1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144
145 /*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150 static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159 #endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167 };
168
169 static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215 [PF_MCTP] = "PF_MCTP",
216 };
217
218 /*
219 * The protocol list. Each protocol is registered in here.
220 */
221
222 static DEFINE_SPINLOCK(net_family_lock);
223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
224
225 /*
226 * Support routines.
227 * Move socket addresses back and forth across the kernel/user
228 * divide and look after the messy bits.
229 */
230
231 /**
232 * move_addr_to_kernel - copy a socket address into kernel space
233 * @uaddr: Address in user space
234 * @kaddr: Address in kernel space
235 * @ulen: Length in user space
236 *
237 * The address is copied into kernel space. If the provided address is
238 * too long an error code of -EINVAL is returned. If the copy gives
239 * invalid addresses -EFAULT is returned. On a success 0 is returned.
240 */
241
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
243 {
244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
245 return -EINVAL;
246 if (ulen == 0)
247 return 0;
248 if (copy_from_user(kaddr, uaddr, ulen))
249 return -EFAULT;
250 return audit_sockaddr(ulen, kaddr);
251 }
252
253 /**
254 * move_addr_to_user - copy an address to user space
255 * @kaddr: kernel space address
256 * @klen: length of address in kernel
257 * @uaddr: user space address
258 * @ulen: pointer to user length field
259 *
260 * The value pointed to by ulen on entry is the buffer length available.
261 * This is overwritten with the buffer space used. -EINVAL is returned
262 * if an overlong buffer is specified or a negative buffer size. -EFAULT
263 * is returned if either the buffer or the length field are not
264 * accessible.
265 * After copying the data up to the limit the user specifies, the true
266 * length of the data is written over the length limit the user
267 * specified. Zero is returned for a success.
268 */
269
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
271 void __user *uaddr, int __user *ulen)
272 {
273 int err;
274 int len;
275
276 BUG_ON(klen > sizeof(struct sockaddr_storage));
277 err = get_user(len, ulen);
278 if (err)
279 return err;
280 if (len > klen)
281 len = klen;
282 if (len < 0)
283 return -EINVAL;
284 if (len) {
285 if (audit_sockaddr(klen, kaddr))
286 return -ENOMEM;
287 if (copy_to_user(uaddr, kaddr, len))
288 return -EFAULT;
289 }
290 /*
291 * "fromlen shall refer to the value before truncation.."
292 * 1003.1g
293 */
294 return __put_user(klen, ulen);
295 }
296
297 static struct kmem_cache *sock_inode_cachep __ro_after_init;
298
sock_alloc_inode(struct super_block * sb)299 static struct inode *sock_alloc_inode(struct super_block *sb)
300 {
301 struct socket_alloc *ei;
302
303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
304 if (!ei)
305 return NULL;
306 init_waitqueue_head(&ei->socket.wq.wait);
307 ei->socket.wq.fasync_list = NULL;
308 ei->socket.wq.flags = 0;
309
310 ei->socket.state = SS_UNCONNECTED;
311 ei->socket.flags = 0;
312 ei->socket.ops = NULL;
313 ei->socket.sk = NULL;
314 ei->socket.file = NULL;
315
316 return &ei->vfs_inode;
317 }
318
sock_free_inode(struct inode * inode)319 static void sock_free_inode(struct inode *inode)
320 {
321 struct socket_alloc *ei;
322
323 ei = container_of(inode, struct socket_alloc, vfs_inode);
324 kmem_cache_free(sock_inode_cachep, ei);
325 }
326
init_once(void * foo)327 static void init_once(void *foo)
328 {
329 struct socket_alloc *ei = (struct socket_alloc *)foo;
330
331 inode_init_once(&ei->vfs_inode);
332 }
333
init_inodecache(void)334 static void init_inodecache(void)
335 {
336 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
337 sizeof(struct socket_alloc),
338 0,
339 (SLAB_HWCACHE_ALIGN |
340 SLAB_RECLAIM_ACCOUNT |
341 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
342 init_once);
343 BUG_ON(sock_inode_cachep == NULL);
344 }
345
346 static const struct super_operations sockfs_ops = {
347 .alloc_inode = sock_alloc_inode,
348 .free_inode = sock_free_inode,
349 .statfs = simple_statfs,
350 };
351
352 /*
353 * sockfs_dname() is called from d_path().
354 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
356 {
357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
358 d_inode(dentry)->i_ino);
359 }
360
361 static const struct dentry_operations sockfs_dentry_operations = {
362 .d_dname = sockfs_dname,
363 };
364
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)365 static int sockfs_xattr_get(const struct xattr_handler *handler,
366 struct dentry *dentry, struct inode *inode,
367 const char *suffix, void *value, size_t size)
368 {
369 if (value) {
370 if (dentry->d_name.len + 1 > size)
371 return -ERANGE;
372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
373 }
374 return dentry->d_name.len + 1;
375 }
376
377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
380
381 static const struct xattr_handler sockfs_xattr_handler = {
382 .name = XATTR_NAME_SOCKPROTONAME,
383 .get = sockfs_xattr_get,
384 };
385
sockfs_security_xattr_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)386 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
387 struct user_namespace *mnt_userns,
388 struct dentry *dentry, struct inode *inode,
389 const char *suffix, const void *value,
390 size_t size, int flags)
391 {
392 /* Handled by LSM. */
393 return -EAGAIN;
394 }
395
396 static const struct xattr_handler sockfs_security_xattr_handler = {
397 .prefix = XATTR_SECURITY_PREFIX,
398 .set = sockfs_security_xattr_set,
399 };
400
401 static const struct xattr_handler *sockfs_xattr_handlers[] = {
402 &sockfs_xattr_handler,
403 &sockfs_security_xattr_handler,
404 NULL
405 };
406
sockfs_init_fs_context(struct fs_context * fc)407 static int sockfs_init_fs_context(struct fs_context *fc)
408 {
409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
410 if (!ctx)
411 return -ENOMEM;
412 ctx->ops = &sockfs_ops;
413 ctx->dops = &sockfs_dentry_operations;
414 ctx->xattr = sockfs_xattr_handlers;
415 return 0;
416 }
417
418 static struct vfsmount *sock_mnt __read_mostly;
419
420 static struct file_system_type sock_fs_type = {
421 .name = "sockfs",
422 .init_fs_context = sockfs_init_fs_context,
423 .kill_sb = kill_anon_super,
424 };
425
426 /*
427 * Obtains the first available file descriptor and sets it up for use.
428 *
429 * These functions create file structures and maps them to fd space
430 * of the current process. On success it returns file descriptor
431 * and file struct implicitly stored in sock->file.
432 * Note that another thread may close file descriptor before we return
433 * from this function. We use the fact that now we do not refer
434 * to socket after mapping. If one day we will need it, this
435 * function will increment ref. count on file by 1.
436 *
437 * In any case returned fd MAY BE not valid!
438 * This race condition is unavoidable
439 * with shared fd spaces, we cannot solve it inside kernel,
440 * but we take care of internal coherence yet.
441 */
442
443 /**
444 * sock_alloc_file - Bind a &socket to a &file
445 * @sock: socket
446 * @flags: file status flags
447 * @dname: protocol name
448 *
449 * Returns the &file bound with @sock, implicitly storing it
450 * in sock->file. If dname is %NULL, sets to "".
451 * On failure the return is a ERR pointer (see linux/err.h).
452 * This function uses GFP_KERNEL internally.
453 */
454
sock_alloc_file(struct socket * sock,int flags,const char * dname)455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
456 {
457 struct file *file;
458
459 if (!dname)
460 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
461
462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
463 O_RDWR | (flags & O_NONBLOCK),
464 &socket_file_ops);
465 if (IS_ERR(file)) {
466 sock_release(sock);
467 return file;
468 }
469
470 sock->file = file;
471 file->private_data = sock;
472 stream_open(SOCK_INODE(sock), file);
473 return file;
474 }
475 EXPORT_SYMBOL(sock_alloc_file);
476
sock_map_fd(struct socket * sock,int flags)477 static int sock_map_fd(struct socket *sock, int flags)
478 {
479 struct file *newfile;
480 int fd = get_unused_fd_flags(flags);
481 if (unlikely(fd < 0)) {
482 sock_release(sock);
483 return fd;
484 }
485
486 newfile = sock_alloc_file(sock, flags, NULL);
487 if (!IS_ERR(newfile)) {
488 fd_install(fd, newfile);
489 return fd;
490 }
491
492 put_unused_fd(fd);
493 return PTR_ERR(newfile);
494 }
495
496 /**
497 * sock_from_file - Return the &socket bounded to @file.
498 * @file: file
499 *
500 * On failure returns %NULL.
501 */
502
sock_from_file(struct file * file)503 struct socket *sock_from_file(struct file *file)
504 {
505 if (file->f_op == &socket_file_ops)
506 return file->private_data; /* set in sock_map_fd */
507
508 return NULL;
509 }
510 EXPORT_SYMBOL(sock_from_file);
511
512 /**
513 * sockfd_lookup - Go from a file number to its socket slot
514 * @fd: file handle
515 * @err: pointer to an error code return
516 *
517 * The file handle passed in is locked and the socket it is bound
518 * to is returned. If an error occurs the err pointer is overwritten
519 * with a negative errno code and NULL is returned. The function checks
520 * for both invalid handles and passing a handle which is not a socket.
521 *
522 * On a success the socket object pointer is returned.
523 */
524
sockfd_lookup(int fd,int * err)525 struct socket *sockfd_lookup(int fd, int *err)
526 {
527 struct file *file;
528 struct socket *sock;
529
530 file = fget(fd);
531 if (!file) {
532 *err = -EBADF;
533 return NULL;
534 }
535
536 sock = sock_from_file(file);
537 if (!sock) {
538 *err = -ENOTSOCK;
539 fput(file);
540 }
541 return sock;
542 }
543 EXPORT_SYMBOL(sockfd_lookup);
544
sockfd_lookup_light(int fd,int * err,int * fput_needed)545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
546 {
547 struct fd f = fdget(fd);
548 struct socket *sock;
549
550 *err = -EBADF;
551 if (f.file) {
552 sock = sock_from_file(f.file);
553 if (likely(sock)) {
554 *fput_needed = f.flags & FDPUT_FPUT;
555 return sock;
556 }
557 *err = -ENOTSOCK;
558 fdput(f);
559 }
560 return NULL;
561 }
562
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
564 size_t size)
565 {
566 ssize_t len;
567 ssize_t used = 0;
568
569 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
570 if (len < 0)
571 return len;
572 used += len;
573 if (buffer) {
574 if (size < used)
575 return -ERANGE;
576 buffer += len;
577 }
578
579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
585 buffer += len;
586 }
587
588 return used;
589 }
590
sockfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)591 static int sockfs_setattr(struct user_namespace *mnt_userns,
592 struct dentry *dentry, struct iattr *iattr)
593 {
594 int err = simple_setattr(&init_user_ns, dentry, iattr);
595
596 if (!err && (iattr->ia_valid & ATTR_UID)) {
597 struct socket *sock = SOCKET_I(d_inode(dentry));
598
599 if (sock->sk)
600 sock->sk->sk_uid = iattr->ia_uid;
601 else
602 err = -ENOENT;
603 }
604
605 return err;
606 }
607
608 static const struct inode_operations sockfs_inode_ops = {
609 .listxattr = sockfs_listxattr,
610 .setattr = sockfs_setattr,
611 };
612
613 /**
614 * sock_alloc - allocate a socket
615 *
616 * Allocate a new inode and socket object. The two are bound together
617 * and initialised. The socket is then returned. If we are out of inodes
618 * NULL is returned. This functions uses GFP_KERNEL internally.
