1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2021 Google LLC
4 * Author: Fuad Tabba <tabba@google.com>
5 */
6
7 #include <linux/kvm_host.h>
8 #include <linux/mm.h>
9
10 #include <kvm/arm_hypercalls.h>
11 #include <kvm/arm_psci.h>
12
13 #include <asm/kvm_emulate.h>
14
15 #include <nvhe/arm-smccc.h>
16 #include <nvhe/mem_protect.h>
17 #include <nvhe/memory.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/pkvm.h>
20 #include <nvhe/trap_handler.h>
21
22 /* Used by icache_is_vpipt(). */
23 unsigned long __icache_flags;
24
25 /* Used by kvm_get_vttbr(). */
26 unsigned int kvm_arm_vmid_bits;
27
28 unsigned int kvm_host_sve_max_vl;
29
30 /*
31 * The currently loaded hyp vCPU for each physical CPU. Used only when
32 * protected KVM is enabled, but for both protected and non-protected VMs.
33 */
34 static DEFINE_PER_CPU(struct pkvm_hyp_vcpu *, loaded_hyp_vcpu);
35
36 /*
37 * Host fp state for all cpus. This could include the host simd state, as well
38 * as the sve and sme states if supported. Written to when the guest accesses
39 * its own FPSIMD state, and read when the guest state is live and we need to
40 * switch back to the host.
41 *
42 * Only valid when (fp_state == FP_STATE_GUEST_OWNED) in the hyp vCPU structure.
43 */
44 unsigned long __ro_after_init kvm_arm_hyp_host_fp_state[NR_CPUS];
45
__get_host_fpsimd_bytes(void)46 static void *__get_host_fpsimd_bytes(void)
47 {
48 /*
49 * The addresses in this array have been converted to hyp addresses
50 * in finalize_init_hyp_mode().
51 */
52 return (void *)kvm_arm_hyp_host_fp_state[hyp_smp_processor_id()];
53 }
54
get_host_fpsimd_state(struct kvm_vcpu * vcpu)55 struct user_fpsimd_state *get_host_fpsimd_state(struct kvm_vcpu *vcpu)
56 {
57 if (likely(!is_protected_kvm_enabled()))
58 return vcpu->arch.host_fpsimd_state;
59
60 WARN_ON(system_supports_sve());
61 return __get_host_fpsimd_bytes();
62 }
63
get_host_sve_state(struct kvm_vcpu * vcpu)64 struct kvm_host_sve_state *get_host_sve_state(struct kvm_vcpu *vcpu)
65 {
66 WARN_ON(!system_supports_sve());
67 WARN_ON(!is_protected_kvm_enabled());
68 return __get_host_fpsimd_bytes();
69 }
70
71 /*
72 * Set trap register values based on features in ID_AA64PFR0.
73 */
pvm_init_traps_aa64pfr0(struct kvm_vcpu * vcpu)74 static void pvm_init_traps_aa64pfr0(struct kvm_vcpu *vcpu)
75 {
76 const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR0_EL1);
77 u64 hcr_set = HCR_RW;
78 u64 hcr_clear = 0;
79 u64 cptr_set = 0;
80
81 /* Protected KVM does not support AArch32 guests. */
82 BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0),
83 PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
84 BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1),
85 PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
86
87 /*
88 * Linux guests assume support for floating-point and Advanced SIMD. Do
89 * not change the trapping behavior for these from the KVM default.
90 */
91 BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_FP),
92 PVM_ID_AA64PFR0_ALLOW));
93 BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AdvSIMD),
94 PVM_ID_AA64PFR0_ALLOW));
95
96 /* Trap RAS unless all current versions are supported */
97 if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_RAS), feature_ids) <
98 ID_AA64PFR0_EL1_RAS_V1P1) {
99 hcr_set |= HCR_TERR | HCR_TEA;
100 hcr_clear |= HCR_FIEN;
101 }
102
103 /* Trap AMU */
104 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU), feature_ids)) {
105 hcr_clear |= HCR_AMVOFFEN;
106 cptr_set |= CPTR_EL2_TAM;
107 }
108
109 /* Trap SVE */
110 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE), feature_ids))
111 cptr_set |= CPTR_EL2_TZ;
112
113 vcpu->arch.hcr_el2 |= hcr_set;
114 vcpu->arch.hcr_el2 &= ~hcr_clear;
115 vcpu->arch.cptr_el2 |= cptr_set;
116 }
117
118 /*
119 * Set trap register values based on features in ID_AA64PFR1.
120 */
pvm_init_traps_aa64pfr1(struct kvm_vcpu * vcpu)121 static void pvm_init_traps_aa64pfr1(struct kvm_vcpu *vcpu)
122 {
123 const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR1_EL1);
124 u64 hcr_set = 0;
125 u64 hcr_clear = 0;
126
127 /* Memory Tagging: Trap and Treat as Untagged if not supported. */
128 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), feature_ids)) {
129 hcr_set |= HCR_TID5;
130 hcr_clear |= HCR_DCT | HCR_ATA;
131 }
132
133 vcpu->arch.hcr_el2 |= hcr_set;
134 vcpu->arch.hcr_el2 &= ~hcr_clear;
135 }
136
137 /*
138 * Set trap register values based on features in ID_AA64DFR0.
139 */
pvm_init_traps_aa64dfr0(struct kvm_vcpu * vcpu)140 static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu)
141 {
142 const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64DFR0_EL1);
143 u64 mdcr_set = 0;
144 u64 mdcr_clear = 0;
145 u64 cptr_set = 0;
146
147 /* Trap/constrain PMU */
148 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), feature_ids)) {
149 mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR;
150 mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME |
151 MDCR_EL2_HPMN_MASK;
152 }
153
154 /* Trap Debug */
155 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), feature_ids))
156 mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA;
157
158 /* Trap OS Double Lock */
159 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DoubleLock), feature_ids))
160 mdcr_set |= MDCR_EL2_TDOSA;
161
162 /* Trap SPE */
163 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer), feature_ids)) {
164 mdcr_set |= MDCR_EL2_TPMS;
165 mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
166 }
167
168 /* Trap Trace Filter */
169 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceFilt), feature_ids))
170 mdcr_set |= MDCR_EL2_TTRF;
171
172 /* Trap Trace */
173 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceVer), feature_ids))
174 cptr_set |= CPTR_EL2_TTA;
175
176 vcpu->arch.mdcr_el2 |= mdcr_set;
177 vcpu->arch.mdcr_el2 &= ~mdcr_clear;
178 vcpu->arch.cptr_el2 |= cptr_set;
179 }
180
181 /*
182 * Set trap register values based on features in ID_AA64MMFR0.
183 */
pvm_init_traps_aa64mmfr0(struct kvm_vcpu * vcpu)184 static void pvm_init_traps_aa64mmfr0(struct kvm_vcpu *vcpu)
185 {
186 const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR0_EL1);
187 u64 mdcr_set = 0;
188
189 /* Trap Debug Communications Channel registers */
190 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_FGT), feature_ids))
191 mdcr_set |= MDCR_EL2_TDCC;
192
193 vcpu->arch.mdcr_el2 |= mdcr_set;
194 }
195
196 /*
197 * Set trap register values based on features in ID_AA64MMFR1.
198 */
pvm_init_traps_aa64mmfr1(struct kvm_vcpu * vcpu)199 static void pvm_init_traps_aa64mmfr1(struct kvm_vcpu *vcpu)
200 {
201 const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR1_EL1);
202 u64 hcr_set = 0;
203
204 /* Trap LOR */
205 if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_LO), feature_ids))
206 hcr_set |= HCR_TLOR;
207
208 vcpu->arch.hcr_el2 |= hcr_set;
209 }
210
211 /*
212 * Set baseline trap register values.
