1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
46
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65
66 #include <linux/nospec.h>
67
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75
76 #include "uid16.h"
77
78 #include <trace/hooks/sys.h>
79
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef SET_FPEMU_CTL
87 # define SET_FPEMU_CTL(a, b) (-EINVAL)
88 #endif
89 #ifndef GET_FPEMU_CTL
90 # define GET_FPEMU_CTL(a, b) (-EINVAL)
91 #endif
92 #ifndef SET_FPEXC_CTL
93 # define SET_FPEXC_CTL(a, b) (-EINVAL)
94 #endif
95 #ifndef GET_FPEXC_CTL
96 # define GET_FPEXC_CTL(a, b) (-EINVAL)
97 #endif
98 #ifndef GET_ENDIAN
99 # define GET_ENDIAN(a, b) (-EINVAL)
100 #endif
101 #ifndef SET_ENDIAN
102 # define SET_ENDIAN(a, b) (-EINVAL)
103 #endif
104 #ifndef GET_TSC_CTL
105 # define GET_TSC_CTL(a) (-EINVAL)
106 #endif
107 #ifndef SET_TSC_CTL
108 # define SET_TSC_CTL(a) (-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a) (-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b) (-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a) (-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL() (-EINVAL)
121 #endif
122 #ifndef SME_SET_VL
123 # define SME_SET_VL(a) (-EINVAL)
124 #endif
125 #ifndef SME_GET_VL
126 # define SME_GET_VL() (-EINVAL)
127 #endif
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b) (-EINVAL)
130 #endif
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133 #endif
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136 #endif
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139 #endif
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
142 #endif
143
144 /*
145 * this is where the system-wide overflow UID and GID are defined, for
146 * architectures that now have 32-bit UID/GID but didn't in the past
147 */
148
149 int overflowuid = DEFAULT_OVERFLOWUID;
150 int overflowgid = DEFAULT_OVERFLOWGID;
151
152 EXPORT_SYMBOL(overflowuid);
153 EXPORT_SYMBOL(overflowgid);
154
155 /*
156 * the same as above, but for filesystems which can only store a 16-bit
157 * UID and GID. as such, this is needed on all architectures
158 */
159
160 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
161 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
162
163 EXPORT_SYMBOL(fs_overflowuid);
164 EXPORT_SYMBOL(fs_overflowgid);
165
166 /*
167 * Returns true if current's euid is same as p's uid or euid,
168 * or has CAP_SYS_NICE to p's user_ns.
169 *
170 * Called with rcu_read_lock, creds are safe
171 */
set_one_prio_perm(struct task_struct * p)172 static bool set_one_prio_perm(struct task_struct *p)
173 {
174 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
175
176 if (uid_eq(pcred->uid, cred->euid) ||
177 uid_eq(pcred->euid, cred->euid))
178 return true;
179 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
180 return true;
181 return false;
182 }
183
184 /*
185 * set the priority of a task
186 * - the caller must hold the RCU read lock
187 */
set_one_prio(struct task_struct * p,int niceval,int error)188 static int set_one_prio(struct task_struct *p, int niceval, int error)
189 {
190 int no_nice;
191
192 if (!set_one_prio_perm(p)) {
193 error = -EPERM;
194 goto out;
195 }
196 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
197 error = -EACCES;
198 goto out;
199 }
200 no_nice = security_task_setnice(p, niceval);
201 if (no_nice) {
202 error = no_nice;
203 goto out;
204 }
205 if (error == -ESRCH)
206 error = 0;
207 set_user_nice(p, niceval);
208 out:
209 return error;
210 }
211
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)212 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
213 {
214 struct task_struct *g, *p;
215 struct user_struct *user;
216 const struct cred *cred = current_cred();
217 int error = -EINVAL;
218 struct pid *pgrp;
219 kuid_t uid;
220
221 if (which > PRIO_USER || which < PRIO_PROCESS)
222 goto out;
223
224 /* normalize: avoid signed division (rounding problems) */
225 error = -ESRCH;
226 if (niceval < MIN_NICE)
227 niceval = MIN_NICE;
228 if (niceval > MAX_NICE)
229 niceval = MAX_NICE;
230
231 rcu_read_lock();
232 read_lock(&tasklist_lock);
233 switch (which) {
234 case PRIO_PROCESS:
235 if (who)
236 p = find_task_by_vpid(who);
237 else
238 p = current;
239 if (p)
240 error = set_one_prio(p, niceval, error);
241 break;
242 case PRIO_PGRP:
243 if (who)
244 pgrp = find_vpid(who);
245 else
246 pgrp = task_pgrp(current);
247 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
248 error = set_one_prio(p, niceval, error);
249 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
250 break;
251 case PRIO_USER:
252 uid = make_kuid(cred->user_ns, who);
253 user = cred->user;
254 if (!who)
255 uid = cred->uid;
256 else if (!uid_eq(uid, cred->uid)) {
257 user = find_user(uid);
258 if (!user)
259 goto out_unlock; /* No processes for this user */
260 }
261 do_each_thread(g, p) {
262 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
263 error = set_one_prio(p, niceval, error);
264 } while_each_thread(g, p);
265 if (!uid_eq(uid, cred->uid))
266 free_uid(user); /* For find_user() */
267 break;
268 }
269 out_unlock:
270 read_unlock(&tasklist_lock);
271 rcu_read_unlock();
272 out:
273 return error;
274 }
275
276 /*
277 * Ugh. To avoid negative return values, "getpriority()" will
278 * not return the normal nice-value, but a negated value that
279 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
280 * to stay compatible.