619 */
620
sock_alloc(void)621 struct socket *sock_alloc(void)
622 {
623 struct inode *inode;
624 struct socket *sock;
625
626 inode = new_inode_pseudo(sock_mnt->mnt_sb);
627 if (!inode)
628 return NULL;
629
630 sock = SOCKET_I(inode);
631
632 inode->i_ino = get_next_ino();
633 inode->i_mode = S_IFSOCK | S_IRWXUGO;
634 inode->i_uid = current_fsuid();
635 inode->i_gid = current_fsgid();
636 inode->i_op = &sockfs_inode_ops;
637
638 return sock;
639 }
640 EXPORT_SYMBOL(sock_alloc);
641
__sock_release(struct socket * sock,struct inode * inode)642 static void __sock_release(struct socket *sock, struct inode *inode)
643 {
644 if (sock->ops) {
645 struct module *owner = sock->ops->owner;
646
647 if (inode)
648 inode_lock(inode);
649 sock->ops->release(sock);
650 sock->sk = NULL;
651 if (inode)
652 inode_unlock(inode);
653 sock->ops = NULL;
654 module_put(owner);
655 }
656
657 if (sock->wq.fasync_list)
658 pr_err("%s: fasync list not empty!\n", __func__);
659
660 if (!sock->file) {
661 iput(SOCK_INODE(sock));
662 return;
663 }
664 sock->file = NULL;
665 }
666
667 /**
668 * sock_release - close a socket
669 * @sock: socket to close
670 *
671 * The socket is released from the protocol stack if it has a release
672 * callback, and the inode is then released if the socket is bound to
673 * an inode not a file.
674 */
sock_release(struct socket * sock)675 void sock_release(struct socket *sock)
676 {
677 __sock_release(sock, NULL);
678 }
679 EXPORT_SYMBOL(sock_release);
680
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
682 {
683 u8 flags = *tx_flags;
684
685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
686 flags |= SKBTX_HW_TSTAMP;
687
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
690
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
693
694 *tx_flags = flags;
695 }
696 EXPORT_SYMBOL(__sock_tx_timestamp);
697
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
703 {
704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
705 inet_sendmsg, sock, msg,
706 msg_data_left(msg));
707 BUG_ON(ret == -EIOCBQUEUED);
708 return ret;
709 }
710
__sock_sendmsg(struct socket * sock,struct msghdr * msg)711 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
712 {
713 int err = security_socket_sendmsg(sock, msg,
714 msg_data_left(msg));
715
716 return err ?: sock_sendmsg_nosec(sock, msg);
717 }
718
719 /**
720 * sock_sendmsg - send a message through @sock
721 * @sock: socket
722 * @msg: message to send
723 *
724 * Sends @msg through @sock, passing through LSM.
725 * Returns the number of bytes sent, or an error code.
726 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)727 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
728 {
729 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
730 struct sockaddr_storage address;
731 int save_len = msg->msg_namelen;
732 int ret;
733
734 if (msg->msg_name) {
735 memcpy(&address, msg->msg_name, msg->msg_namelen);
736 msg->msg_name = &address;
737 }
738
739 ret = __sock_sendmsg(sock, msg);
740 msg->msg_name = save_addr;
741 msg->msg_namelen = save_len;
742
743 return ret;
744 }
745 EXPORT_SYMBOL(sock_sendmsg);
746
747 /**
748 * kernel_sendmsg - send a message through @sock (kernel-space)
749 * @sock: socket
750 * @msg: message header
751 * @vec: kernel vec
752 * @num: vec array length
753 * @size: total message data size
754 *
755 * Builds the message data with @vec and sends it through @sock.
756 * Returns the number of bytes sent, or an error code.
757 */
758
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)759 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
760 struct kvec *vec, size_t num, size_t size)
761 {
762 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
763 return sock_sendmsg(sock, msg);
764 }
765 EXPORT_SYMBOL(kernel_sendmsg);
766
767 /**
768 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
769 * @sk: sock
770 * @msg: message header
771 * @vec: output s/g array
772 * @num: output s/g array length
773 * @size: total message data size
774 *
775 * Builds the message data with @vec and sends it through @sock.
776 * Returns the number of bytes sent, or an error code.
777 * Caller must hold @sk.
778 */
779
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)780 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
781 struct kvec *vec, size_t num, size_t size)
782 {
783 struct socket *sock = sk->sk_socket;
784
785 if (!sock->ops->sendmsg_locked)
786 return sock_no_sendmsg_locked(sk, msg, size);
787
788 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
789
790 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
791 }
792 EXPORT_SYMBOL(kernel_sendmsg_locked);
793
skb_is_err_queue(const struct sk_buff * skb)794 static bool skb_is_err_queue(const struct sk_buff *skb)
795 {
796 /* pkt_type of skbs enqueued on the error queue are set to
797 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
798 * in recvmsg, since skbs received on a local socket will never
799 * have a pkt_type of PACKET_OUTGOING.
800 */
801 return skb->pkt_type == PACKET_OUTGOING;
802 }
803
804 /* On transmit, software and hardware timestamps are returned independently.
805 * As the two skb clones share the hardware timestamp, which may be updated
806 * before the software timestamp is received, a hardware TX timestamp may be
807 * returned only if there is no software TX timestamp. Ignore false software
808 * timestamps, which may be made in the __sock_recv_timestamp() call when the
809 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
810 * hardware timestamp.
811 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)812 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
813 {
814 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
815 }
816
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)817 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
818 {
819 struct scm_ts_pktinfo ts_pktinfo;
820 struct net_device *orig_dev;
821
822 if (!skb_mac_header_was_set(skb))
823 return;
824
825 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
826
827 rcu_read_lock();
828 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
829 if (orig_dev)
830 ts_pktinfo.if_index = orig_dev->ifindex;
831 rcu_read_unlock();
832
833 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
834 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
835 sizeof(ts_pktinfo), &ts_pktinfo);
836 }
837
838 /*
839 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
840 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)841 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
842 struct sk_buff *skb)
843 {
844 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
845 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
846 struct scm_timestamping_internal tss;
847
848 int empty = 1, false_tstamp = 0;
849 struct skb_shared_hwtstamps *shhwtstamps =
850 skb_hwtstamps(skb);
851 ktime_t hwtstamp;
852
853 /* Race occurred between timestamp enabling and packet
854 receiving. Fill in the current time for now. */
855 if (need_software_tstamp && skb->tstamp == 0) {
856 __net_timestamp(skb);
857 false_tstamp = 1;
858 }
859
860 if (need_software_tstamp) {
861 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
862 if (new_tstamp) {
863 struct __kernel_sock_timeval tv;
864
865 skb_get_new_timestamp(skb, &tv);
866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
867 sizeof(tv), &tv);
868 } else {
869 struct __kernel_old_timeval tv;
870
871 skb_get_timestamp(skb, &tv);
872 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
873 sizeof(tv), &tv);
874 }
875 } else {
876 if (new_tstamp) {
877 struct __kernel_timespec ts;
878
879 skb_get_new_timestampns(skb, &ts);
880 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
881 sizeof(ts), &ts);
882 } else {
883 struct __kernel_old_timespec ts;
884
885 skb_get_timestampns(skb, &ts);
886 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
887 sizeof(ts), &ts);
888 }
889 }
890 }
891
892 memset(&tss, 0, sizeof(tss));
893 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
894 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
895 empty = 0;
896 if (shhwtstamps &&
897 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
898 !skb_is_swtx_tstamp(skb, false_tstamp)) {
899 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
900 hwtstamp = ptp_convert_timestamp(shhwtstamps,
901 sk->sk_bind_phc);
902 else
903 hwtstamp = shhwtstamps->hwtstamp;
904
905 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
906 empty = 0;
907
908 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
909 !skb_is_err_queue(skb))
910 put_ts_pktinfo(msg, skb);
911 }
912 }
913 if (!empty) {
914 if (sock_flag(sk, SOCK_TSTAMP_NEW))
915 put_cmsg_scm_timestamping64(msg, &tss);
916 else
917 put_cmsg_scm_timestamping(msg, &tss);
918
919 if (skb_is_err_queue(skb) && skb->len &&
920 SKB_EXT_ERR(skb)->opt_stats)
921 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
922 skb->len, skb->data);
923 }
924 }
925 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
926
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)927 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
928 struct sk_buff *skb)
929 {
930 int ack;
931
932 if (!sock_flag(sk, SOCK_WIFI_STATUS))
933 return;
934 if (!skb->wifi_acked_valid)
935 return;
936
937 ack = skb->wifi_acked;
938
939 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
940 }
941 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
942
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)943 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
944 struct sk_buff *skb)
945 {
946 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
947 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
948 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
949 }
950
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)951 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
952 struct sk_buff *skb)
953 {
954 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
955 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
956 __u32 mark = skb->mark;
957
958 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
959 }
960 }
961
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)962 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
963 struct sk_buff *skb)
964 {
965 sock_recv_timestamp(msg, sk, skb);
966 sock_recv_drops(msg, sk, skb);
967 sock_recv_mark(msg, sk, skb);
968 }
969 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
970
971 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
972 size_t, int));
973 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
974 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)975 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
976 int flags)
977 {
978 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
979 inet_recvmsg, sock, msg, msg_data_left(msg),
980 flags);
981 }
982
983 /**
984 * sock_recvmsg - receive a message from @sock
985 * @sock: socket
986 * @msg: message to receive
987 * @flags: message flags
988 *
989 * Receives @msg from @sock, passing through LSM. Returns the total number
990 * of bytes received, or an error.
991 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)992 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
993 {
994 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
995
996 return err ?: sock_recvmsg_nosec(sock, msg, flags);
997 }
998 EXPORT_SYMBOL(sock_recvmsg);
999
1000 /**
1001 * kernel_recvmsg - Receive a message from a socket (kernel space)
1002 * @sock: The socket to receive the message from
1003 * @msg: Received message
1004 * @vec: Input s/g array for message data
1005 * @num: Size of input s/g array
1006 * @size: Number of bytes to read
1007 * @flags: Message flags (MSG_DONTWAIT, etc...)
1008 *
1009 * On return the msg structure contains the scatter/gather array passed in the
1010 * vec argument. The array is modified so that it consists of the unfilled
1011 * portion of the original array.
1012 *
1013 * The returned value is the total number of bytes received, or an error.
1014 */
1015
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1016 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1017 struct kvec *vec, size_t num, size_t size, int flags)
1018 {
1019 msg->msg_control_is_user = false;
1020 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1021 return sock_recvmsg(sock, msg, flags);
1022 }
1023 EXPORT_SYMBOL(kernel_recvmsg);
1024
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)1025 static ssize_t sock_sendpage(struct file *file, struct page *page,
1026 int offset, size_t size, loff_t *ppos, int more)
1027 {
1028 struct socket *sock;
1029 int flags;
1030
1031 sock = file->private_data;
1032
1033 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1034 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1035 flags |= more;
1036
1037 return kernel_sendpage(sock, page, offset, size, flags);
1038 }
1039
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1040 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1041 struct pipe_inode_info *pipe, size_t len,
1042 unsigned int flags)
1043 {
1044 struct socket *sock = file->private_data;
1045
1046 if (unlikely(!sock->ops->splice_read))
1047 return generic_file_splice_read(file, ppos, pipe, len, flags);
1048
1049 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1050 }
1051
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1052 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1053 {
1054 struct file *file = iocb->ki_filp;
1055 struct socket *sock = file->private_data;
1056 struct msghdr msg = {.msg_iter = *to,
1057 .msg_iocb = iocb};
1058 ssize_t res;
1059
1060 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1061 msg.msg_flags = MSG_DONTWAIT;
1062
1063 if (iocb->ki_pos != 0)
1064 return -ESPIPE;
1065
1066 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1067 return 0;
1068
1069 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1070 *to = msg.msg_iter;
1071 return res;
1072 }
1073
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1074 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1075 {
1076 struct file *file = iocb->ki_filp;
1077 struct socket *sock = file->private_data;
1078 struct msghdr msg = {.msg_iter = *from,
1079 .msg_iocb = iocb};
1080 ssize_t res;
1081
1082 if (iocb->ki_pos != 0)
1083 return -ESPIPE;
1084
1085 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1086 msg.msg_flags = MSG_DONTWAIT;
1087
1088 if (sock->type == SOCK_SEQPACKET)
1089 msg.msg_flags |= MSG_EOR;
1090
1091 res = __sock_sendmsg(sock, &msg);
1092 *from = msg.msg_iter;
1093 return res;
1094 }
1095
1096 /*
1097 * Atomic setting of ioctl hooks to avoid race
1098 * with module unload.