213 */
pvm_init_trap_regs(struct kvm_vcpu * vcpu)214 static void pvm_init_trap_regs(struct kvm_vcpu *vcpu)
215 {
216 /*
217 * Always trap:
218 * - Feature id registers: to control features exposed to guests
219 * - Implementation-defined features
220 */
221 vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS |
222 HCR_TID3 | HCR_TACR | HCR_TIDCP | HCR_TID1;
223
224 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) {
225 /* route synchronous external abort exceptions to EL2 */
226 vcpu->arch.hcr_el2 |= HCR_TEA;
227 /* trap error record accesses */
228 vcpu->arch.hcr_el2 |= HCR_TERR;
229 }
230
231 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
232 vcpu->arch.hcr_el2 |= HCR_FWB;
233
234 if (cpus_have_const_cap(ARM64_MISMATCHED_CACHE_TYPE))
235 vcpu->arch.hcr_el2 |= HCR_TID2;
236 }
237
238 /*
239 * Initialize trap register values for protected VMs.
240 */
pkvm_vcpu_init_traps(struct pkvm_hyp_vcpu * hyp_vcpu)241 static void pkvm_vcpu_init_traps(struct pkvm_hyp_vcpu *hyp_vcpu)
242 {
243 hyp_vcpu->vcpu.arch.cptr_el2 = CPTR_EL2_DEFAULT;
244 hyp_vcpu->vcpu.arch.mdcr_el2 = 0;
245
246 if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) {
247 u64 hcr = READ_ONCE(hyp_vcpu->host_vcpu->arch.hcr_el2);
248
249 hyp_vcpu->vcpu.arch.hcr_el2 = HCR_GUEST_FLAGS | hcr;
250 return;
251 }
252
253 pvm_init_trap_regs(&hyp_vcpu->vcpu);
254 pvm_init_traps_aa64pfr0(&hyp_vcpu->vcpu);
255 pvm_init_traps_aa64pfr1(&hyp_vcpu->vcpu);
256 pvm_init_traps_aa64dfr0(&hyp_vcpu->vcpu);
257 pvm_init_traps_aa64mmfr0(&hyp_vcpu->vcpu);
258 pvm_init_traps_aa64mmfr1(&hyp_vcpu->vcpu);
259 }
260
261 /*
262 * Start the VM table handle at the offset defined instead of at 0.
263 * Mainly for sanity checking and debugging.
264 */
265 #define HANDLE_OFFSET 0x1000
266
vm_handle_to_idx(pkvm_handle_t handle)267 static unsigned int vm_handle_to_idx(pkvm_handle_t handle)
268 {
269 return handle - HANDLE_OFFSET;
270 }
271
idx_to_vm_handle(unsigned int idx)272 static pkvm_handle_t idx_to_vm_handle(unsigned int idx)
273 {
274 return idx + HANDLE_OFFSET;
275 }
276
277 /*
278 * Spinlock for protecting state related to the VM table. Protects writes
279 * to 'vm_table' and 'nr_table_entries' as well as reads and writes to
280 * 'last_hyp_vcpu_lookup'.
281 */
282 static DEFINE_HYP_SPINLOCK(vm_table_lock);
283
284 /*
285 * The table of VM entries for protected VMs in hyp.
286 * Allocated at hyp initialization and setup.
287 */
288 static struct pkvm_hyp_vm **vm_table;
289
pkvm_hyp_vm_table_init(void * tbl)290 void pkvm_hyp_vm_table_init(void *tbl)
291 {
292 WARN_ON(vm_table);
293 vm_table = tbl;
294 }
295
296 /*
297 * Return the hyp vm structure corresponding to the handle.
298 */
get_vm_by_handle(pkvm_handle_t handle)299 static struct pkvm_hyp_vm *get_vm_by_handle(pkvm_handle_t handle)
300 {
301 unsigned int idx = vm_handle_to_idx(handle);
302
303 if (unlikely(idx >= KVM_MAX_PVMS))
304 return NULL;
305
306 return vm_table[idx];
307 }
308
__pkvm_reclaim_dying_guest_page(pkvm_handle_t handle,u64 pfn,u64 ipa)309 int __pkvm_reclaim_dying_guest_page(pkvm_handle_t handle, u64 pfn, u64 ipa)
310 {
311 struct pkvm_hyp_vm *hyp_vm;
312 int ret = -EINVAL;
313
314 hyp_spin_lock(&vm_table_lock);
315 hyp_vm = get_vm_by_handle(handle);
316 if (!hyp_vm || !hyp_vm->is_dying)
317 goto unlock;
318
319 ret = __pkvm_host_reclaim_page(hyp_vm, pfn, ipa);
320 if (ret)
321 goto unlock;
322
323 drain_hyp_pool(hyp_vm, &hyp_vm->host_kvm->arch.pkvm.teardown_stage2_mc);
324 unlock:
325 hyp_spin_unlock(&vm_table_lock);
326
327 return ret;
328 }
329
pkvm_load_hyp_vcpu(pkvm_handle_t handle,unsigned int vcpu_idx)330 struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle,
331 unsigned int vcpu_idx)
332 {
333 struct pkvm_hyp_vcpu *hyp_vcpu = NULL;
334 struct pkvm_hyp_vm *hyp_vm;
335
336 /* Cannot load a new vcpu without putting the old one first. */
337 if (__this_cpu_read(loaded_hyp_vcpu))
338 return NULL;
339
340 hyp_spin_lock(&vm_table_lock);
341 hyp_vm = get_vm_by_handle(handle);
342 if (!hyp_vm || hyp_vm->is_dying || hyp_vm->nr_vcpus <= vcpu_idx)
343 goto unlock;
344
345 hyp_vcpu = hyp_vm->vcpus[vcpu_idx];
346
347 /* Ensure vcpu isn't loaded on more than one cpu simultaneously. */
348 if (unlikely(hyp_vcpu->loaded_hyp_vcpu)) {
349 hyp_vcpu = NULL;
350 goto unlock;
351 }
352
353 hyp_vcpu->loaded_hyp_vcpu = this_cpu_ptr(&loaded_hyp_vcpu);
354 hyp_page_ref_inc(hyp_virt_to_page(hyp_vm));
355 unlock:
356 hyp_spin_unlock(&vm_table_lock);
357
358 if (hyp_vcpu)
359 __this_cpu_write(loaded_hyp_vcpu, hyp_vcpu);
360 return hyp_vcpu;
361 }
362
pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu)363 void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
364 {
365 struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
366
367 hyp_spin_lock(&vm_table_lock);
368 hyp_vcpu->loaded_hyp_vcpu = NULL;
369 __this_cpu_write(loaded_hyp_vcpu, NULL);
370 hyp_page_ref_dec(hyp_virt_to_page(hyp_vm));
371 hyp_spin_unlock(&vm_table_lock);
372 }
373
pkvm_get_loaded_hyp_vcpu(void)374 struct pkvm_hyp_vcpu *pkvm_get_loaded_hyp_vcpu(void)
375 {
376 return __this_cpu_read(loaded_hyp_vcpu);
377 }
378
pkvm_vcpu_init_features_from_host(struct pkvm_hyp_vcpu * hyp_vcpu)379 static void pkvm_vcpu_init_features_from_host(struct pkvm_hyp_vcpu *hyp_vcpu)
380 {
381 struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
382 DECLARE_BITMAP(allowed_features, KVM_VCPU_MAX_FEATURES);
383
384 /* No restrictions for non-protected VMs. */
385 if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) {
386 bitmap_copy(hyp_vcpu->vcpu.arch.features,
387 host_vcpu->arch.features,
388 KVM_VCPU_MAX_FEATURES);
389 return;
390 }
391
392 bitmap_zero(allowed_features, KVM_VCPU_MAX_FEATURES);
393
394 /*
395 * For protected vms, always allow:
396 * - CPU starting in poweroff state
397 * - PSCI v0.2
398 */
399 set_bit(KVM_ARM_VCPU_POWER_OFF, allowed_features);
400 set_bit(KVM_ARM_VCPU_PSCI_0_2, allowed_features);
401
402 /*
403 * Check if remaining features are allowed:
404 * - Performance Monitoring
405 * - Scalable Vectors
406 * - Pointer Authentication
407 */
408 if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), PVM_ID_AA64DFR0_ALLOW))
409 set_bit(KVM_ARM_VCPU_PMU_V3, allowed_features);
410
411 if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE), PVM_ID_AA64PFR0_ALLOW))
412 set_bit(KVM_ARM_VCPU_SVE, allowed_features);
413
414 if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API), PVM_ID_AA64ISAR1_ALLOW) &&
415 FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA), PVM_ID_AA64ISAR1_ALLOW))
416 set_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, allowed_features);
417
418 if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI), PVM_ID_AA64ISAR1_ALLOW) &&
419 FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA), PVM_ID_AA64ISAR1_ALLOW))
420 set_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, allowed_features);
421
422 bitmap_and(hyp_vcpu->vcpu.arch.features, host_vcpu->arch.features,
423 allowed_features, KVM_VCPU_MAX_FEATURES);
424
425 /*
426 * Now sanitise the configuration flags that we have inherited
427 * from the host, as they may refer to features that protected
428 * mode doesn't support.