281 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)282 SYSCALL_DEFINE2(getpriority, int, which, int, who)
283 {
284 struct task_struct *g, *p;
285 struct user_struct *user;
286 const struct cred *cred = current_cred();
287 long niceval, retval = -ESRCH;
288 struct pid *pgrp;
289 kuid_t uid;
290
291 if (which > PRIO_USER || which < PRIO_PROCESS)
292 return -EINVAL;
293
294 rcu_read_lock();
295 read_lock(&tasklist_lock);
296 switch (which) {
297 case PRIO_PROCESS:
298 if (who)
299 p = find_task_by_vpid(who);
300 else
301 p = current;
302 if (p) {
303 niceval = nice_to_rlimit(task_nice(p));
304 if (niceval > retval)
305 retval = niceval;
306 }
307 break;
308 case PRIO_PGRP:
309 if (who)
310 pgrp = find_vpid(who);
311 else
312 pgrp = task_pgrp(current);
313 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
314 niceval = nice_to_rlimit(task_nice(p));
315 if (niceval > retval)
316 retval = niceval;
317 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
318 break;
319 case PRIO_USER:
320 uid = make_kuid(cred->user_ns, who);
321 user = cred->user;
322 if (!who)
323 uid = cred->uid;
324 else if (!uid_eq(uid, cred->uid)) {
325 user = find_user(uid);
326 if (!user)
327 goto out_unlock; /* No processes for this user */
328 }
329 do_each_thread(g, p) {
330 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
331 niceval = nice_to_rlimit(task_nice(p));
332 if (niceval > retval)
333 retval = niceval;
334 }
335 } while_each_thread(g, p);
336 if (!uid_eq(uid, cred->uid))
337 free_uid(user); /* for find_user() */
338 break;
339 }
340 out_unlock:
341 read_unlock(&tasklist_lock);
342 rcu_read_unlock();
343
344 return retval;
345 }
346
347 /*
348 * Unprivileged users may change the real gid to the effective gid
349 * or vice versa. (BSD-style)
350 *
351 * If you set the real gid at all, or set the effective gid to a value not
352 * equal to the real gid, then the saved gid is set to the new effective gid.
353 *
354 * This makes it possible for a setgid program to completely drop its
355 * privileges, which is often a useful assertion to make when you are doing
356 * a security audit over a program.
357 *
358 * The general idea is that a program which uses just setregid() will be
359 * 100% compatible with BSD. A program which uses just setgid() will be
360 * 100% compatible with POSIX with saved IDs.
361 *
362 * SMP: There are not races, the GIDs are checked only by filesystem
363 * operations (as far as semantic preservation is concerned).