1099 */
1100
1101 static DEFINE_MUTEX(br_ioctl_mutex);
1102 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1103 unsigned int cmd, struct ifreq *ifr,
1104 void __user *uarg);
1105
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1106 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1107 unsigned int cmd, struct ifreq *ifr,
1108 void __user *uarg))
1109 {
1110 mutex_lock(&br_ioctl_mutex);
1111 br_ioctl_hook = hook;
1112 mutex_unlock(&br_ioctl_mutex);
1113 }
1114 EXPORT_SYMBOL(brioctl_set);
1115
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1116 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1117 struct ifreq *ifr, void __user *uarg)
1118 {
1119 int err = -ENOPKG;
1120
1121 if (!br_ioctl_hook)
1122 request_module("bridge");
1123
1124 mutex_lock(&br_ioctl_mutex);
1125 if (br_ioctl_hook)
1126 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1127 mutex_unlock(&br_ioctl_mutex);
1128
1129 return err;
1130 }
1131
1132 static DEFINE_MUTEX(vlan_ioctl_mutex);
1133 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1134
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1135 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1136 {
1137 mutex_lock(&vlan_ioctl_mutex);
1138 vlan_ioctl_hook = hook;
1139 mutex_unlock(&vlan_ioctl_mutex);
1140 }
1141 EXPORT_SYMBOL(vlan_ioctl_set);
1142
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1143 static long sock_do_ioctl(struct net *net, struct socket *sock,
1144 unsigned int cmd, unsigned long arg)
1145 {
1146 struct ifreq ifr;
1147 bool need_copyout;
1148 int err;
1149 void __user *argp = (void __user *)arg;
1150 void __user *data;
1151
1152 err = sock->ops->ioctl(sock, cmd, arg);
1153
1154 /*
1155 * If this ioctl is unknown try to hand it down
1156 * to the NIC driver.
1157 */
1158 if (err != -ENOIOCTLCMD)
1159 return err;
1160
1161 if (!is_socket_ioctl_cmd(cmd))
1162 return -ENOTTY;
1163
1164 if (get_user_ifreq(&ifr, &data, argp))
1165 return -EFAULT;
1166 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1167 if (!err && need_copyout)
1168 if (put_user_ifreq(&ifr, argp))
1169 return -EFAULT;
1170
1171 return err;
1172 }
1173
1174 /*
1175 * With an ioctl, arg may well be a user mode pointer, but we don't know
1176 * what to do with it - that's up to the protocol still.
1177 */
1178
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1179 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1180 {
1181 struct socket *sock;
1182 struct sock *sk;
1183 void __user *argp = (void __user *)arg;
1184 int pid, err;
1185 struct net *net;
1186
1187 sock = file->private_data;
1188 sk = sock->sk;
1189 net = sock_net(sk);
1190 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1191 struct ifreq ifr;
1192 void __user *data;
1193 bool need_copyout;
1194 if (get_user_ifreq(&ifr, &data, argp))
1195 return -EFAULT;
1196 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1197 if (!err && need_copyout)
1198 if (put_user_ifreq(&ifr, argp))
1199 return -EFAULT;
1200 } else
1201 #ifdef CONFIG_WEXT_CORE
1202 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1203 err = wext_handle_ioctl(net, cmd, argp);
1204 } else
1205 #endif
1206 switch (cmd) {
1207 case FIOSETOWN:
1208 case SIOCSPGRP:
1209 err = -EFAULT;
1210 if (get_user(pid, (int __user *)argp))
1211 break;
1212 err = f_setown(sock->file, pid, 1);
1213 break;
1214 case FIOGETOWN:
1215 case SIOCGPGRP:
1216 err = put_user(f_getown(sock->file),
1217 (int __user *)argp);
1218 break;
1219 case SIOCGIFBR:
1220 case SIOCSIFBR:
1221 case SIOCBRADDBR:
1222 case SIOCBRDELBR:
1223 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1224 break;
1225 case SIOCGIFVLAN:
1226 case SIOCSIFVLAN:
1227 err = -ENOPKG;
1228 if (!vlan_ioctl_hook)
1229 request_module("8021q");
1230
1231 mutex_lock(&vlan_ioctl_mutex);
1232 if (vlan_ioctl_hook)
1233 err = vlan_ioctl_hook(net, argp);
1234 mutex_unlock(&vlan_ioctl_mutex);
1235 break;
1236 case SIOCGSKNS:
1237 err = -EPERM;
1238 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1239 break;
1240
1241 err = open_related_ns(&net->ns, get_net_ns);
1242 break;
1243 case SIOCGSTAMP_OLD:
1244 case SIOCGSTAMPNS_OLD:
1245 if (!sock->ops->gettstamp) {
1246 err = -ENOIOCTLCMD;
1247 break;
1248 }
1249 err = sock->ops->gettstamp(sock, argp,
1250 cmd == SIOCGSTAMP_OLD,
1251 !IS_ENABLED(CONFIG_64BIT));
1252 break;
1253 case SIOCGSTAMP_NEW:
1254 case SIOCGSTAMPNS_NEW:
1255 if (!sock->ops->gettstamp) {
1256 err = -ENOIOCTLCMD;
1257 break;
1258 }
1259 err = sock->ops->gettstamp(sock, argp,
1260 cmd == SIOCGSTAMP_NEW,
1261 false);
1262 break;
1263
1264 case SIOCGIFCONF:
1265 err = dev_ifconf(net, argp);
1266 break;
1267
1268 default:
1269 err = sock_do_ioctl(net, sock, cmd, arg);
1270 break;
1271 }
1272 return err;
1273 }
1274
1275 /**
1276 * sock_create_lite - creates a socket
1277 * @family: protocol family (AF_INET, ...)
1278 * @type: communication type (SOCK_STREAM, ...)
1279 * @protocol: protocol (0, ...)
1280 * @res: new socket
1281 *
1282 * Creates a new socket and assigns it to @res, passing through LSM.
1283 * The new socket initialization is not complete, see kernel_accept().
1284 * Returns 0 or an error. On failure @res is set to %NULL.
1285 * This function internally uses GFP_KERNEL.
1286 */
1287
sock_create_lite(int family,int type,int protocol,struct socket ** res)1288 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1289 {
1290 int err;
1291 struct socket *sock = NULL;
1292
1293 err = security_socket_create(family, type, protocol, 1);
1294 if (err)
1295 goto out;
1296
1297 sock = sock_alloc();
1298 if (!sock) {
1299 err = -ENOMEM;
1300 goto out;
1301 }
1302
1303 sock->type = type;
1304 err = security_socket_post_create(sock, family, type, protocol, 1);
1305 if (err)
1306 goto out_release;
1307
1308 out:
1309 *res = sock;
1310 return err;
1311 out_release:
1312 sock_release(sock);
1313 sock = NULL;
1314 goto out;
1315 }
1316 EXPORT_SYMBOL(sock_create_lite);
1317
1318 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1319 static __poll_t sock_poll(struct file *file, poll_table *wait)
1320 {
1321 struct socket *sock = file->private_data;
1322 __poll_t events = poll_requested_events(wait), flag = 0;
1323
1324 if (!sock->ops->poll)
1325 return 0;
1326
1327 if (sk_can_busy_loop(sock->sk)) {
1328 /* poll once if requested by the syscall */
1329 if (events & POLL_BUSY_LOOP)
1330 sk_busy_loop(sock->sk, 1);
1331
1332 /* if this socket can poll_ll, tell the system call */
1333 flag = POLL_BUSY_LOOP;
1334 }
1335
1336 return sock->ops->poll(file, sock, wait) | flag;
1337 }
1338
sock_mmap(struct file * file,struct vm_area_struct * vma)1339 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1340 {
1341 struct socket *sock = file->private_data;
1342
1343 return sock->ops->mmap(file, sock, vma);
1344 }
1345
sock_close(struct inode * inode,struct file * filp)1346 static int sock_close(struct inode *inode, struct file *filp)
1347 {
1348 __sock_release(SOCKET_I(inode), inode);
1349 return 0;
1350 }
1351
1352 /*
1353 * Update the socket async list
1354 *
1355 * Fasync_list locking strategy.
1356 *
1357 * 1. fasync_list is modified only under process context socket lock
1358 * i.e. under semaphore.
1359 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1360 * or under socket lock
1361 */
1362
sock_fasync(int fd,struct file * filp,int on)1363 static int sock_fasync(int fd, struct file *filp, int on)
1364 {
1365 struct socket *sock = filp->private_data;
1366 struct sock *sk = sock->sk;
1367 struct socket_wq *wq = &sock->wq;
1368
1369 if (sk == NULL)
1370 return -EINVAL;
1371
1372 lock_sock(sk);
1373 fasync_helper(fd, filp, on, &wq->fasync_list);
1374
1375 if (!wq->fasync_list)
1376 sock_reset_flag(sk, SOCK_FASYNC);
1377 else
1378 sock_set_flag(sk, SOCK_FASYNC);
1379
1380 release_sock(sk);
1381 return 0;
1382 }
1383
1384 /* This function may be called only under rcu_lock */
1385
sock_wake_async(struct socket_wq * wq,int how,int band)1386 int sock_wake_async(struct socket_wq *wq, int how, int band)
1387 {
1388 if (!wq || !wq->fasync_list)
1389 return -1;
1390
1391 switch (how) {
1392 case SOCK_WAKE_WAITD:
1393 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1394 break;
1395 goto call_kill;
1396 case SOCK_WAKE_SPACE:
1397 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1398 break;
1399 fallthrough;
1400 case SOCK_WAKE_IO:
1401 call_kill:
1402 kill_fasync(&wq->fasync_list, SIGIO, band);
1403 break;
1404 case SOCK_WAKE_URG:
1405 kill_fasync(&wq->fasync_list, SIGURG, band);
1406 }
1407
1408 return 0;
1409 }
1410 EXPORT_SYMBOL(sock_wake_async);
1411
1412 /**
1413 * __sock_create - creates a socket
1414 * @net: net namespace
1415 * @family: protocol family (AF_INET, ...)
1416 * @type: communication type (SOCK_STREAM, ...)
1417 * @protocol: protocol (0, ...)
1418 * @res: new socket
1419 * @kern: boolean for kernel space sockets
1420 *
1421 * Creates a new socket and assigns it to @res, passing through LSM.
1422 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1423 * be set to true if the socket resides in kernel space.
1424 * This function internally uses GFP_KERNEL.
1425 */
1426
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1427 int __sock_create(struct net *net, int family, int type, int protocol,
1428 struct socket **res, int kern)
1429 {
1430 int err;
1431 struct socket *sock;
1432 const struct net_proto_family *pf;
1433
1434 /*
1435 * Check protocol is in range
1436 */
1437 if (family < 0 || family >= NPROTO)
1438 return -EAFNOSUPPORT;
1439 if (type < 0 || type >= SOCK_MAX)
1440 return -EINVAL;
1441
1442 /* Compatibility.
1443
1444 This uglymoron is moved from INET layer to here to avoid
1445 deadlock in module load.
1446 */
1447 if (family == PF_INET && type == SOCK_PACKET) {
1448 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1449 current->comm);
1450 family = PF_PACKET;
1451 }
1452
1453 err = security_socket_create(family, type, protocol, kern);
1454 if (err)
1455 return err;
1456
1457 /*
1458 * Allocate the socket and allow the family to set things up. if
1459 * the protocol is 0, the family is instructed to select an appropriate
1460 * default.
1461 */
1462 sock = sock_alloc();
1463 if (!sock) {
1464 net_warn_ratelimited("socket: no more sockets\n");
1465 return -ENFILE; /* Not exactly a match, but its the
1466 closest posix thing */
1467 }
1468
1469 sock->type = type;
1470
1471 #ifdef CONFIG_MODULES
1472 /* Attempt to load a protocol module if the find failed.
1473 *
1474 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1475 * requested real, full-featured networking support upon configuration.
1476 * Otherwise module support will break!