429 */
430 if (!vcpu_has_feature(&hyp_vcpu->vcpu,(KVM_ARM_VCPU_SVE))) {
431 vcpu_clear_flag(&hyp_vcpu->vcpu, GUEST_HAS_SVE);
432 vcpu_clear_flag(&hyp_vcpu->vcpu, VCPU_SVE_FINALIZED);
433 }
434
435 if (!vcpu_has_feature(&hyp_vcpu->vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||
436 !vcpu_has_feature(&hyp_vcpu->vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC))
437 vcpu_clear_flag(&hyp_vcpu->vcpu, GUEST_HAS_PTRAUTH);
438 }
439
pkvm_vcpu_init_ptrauth(struct pkvm_hyp_vcpu * hyp_vcpu)440 static int pkvm_vcpu_init_ptrauth(struct pkvm_hyp_vcpu *hyp_vcpu)
441 {
442 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
443 int ret = 0;
444
445 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
446 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
447 ret = kvm_vcpu_enable_ptrauth(vcpu);
448
449 return ret;
450 }
451
pkvm_vcpu_init_psci(struct pkvm_hyp_vcpu * hyp_vcpu)452 static int pkvm_vcpu_init_psci(struct pkvm_hyp_vcpu *hyp_vcpu)
453 {
454 struct vcpu_reset_state *reset_state = &hyp_vcpu->vcpu.arch.reset_state;
455 struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
456
457 if (test_bit(KVM_ARM_VCPU_POWER_OFF, hyp_vcpu->vcpu.arch.features)) {
458 reset_state->reset = false;
459 hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_OFF;
460 } else if (pkvm_hyp_vm_has_pvmfw(hyp_vm)) {
461 if (hyp_vm->pvmfw_entry_vcpu)
462 return -EINVAL;
463
464 hyp_vm->pvmfw_entry_vcpu = hyp_vcpu;
465 reset_state->reset = true;
466 hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
467 } else {
468 struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
469
470 reset_state->pc = READ_ONCE(host_vcpu->arch.ctxt.regs.pc);
471 reset_state->r0 = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]);
472 reset_state->reset = true;
473 hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
474 }
475
476 return 0;
477 }
478
unpin_host_vcpu(struct kvm_vcpu * host_vcpu)479 static void unpin_host_vcpu(struct kvm_vcpu *host_vcpu)
480 {
481 if (host_vcpu)
482 hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1);
483 }
484
unpin_host_sve_state(struct pkvm_hyp_vcpu * hyp_vcpu)485 static void unpin_host_sve_state(struct pkvm_hyp_vcpu *hyp_vcpu)
486 {
487 void *sve_state;
488
489 if (!test_bit(KVM_ARM_VCPU_SVE, hyp_vcpu->vcpu.arch.features))
490 return;
491
492 sve_state = kern_hyp_va(hyp_vcpu->vcpu.arch.sve_state);
493 hyp_unpin_shared_mem(sve_state,
494 sve_state + vcpu_sve_state_size(&hyp_vcpu->vcpu));
495 }
496
unpin_host_vcpus(struct pkvm_hyp_vcpu * hyp_vcpus[],unsigned int nr_vcpus)497 static void unpin_host_vcpus(struct pkvm_hyp_vcpu *hyp_vcpus[],
498 unsigned int nr_vcpus)
499 {
500 int i;
501
502 for (i = 0; i < nr_vcpus; i++) {
503 struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vcpus[i];
504
505 unpin_host_vcpu(hyp_vcpu->host_vcpu);
506 unpin_host_sve_state(hyp_vcpu);
507 }
508 }
509
pkvm_get_last_ran_size(void)510 static size_t pkvm_get_last_ran_size(void)
511 {
512 return array_size(hyp_nr_cpus, sizeof(int));
513 }
514
init_pkvm_hyp_vm(struct kvm * host_kvm,struct pkvm_hyp_vm * hyp_vm,int * last_ran,unsigned int nr_vcpus)515 static void init_pkvm_hyp_vm(struct kvm *host_kvm, struct pkvm_hyp_vm *hyp_vm,
516 int *last_ran, unsigned int nr_vcpus)
517 {
518 u64 pvmfw_load_addr = PVMFW_INVALID_LOAD_ADDR;
519
520 hyp_vm->host_kvm = host_kvm;
521 hyp_vm->kvm.created_vcpus = nr_vcpus;
522 hyp_vm->kvm.arch.vtcr = host_mmu.arch.vtcr;
523 hyp_vm->kvm.arch.pkvm.enabled = READ_ONCE(host_kvm->arch.pkvm.enabled);
524
525 if (hyp_vm->kvm.arch.pkvm.enabled)
526 pvmfw_load_addr = READ_ONCE(host_kvm->arch.pkvm.pvmfw_load_addr);
527 hyp_vm->kvm.arch.pkvm.pvmfw_load_addr = pvmfw_load_addr;
528
529 hyp_vm->kvm.arch.mmu.last_vcpu_ran = (int __percpu *)last_ran;
530 memset(last_ran, -1, pkvm_get_last_ran_size());
531 }
532
init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu,struct pkvm_hyp_vm * hyp_vm,struct kvm_vcpu * host_vcpu,unsigned int vcpu_idx)533 static int init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu,
534 struct pkvm_hyp_vm *hyp_vm,
535 struct kvm_vcpu *host_vcpu,
536 unsigned int vcpu_idx)
537 {
538 int ret = 0;
539
540 if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1))
541 return -EBUSY;
542
543 if (host_vcpu->vcpu_idx != vcpu_idx) {
544 ret = -EINVAL;
545 goto done;
546 }
547
548 hyp_vcpu->host_vcpu = host_vcpu;
549
550 hyp_vcpu->vcpu.kvm = &hyp_vm->kvm;
551 hyp_vcpu->vcpu.vcpu_id = READ_ONCE(host_vcpu->vcpu_id);
552 hyp_vcpu->vcpu.vcpu_idx = vcpu_idx;
553
554 hyp_vcpu->vcpu.arch.hw_mmu = &hyp_vm->kvm.arch.mmu;
555 hyp_vcpu->vcpu.arch.cflags = READ_ONCE(host_vcpu->arch.cflags);
556 hyp_vcpu->vcpu.arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
557 hyp_vcpu->vcpu.arch.debug_ptr = &host_vcpu->arch.vcpu_debug_state;
558
559 pkvm_vcpu_init_features_from_host(hyp_vcpu);
560
561 ret = pkvm_vcpu_init_ptrauth(hyp_vcpu);
562 if (ret)
563 goto done;
564
565 ret = pkvm_vcpu_init_psci(hyp_vcpu);
566 if (ret)
567 goto done;
568
569 if (test_bit(KVM_ARM_VCPU_SVE, hyp_vcpu->vcpu.arch.features)) {
570 size_t sve_state_size;
571 void *sve_state;
572
573 hyp_vcpu->vcpu.arch.sve_state = READ_ONCE(host_vcpu->arch.sve_state);
574 hyp_vcpu->vcpu.arch.sve_max_vl = READ_ONCE(host_vcpu->arch.sve_max_vl);
575
576 sve_state = kern_hyp_va(hyp_vcpu->vcpu.arch.sve_state);
577 sve_state_size = vcpu_sve_state_size(&hyp_vcpu->vcpu);
578
579 if (!hyp_vcpu->vcpu.arch.sve_state || !sve_state_size ||
580 hyp_pin_shared_mem(sve_state, sve_state + sve_state_size)) {
581 clear_bit(KVM_ARM_VCPU_SVE, hyp_vcpu->vcpu.arch.features);
582 hyp_vcpu->vcpu.arch.sve_state = NULL;
583 hyp_vcpu->vcpu.arch.sve_max_vl = 0;
584 ret = -EINVAL;
585 goto done;
586 }
587 }
588
589 pkvm_vcpu_init_traps(hyp_vcpu);
590 kvm_reset_pvm_sys_regs(&hyp_vcpu->vcpu);
591 done:
592 if (ret)
593 unpin_host_vcpu(host_vcpu);
594 return ret;
595 }
596
find_free_vm_table_entry(struct kvm * host_kvm)597 static int find_free_vm_table_entry(struct kvm *host_kvm)
598 {
599 int i;
600
601 for (i = 0; i < KVM_MAX_PVMS; ++i) {
602 if (!vm_table[i])
603 return i;
604 }
605
606 return -ENOMEM;
607 }
608
609 /*
610 * Allocate a VM table entry and insert a pointer to the new vm.