364 */
365 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)366 long __sys_setregid(gid_t rgid, gid_t egid)
367 {
368 struct user_namespace *ns = current_user_ns();
369 const struct cred *old;
370 struct cred *new;
371 int retval;
372 kgid_t krgid, kegid;
373
374 krgid = make_kgid(ns, rgid);
375 kegid = make_kgid(ns, egid);
376
377 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
378 return -EINVAL;
379 if ((egid != (gid_t) -1) && !gid_valid(kegid))
380 return -EINVAL;
381
382 new = prepare_creds();
383 if (!new)
384 return -ENOMEM;
385 old = current_cred();
386
387 retval = -EPERM;
388 if (rgid != (gid_t) -1) {
389 if (gid_eq(old->gid, krgid) ||
390 gid_eq(old->egid, krgid) ||
391 ns_capable_setid(old->user_ns, CAP_SETGID))
392 new->gid = krgid;
393 else
394 goto error;
395 }
396 if (egid != (gid_t) -1) {
397 if (gid_eq(old->gid, kegid) ||
398 gid_eq(old->egid, kegid) ||
399 gid_eq(old->sgid, kegid) ||
400 ns_capable_setid(old->user_ns, CAP_SETGID))
401 new->egid = kegid;
402 else
403 goto error;
404 }
405
406 if (rgid != (gid_t) -1 ||
407 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
408 new->sgid = new->egid;
409 new->fsgid = new->egid;
410
411 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
412 if (retval < 0)
413 goto error;
414
415 return commit_creds(new);
416
417 error:
418 abort_creds(new);
419 return retval;
420 }
421
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)422 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
423 {
424 return __sys_setregid(rgid, egid);
425 }
426
427 /*
428 * setgid() is implemented like SysV w/ SAVED_IDS
429 *
430 * SMP: Same implicit races as above.
431 */
__sys_setgid(gid_t gid)432 long __sys_setgid(gid_t gid)
433 {
434 struct user_namespace *ns = current_user_ns();
435 const struct cred *old;
436 struct cred *new;
437 int retval;
438 kgid_t kgid;
439
440 kgid = make_kgid(ns, gid);
441 if (!gid_valid(kgid))
442 return -EINVAL;
443
444 new = prepare_creds();
445 if (!new)
446 return -ENOMEM;
447 old = current_cred();
448
449 retval = -EPERM;
450 if (ns_capable_setid(old->user_ns, CAP_SETGID))
451 new->gid = new->egid = new->sgid = new->fsgid = kgid;
452 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
453 new->egid = new->fsgid = kgid;
454 else
455 goto error;
456
457 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
458 if (retval < 0)
459 goto error;
460
461 return commit_creds(new);
462
463 error:
464 abort_creds(new);
465 return retval;
466 }
467
SYSCALL_DEFINE1(setgid,gid_t,gid)468 SYSCALL_DEFINE1(setgid, gid_t, gid)
469 {
470 return __sys_setgid(gid);
471 }
472
473 /*
474 * change the user struct in a credentials set to match the new UID
475 */
set_user(struct cred * new)476 static int set_user(struct cred *new)
477 {
478 struct user_struct *new_user;
479
480 new_user = alloc_uid(new->uid);
481 if (!new_user)
482 return -EAGAIN;
483
484 free_uid(new->user);
485 new->user = new_user;
486 return 0;
487 }
488
flag_nproc_exceeded(struct cred * new)489 static void flag_nproc_exceeded(struct cred *new)
490 {
491 if (new->ucounts == current_ucounts())
492 return;
493
494 /*
495 * We don't fail in case of NPROC limit excess here because too many
496 * poorly written programs don't check set*uid() return code, assuming
497 * it never fails if called by root. We may still enforce NPROC limit
498 * for programs doing set*uid()+execve() by harmlessly deferring the
499 * failure to the execve() stage.
500 */
501 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
502 new->user != INIT_USER)
503 current->flags |= PF_NPROC_EXCEEDED;
504 else
505 current->flags &= ~PF_NPROC_EXCEEDED;
506 }
507
508 /*
509 * Unprivileged users may change the real uid to the effective uid
510 * or vice versa. (BSD-style)
511 *
512 * If you set the real uid at all, or set the effective uid to a value not
513 * equal to the real uid, then the saved uid is set to the new effective uid.
514 *
515 * This makes it possible for a setuid program to completely drop its
516 * privileges, which is often a useful assertion to make when you are doing
517 * a security audit over a program.
518 *
519 * The general idea is that a program which uses just setreuid() will be
520 * 100% compatible with BSD. A program which uses just setuid() will be
521 * 100% compatible with POSIX with saved IDs.