1477 */
1478 if (rcu_access_pointer(net_families[family]) == NULL)
1479 request_module("net-pf-%d", family);
1480 #endif
1481
1482 rcu_read_lock();
1483 pf = rcu_dereference(net_families[family]);
1484 err = -EAFNOSUPPORT;
1485 if (!pf)
1486 goto out_release;
1487
1488 /*
1489 * We will call the ->create function, that possibly is in a loadable
1490 * module, so we have to bump that loadable module refcnt first.
1491 */
1492 if (!try_module_get(pf->owner))
1493 goto out_release;
1494
1495 /* Now protected by module ref count */
1496 rcu_read_unlock();
1497
1498 err = pf->create(net, sock, protocol, kern);
1499 if (err < 0)
1500 goto out_module_put;
1501
1502 /*
1503 * Now to bump the refcnt of the [loadable] module that owns this
1504 * socket at sock_release time we decrement its refcnt.
1505 */
1506 if (!try_module_get(sock->ops->owner))
1507 goto out_module_busy;
1508
1509 /*
1510 * Now that we're done with the ->create function, the [loadable]
1511 * module can have its refcnt decremented
1512 */
1513 module_put(pf->owner);
1514 err = security_socket_post_create(sock, family, type, protocol, kern);
1515 if (err)
1516 goto out_sock_release;
1517 *res = sock;
1518
1519 return 0;
1520
1521 out_module_busy:
1522 err = -EAFNOSUPPORT;
1523 out_module_put:
1524 sock->ops = NULL;
1525 module_put(pf->owner);
1526 out_sock_release:
1527 sock_release(sock);
1528 return err;
1529
1530 out_release:
1531 rcu_read_unlock();
1532 goto out_sock_release;
1533 }
1534 EXPORT_SYMBOL(__sock_create);
1535
1536 /**
1537 * sock_create - creates a socket
1538 * @family: protocol family (AF_INET, ...)
1539 * @type: communication type (SOCK_STREAM, ...)
1540 * @protocol: protocol (0, ...)
1541 * @res: new socket
1542 *
1543 * A wrapper around __sock_create().
1544 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1545 */
1546
sock_create(int family,int type,int protocol,struct socket ** res)1547 int sock_create(int family, int type, int protocol, struct socket **res)
1548 {
1549 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1550 }
1551 EXPORT_SYMBOL(sock_create);
1552
1553 /**
1554 * sock_create_kern - creates a socket (kernel space)
1555 * @net: net namespace
1556 * @family: protocol family (AF_INET, ...)
1557 * @type: communication type (SOCK_STREAM, ...)
1558 * @protocol: protocol (0, ...)
1559 * @res: new socket
1560 *
1561 * A wrapper around __sock_create().
1562 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1563 */
1564
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1565 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1566 {
1567 return __sock_create(net, family, type, protocol, res, 1);
1568 }
1569 EXPORT_SYMBOL(sock_create_kern);
1570
__sys_socket(int family,int type,int protocol)1571 int __sys_socket(int family, int type, int protocol)
1572 {
1573 int retval;
1574 struct socket *sock;
1575 int flags;
1576
1577 /* Check the SOCK_* constants for consistency. */
1578 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1579 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1580 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1581 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1582
1583 flags = type & ~SOCK_TYPE_MASK;
1584 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1585 return -EINVAL;
1586 type &= SOCK_TYPE_MASK;
1587
1588 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1589 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1590
1591 retval = sock_create(family, type, protocol, &sock);
1592 if (retval < 0)
1593 return retval;
1594
1595 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1596 }
1597
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1598 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1599 {
1600 return __sys_socket(family, type, protocol);
1601 }
1602
1603 /*
1604 * Create a pair of connected sockets.
1605 */
1606
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1607 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1608 {
1609 struct socket *sock1, *sock2;
1610 int fd1, fd2, err;
1611 struct file *newfile1, *newfile2;
1612 int flags;
1613
1614 flags = type & ~SOCK_TYPE_MASK;
1615 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1616 return -EINVAL;
1617 type &= SOCK_TYPE_MASK;
1618
1619 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1620 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1621
1622 /*
1623 * reserve descriptors and make sure we won't fail
1624 * to return them to userland.
1625 */
1626 fd1 = get_unused_fd_flags(flags);
1627 if (unlikely(fd1 < 0))
1628 return fd1;
1629
1630 fd2 = get_unused_fd_flags(flags);
1631 if (unlikely(fd2 < 0)) {
1632 put_unused_fd(fd1);
1633 return fd2;
1634 }
1635
1636 err = put_user(fd1, &usockvec[0]);
1637 if (err)
1638 goto out;
1639
1640 err = put_user(fd2, &usockvec[1]);
1641 if (err)
1642 goto out;
1643
1644 /*
1645 * Obtain the first socket and check if the underlying protocol
1646 * supports the socketpair call.
1647 */
1648
1649 err = sock_create(family, type, protocol, &sock1);
1650 if (unlikely(err < 0))
1651 goto out;
1652
1653 err = sock_create(family, type, protocol, &sock2);
1654 if (unlikely(err < 0)) {
1655 sock_release(sock1);
1656 goto out;
1657 }
1658
1659 err = security_socket_socketpair(sock1, sock2);
1660 if (unlikely(err)) {
1661 sock_release(sock2);
1662 sock_release(sock1);
1663 goto out;
1664 }
1665
1666 err = sock1->ops->socketpair(sock1, sock2);
1667 if (unlikely(err < 0)) {
1668 sock_release(sock2);
1669 sock_release(sock1);
1670 goto out;
1671 }
1672
1673 newfile1 = sock_alloc_file(sock1, flags, NULL);
1674 if (IS_ERR(newfile1)) {
1675 err = PTR_ERR(newfile1);
1676 sock_release(sock2);
1677 goto out;
1678 }
1679
1680 newfile2 = sock_alloc_file(sock2, flags, NULL);
1681 if (IS_ERR(newfile2)) {
1682 err = PTR_ERR(newfile2);
1683 fput(newfile1);
1684 goto out;
1685 }
1686
1687 audit_fd_pair(fd1, fd2);
1688
1689 fd_install(fd1, newfile1);
1690 fd_install(fd2, newfile2);
1691 return 0;
1692
1693 out:
1694 put_unused_fd(fd2);
1695 put_unused_fd(fd1);
1696 return err;
1697 }
1698
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1699 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1700 int __user *, usockvec)
1701 {
1702 return __sys_socketpair(family, type, protocol, usockvec);
1703 }
1704
1705 /*
1706 * Bind a name to a socket. Nothing much to do here since it's
1707 * the protocol's responsibility to handle the local address.
1708 *
1709 * We move the socket address to kernel space before we call
1710 * the protocol layer (having also checked the address is ok).
1711 */
1712
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1713 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1714 {
1715 struct socket *sock;
1716 struct sockaddr_storage address;
1717 int err, fput_needed;
1718
1719 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 if (sock) {
1721 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1722 if (!err) {
1723 err = security_socket_bind(sock,
1724 (struct sockaddr *)&address,
1725 addrlen);
1726 if (!err)
1727 err = sock->ops->bind(sock,
1728 (struct sockaddr *)
1729 &address, addrlen);
1730 }
1731 fput_light(sock->file, fput_needed);
1732 }
1733 return err;
1734 }
1735
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1736 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1737 {
1738 return __sys_bind(fd, umyaddr, addrlen);
1739 }
1740
1741 /*
1742 * Perform a listen. Basically, we allow the protocol to do anything
1743 * necessary for a listen, and if that works, we mark the socket as
1744 * ready for listening.
1745 */
1746
__sys_listen(int fd,int backlog)1747 int __sys_listen(int fd, int backlog)
1748 {
1749 struct socket *sock;
1750 int err, fput_needed;
1751 int somaxconn;
1752
1753 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1754 if (sock) {
1755 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1756 if ((unsigned int)backlog > somaxconn)
1757 backlog = somaxconn;
1758
1759 err = security_socket_listen(sock, backlog);
1760 if (!err)
1761 err = sock->ops->listen(sock, backlog);
1762
1763 fput_light(sock->file, fput_needed);
1764 }
1765 return err;
1766 }
1767
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1768 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1769 {
1770 return __sys_listen(fd, backlog);
1771 }
1772
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1773 struct file *do_accept(struct file *file, unsigned file_flags,
1774 struct sockaddr __user *upeer_sockaddr,
1775 int __user *upeer_addrlen, int flags)
1776 {
1777 struct socket *sock, *newsock;
1778 struct file *newfile;
1779 int err, len;
1780 struct sockaddr_storage address;
1781
1782 sock = sock_from_file(file);
1783 if (!sock)
1784 return ERR_PTR(-ENOTSOCK);
1785
1786 newsock = sock_alloc();
1787 if (!newsock)
1788 return ERR_PTR(-ENFILE);
1789
1790 newsock->type = sock->type;
1791 newsock->ops = sock->ops;
1792
1793 /*
1794 * We don't need try_module_get here, as the listening socket (sock)
1795 * has the protocol module (sock->ops->owner) held.
1796 */
1797 __module_get(newsock->ops->owner);
1798
1799 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1800 if (IS_ERR(newfile))
1801 return newfile;
1802
1803 err = security_socket_accept(sock, newsock);
1804 if (err)
1805 goto out_fd;
1806
1807 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1808 false);
1809 if (err < 0)
1810 goto out_fd;
1811
1812 if (upeer_sockaddr) {
1813 len = newsock->ops->getname(newsock,
1814 (struct sockaddr *)&address, 2);
1815 if (len < 0) {
1816 err = -ECONNABORTED;
1817 goto out_fd;
1818 }
1819 err = move_addr_to_user(&address,
1820 len, upeer_sockaddr, upeer_addrlen);
1821 if (err < 0)
1822 goto out_fd;
1823 }
1824
1825 /* File flags are not inherited via accept() unlike another OSes. */
1826 return newfile;
1827 out_fd:
1828 fput(newfile);
1829 return ERR_PTR(err);
1830 }
1831
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1832 int __sys_accept4_file(struct file *file, unsigned file_flags,
1833 struct sockaddr __user *upeer_sockaddr,
1834 int __user *upeer_addrlen, int flags,
1835 unsigned long nofile)
1836 {
1837 struct file *newfile;
1838 int newfd;
1839
1840 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1841 return -EINVAL;
1842
1843 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1844 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1845
1846 newfd = __get_unused_fd_flags(flags, nofile);
1847 if (unlikely(newfd < 0))
1848 return newfd;
1849
1850 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1851 flags);
1852 if (IS_ERR(newfile)) {
1853 put_unused_fd(newfd);
1854 return PTR_ERR(newfile);
1855 }
1856 fd_install(newfd, newfile);
1857 return newfd;
1858 }
1859
1860 /*
1861 * For accept, we attempt to create a new socket, set up the link
1862 * with the client, wake up the client, then return the new
1863 * connected fd. We collect the address of the connector in kernel
1864 * space and move it to user at the very end. This is unclean because
1865 * we open the socket then return an error.
1866 *
1867 * 1003.1g adds the ability to recvmsg() to query connection pending
1868 * status to recvmsg. We need to add that support in a way thats
1869 * clean when we restructure accept also.
1870 */
1871
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1872 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1873 int __user *upeer_addrlen, int flags)
1874 {
1875 int ret = -EBADF;
1876 struct fd f;
1877
1878 f = fdget(fd);
1879 if (f.file) {
1880 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1881 upeer_addrlen, flags,
1882 rlimit(RLIMIT_NOFILE));
1883 fdput(f);
1884 }
1885
1886 return ret;
1887 }
1888
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1889 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1890 int __user *, upeer_addrlen, int, flags)
1891 {
1892 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1893 }
1894
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1895 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1896 int __user *, upeer_addrlen)
1897 {
1898 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1899 }
1900
1901 /*
1902 * Attempt to connect to a socket with the server address. The address
1903 * is in user space so we verify it is OK and move it to kernel space.
1904 *
1905 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1906 * break bindings
1907 *
1908 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1909 * other SEQPACKET protocols that take time to connect() as it doesn't
1910 * include the -EINPROGRESS status for such sockets.