611 *
612 * Return a unique handle to the protected VM on success,
613 * negative error code on failure.
614 */
insert_vm_table_entry(struct kvm * host_kvm,struct pkvm_hyp_vm * hyp_vm)615 static pkvm_handle_t insert_vm_table_entry(struct kvm *host_kvm,
616 struct pkvm_hyp_vm *hyp_vm)
617 {
618 struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu;
619 int idx;
620
621 hyp_assert_lock_held(&vm_table_lock);
622
623 /*
624 * Initializing protected state might have failed, yet a malicious
625 * host could trigger this function. Thus, ensure that 'vm_table'
626 * exists.
627 */
628 if (unlikely(!vm_table))
629 return -EINVAL;
630
631 idx = find_free_vm_table_entry(host_kvm);
632 if (idx < 0)
633 return idx;
634
635 hyp_vm->kvm.arch.pkvm.handle = idx_to_vm_handle(idx);
636
637 /* VMID 0 is reserved for the host */
638 atomic64_set(&mmu->vmid.id, idx + 1);
639
640 mmu->arch = &hyp_vm->kvm.arch;
641 mmu->pgt = &hyp_vm->pgt;
642
643 vm_table[idx] = hyp_vm;
644 return hyp_vm->kvm.arch.pkvm.handle;
645 }
646
647 /*
648 * Deallocate and remove the VM table entry corresponding to the handle.
649 */
remove_vm_table_entry(pkvm_handle_t handle)650 static void remove_vm_table_entry(pkvm_handle_t handle)
651 {
652 hyp_assert_lock_held(&vm_table_lock);
653 vm_table[vm_handle_to_idx(handle)] = NULL;
654 }
655
pkvm_get_hyp_vm_size(unsigned int nr_vcpus)656 static size_t pkvm_get_hyp_vm_size(unsigned int nr_vcpus)
657 {
658 return size_add(sizeof(struct pkvm_hyp_vm),
659 size_mul(sizeof(struct pkvm_hyp_vcpu *), nr_vcpus));
660 }
661
map_donated_memory_noclear(unsigned long host_va,size_t size)662 static void *map_donated_memory_noclear(unsigned long host_va, size_t size)
663 {
664 void *va = (void *)kern_hyp_va(host_va);
665
666 if (!PAGE_ALIGNED(va))
667 return NULL;
668
669 if (__pkvm_host_donate_hyp(hyp_virt_to_pfn(va),
670 PAGE_ALIGN(size) >> PAGE_SHIFT))
671 return NULL;
672
673 return va;
674 }
675
map_donated_memory(unsigned long host_va,size_t size)676 static void *map_donated_memory(unsigned long host_va, size_t size)
677 {
678 void *va = map_donated_memory_noclear(host_va, size);
679
680 if (va)
681 memset(va, 0, size);
682
683 return va;
684 }
685
__unmap_donated_memory(void * va,size_t size)686 static void __unmap_donated_memory(void *va, size_t size)
687 {
688 kvm_flush_dcache_to_poc(va, size);
689 WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va),
690 PAGE_ALIGN(size) >> PAGE_SHIFT));
691 }
692
unmap_donated_memory(void * va,size_t size)693 static void unmap_donated_memory(void *va, size_t size)
694 {
695 if (!va)
696 return;
697
698 memset(va, 0, size);
699 __unmap_donated_memory(va, size);
700 }
701
unmap_donated_memory_noclear(void * va,size_t size)702 static void unmap_donated_memory_noclear(void *va, size_t size)
703 {
704 if (!va)
705 return;
706
707 __unmap_donated_memory(va, size);
708 }
709
710 /*
711 * Initialize the hypervisor copy of the protected VM state using the
712 * memory donated by the host.
713 *
714 * Unmaps the donated memory from the host at stage 2.
715 *
716 * host_kvm: A pointer to the host's struct kvm.
717 * vm_hva: The host va of the area being donated for the VM state.
718 * Must be page aligned.
719 * pgd_hva: The host va of the area being donated for the stage-2 PGD for
720 * the VM. Must be page aligned. Its size is implied by the VM's
721 * VTCR.
722 * last_ran_hva: The host va of the area being donated for hyp to use to track
723 * the most recent physical cpu on which each vcpu has run.
724 * Return a unique handle to the protected VM on success,
725 * negative error code on failure.
726 */
__pkvm_init_vm(struct kvm * host_kvm,unsigned long vm_hva,unsigned long pgd_hva,unsigned long last_ran_hva)727 int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva,
728 unsigned long pgd_hva, unsigned long last_ran_hva)
729 {
730 struct pkvm_hyp_vm *hyp_vm = NULL;
731 int *last_ran = NULL;
732 size_t vm_size, pgd_size, last_ran_size;
733 unsigned int nr_vcpus;
734 void *pgd = NULL;
735 int ret;
736
737 ret = hyp_pin_shared_mem(host_kvm, host_kvm + 1);
738 if (ret)
739 return ret;
740
741 nr_vcpus = READ_ONCE(host_kvm->created_vcpus);
742 if (nr_vcpus < 1) {
743 ret = -EINVAL;
744 goto err_unpin_kvm;
745 }
746
747 vm_size = pkvm_get_hyp_vm_size(nr_vcpus);
748 last_ran_size = pkvm_get_last_ran_size();
749 pgd_size = kvm_pgtable_stage2_pgd_size(host_mmu.arch.vtcr);
750
751 ret = -ENOMEM;
752
753 hyp_vm = map_donated_memory(vm_hva, vm_size);
754 if (!hyp_vm)
755 goto err_remove_mappings;
756
757 last_ran = map_donated_memory(last_ran_hva, last_ran_size);
758 if (!last_ran)
759 goto err_remove_mappings;
760
761 pgd = map_donated_memory_noclear(pgd_hva, pgd_size);
762 if (!pgd)
763 goto err_remove_mappings;
764
765 init_pkvm_hyp_vm(host_kvm, hyp_vm, last_ran, nr_vcpus);
766
767 hyp_spin_lock(&vm_table_lock);
768 ret = insert_vm_table_entry(host_kvm, hyp_vm);
769 if (ret < 0)
770 goto err_unlock;
771
772 ret = kvm_guest_prepare_stage2(hyp_vm, pgd);
773 if (ret)
774 goto err_remove_vm_table_entry;
775 hyp_spin_unlock(&vm_table_lock);
776
777 return hyp_vm->kvm.arch.pkvm.handle;
778
779 err_remove_vm_table_entry:
780 remove_vm_table_entry(hyp_vm->kvm.arch.pkvm.handle);
781 err_unlock:
782 hyp_spin_unlock(&vm_table_lock);
783 err_remove_mappings:
784 unmap_donated_memory(hyp_vm, vm_size);
785 unmap_donated_memory(last_ran, last_ran_size);
786 unmap_donated_memory(pgd, pgd_size);
787 err_unpin_kvm:
788 hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
789 return ret;
790 }
791
792 /*
793 * Initialize the hypervisor copy of the protected vCPU state using the
794 * memory donated by the host.