522 */
__sys_setreuid(uid_t ruid,uid_t euid)523 long __sys_setreuid(uid_t ruid, uid_t euid)
524 {
525 struct user_namespace *ns = current_user_ns();
526 const struct cred *old;
527 struct cred *new;
528 int retval;
529 kuid_t kruid, keuid;
530
531 kruid = make_kuid(ns, ruid);
532 keuid = make_kuid(ns, euid);
533
534 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
535 return -EINVAL;
536 if ((euid != (uid_t) -1) && !uid_valid(keuid))
537 return -EINVAL;
538
539 new = prepare_creds();
540 if (!new)
541 return -ENOMEM;
542 old = current_cred();
543
544 retval = -EPERM;
545 if (ruid != (uid_t) -1) {
546 new->uid = kruid;
547 if (!uid_eq(old->uid, kruid) &&
548 !uid_eq(old->euid, kruid) &&
549 !ns_capable_setid(old->user_ns, CAP_SETUID))
550 goto error;
551 }
552
553 if (euid != (uid_t) -1) {
554 new->euid = keuid;
555 if (!uid_eq(old->uid, keuid) &&
556 !uid_eq(old->euid, keuid) &&
557 !uid_eq(old->suid, keuid) &&
558 !ns_capable_setid(old->user_ns, CAP_SETUID))
559 goto error;
560 }
561
562 if (!uid_eq(new->uid, old->uid)) {
563 retval = set_user(new);
564 if (retval < 0)
565 goto error;
566 }
567 if (ruid != (uid_t) -1 ||
568 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
569 new->suid = new->euid;
570 new->fsuid = new->euid;
571
572 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
573 if (retval < 0)
574 goto error;
575
576 retval = set_cred_ucounts(new);
577 if (retval < 0)
578 goto error;
579
580 flag_nproc_exceeded(new);
581 return commit_creds(new);
582
583 error:
584 abort_creds(new);
585 return retval;
586 }
587
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)588 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
589 {
590 return __sys_setreuid(ruid, euid);
591 }
592
593 /*
594 * setuid() is implemented like SysV with SAVED_IDS
595 *
596 * Note that SAVED_ID's is deficient in that a setuid root program
597 * like sendmail, for example, cannot set its uid to be a normal
598 * user and then switch back, because if you're root, setuid() sets
599 * the saved uid too. If you don't like this, blame the bright people
600 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
601 * will allow a root program to temporarily drop privileges and be able to
602 * regain them by swapping the real and effective uid.
603 */
__sys_setuid(uid_t uid)604 long __sys_setuid(uid_t uid)
605 {
606 struct user_namespace *ns = current_user_ns();
607 const struct cred *old;
608 struct cred *new;
609 int retval;
610 kuid_t kuid;
611
612 kuid = make_kuid(ns, uid);
613 if (!uid_valid(kuid))
614 return -EINVAL;
615
616 new = prepare_creds();
617 if (!new)
618 return -ENOMEM;
619 old = current_cred();
620
621 retval = -EPERM;
622 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
623 new->suid = new->uid = kuid;
624 if (!uid_eq(kuid, old->uid)) {
625 retval = set_user(new);
626 if (retval < 0)
627 goto error;
628 }
629 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
630 goto error;
631 }
632
633 new->fsuid = new->euid = kuid;
634
635 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
636 if (retval < 0)
637 goto error;
638
639 retval = set_cred_ucounts(new);
640 if (retval < 0)
641 goto error;
642
643 flag_nproc_exceeded(new);
644 return commit_creds(new);
645
646 error:
647 abort_creds(new);
648 return retval;
649 }
650
SYSCALL_DEFINE1(setuid,uid_t,uid)651 SYSCALL_DEFINE1(setuid, uid_t, uid)
652 {
653 return __sys_setuid(uid);
654 }
655
656
657 /*
658 * This function implements a generic ability to update ruid, euid,
659 * and suid. This allows you to implement the 4.4 compatible seteuid().