1911 */
1912
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1913 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1914 int addrlen, int file_flags)
1915 {
1916 struct socket *sock;
1917 int err;
1918
1919 sock = sock_from_file(file);
1920 if (!sock) {
1921 err = -ENOTSOCK;
1922 goto out;
1923 }
1924
1925 err =
1926 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1927 if (err)
1928 goto out;
1929
1930 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1931 sock->file->f_flags | file_flags);
1932 out:
1933 return err;
1934 }
1935
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1936 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1937 {
1938 int ret = -EBADF;
1939 struct fd f;
1940
1941 f = fdget(fd);
1942 if (f.file) {
1943 struct sockaddr_storage address;
1944
1945 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1946 if (!ret)
1947 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1948 fdput(f);
1949 }
1950
1951 return ret;
1952 }
1953
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1954 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1955 int, addrlen)
1956 {
1957 return __sys_connect(fd, uservaddr, addrlen);
1958 }
1959
1960 /*
1961 * Get the local address ('name') of a socket object. Move the obtained
1962 * name to user space.
1963 */
1964
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1965 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1966 int __user *usockaddr_len)
1967 {
1968 struct socket *sock;
1969 struct sockaddr_storage address;
1970 int err, fput_needed;
1971
1972 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 if (!sock)
1974 goto out;
1975
1976 err = security_socket_getsockname(sock);
1977 if (err)
1978 goto out_put;
1979
1980 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1981 if (err < 0)
1982 goto out_put;
1983 /* "err" is actually length in this case */
1984 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1985
1986 out_put:
1987 fput_light(sock->file, fput_needed);
1988 out:
1989 return err;
1990 }
1991
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1992 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1993 int __user *, usockaddr_len)
1994 {
1995 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1996 }
1997
1998 /*
1999 * Get the remote address ('name') of a socket object. Move the obtained
2000 * name to user space.
2001 */
2002
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2003 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2004 int __user *usockaddr_len)
2005 {
2006 struct socket *sock;
2007 struct sockaddr_storage address;
2008 int err, fput_needed;
2009
2010 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011 if (sock != NULL) {
2012 err = security_socket_getpeername(sock);
2013 if (err) {
2014 fput_light(sock->file, fput_needed);
2015 return err;
2016 }
2017
2018 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2019 if (err >= 0)
2020 /* "err" is actually length in this case */
2021 err = move_addr_to_user(&address, err, usockaddr,
2022 usockaddr_len);
2023 fput_light(sock->file, fput_needed);
2024 }
2025 return err;
2026 }
2027
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2028 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2029 int __user *, usockaddr_len)
2030 {
2031 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2032 }
2033
2034 /*
2035 * Send a datagram to a given address. We move the address into kernel
2036 * space and check the user space data area is readable before invoking
2037 * the protocol.
2038 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2039 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2040 struct sockaddr __user *addr, int addr_len)
2041 {
2042 struct socket *sock;
2043 struct sockaddr_storage address;
2044 int err;
2045 struct msghdr msg;
2046 struct iovec iov;
2047 int fput_needed;
2048
2049 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2050 if (unlikely(err))
2051 return err;
2052 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053 if (!sock)
2054 goto out;
2055
2056 msg.msg_name = NULL;
2057 msg.msg_control = NULL;
2058 msg.msg_controllen = 0;
2059 msg.msg_namelen = 0;
2060 if (addr) {
2061 err = move_addr_to_kernel(addr, addr_len, &address);
2062 if (err < 0)
2063 goto out_put;
2064 msg.msg_name = (struct sockaddr *)&address;
2065 msg.msg_namelen = addr_len;
2066 }
2067 if (sock->file->f_flags & O_NONBLOCK)
2068 flags |= MSG_DONTWAIT;
2069 msg.msg_flags = flags;
2070 err = __sock_sendmsg(sock, &msg);
2071
2072 out_put:
2073 fput_light(sock->file, fput_needed);
2074 out:
2075 return err;
2076 }
2077
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2078 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2079 unsigned int, flags, struct sockaddr __user *, addr,
2080 int, addr_len)
2081 {
2082 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2083 }
2084
2085 /*
2086 * Send a datagram down a socket.
2087 */
2088
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2089 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2090 unsigned int, flags)
2091 {
2092 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2093 }
2094
2095 /*
2096 * Receive a frame from the socket and optionally record the address of the
2097 * sender. We verify the buffers are writable and if needed move the
2098 * sender address from kernel to user space.
2099 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2100 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2101 struct sockaddr __user *addr, int __user *addr_len)
2102 {
2103 struct socket *sock;
2104 struct iovec iov;
2105 struct msghdr msg;
2106 struct sockaddr_storage address;
2107 int err, err2;
2108 int fput_needed;
2109
2110 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2111 if (unlikely(err))
2112 return err;
2113 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2114 if (!sock)
2115 goto out;
2116
2117 msg.msg_control = NULL;
2118 msg.msg_controllen = 0;
2119 /* Save some cycles and don't copy the address if not needed */
2120 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2121 /* We assume all kernel code knows the size of sockaddr_storage */
2122 msg.msg_namelen = 0;
2123 msg.msg_iocb = NULL;
2124 msg.msg_flags = 0;
2125 if (sock->file->f_flags & O_NONBLOCK)
2126 flags |= MSG_DONTWAIT;
2127 err = sock_recvmsg(sock, &msg, flags);
2128
2129 if (err >= 0 && addr != NULL) {
2130 err2 = move_addr_to_user(&address,
2131 msg.msg_namelen, addr, addr_len);
2132 if (err2 < 0)
2133 err = err2;
2134 }
2135
2136 fput_light(sock->file, fput_needed);
2137 out:
2138 return err;
2139 }
2140
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2141 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2142 unsigned int, flags, struct sockaddr __user *, addr,
2143 int __user *, addr_len)
2144 {
2145 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2146 }
2147
2148 /*
2149 * Receive a datagram from a socket.
2150 */
2151
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2152 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2153 unsigned int, flags)
2154 {
2155 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2156 }
2157
sock_use_custom_sol_socket(const struct socket * sock)2158 static bool sock_use_custom_sol_socket(const struct socket *sock)
2159 {
2160 const struct sock *sk = sock->sk;
2161
2162 /* Use sock->ops->setsockopt() for MPTCP */
2163 return IS_ENABLED(CONFIG_MPTCP) &&
2164 sk->sk_protocol == IPPROTO_MPTCP &&
2165 sk->sk_type == SOCK_STREAM &&
2166 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2167 }
2168
2169 /*
2170 * Set a socket option. Because we don't know the option lengths we have
2171 * to pass the user mode parameter for the protocols to sort out.
2172 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2173 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2174 int optlen)
2175 {
2176 sockptr_t optval = USER_SOCKPTR(user_optval);
2177 char *kernel_optval = NULL;
2178 int err, fput_needed;
2179 struct socket *sock;
2180
2181 if (optlen < 0)
2182 return -EINVAL;
2183
2184 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 if (!sock)
2186 return err;
2187
2188 err = security_socket_setsockopt(sock, level, optname);
2189 if (err)
2190 goto out_put;
2191
2192 if (!in_compat_syscall())
2193 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2194 user_optval, &optlen,
2195 &kernel_optval);
2196 if (err < 0)
2197 goto out_put;
2198 if (err > 0) {
2199 err = 0;
2200 goto out_put;
2201 }
2202
2203 if (kernel_optval)
2204 optval = KERNEL_SOCKPTR(kernel_optval);
2205 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2206 err = sock_setsockopt(sock, level, optname, optval, optlen);
2207 else if (unlikely(!sock->ops->setsockopt))
2208 err = -EOPNOTSUPP;
2209 else
2210 err = sock->ops->setsockopt(sock, level, optname, optval,
2211 optlen);
2212 kfree(kernel_optval);
2213 out_put:
2214 fput_light(sock->file, fput_needed);
2215 return err;
2216 }
2217
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2218 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2219 char __user *, optval, int, optlen)
2220 {
2221 return __sys_setsockopt(fd, level, optname, optval, optlen);
2222 }
2223
2224 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2225 int optname));
2226
2227 /*
2228 * Get a socket option. Because we don't know the option lengths we have
2229 * to pass a user mode parameter for the protocols to sort out.
2230 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2231 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2232 int __user *optlen)
2233 {
2234 int err, fput_needed;
2235 struct socket *sock;
2236 int max_optlen;
2237
2238 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2239 if (!sock)
2240 return err;
2241
2242 err = security_socket_getsockopt(sock, level, optname);
2243 if (err)
2244 goto out_put;
2245
2246 if (!in_compat_syscall())
2247 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2248
2249 if (level == SOL_SOCKET)
2250 err = sock_getsockopt(sock, level, optname, optval, optlen);
2251 else if (unlikely(!sock->ops->getsockopt))
2252 err = -EOPNOTSUPP;
2253 else
2254 err = sock->ops->getsockopt(sock, level, optname, optval,
2255 optlen);
2256
2257 if (!in_compat_syscall())
2258 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2259 optval, optlen, max_optlen,
2260 err);
2261 out_put:
2262 fput_light(sock->file, fput_needed);
2263 return err;
2264 }
2265
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2266 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2267 char __user *, optval, int __user *, optlen)
2268 {
2269 return __sys_getsockopt(fd, level, optname, optval, optlen);
2270 }
2271
2272 /*
2273 * Shutdown a socket.
2274 */
2275
__sys_shutdown_sock(struct socket * sock,int how)2276 int __sys_shutdown_sock(struct socket *sock, int how)
2277 {
2278 int err;
2279
2280 err = security_socket_shutdown(sock, how);
2281 if (!err)
2282 err = sock->ops->shutdown(sock, how);
2283
2284 return err;
2285 }
2286
__sys_shutdown(int fd,int how)2287 int __sys_shutdown(int fd, int how)
2288 {
2289 int err, fput_needed;
2290 struct socket *sock;
2291
2292 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2293 if (sock != NULL) {
2294 err = __sys_shutdown_sock(sock, how);
2295 fput_light(sock->file, fput_needed);
2296 }
2297 return err;
2298 }
2299
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2300 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2301 {
2302 return __sys_shutdown(fd, how);
2303 }
2304
2305 /* A couple of helpful macros for getting the address of the 32/64 bit
2306 * fields which are the same type (int / unsigned) on our platforms.