795 *
796 * handle: The handle for the protected vm.
797 * host_vcpu: A pointer to the corresponding host vcpu.
798 * vcpu_hva: The host va of the area being donated for the vcpu state.
799 * Must be page aligned. The size of the area must be equal to
800 * the page-aligned size of 'struct pkvm_hyp_vcpu'.
801 * Return 0 on success, negative error code on failure.
802 */
__pkvm_init_vcpu(pkvm_handle_t handle,struct kvm_vcpu * host_vcpu,unsigned long vcpu_hva)803 int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu,
804 unsigned long vcpu_hva)
805 {
806 struct pkvm_hyp_vcpu *hyp_vcpu;
807 struct pkvm_hyp_vm *hyp_vm;
808 unsigned int idx;
809 int ret;
810
811 hyp_vcpu = map_donated_memory(vcpu_hva, sizeof(*hyp_vcpu));
812 if (!hyp_vcpu)
813 return -ENOMEM;
814
815 hyp_spin_lock(&vm_table_lock);
816
817 hyp_vm = get_vm_by_handle(handle);
818 if (!hyp_vm) {
819 ret = -ENOENT;
820 goto unlock;
821 }
822
823 idx = hyp_vm->nr_vcpus;
824 if (idx >= hyp_vm->kvm.created_vcpus) {
825 ret = -EINVAL;
826 goto unlock;
827 }
828
829 ret = init_pkvm_hyp_vcpu(hyp_vcpu, hyp_vm, host_vcpu, idx);
830 if (ret)
831 goto unlock;
832
833 hyp_vm->vcpus[idx] = hyp_vcpu;
834 hyp_vm->nr_vcpus++;
835 unlock:
836 hyp_spin_unlock(&vm_table_lock);
837
838 if (ret)
839 unmap_donated_memory(hyp_vcpu, sizeof(*hyp_vcpu));
840
841 return ret;
842 }
843
844 static void
teardown_donated_memory(struct kvm_hyp_memcache * mc,void * addr,size_t size)845 teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr, size_t size)
846 {
847 void *start;
848
849 size = PAGE_ALIGN(size);
850 memset(addr, 0, size);
851
852 for (start = addr; start < addr + size; start += PAGE_SIZE)
853 push_hyp_memcache(mc, start, hyp_virt_to_phys);
854
855 unmap_donated_memory_noclear(addr, size);
856 }
857
__pkvm_start_teardown_vm(pkvm_handle_t handle)858 int __pkvm_start_teardown_vm(pkvm_handle_t handle)
859 {
860 struct pkvm_hyp_vm *hyp_vm;
861 int ret = 0;
862
863 hyp_spin_lock(&vm_table_lock);
864 hyp_vm = get_vm_by_handle(handle);
865 if (!hyp_vm) {
866 ret = -ENOENT;
867 goto unlock;
868 } else if (WARN_ON(hyp_page_count(hyp_vm))) {
869 ret = -EBUSY;
870 goto unlock;
871 } else if (hyp_vm->is_dying) {
872 ret = -EINVAL;
873 goto unlock;
874 }
875
876 hyp_vm->is_dying = true;
877
878 unlock:
879 hyp_spin_unlock(&vm_table_lock);
880
881 return ret;
882 }
883
__pkvm_finalize_teardown_vm(pkvm_handle_t handle)884 int __pkvm_finalize_teardown_vm(pkvm_handle_t handle)
885 {
886 struct kvm_hyp_memcache *mc, *stage2_mc;
887 size_t vm_size, last_ran_size;
888 int __percpu *last_vcpu_ran;
889 struct pkvm_hyp_vm *hyp_vm;
890 struct kvm *host_kvm;
891 unsigned int idx;
892 int err;
893
894 hyp_spin_lock(&vm_table_lock);
895 hyp_vm = get_vm_by_handle(handle);
896 if (!hyp_vm) {
897 err = -ENOENT;
898 goto err_unlock;
899 } else if (!hyp_vm->is_dying) {
900 err = -EBUSY;
901 goto err_unlock;
902 }
903
904 host_kvm = hyp_vm->host_kvm;
905
906 /* Ensure the VMID is clean before it can be reallocated */
907 __kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu);
908 remove_vm_table_entry(handle);
909 hyp_spin_unlock(&vm_table_lock);
910
911 mc = &host_kvm->arch.pkvm.teardown_mc;
912 stage2_mc = &host_kvm->arch.pkvm.teardown_stage2_mc;
913
914 destroy_hyp_vm_pgt(hyp_vm);
915 drain_hyp_pool(hyp_vm, stage2_mc);
916 unpin_host_vcpus(hyp_vm->vcpus, hyp_vm->nr_vcpus);
917
918 /* Push the metadata pages to the teardown memcache */
919 for (idx = 0; idx < hyp_vm->nr_vcpus; ++idx) {
920 struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[idx];
921 struct kvm_hyp_memcache *vcpu_mc;
922 void *addr;
923
924 vcpu_mc = &hyp_vcpu->vcpu.arch.pkvm_memcache;
925 while (vcpu_mc->nr_pages) {
926 addr = pop_hyp_memcache(vcpu_mc, hyp_phys_to_virt);
927 push_hyp_memcache(stage2_mc, addr, hyp_virt_to_phys);
928 unmap_donated_memory_noclear(addr, PAGE_SIZE);
929 }
930
931 teardown_donated_memory(mc, hyp_vcpu, sizeof(*hyp_vcpu));
932 }
933
934 last_vcpu_ran = hyp_vm->kvm.arch.mmu.last_vcpu_ran;
935 last_ran_size = pkvm_get_last_ran_size();
936 teardown_donated_memory(mc, (__force void *)last_vcpu_ran,
937 last_ran_size);
938
939 vm_size = pkvm_get_hyp_vm_size(hyp_vm->kvm.created_vcpus);
940 teardown_donated_memory(mc, hyp_vm, vm_size);
941 hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
942 return 0;
943
944 err_unlock:
945 hyp_spin_unlock(&vm_table_lock);
946 return err;
947 }
948
pkvm_load_pvmfw_pages(struct pkvm_hyp_vm * vm,u64 ipa,phys_addr_t phys,u64 size)949 int pkvm_load_pvmfw_pages(struct pkvm_hyp_vm *vm, u64 ipa, phys_addr_t phys,
950 u64 size)
951 {
952 struct kvm_protected_vm *pkvm = &vm->kvm.arch.pkvm;
953 u64 npages, offset = ipa - pkvm->pvmfw_load_addr;
954 void *src = hyp_phys_to_virt(pvmfw_base) + offset;
955
956 if (offset >= pvmfw_size)
957 return -EINVAL;
958
959 size = min(size, pvmfw_size - offset);
960 if (!PAGE_ALIGNED(size) || !PAGE_ALIGNED(src))
961 return -EINVAL;
962
963 npages = size >> PAGE_SHIFT;
964 while (npages--) {
965 /*
966 * No need for cache maintenance here, as the pgtable code will
967 * take care of this when installing the pte in the guest's
968 * stage-2 page table.
969 */
970 memcpy(hyp_fixmap_map(phys), src, PAGE_SIZE);
971 hyp_fixmap_unmap();
972
973 src += PAGE_SIZE;
974 phys += PAGE_SIZE;
975 }
976
977 return 0;
978 }
979
pkvm_poison_pvmfw_pages(void)980 void pkvm_poison_pvmfw_pages(void)
981 {
982 u64 npages = pvmfw_size >> PAGE_SHIFT;
983 phys_addr_t addr = pvmfw_base;
984
985 while (npages--) {
986 hyp_poison_page(addr);
987 addr += PAGE_SIZE;
988 }
989 }
990
991 /*
992 * This function sets the registers on the vcpu to their architecturally defined
993 * reset values.
994 *
995 * Note: Can only be called by the vcpu on itself, after it has been turned on.
