim_callback(struct notifier_block * self,unsigned long action,void * _arg)3239 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3240 unsigned long action, void *_arg)
3241 {
3242 struct memory_notify *arg = _arg;
3243
3244 /*
3245 * Only update the node migration order when a node is
3246 * changing status, like online->offline. This avoids
3247 * the overhead of synchronize_rcu() in most cases.
3248 */
3249 if (arg->status_change_nid < 0)
3250 return notifier_from_errno(0);
3251
3252 switch (action) {
3253 case MEM_GOING_OFFLINE:
3254 /*
3255 * Make sure there are not transient states where
3256 * an offline node is a migration target. This
3257 * will leave migration disabled until the offline
3258 * completes and the MEM_OFFLINE case below runs.
3259 */
3260 disable_all_migrate_targets();
3261 break;
3262 case MEM_OFFLINE:
3263 case MEM_ONLINE:
3264 /*
3265 * Recalculate the target nodes once the node
3266 * reaches its final state (online or offline).
3267 */
3268 __set_migration_target_nodes();
3269 break;
3270 case MEM_CANCEL_OFFLINE:
3271 /*
3272 * MEM_GOING_OFFLINE disabled all the migration
3273 * targets. Reenable them.
3274 */
3275 __set_migration_target_nodes();
3276 break;
3277 case MEM_GOING_ONLINE:
3278 case MEM_CANCEL_ONLINE:
3279 break;
3280 }
3281
3282 return notifier_from_errno(0);
3283 }
3284
3285 /*
3286 * React to hotplug events that might affect the migration targets
3287 * like events that online or offline NUMA nodes.
3288 *
3289 * The ordering is also currently dependent on which nodes have
3290 * CPUs. That means we need CPU on/offline notification too.
3291 */
migration_online_cpu(unsigned int cpu)3292 static int migration_online_cpu(unsigned int cpu)
3293 {
3294 set_migration_target_nodes();
3295 return 0;
3296 }
3297
migration_offline_cpu(unsigned int cpu)3298 static int migration_offline_cpu(unsigned int cpu)
3299 {
3300 set_migration_target_nodes();
3301 return 0;
3302 }
3303
migrate_on_reclaim_init(void)3304 static int __init migrate_on_reclaim_init(void)
3305 {
3306 int ret;
3307
3308 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3309 NULL, migration_offline_cpu);
3310 /*
3311 * In the unlikely case that this fails, the automatic
3312 * migration targets may become suboptimal for nodes
3313 * where N_CPU changes. With such a small impact in a
3314 * rare case, do not bother trying to do anything special.
3315 */
3316 WARN_ON(ret < 0);
3317 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3318 migration_online_cpu, NULL);
3319 WARN_ON(ret < 0);
3320
3321 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3322 return 0;
3323 }
3324 late_initcall(migrate_on_reclaim_init);
3325 #endif /* CONFIG_HOTPLUG_CPU */
3326