2307 */
2308 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2309 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2310 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2311
2312 struct used_address {
2313 struct sockaddr_storage name;
2314 unsigned int name_len;
2315 };
2316
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2317 int __copy_msghdr_from_user(struct msghdr *kmsg,
2318 struct user_msghdr __user *umsg,
2319 struct sockaddr __user **save_addr,
2320 struct iovec __user **uiov, size_t *nsegs)
2321 {
2322 struct user_msghdr msg;
2323 ssize_t err;
2324
2325 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2326 return -EFAULT;
2327
2328 kmsg->msg_control_is_user = true;
2329 kmsg->msg_control_user = msg.msg_control;
2330 kmsg->msg_controllen = msg.msg_controllen;
2331 kmsg->msg_flags = msg.msg_flags;
2332
2333 kmsg->msg_namelen = msg.msg_namelen;
2334 if (!msg.msg_name)
2335 kmsg->msg_namelen = 0;
2336
2337 if (kmsg->msg_namelen < 0)
2338 return -EINVAL;
2339
2340 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2341 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2342
2343 if (save_addr)
2344 *save_addr = msg.msg_name;
2345
2346 if (msg.msg_name && kmsg->msg_namelen) {
2347 if (!save_addr) {
2348 err = move_addr_to_kernel(msg.msg_name,
2349 kmsg->msg_namelen,
2350 kmsg->msg_name);
2351 if (err < 0)
2352 return err;
2353 }
2354 } else {
2355 kmsg->msg_name = NULL;
2356 kmsg->msg_namelen = 0;
2357 }
2358
2359 if (msg.msg_iovlen > UIO_MAXIOV)
2360 return -EMSGSIZE;
2361
2362 kmsg->msg_iocb = NULL;
2363 *uiov = msg.msg_iov;
2364 *nsegs = msg.msg_iovlen;
2365 return 0;
2366 }
2367
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2368 static int copy_msghdr_from_user(struct msghdr *kmsg,
2369 struct user_msghdr __user *umsg,
2370 struct sockaddr __user **save_addr,
2371 struct iovec **iov)
2372 {
2373 struct user_msghdr msg;
2374 ssize_t err;
2375
2376 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2377 &msg.msg_iovlen);
2378 if (err)
2379 return err;
2380
2381 err = import_iovec(save_addr ? READ : WRITE,
2382 msg.msg_iov, msg.msg_iovlen,
2383 UIO_FASTIOV, iov, &kmsg->msg_iter);
2384 return err < 0 ? err : 0;
2385 }
2386
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2387 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2388 unsigned int flags, struct used_address *used_address,
2389 unsigned int allowed_msghdr_flags)
2390 {
2391 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2392 __aligned(sizeof(__kernel_size_t));
2393 /* 20 is size of ipv6_pktinfo */
2394 unsigned char *ctl_buf = ctl;
2395 int ctl_len;
2396 ssize_t err;
2397
2398 err = -ENOBUFS;
2399
2400 if (msg_sys->msg_controllen > INT_MAX)
2401 goto out;
2402 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2403 ctl_len = msg_sys->msg_controllen;
2404 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2405 err =
2406 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2407 sizeof(ctl));
2408 if (err)
2409 goto out;
2410 ctl_buf = msg_sys->msg_control;
2411 ctl_len = msg_sys->msg_controllen;
2412 } else if (ctl_len) {
2413 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2414 CMSG_ALIGN(sizeof(struct cmsghdr)));
2415 if (ctl_len > sizeof(ctl)) {
2416 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2417 if (ctl_buf == NULL)
2418 goto out;
2419 }
2420 err = -EFAULT;
2421 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2422 goto out_freectl;
2423 msg_sys->msg_control = ctl_buf;
2424 msg_sys->msg_control_is_user = false;
2425 }
2426 msg_sys->msg_flags = flags;
2427
2428 if (sock->file->f_flags & O_NONBLOCK)
2429 msg_sys->msg_flags |= MSG_DONTWAIT;
2430 /*
2431 * If this is sendmmsg() and current destination address is same as
2432 * previously succeeded address, omit asking LSM's decision.
2433 * used_address->name_len is initialized to UINT_MAX so that the first
2434 * destination address never matches.
2435 */
2436 if (used_address && msg_sys->msg_name &&
2437 used_address->name_len == msg_sys->msg_namelen &&
2438 !memcmp(&used_address->name, msg_sys->msg_name,
2439 used_address->name_len)) {
2440 err = sock_sendmsg_nosec(sock, msg_sys);
2441 goto out_freectl;
2442 }
2443 err = __sock_sendmsg(sock, msg_sys);
2444 /*
2445 * If this is sendmmsg() and sending to current destination address was
2446 * successful, remember it.
2447 */
2448 if (used_address && err >= 0) {
2449 used_address->name_len = msg_sys->msg_namelen;
2450 if (msg_sys->msg_name)
2451 memcpy(&used_address->name, msg_sys->msg_name,
2452 used_address->name_len);
2453 }
2454
2455 out_freectl:
2456 if (ctl_buf != ctl)
2457 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2458 out:
2459 return err;
2460 }
2461
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2462 int sendmsg_copy_msghdr(struct msghdr *msg,
2463 struct user_msghdr __user *umsg, unsigned flags,
2464 struct iovec **iov)
2465 {
2466 int err;
2467
2468 if (flags & MSG_CMSG_COMPAT) {
2469 struct compat_msghdr __user *msg_compat;
2470
2471 msg_compat = (struct compat_msghdr __user *) umsg;
2472 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2473 } else {
2474 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2475 }
2476 if (err < 0)
2477 return err;
2478
2479 return 0;
2480 }
2481
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2482 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2483 struct msghdr *msg_sys, unsigned int flags,
2484 struct used_address *used_address,
2485 unsigned int allowed_msghdr_flags)
2486 {
2487 struct sockaddr_storage address;
2488 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2489 ssize_t err;
2490
2491 msg_sys->msg_name = &address;
2492
2493 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2494 if (err < 0)
2495 return err;
2496
2497 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2498 allowed_msghdr_flags);
2499 kfree(iov);
2500 return err;
2501 }
2502
2503 /*
2504 * BSD sendmsg interface
2505 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2506 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2507 unsigned int flags)
2508 {
2509 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2510 }
2511
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2512 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2513 bool forbid_cmsg_compat)
2514 {
2515 int fput_needed, err;
2516 struct msghdr msg_sys;
2517 struct socket *sock;
2518
2519 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2520 return -EINVAL;
2521
2522 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2523 if (!sock)
2524 goto out;
2525
2526 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2527
2528 fput_light(sock->file, fput_needed);
2529 out:
2530 return err;
2531 }
2532
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2533 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2534 {
2535 return __sys_sendmsg(fd, msg, flags, true);
2536 }
2537
2538 /*
2539 * Linux sendmmsg interface
2540 */
2541
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2542 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2543 unsigned int flags, bool forbid_cmsg_compat)
2544 {
2545 int fput_needed, err, datagrams;
2546 struct socket *sock;
2547 struct mmsghdr __user *entry;
2548 struct compat_mmsghdr __user *compat_entry;
2549 struct msghdr msg_sys;
2550 struct used_address used_address;
2551 unsigned int oflags = flags;
2552
2553 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2554 return -EINVAL;
2555
2556 if (vlen > UIO_MAXIOV)
2557 vlen = UIO_MAXIOV;
2558
2559 datagrams = 0;
2560
2561 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2562 if (!sock)
2563 return err;
2564
2565 used_address.name_len = UINT_MAX;
2566 entry = mmsg;
2567 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2568 err = 0;
2569 flags |= MSG_BATCH;
2570
2571 while (datagrams < vlen) {
2572 if (datagrams == vlen - 1)
2573 flags = oflags;
2574
2575 if (MSG_CMSG_COMPAT & flags) {
2576 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2577 &msg_sys, flags, &used_address, MSG_EOR);
2578 if (err < 0)
2579 break;
2580 err = __put_user(err, &compat_entry->msg_len);
2581 ++compat_entry;
2582 } else {
2583 err = ___sys_sendmsg(sock,
2584 (struct user_msghdr __user *)entry,
2585 &msg_sys, flags, &used_address, MSG_EOR);
2586 if (err < 0)
2587 break;
2588 err = put_user(err, &entry->msg_len);
2589 ++entry;
2590 }
2591
2592 if (err)
2593 break;
2594 ++datagrams;
2595 if (msg_data_left(&msg_sys))
2596 break;
2597 cond_resched();
2598 }
2599
2600 fput_light(sock->file, fput_needed);
2601
2602 /* We only return an error if no datagrams were able to be sent */
2603 if (datagrams != 0)
2604 return datagrams;
2605
2606 return err;
2607 }
2608
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2609 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2610 unsigned int, vlen, unsigned int, flags)
2611 {
2612 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2613 }
2614
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2615 int recvmsg_copy_msghdr(struct msghdr *msg,
2616 struct user_msghdr __user *umsg, unsigned flags,
2617 struct sockaddr __user **uaddr,
2618 struct iovec **iov)
2619 {
2620 ssize_t err;
2621
2622 if (MSG_CMSG_COMPAT & flags) {
2623 struct compat_msghdr __user *msg_compat;
2624
2625 msg_compat = (struct compat_msghdr __user *) umsg;
2626 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2627 } else {
2628 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2629 }
2630 if (err < 0)
2631 return err;
2632
2633 return 0;
2634 }
2635
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2636 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2637 struct user_msghdr __user *msg,
2638 struct sockaddr __user *uaddr,
2639 unsigned int flags, int nosec)
2640 {
2641 struct compat_msghdr __user *msg_compat =
2642 (struct compat_msghdr __user *) msg;
2643 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2644 struct sockaddr_storage addr;
2645 unsigned long cmsg_ptr;
2646 int len;
2647 ssize_t err;
2648
2649 msg_sys->msg_name = &addr;
2650 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2651 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2652
2653 /* We assume all kernel code knows the size of sockaddr_storage */
2654 msg_sys->msg_namelen = 0;
2655
2656 if (sock->file->f_flags & O_NONBLOCK)
2657 flags |= MSG_DONTWAIT;
2658
2659 if (unlikely(nosec))
2660 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2661 else
2662 err = sock_recvmsg(sock, msg_sys, flags);
2663
2664 if (err < 0)
2665 goto out;
2666 len = err;
2667
2668 if (uaddr != NULL) {
2669 err = move_addr_to_user(&addr,
2670 msg_sys->msg_namelen, uaddr,
2671 uaddr_len);
2672 if (err < 0)
2673 goto out;
2674 }
2675 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2676 COMPAT_FLAGS(msg));
2677 if (err)
2678 goto out;
2679 if (MSG_CMSG_COMPAT & flags)
2680 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2681 &msg_compat->msg_controllen);
2682 else
2683 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2684 &msg->msg_controllen);
2685 if (err)
2686 goto out;
2687 err = len;
2688 out:
2689 return err;
2690 }
2691
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2692 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2693 struct msghdr *msg_sys, unsigned int flags, int nosec)
2694 {
2695 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2696 /* user mode address pointers */
2697 struct sockaddr __user *uaddr;
2698 ssize_t err;
2699
2700 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2701 if (err < 0)
2702 return err;
2703
2704 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2705 kfree(iov);
2706 return err;
2707 }
2708
2709 /*
2710 * BSD recvmsg interface
2711 */
2712
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2713 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2714 struct user_msghdr __user *umsg,
2715 struct sockaddr __user *uaddr, unsigned int flags)
2716 {
2717 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2718 }
2719
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2720 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2721 bool forbid_cmsg_compat)
2722 {
2723 int fput_needed, err;
2724 struct msghdr msg_sys;
2725 struct socket *sock;
2726
2727 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2728 return -EINVAL;
2729
2730 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2731 if (!sock)
2732 goto out;
2733
2734 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2735
2736 fput_light(sock->file, fput_needed);
2737 out:
2738 return err;
2739 }
2740
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2741 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2742 unsigned int, flags)
2743 {
2744 return __sys_recvmsg(fd, msg, flags, true);
2745 }
2746
2747 /*
2748 * Linux recvmmsg interface
2749 */
2750
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2751 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2752 unsigned int vlen, unsigned int flags,
2753 struct timespec64 *timeout)
2754 {
2755 int fput_needed, err, datagrams;
2756 struct socket *sock;
2757 struct mmsghdr __user *entry;
2758 struct compat_mmsghdr __user *compat_entry;
2759 struct msghdr msg_sys;
2760 struct timespec64 end_time;
2761 struct timespec64 timeout64;
2762
2763 if (timeout &&
2764 poll_select_set_timeout(&end_time, timeout->tv_sec,
2765 timeout->tv_nsec))
2766 return -EINVAL;
2767
2768 datagrams = 0;
2769
2770 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2771 if (!sock)
2772 return err;
2773
2774 if (likely(!(flags & MSG_ERRQUEUE))) {
2775 err = sock_error(sock->sk);
2776 if (err) {
2777 datagrams = err;
2778 goto out_put;
2779 }
2780 }
2781
2782 entry = mmsg;
2783 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2784
2785 while (datagrams < vlen) {
2786 /*
2787 * No need to ask LSM for more than the first datagram.