996 */
pkvm_reset_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu)997 void pkvm_reset_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
998 {
999 struct vcpu_reset_state *reset_state = &hyp_vcpu->vcpu.arch.reset_state;
1000 struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
1001
1002 WARN_ON(!reset_state->reset);
1003
1004 pkvm_vcpu_init_ptrauth(hyp_vcpu);
1005 kvm_reset_vcpu_core(&hyp_vcpu->vcpu);
1006 kvm_reset_pvm_sys_regs(&hyp_vcpu->vcpu);
1007
1008 /* Must be done after reseting sys registers. */
1009 kvm_reset_vcpu_psci(&hyp_vcpu->vcpu, reset_state);
1010 if (hyp_vm->pvmfw_entry_vcpu == hyp_vcpu) {
1011 struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
1012 u64 entry = hyp_vm->kvm.arch.pkvm.pvmfw_load_addr;
1013 int i;
1014
1015 /* X0 - X14 provided by the VMM (preserved) */
1016 for (i = 0; i <= 14; ++i) {
1017 u64 val = vcpu_get_reg(host_vcpu, i);
1018
1019 vcpu_set_reg(&hyp_vcpu->vcpu, i, val);
1020 }
1021
1022 /* X15: Boot protocol version */
1023 vcpu_set_reg(&hyp_vcpu->vcpu, 15, 0);
1024
1025 /* PC: IPA of pvmfw base */
1026 *vcpu_pc(&hyp_vcpu->vcpu) = entry;
1027 hyp_vm->pvmfw_entry_vcpu = NULL;
1028
1029 /* Auto enroll MMIO guard */
1030 set_bit(KVM_ARCH_FLAG_MMIO_GUARD, &hyp_vm->kvm.arch.flags);
1031 }
1032
1033 reset_state->reset = false;
1034
1035 hyp_vcpu->exit_code = 0;
1036
1037 WARN_ON(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
1038 WRITE_ONCE(hyp_vcpu->vcpu.arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1039 WRITE_ONCE(hyp_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_ON);
1040 }
1041
pkvm_mpidr_to_hyp_vcpu(struct pkvm_hyp_vm * hyp_vm,u64 mpidr)1042 struct pkvm_hyp_vcpu *pkvm_mpidr_to_hyp_vcpu(struct pkvm_hyp_vm *hyp_vm,
1043 u64 mpidr)
1044 {
1045 int i;
1046
1047 mpidr &= MPIDR_HWID_BITMASK;
1048
1049 for (i = 0; i < hyp_vm->nr_vcpus; i++) {
1050 struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[i];
1051
1052 if (mpidr == kvm_vcpu_get_mpidr_aff(&hyp_vcpu->vcpu))
1053 return hyp_vcpu;
1054 }
1055
1056 return NULL;
1057 }
1058
1059 /*
1060 * Returns true if the hypervisor has handled the PSCI call, and control should
1061 * go back to the guest, or false if the host needs to do some additional work
1062 * (i.e., wake up the vcpu).
1063 */
pvm_psci_vcpu_on(struct pkvm_hyp_vcpu * hyp_vcpu)1064 static bool pvm_psci_vcpu_on(struct pkvm_hyp_vcpu *hyp_vcpu)
1065 {
1066 struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
1067 struct vcpu_reset_state *reset_state;
1068 struct pkvm_hyp_vcpu *target;
1069 unsigned long cpu_id, ret;
1070 int power_state;
1071
1072 cpu_id = smccc_get_arg1(&hyp_vcpu->vcpu);
1073 if (!kvm_psci_valid_affinity(&hyp_vcpu->vcpu, cpu_id)) {
1074 ret = PSCI_RET_INVALID_PARAMS;
1075 goto error;
1076 }
1077
1078 target = pkvm_mpidr_to_hyp_vcpu(hyp_vm, cpu_id);
1079 if (!target) {
1080 ret = PSCI_RET_INVALID_PARAMS;
1081 goto error;
1082 }
1083
1084 /*
1085 * Make sure the requested vcpu is not on to begin with.
1086 * Atomic to avoid race between vcpus trying to power on the same vcpu.
1087 */
1088 power_state = cmpxchg(&target->power_state,
1089 PSCI_0_2_AFFINITY_LEVEL_OFF,
1090 PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
1091 switch (power_state) {
1092 case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
1093 ret = PSCI_RET_ON_PENDING;
1094 goto error;
1095 case PSCI_0_2_AFFINITY_LEVEL_ON:
1096 ret = PSCI_RET_ALREADY_ON;
1097 goto error;
1098 case PSCI_0_2_AFFINITY_LEVEL_OFF:
1099 break;
1100 default:
1101 ret = PSCI_RET_INTERNAL_FAILURE;
1102 goto error;
1103 }
1104
1105 reset_state = &target->vcpu.arch.reset_state;
1106 reset_state->pc = smccc_get_arg2(&hyp_vcpu->vcpu);
1107 reset_state->r0 = smccc_get_arg3(&hyp_vcpu->vcpu);
1108 /* Propagate caller endianness */
1109 reset_state->be = kvm_vcpu_is_be(&hyp_vcpu->vcpu);
1110 reset_state->reset = true;
1111
1112 /*
1113 * Return to the host, which should make the KVM_REQ_VCPU_RESET request
1114 * as well as kvm_vcpu_wake_up() to schedule the vcpu.
1115 */
1116 return false;
1117
1118 error:
1119 /* If there's an error go back straight to the guest. */
1120 smccc_set_retval(&hyp_vcpu->vcpu, ret, 0, 0, 0);
1121 return true;
1122 }
1123
pvm_psci_vcpu_affinity_info(struct pkvm_hyp_vcpu * hyp_vcpu)1124 static bool pvm_psci_vcpu_affinity_info(struct pkvm_hyp_vcpu *hyp_vcpu)
1125 {
1126 unsigned long target_affinity_mask, target_affinity, lowest_affinity_level;
1127 struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
1128 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1129 unsigned long mpidr, ret;
1130 int i, matching_cpus = 0;
1131
1132 target_affinity = smccc_get_arg1(vcpu);
1133 lowest_affinity_level = smccc_get_arg2(vcpu);
1134 if (!kvm_psci_valid_affinity(vcpu, target_affinity)) {
1135 ret = PSCI_RET_INVALID_PARAMS;
1136 goto done;
1137 }
1138
1139 /* Determine target affinity mask */
1140 target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
1141 if (!target_affinity_mask) {
1142 ret = PSCI_RET_INVALID_PARAMS;
1143 goto done;
1144 }
1145
1146 /* Ignore other bits of target affinity */
1147 target_affinity &= target_affinity_mask;
1148 ret = PSCI_0_2_AFFINITY_LEVEL_OFF;
1149
1150 /*
1151 * If at least one vcpu matching target affinity is ON then return ON,
1152 * then if at least one is PENDING_ON then return PENDING_ON.
1153 * Otherwise, return OFF.
1154 */
1155 for (i = 0; i < hyp_vm->nr_vcpus; i++) {
1156 struct pkvm_hyp_vcpu *target = hyp_vm->vcpus[i];
1157
1158 mpidr = kvm_vcpu_get_mpidr_aff(&target->vcpu);
1159
1160 if ((mpidr & target_affinity_mask) == target_affinity) {
1161 int power_state;
1162
1163 matching_cpus++;
1164 power_state = READ_ONCE(target->power_state);
1165 switch (power_state) {
1166 case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
1167 ret = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
1168 break;
1169 case PSCI_0_2_AFFINITY_LEVEL_ON:
1170 ret = PSCI_0_2_AFFINITY_LEVEL_ON;
1171 goto done;
1172 case PSCI_0_2_AFFINITY_LEVEL_OFF:
1173 break;
1174 default:
1175 ret = PSCI_RET_INTERNAL_FAILURE;
1176 goto done;
1177 }
1178 }
1179 }
1180
1181 if (!matching_cpus)
1182 ret = PSCI_RET_INVALID_PARAMS;
1183
1184 done:
1185 /* Nothing to be handled by the host. Go back to the guest. */
1186 smccc_set_retval(vcpu, ret, 0, 0, 0);
1187 return true;
1188 }
1189
1190 /*
1191 * Returns true if the hypervisor has handled the PSCI call, and control should
1192 * go back to the guest, or false if the host needs to do some additional work
1193 * (e.g., turn off and update vcpu scheduling status).