2788 */
2789 if (MSG_CMSG_COMPAT & flags) {
2790 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2791 &msg_sys, flags & ~MSG_WAITFORONE,
2792 datagrams);
2793 if (err < 0)
2794 break;
2795 err = __put_user(err, &compat_entry->msg_len);
2796 ++compat_entry;
2797 } else {
2798 err = ___sys_recvmsg(sock,
2799 (struct user_msghdr __user *)entry,
2800 &msg_sys, flags & ~MSG_WAITFORONE,
2801 datagrams);
2802 if (err < 0)
2803 break;
2804 err = put_user(err, &entry->msg_len);
2805 ++entry;
2806 }
2807
2808 if (err)
2809 break;
2810 ++datagrams;
2811
2812 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2813 if (flags & MSG_WAITFORONE)
2814 flags |= MSG_DONTWAIT;
2815
2816 if (timeout) {
2817 ktime_get_ts64(&timeout64);
2818 *timeout = timespec64_sub(end_time, timeout64);
2819 if (timeout->tv_sec < 0) {
2820 timeout->tv_sec = timeout->tv_nsec = 0;
2821 break;
2822 }
2823
2824 /* Timeout, return less than vlen datagrams */
2825 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2826 break;
2827 }
2828
2829 /* Out of band data, return right away */
2830 if (msg_sys.msg_flags & MSG_OOB)
2831 break;
2832 cond_resched();
2833 }
2834
2835 if (err == 0)
2836 goto out_put;
2837
2838 if (datagrams == 0) {
2839 datagrams = err;
2840 goto out_put;
2841 }
2842
2843 /*
2844 * We may return less entries than requested (vlen) if the
2845 * sock is non block and there aren't enough datagrams...
2846 */
2847 if (err != -EAGAIN) {
2848 /*
2849 * ... or if recvmsg returns an error after we
2850 * received some datagrams, where we record the
2851 * error to return on the next call or if the
2852 * app asks about it using getsockopt(SO_ERROR).
2853 */
2854 WRITE_ONCE(sock->sk->sk_err, -err);
2855 }
2856 out_put:
2857 fput_light(sock->file, fput_needed);
2858
2859 return datagrams;
2860 }
2861
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2862 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2863 unsigned int vlen, unsigned int flags,
2864 struct __kernel_timespec __user *timeout,
2865 struct old_timespec32 __user *timeout32)
2866 {
2867 int datagrams;
2868 struct timespec64 timeout_sys;
2869
2870 if (timeout && get_timespec64(&timeout_sys, timeout))
2871 return -EFAULT;
2872
2873 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2874 return -EFAULT;
2875
2876 if (!timeout && !timeout32)
2877 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2878
2879 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2880
2881 if (datagrams <= 0)
2882 return datagrams;
2883
2884 if (timeout && put_timespec64(&timeout_sys, timeout))
2885 datagrams = -EFAULT;
2886
2887 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2888 datagrams = -EFAULT;
2889
2890 return datagrams;
2891 }
2892
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2893 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2894 unsigned int, vlen, unsigned int, flags,
2895 struct __kernel_timespec __user *, timeout)
2896 {
2897 if (flags & MSG_CMSG_COMPAT)
2898 return -EINVAL;
2899
2900 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2901 }
2902
2903 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2904 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2905 unsigned int, vlen, unsigned int, flags,
2906 struct old_timespec32 __user *, timeout)
2907 {
2908 if (flags & MSG_CMSG_COMPAT)
2909 return -EINVAL;
2910
2911 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2912 }
2913 #endif
2914
2915 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2916 /* Argument list sizes for sys_socketcall */
2917 #define AL(x) ((x) * sizeof(unsigned long))
2918 static const unsigned char nargs[21] = {
2919 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2920 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2921 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2922 AL(4), AL(5), AL(4)
2923 };
2924
2925 #undef AL
2926
2927 /*
2928 * System call vectors.
2929 *
2930 * Argument checking cleaned up. Saved 20% in size.
2931 * This function doesn't need to set the kernel lock because
2932 * it is set by the callees.
2933 */
2934
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2935 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2936 {
2937 unsigned long a[AUDITSC_ARGS];
2938 unsigned long a0, a1;
2939 int err;
2940 unsigned int len;
2941
2942 if (call < 1 || call > SYS_SENDMMSG)
2943 return -EINVAL;
2944 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2945
2946 len = nargs[call];
2947 if (len > sizeof(a))
2948 return -EINVAL;
2949
2950 /* copy_from_user should be SMP safe. */
2951 if (copy_from_user(a, args, len))
2952 return -EFAULT;
2953
2954 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2955 if (err)
2956 return err;
2957
2958 a0 = a[0];
2959 a1 = a[1];
2960
2961 switch (call) {
2962 case SYS_SOCKET:
2963 err = __sys_socket(a0, a1, a[2]);
2964 break;
2965 case SYS_BIND:
2966 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2967 break;
2968 case SYS_CONNECT:
2969 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2970 break;
2971 case SYS_LISTEN:
2972 err = __sys_listen(a0, a1);
2973 break;
2974 case SYS_ACCEPT:
2975 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2976 (int __user *)a[2], 0);
2977 break;
2978 case SYS_GETSOCKNAME:
2979 err =
2980 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2981 (int __user *)a[2]);
2982 break;
2983 case SYS_GETPEERNAME:
2984 err =
2985 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2986 (int __user *)a[2]);
2987 break;
2988 case SYS_SOCKETPAIR:
2989 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2990 break;
2991 case SYS_SEND:
2992 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2993 NULL, 0);
2994 break;
2995 case SYS_SENDTO:
2996 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2997 (struct sockaddr __user *)a[4], a[5]);
2998 break;
2999 case SYS_RECV:
3000 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3001 NULL, NULL);
3002 break;
3003 case SYS_RECVFROM:
3004 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3005 (struct sockaddr __user *)a[4],
3006 (int __user *)a[5]);
3007 break;
3008 case SYS_SHUTDOWN:
3009 err = __sys_shutdown(a0, a1);
3010 break;
3011 case SYS_SETSOCKOPT:
3012 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3013 a[4]);
3014 break;
3015 case SYS_GETSOCKOPT:
3016 err =
3017 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3018 (int __user *)a[4]);
3019 break;
3020 case SYS_SENDMSG:
3021 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3022 a[2], true);
3023 break;
3024 case SYS_SENDMMSG:
3025 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3026 a[3], true);
3027 break;
3028 case SYS_RECVMSG:
3029 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3030 a[2], true);
3031 break;
3032 case SYS_RECVMMSG:
3033 if (IS_ENABLED(CONFIG_64BIT))
3034 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3035 a[2], a[3],
3036 (struct __kernel_timespec __user *)a[4],
3037 NULL);
3038 else
3039 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3040 a[2], a[3], NULL,
3041 (struct old_timespec32 __user *)a[4]);
3042 break;
3043 case SYS_ACCEPT4:
3044 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3045 (int __user *)a[2], a[3]);
3046 break;
3047 default:
3048 err = -EINVAL;
3049 break;
3050 }
3051 return err;
3052 }
3053
3054 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3055
3056 /**
3057 * sock_register - add a socket protocol handler
3058 * @ops: description of protocol
3059 *
3060 * This function is called by a protocol handler that wants to
3061 * advertise its address family, and have it linked into the
3062 * socket interface. The value ops->family corresponds to the
3063 * socket system call protocol family.
3064 */
sock_register(const struct net_proto_family * ops)3065 int sock_register(const struct net_proto_family *ops)
3066 {
3067 int err;
3068
3069 if (ops->family >= NPROTO) {
3070 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3071 return -ENOBUFS;
3072 }
3073
3074 spin_lock(&net_family_lock);
3075 if (rcu_dereference_protected(net_families[ops->family],
3076 lockdep_is_held(&net_family_lock)))
3077 err = -EEXIST;
3078 else {
3079 rcu_assign_pointer(net_families[ops->family], ops);
3080 err = 0;
3081 }
3082 spin_unlock(&net_family_lock);
3083
3084 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3085 return err;
3086 }
3087 EXPORT_SYMBOL(sock_register);
3088
3089 /**
3090 * sock_unregister - remove a protocol handler
3091 * @family: protocol family to remove
3092 *
3093 * This function is called by a protocol handler that wants to
3094 * remove its address family, and have it unlinked from the
3095 * new socket creation.
3096 *
3097 * If protocol handler is a module, then it can use module reference
3098 * counts to protect against new references. If protocol handler is not
3099 * a module then it needs to provide its own protection in
3100 * the ops->create routine.
3101 */
sock_unregister(int family)3102 void sock_unregister(int family)
3103 {
3104 BUG_ON(family < 0 || family >= NPROTO);
3105
3106 spin_lock(&net_family_lock);
3107 RCU_INIT_POINTER(net_families[family], NULL);
3108 spin_unlock(&net_family_lock);
3109
3110 synchronize_rcu();
3111
3112 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3113 }
3114 EXPORT_SYMBOL(sock_unregister);
3115
sock_is_registered(int family)3116 bool sock_is_registered(int family)
3117 {
3118 return family < NPROTO && rcu_access_pointer(net_families[family]);
3119 }
3120
sock_init(void)3121 static int __init sock_init(void)
3122 {
3123 int err;
3124 /*
3125 * Initialize the network sysctl infrastructure.
3126 */
3127 err = net_sysctl_init();
3128 if (err)
3129 goto out;
3130
3131 /*
3132 * Initialize skbuff SLAB cache
3133 */
3134 skb_init();
3135
3136 /*
3137 * Initialize the protocols module.
3138 */
3139
3140 init_inodecache();
3141
3142 err = register_filesystem(&sock_fs_type);
3143 if (err)
3144 goto out;
3145 sock_mnt = kern_mount(&sock_fs_type);
3146 if (IS_ERR(sock_mnt)) {
3147 err = PTR_ERR(sock_mnt);
3148 goto out_mount;
3149 }
3150
3151 /* The real protocol initialization is performed in later initcalls.
3152 */
3153
3154 #ifdef CONFIG_NETFILTER
3155 err = netfilter_init();
3156 if (err)
3157 goto out;
3158 #endif
3159
3160 ptp_classifier_init();
3161
3162 out:
3163 return err;
3164
3165 out_mount:
3166 unregister_filesystem(&sock_fs_type);
3167 goto out;
3168 }
3169
3170 core_initcall(sock_init); /* early initcall */
3171
3172 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3173 void socket_seq_show(struct seq_file *seq)
3174 {
3175 seq_printf(seq, "sockets: used %d\n",
3176 sock_inuse_get(seq->private));
3177 }
3178 #endif /* CONFIG_PROC_FS */
3179
3180 /* Handle the fact that while struct ifreq has the same *layout* on
3181 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3182 * which are handled elsewhere, it still has different *size* due to
3183 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3184 * resulting in struct ifreq being 32 and 40 bytes respectively).
3185 * As a result, if the struct happens to be at the end of a page and
3186 * the next page isn't readable/writable, we get a fault. To prevent
3187 * that, copy back and forth to the full size.
3188 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3189 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3190 {
3191 if (in_compat_syscall()) {
3192 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3193
3194 memset(ifr, 0, sizeof(*ifr));
3195 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3196 return -EFAULT;
3197
3198 if (ifrdata)
3199 *ifrdata = compat_ptr(ifr32->ifr_data);
3200
3201 return 0;
3202 }
3203
3204 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3205 return -EFAULT;
3206
3207 if (ifrdata)
3208 *ifrdata = ifr->ifr_data;
3209
3210 return 0;
3211 }
3212 EXPORT_SYMBOL(get_user_ifreq);
3213
put_user_ifreq(struct ifreq * ifr,void __user * arg)3214 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3215 {
3216 size_t size = sizeof(*ifr);
3217
3218 if (in_compat_syscall())
3219 size = sizeof(struct compat_ifreq);
3220
3221 if (copy_to_user(arg, ifr, size))
3222 return -EFAULT;
3223
3224 return 0;
3225 }
3226 EXPORT_SYMBOL(put_user_ifreq);
3227
3228 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3229 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3230 {
3231 compat_uptr_t uptr32;
3232 struct ifreq ifr;
3233 void __user *saved;
3234 int err;
3235
3236 if (get_user_ifreq(&ifr, NULL, uifr32))
3237 return -EFAULT;
3238
3239 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3240 return -EFAULT;
3241
3242 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3243 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3244
3245 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3246 if (!err) {
3247 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3248 if (put_user_ifreq(&ifr, uifr32))
3249 err = -EFAULT;
3250 }
3251 return err;
3252 }
3253
3254 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3255 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3256 struct compat_ifreq __user *u_ifreq32)
3257 {
3258 struct ifreq ifreq;
3259 void __user *data;
3260
3261 if (!is_socket_ioctl_cmd(cmd))
3262 return -ENOTTY;
3263 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3264 return -EFAULT;
3265 ifreq.ifr_data = data;
3266
3267 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3268 }
3269
3270 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3271 * for some operations; this forces use of the newer bridge-utils that
3272 * use compatible ioctls
3273 */
old_bridge_ioctl(compat_ulong_t __user * argp)3274 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3275 {
3276 compat_ulong_t tmp;
3277
3278 if (get_user(tmp, argp))
3279 return -EFAULT;
3280 if (tmp == BRCTL_GET_VERSION)
3281 return BRCTL_VERSION + 1;
3282 return -EINVAL;
3283 }
3284
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3285 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3286 unsigned int cmd, unsigned long arg)
3287 {
3288 void __user *argp = compat_ptr(arg);
3289 struct sock *sk = sock->sk;
3290 struct net *net = sock_net(sk);
3291
3292 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3293 return sock_ioctl(file, cmd, (unsigned long)argp);
3294
3295 switch (cmd) {
3296 case SIOCSIFBR:
3297 case SIOCGIFBR:
3298 return old_bridge_ioctl(argp);
3299 case SIOCWANDEV:
3300 return compat_siocwandev(net, argp);
3301 case SIOCGSTAMP_OLD:
3302 case SIOCGSTAMPNS_OLD:
3303 if (!sock->ops->gettstamp)
3304 return -ENOIOCTLCMD;
3305 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3306 !COMPAT_USE_64BIT_TIME);
3307
3308 case SIOCETHTOOL:
3309 case SIOCBONDSLAVEINFOQUERY:
3310 case SIOCBONDINFOQUERY:
3311 case SIOCSHWTSTAMP:
3312 case SIOCGHWTSTAMP:
3313 return compat_ifr_data_ioctl(net, cmd, argp);
3314
3315 case FIOSETOWN:
3316 case SIOCSPGRP:
3317 case FIOGETOWN:
3318 case SIOCGPGRP:
3319 case SIOCBRADDBR:
3320 case SIOCBRDELBR:
3321 case SIOCGIFVLAN:
3322 case SIOCSIFVLAN:
3323 case SIOCGSKNS:
3324 case SIOCGSTAMP_NEW:
3325 case SIOCGSTAMPNS_NEW:
3326 case SIOCGIFCONF:
3327 return sock_ioctl(file, cmd, arg);
3328
3329 case SIOCGIFFLAGS:
3330 case SIOCSIFFLAGS:
3331 case SIOCGIFMAP:
3332 case SIOCSIFMAP:
3333 case SIOCGIFMETRIC:
3334 case SIOCSIFMETRIC:
3335 case SIOCGIFMTU:
3336 case SIOCSIFMTU:
3337 case SIOCGIFMEM:
3338 case SIOCSIFMEM:
3339 case SIOCGIFHWADDR:
3340 case SIOCSIFHWADDR:
3341 case SIOCADDMULTI:
3342 case SIOCDELMULTI:
3343 case SIOCGIFINDEX:
3344 case SIOCGIFADDR:
3345 case SIOCSIFADDR:
3346 case SIOCSIFHWBROADCAST:
3347 case SIOCDIFADDR:
3348 case SIOCGIFBRDADDR:
3349 case SIOCSIFBRDADDR:
3350 case SIOCGIFDSTADDR:
3351 case SIOCSIFDSTADDR:
3352 case SIOCGIFNETMASK:
3353 case SIOCSIFNETMASK:
3354 case SIOCSIFPFLAGS:
3355 case SIOCGIFPFLAGS:
3356 case SIOCGIFTXQLEN:
3357 case SIOCSIFTXQLEN:
3358 case SIOCBRADDIF:
3359 case SIOCBRDELIF:
3360 case SIOCGIFNAME:
3361 case SIOCSIFNAME:
3362 case SIOCGMIIPHY:
3363 case SIOCGMIIREG:
3364 case SIOCSMIIREG:
3365 case SIOCBONDENSLAVE:
3366 case SIOCBONDRELEASE:
3367 case SIOCBONDSETHWADDR:
3368 case SIOCBONDCHANGEACTIVE:
3369 case SIOCSARP:
3370 case SIOCGARP:
3371 case SIOCDARP:
3372 case SIOCOUTQ:
3373 case SIOCOUTQNSD:
3374 case SIOCATMARK:
3375 return sock_do_ioctl(net, sock, cmd, arg);
3376 }
3377
3378 return -ENOIOCTLCMD;
3379 }
3380
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3381 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3382 unsigned long arg)
3383 {
3384 struct socket *sock = file->private_data;
3385 int ret = -ENOIOCTLCMD;
3386 struct sock *sk;
3387 struct net *net;
3388
3389 sk = sock->sk;
3390 net = sock_net(sk);
3391
3392 if (sock->ops->compat_ioctl)
3393 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3394
3395 if (ret == -ENOIOCTLCMD &&
3396 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3397 ret = compat_wext_handle_ioctl(net, cmd, arg);
3398
3399 if (ret == -ENOIOCTLCMD)
3400 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3401
3402 return ret;
3403 }
3404 #endif
3405
3406 /**
3407 * kernel_bind - bind an address to a socket (kernel space)
3408 * @sock: socket
3409 * @addr: address
3410 * @addrlen: length of address
3411 *
3412 * Returns 0 or an error.
3413 */
3414
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3415 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3416 {
3417 struct sockaddr_storage address;
3418
3419 memcpy(&address, addr, addrlen);
3420
3421 return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3422 }
3423 EXPORT_SYMBOL(kernel_bind);
3424
3425 /**
3426 * kernel_listen - move socket to listening state (kernel space)
3427 * @sock: socket
3428 * @backlog: pending connections queue size
3429 *
3430 * Returns 0 or an error.
3431 */
3432
kernel_listen(struct socket * sock,int backlog)3433 int kernel_listen(struct socket *sock, int backlog)
3434 {
3435 return sock->ops->listen(sock, backlog);
3436 }
3437 EXPORT_SYMBOL(kernel_listen);
3438
3439 /**
3440 * kernel_accept - accept a connection (kernel space)
3441 * @sock: listening socket
3442 * @newsock: new connected socket
3443 * @flags: flags
3444 *
3445 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3446 * If it fails, @newsock is guaranteed to be %NULL.
3447 * Returns 0 or an error.
3448 */
3449
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3450 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3451 {
3452 struct sock *sk = sock->sk;
3453 int err;
3454
3455 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3456 newsock);
3457 if (err < 0)
3458 goto done;
3459
3460 err = sock->ops->accept(sock, *newsock, flags, true);
3461 if (err < 0) {
3462 sock_release(*newsock);
3463 *newsock = NULL;
3464 goto done;
3465 }
3466
3467 (*newsock)->ops = sock->ops;
3468 __module_get((*newsock)->ops->owner);
3469
3470 done:
3471 return err;
3472 }
3473 EXPORT_SYMBOL(kernel_accept);
3474
3475 /**
3476 * kernel_connect - connect a socket (kernel space)
3477 * @sock: socket
3478 * @addr: address
3479 * @addrlen: address length
3480 * @flags: flags (O_NONBLOCK, ...)
3481 *
3482 * For datagram sockets, @addr is the address to which datagrams are sent
3483 * by default, and the only address from which datagrams are received.
3484 * For stream sockets, attempts to connect to @addr.
3485 * Returns 0 or an error code.
3486 */
3487
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3488 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3489 int flags)
3490 {
3491 struct sockaddr_storage address;
3492
3493 memcpy(&address, addr, addrlen);
3494
3495 return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3496 }
3497 EXPORT_SYMBOL(kernel_connect);
3498
3499 /**
3500 * kernel_getsockname - get the address which the socket is bound (kernel space)
3501 * @sock: socket
3502 * @addr: address holder
3503 *
3504 * Fills the @addr pointer with the address which the socket is bound.
3505 * Returns 0 or an error code.
3506 */
3507
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3508 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3509 {
3510 return sock->ops->getname(sock, addr, 0);
3511 }
3512 EXPORT_SYMBOL(kernel_getsockname);
3513
3514 /**
3515 * kernel_getpeername - get the address which the socket is connected (kernel space)
3516 * @sock: socket
3517 * @addr: address holder
3518 *
3519 * Fills the @addr pointer with the address which the socket is connected.
3520 * Returns 0 or an error code.
3521 */
3522
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3523 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3524 {
3525 return sock->ops->getname(sock, addr, 1);
3526 }
3527 EXPORT_SYMBOL(kernel_getpeername);
3528
3529 /**
3530 * kernel_sendpage - send a &page through a socket (kernel space)
3531 * @sock: socket
3532 * @page: page
3533 * @offset: page offset
3534 * @size: total size in bytes
3535 * @flags: flags (MSG_DONTWAIT, ...)
3536 *
3537 * Returns the total amount sent in bytes or an error.
3538 */
3539
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3540 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3541 size_t size, int flags)
3542 {
3543 if (sock->ops->sendpage) {
3544 /* Warn in case the improper page to zero-copy send */
3545 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3546 return sock->ops->sendpage(sock, page, offset, size, flags);
3547 }
3548 return sock_no_sendpage(sock, page, offset, size, flags);
3549 }
3550 EXPORT_SYMBOL(kernel_sendpage);
3551
3552 /**
3553 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3554 * @sk: sock
3555 * @page: page
3556 * @offset: page offset
3557 * @size: total size in bytes
3558 * @flags: flags (MSG_DONTWAIT, ...)
3559 *
3560 * Returns the total amount sent in bytes or an error.
3561 * Caller must hold @sk.
3562 */
3563
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3564 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3565 size_t size, int flags)
3566 {
3567 struct socket *sock = sk->sk_socket;
3568
3569 if (sock->ops->sendpage_locked)
3570 return sock->ops->sendpage_locked(sk, page, offset, size,
3571 flags);
3572
3573 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3574 }
3575 EXPORT_SYMBOL(kernel_sendpage_locked);
3576
3577 /**
3578 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3579 * @sock: socket
3580 * @how: connection part
3581 *
3582 * Returns 0 or an error.
3583 */
3584
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3585 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3586 {
3587 return sock->ops->shutdown(sock, how);
3588 }
3589 EXPORT_SYMBOL(kernel_sock_shutdown);
3590
3591 /**
3592 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3593 * @sk: socket
3594 *
3595 * This routine returns the IP overhead imposed by a socket i.e.
3596 * the length of the underlying IP header, depending on whether
3597 * this is an IPv4 or IPv6 socket and the length from IP options turned
3598 * on at the socket. Assumes that the caller has a lock on the socket.
3599 */
3600
kernel_sock_ip_overhead(struct sock * sk)3601 u32 kernel_sock_ip_overhead(struct sock *sk)
3602 {
3603 struct inet_sock *inet;
3604 struct ip_options_rcu *opt;
3605 u32 overhead = 0;
3606 #if IS_ENABLED(CONFIG_IPV6)
3607 struct ipv6_pinfo *np;
3608 struct ipv6_txoptions *optv6 = NULL;
3609 #endif /* IS_ENABLED(CONFIG_IPV6) */
3610
3611 if (!sk)
3612 return overhead;
3613
3614 switch (sk->sk_family) {
3615 case AF_INET:
3616 inet = inet_sk(sk);
3617 overhead += sizeof(struct iphdr);
3618 opt = rcu_dereference_protected(inet->inet_opt,
3619 sock_owned_by_user(sk));
3620 if (opt)
3621 overhead += opt->opt.optlen;
3622 return overhead;
3623 #if IS_ENABLED(CONFIG_IPV6)
3624 case AF_INET6:
3625 np = inet6_sk(sk);
3626 overhead += sizeof(struct ipv6hdr);
3627 if (np)
3628 optv6 = rcu_dereference_protected(np->opt,
3629 sock_owned_by_user(sk));
3630 if (optv6)
3631 overhead += (optv6->opt_flen + optv6->opt_nflen);
3632 return overhead;
3633 #endif /* IS_ENABLED(CONFIG_IPV6) */
3634 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3635 return overhead;
3636 }
3637 }
3638 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3639