1194 */
pvm_psci_vcpu_off(struct pkvm_hyp_vcpu * hyp_vcpu)1195 static bool pvm_psci_vcpu_off(struct pkvm_hyp_vcpu *hyp_vcpu)
1196 {
1197 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1198
1199 WARN_ON(vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED);
1200 WARN_ON(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON);
1201
1202 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
1203 WRITE_ONCE(hyp_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_OFF);
1204
1205 /* Return to the host so that it can finish powering off the vcpu. */
1206 return false;
1207 }
1208
pvm_psci_version(struct pkvm_hyp_vcpu * hyp_vcpu)1209 static bool pvm_psci_version(struct pkvm_hyp_vcpu *hyp_vcpu)
1210 {
1211 /* Nothing to be handled by the host. Go back to the guest. */
1212 smccc_set_retval(&hyp_vcpu->vcpu, KVM_ARM_PSCI_1_1, 0, 0, 0);
1213 return true;
1214 }
1215
pvm_psci_not_supported(struct pkvm_hyp_vcpu * hyp_vcpu)1216 static bool pvm_psci_not_supported(struct pkvm_hyp_vcpu *hyp_vcpu)
1217 {
1218 /* Nothing to be handled by the host. Go back to the guest. */
1219 smccc_set_retval(&hyp_vcpu->vcpu, PSCI_RET_NOT_SUPPORTED, 0, 0, 0);
1220 return true;
1221 }
1222
pvm_psci_features(struct pkvm_hyp_vcpu * hyp_vcpu)1223 static bool pvm_psci_features(struct pkvm_hyp_vcpu *hyp_vcpu)
1224 {
1225 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1226 u32 feature = smccc_get_arg1(vcpu);
1227 unsigned long val;
1228
1229 switch (feature) {
1230 case PSCI_0_2_FN_PSCI_VERSION:
1231 case PSCI_0_2_FN_CPU_SUSPEND:
1232 case PSCI_0_2_FN64_CPU_SUSPEND:
1233 case PSCI_0_2_FN_CPU_OFF:
1234 case PSCI_0_2_FN_CPU_ON:
1235 case PSCI_0_2_FN64_CPU_ON:
1236 case PSCI_0_2_FN_AFFINITY_INFO:
1237 case PSCI_0_2_FN64_AFFINITY_INFO:
1238 case PSCI_0_2_FN_SYSTEM_OFF:
1239 case PSCI_0_2_FN_SYSTEM_RESET:
1240 case PSCI_1_0_FN_PSCI_FEATURES:
1241 case PSCI_1_1_FN_SYSTEM_RESET2:
1242 case PSCI_1_1_FN64_SYSTEM_RESET2:
1243 case ARM_SMCCC_VERSION_FUNC_ID:
1244 val = PSCI_RET_SUCCESS;
1245 break;
1246 default:
1247 val = PSCI_RET_NOT_SUPPORTED;
1248 break;
1249 }
1250
1251 /* Nothing to be handled by the host. Go back to the guest. */
1252 smccc_set_retval(vcpu, val, 0, 0, 0);
1253 return true;
1254 }
1255
pkvm_handle_psci(struct pkvm_hyp_vcpu * hyp_vcpu)1256 static bool pkvm_handle_psci(struct pkvm_hyp_vcpu *hyp_vcpu)
1257 {
1258 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1259 u32 psci_fn = smccc_get_function(vcpu);
1260
1261 switch (psci_fn) {
1262 case PSCI_0_2_FN_CPU_ON:
1263 kvm_psci_narrow_to_32bit(vcpu);
1264 fallthrough;
1265 case PSCI_0_2_FN64_CPU_ON:
1266 return pvm_psci_vcpu_on(hyp_vcpu);
1267 case PSCI_0_2_FN_CPU_OFF:
1268 return pvm_psci_vcpu_off(hyp_vcpu);
1269 case PSCI_0_2_FN_AFFINITY_INFO:
1270 kvm_psci_narrow_to_32bit(vcpu);
1271 fallthrough;
1272 case PSCI_0_2_FN64_AFFINITY_INFO:
1273 return pvm_psci_vcpu_affinity_info(hyp_vcpu);
1274 case PSCI_0_2_FN_PSCI_VERSION:
1275 return pvm_psci_version(hyp_vcpu);
1276 case PSCI_1_0_FN_PSCI_FEATURES:
1277 return pvm_psci_features(hyp_vcpu);
1278 case PSCI_0_2_FN_SYSTEM_RESET:
1279 case PSCI_0_2_FN_CPU_SUSPEND:
1280 case PSCI_0_2_FN64_CPU_SUSPEND:
1281 case PSCI_0_2_FN_SYSTEM_OFF:
1282 case PSCI_1_1_FN_SYSTEM_RESET2:
1283 case PSCI_1_1_FN64_SYSTEM_RESET2:
1284 return false; /* Handled by the host. */
1285 default:
1286 break;
1287 }
1288
1289 return pvm_psci_not_supported(hyp_vcpu);
1290 }
1291
__pkvm_memshare_page_req(struct pkvm_hyp_vcpu * hyp_vcpu,u64 ipa)1292 static u64 __pkvm_memshare_page_req(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa)
1293 {
1294 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1295 u64 elr;
1296
1297 /* Fake up a data abort (Level 3 translation fault on write) */
1298 vcpu->arch.fault.esr_el2 = (u32)ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT |
1299 ESR_ELx_WNR | ESR_ELx_FSC_FAULT |
1300 FIELD_PREP(ESR_ELx_FSC_LEVEL, 3);
1301
1302 /* Shuffle the IPA around into the HPFAR */
1303 vcpu->arch.fault.hpfar_el2 = (ipa >> 8) & HPFAR_MASK;
1304
1305 /* This is a virtual address. 0's good. Let's go with 0. */
1306 vcpu->arch.fault.far_el2 = 0;
1307
1308 /* Rewind the ELR so we return to the HVC once the IPA is mapped */
1309 elr = read_sysreg(elr_el2);
1310 elr -= 4;
1311 write_sysreg(elr, elr_el2);
1312
1313 return ARM_EXCEPTION_TRAP;
1314 }
1315
pkvm_memshare_call(struct pkvm_hyp_vcpu * hyp_vcpu,u64 * exit_code)1316 static bool pkvm_memshare_call(struct pkvm_hyp_vcpu *hyp_vcpu, u64 *exit_code)
1317 {
1318 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1319 u64 ipa = smccc_get_arg1(vcpu);
1320 u64 arg2 = smccc_get_arg2(vcpu);
1321 u64 arg3 = smccc_get_arg3(vcpu);
1322 int err;
1323
1324 if (arg2 || arg3)
1325 goto out_guest_err;
1326
1327 err = __pkvm_guest_share_host(hyp_vcpu, ipa);
1328 switch (err) {
1329 case 0:
1330 /* Success! Now tell the host. */
1331 goto out_host;
1332 case -EFAULT:
1333 /*
1334 * Convert the exception into a data abort so that the page
1335 * being shared is mapped into the guest next time.
1336 */
1337 *exit_code = __pkvm_memshare_page_req(hyp_vcpu, ipa);
1338 goto out_host;
1339 }
1340
1341 out_guest_err:
1342 smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
1343 return true;
1344
1345 out_host:
1346 return false;
1347 }
1348
pkvm_memunshare_call(struct pkvm_hyp_vcpu * hyp_vcpu)1349 static bool pkvm_memunshare_call(struct pkvm_hyp_vcpu *hyp_vcpu)
1350 {
1351 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1352 u64 ipa = smccc_get_arg1(vcpu);
1353 u64 arg2 = smccc_get_arg2(vcpu);
1354 u64 arg3 = smccc_get_arg3(vcpu);
1355 int err;
1356
1357 if (arg2 || arg3)
1358 goto out_guest_err;
1359
1360 err = __pkvm_guest_unshare_host(hyp_vcpu, ipa);
1361 if (err)
1362 goto out_guest_err;
1363
1364 return false;
1365
1366 out_guest_err:
1367 smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
1368 return true;
1369 }
1370
pkvm_meminfo_call(struct pkvm_hyp_vcpu * hyp_vcpu)1371 static bool pkvm_meminfo_call(struct pkvm_hyp_vcpu *hyp_vcpu)
1372 {
1373 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1374 u64 arg1 = smccc_get_arg1(vcpu);
1375 u64 arg2 = smccc_get_arg2(vcpu);
1376 u64 arg3 = smccc_get_arg3(vcpu);
1377
1378 if (arg1 || arg2 || arg3)
1379 goto out_guest_err;
1380
1381 smccc_set_retval(vcpu, PAGE_SIZE, 0, 0, 0);
1382 return true;
1383
1384 out_guest_err:
1385 smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
1386 return true;
1387 }
1388
pkvm_memrelinquish_call(struct pkvm_hyp_vcpu * hyp_vcpu)1389 static bool pkvm_memrelinquish_call(struct pkvm_hyp_vcpu *hyp_vcpu)
1390 {
1391 struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
1392 u64 ipa = smccc_get_arg1(vcpu);
1393 u64 arg2 = smccc_get_arg2(vcpu);
1394 u64 arg3 = smccc_get_arg3(vcpu);
1395 u64 pa = 0;
1396 int ret;
1397
1398 if (arg2 || arg3)
1399 goto out_guest_err;
1400
1401 ret = __pkvm_guest_relinquish_to_host(hyp_vcpu, ipa, &pa);
1402 if (ret)
1403 goto out_guest_err;
1404
1405 if (pa != 0) {
1406 /* Now pass to host. */
1407 return false;
1408 }
1409
1410 /* This was a NOP as no page was actually mapped at the IPA. */
1411 smccc_set_retval(vcpu, 0, 0, 0, 0);
1412 return true;
1413
1414 out_guest_err:
1415 smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
1416 return true;
1417 }
1418
pkvm_install_ioguard_page(struct pkvm_hyp_vcpu * hyp_vcpu,u64 * exit_code)1419 static bool pkvm_install_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 *exit_code)
1420 {
1421 u64 retval = SMCCC_RET_SUCCESS;
1422 u64 ipa = smccc_get_arg1(&hyp_vcpu->vcpu);
1423 int ret;
1424
1425 ret = __pkvm_install_ioguard_page(hyp_vcpu, ipa);
1426 if (ret == -ENOMEM) {
1427 /*
1428 * We ran out of memcache, let's ask for more. Cancel
1429 * the effects of the HVC that took us here, and
1430 * forward the hypercall to the host for page donation
1431 * purposes.
1432 */
1433 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
1434 return false;
1435 }
1436
1437 if (ret)
1438 retval = SMCCC_RET_INVALID_PARAMETER;
1439
1440 smccc_set_retval(&hyp_vcpu->vcpu, retval, 0, 0, 0);
1441 return true;
1442 }
1443
1444 bool smccc_trng_available;
1445
pkvm_forward_trng(struct kvm_vcpu * vcpu)1446 static bool pkvm_forward_trng(struct kvm_vcpu *vcpu)
1447 {
1448 u32 fn = smccc_get_function(vcpu);
1449 struct arm_smccc_res res;
1450 unsigned long arg1 = 0;
1451
1452 /*
1453 * Forward TRNG calls to EL3, as we can't trust the host to handle
1454 * these for us.
1455 */
1456 switch (fn) {
1457 case ARM_SMCCC_TRNG_FEATURES:
1458 case ARM_SMCCC_TRNG_RND32:
1459 case ARM_SMCCC_TRNG_RND64:
1460 arg1 = smccc_get_arg1(vcpu);
1461 fallthrough;
1462 case ARM_SMCCC_TRNG_VERSION:
1463 case ARM_SMCCC_TRNG_GET_UUID:
1464 arm_smccc_1_1_smc(fn, arg1, &res);
1465 smccc_set_retval(vcpu, res.a0, res.a1, res.a2, res.a3);
1466 memzero_explicit(&res, sizeof(res));
1467 break;
1468 }
1469
1470 return true;
1471 }
1472
1473 /*
1474 * Handler for protected VM HVC calls.
1475 *
1476 * Returns true if the hypervisor has handled the exit, and control should go
1477 * back to the guest, or false if it hasn't.
1478 */
kvm_handle_pvm_hvc64(struct kvm_vcpu * vcpu,u64 * exit_code)1479 bool kvm_handle_pvm_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code)
1480 {
1481 u64 val[4] = { SMCCC_RET_NOT_SUPPORTED };
1482 u32 fn = smccc_get_function(vcpu);
1483 struct pkvm_hyp_vcpu *hyp_vcpu;
1484
1485 hyp_vcpu = container_of(vcpu, struct pkvm_hyp_vcpu, vcpu);
1486
1487 switch (fn) {
1488 case ARM_SMCCC_VERSION_FUNC_ID:
1489 /* Nothing to be handled by the host. Go back to the guest. */
1490 val[0] = ARM_SMCCC_VERSION_1_1;
1491 break;
1492 case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
1493 val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
1494 val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
1495 val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
1496 val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
1497 break;
1498 case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
1499 val[0] = BIT(ARM_SMCCC_KVM_FUNC_FEATURES);
1500 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_HYP_MEMINFO);
1501 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_SHARE);
1502 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_UNSHARE);
1503 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_RELINQUISH);
1504 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO);
1505 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL);
1506 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP);
1507 val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP);
1508 break;
1509 case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_ENROLL_FUNC_ID:
1510 set_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vcpu->kvm->arch.flags);
1511 val[0] = SMCCC_RET_SUCCESS;
1512 break;
1513 case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID:
1514 return pkvm_install_ioguard_page(hyp_vcpu, exit_code);
1515 case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_UNMAP_FUNC_ID:
1516 if (__pkvm_remove_ioguard_page(hyp_vcpu, vcpu_get_reg(vcpu, 1)))
1517 val[0] = SMCCC_RET_INVALID_PARAMETER;
1518 else
1519 val[0] = SMCCC_RET_SUCCESS;
1520 break;
1521 case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_INFO_FUNC_ID:
1522 case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID:
1523 return pkvm_meminfo_call(hyp_vcpu);
1524 case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID:
1525 return pkvm_memshare_call(hyp_vcpu, exit_code);
1526 case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID:
1527 return pkvm_memunshare_call(hyp_vcpu);
1528 case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID:
1529 return pkvm_memrelinquish_call(hyp_vcpu);
1530 case ARM_SMCCC_TRNG_VERSION ... ARM_SMCCC_TRNG_RND32:
1531 case ARM_SMCCC_TRNG_RND64:
1532 if (smccc_trng_available)
1533 return pkvm_forward_trng(vcpu);
1534 break;
1535 default:
1536 return pkvm_handle_psci(hyp_vcpu);
1537 }
1538
1539 smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
1540 return true;
1541 }
1542
1543 /*
1544 * Handler for non-protected VM HVC calls.
1545 *
1546 * Returns true if the hypervisor has handled the exit, and control should go
1547 * back to the guest, or false if it hasn't.
1548 */
kvm_hyp_handle_hvc64(struct kvm_vcpu * vcpu,u64 * exit_code)1549 bool kvm_hyp_handle_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code)
1550 {
1551 u32 fn = smccc_get_function(vcpu);
1552 struct pkvm_hyp_vcpu *hyp_vcpu;
1553
1554 hyp_vcpu = container_of(vcpu, struct pkvm_hyp_vcpu, vcpu);
1555
1556 switch (fn) {
1557 case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID:
1558 return pkvm_meminfo_call(hyp_vcpu);
1559 case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID:
1560 return pkvm_memrelinquish_call(hyp_vcpu);
1561 }
1562
1563 return false;
1564 }
1565