660 */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)661 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
662 {
663 struct user_namespace *ns = current_user_ns();
664 const struct cred *old;
665 struct cred *new;
666 int retval;
667 kuid_t kruid, keuid, ksuid;
668 bool ruid_new, euid_new, suid_new;
669
670 kruid = make_kuid(ns, ruid);
671 keuid = make_kuid(ns, euid);
672 ksuid = make_kuid(ns, suid);
673
674 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
675 return -EINVAL;
676
677 if ((euid != (uid_t) -1) && !uid_valid(keuid))
678 return -EINVAL;
679
680 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
681 return -EINVAL;
682
683 old = current_cred();
684
685 /* check for no-op */
686 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
687 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
688 uid_eq(keuid, old->fsuid))) &&
689 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
690 return 0;
691
692 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
693 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
694 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
695 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
696 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
697 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
698 if ((ruid_new || euid_new || suid_new) &&
699 !ns_capable_setid(old->user_ns, CAP_SETUID))
700 return -EPERM;
701
702 new = prepare_creds();
703 if (!new)
704 return -ENOMEM;
705
706 if (ruid != (uid_t) -1) {
707 new->uid = kruid;
708 if (!uid_eq(kruid, old->uid)) {
709 retval = set_user(new);
710 if (retval < 0)
711 goto error;
712 }
713 }
714 if (euid != (uid_t) -1)
715 new->euid = keuid;
716 if (suid != (uid_t) -1)
717 new->suid = ksuid;
718 new->fsuid = new->euid;
719
720 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
721 if (retval < 0)
722 goto error;
723
724 retval = set_cred_ucounts(new);
725 if (retval < 0)
726 goto error;
727
728 flag_nproc_exceeded(new);
729 return commit_creds(new);
730
731 error:
732 abort_creds(new);
733 return retval;
734 }
735
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)736 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
737 {
738 return __sys_setresuid(ruid, euid, suid);
739 }
740
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)741 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
742 {
743 const struct cred *cred = current_cred();
744 int retval;
745 uid_t ruid, euid, suid;
746
747 ruid = from_kuid_munged(cred->user_ns, cred->uid);
748 euid = from_kuid_munged(cred->user_ns, cred->euid);
749 suid = from_kuid_munged(cred->user_ns, cred->suid);
750
751 retval = put_user(ruid, ruidp);
752 if (!retval) {
753 retval = put_user(euid, euidp);
754 if (!retval)
755 return put_user(suid, suidp);
756 }
757 return retval;
758 }
759
760 /*
761 * Same as above, but for rgid, egid, sgid.
762 */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)763 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
764 {
765 struct user_namespace *ns = current_user_ns();
766 const struct cred *old;
767 struct cred *new;
768 int retval;
769 kgid_t krgid, kegid, ksgid;
770 bool rgid_new, egid_new, sgid_new;
771
772 krgid = make_kgid(ns, rgid);
773 kegid = make_kgid(ns, egid);
774 ksgid = make_kgid(ns, sgid);
775
776 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
777 return -EINVAL;
778 if ((egid != (gid_t) -1) && !gid_valid(kegid))
779 return -EINVAL;
780 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
781 return -EINVAL;
782
783 old = current_cred();
784
785 /* check for no-op */
786 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
787 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
788 gid_eq(kegid, old->fsgid))) &&
789 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
790 return 0;
791
792 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
793 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
794 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
795 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
796 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
797 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
798 if ((rgid_new || egid_new || sgid_new) &&
799 !ns_capable_setid(old->user_ns, CAP_SETGID))
800 return -EPERM;
801
802 new = prepare_creds();
803 if (!new)
804 return -ENOMEM;
805
806 if (rgid != (gid_t) -1)
807 new->gid = krgid;
808 if (egid != (gid_t) -1)
809 new->egid = kegid;
810 if (sgid != (gid_t) -1)
811 new->sgid = ksgid;
812 new->fsgid = new->egid;
813
814 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
815 if (retval < 0)
816 goto error;
817
818 return commit_creds(new);
819
820 error:
821 abort_creds(new);
822 return retval;
823 }
824
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)825 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
826 {
827 return __sys_setresgid(rgid, egid, sgid);
828 }
829
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)830 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
831 {
832 const struct cred *cred = current_cred();
833 int retval;
834 gid_t rgid, egid, sgid;
835
836 rgid = from_kgid_munged(cred->user_ns, cred->gid);
837 egid = from_kgid_munged(cred->user_ns, cred->egid);
838 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
839
840 retval = put_user(rgid, rgidp);
841 if (!retval) {
842 retval = put_user(egid, egidp);
843 if (!retval)
844 retval = put_user(sgid, sgidp);
845 }
846
847 return retval;
848 }
849
850
851 /*
852 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
853 * is used for "access()" and for the NFS daemon (letting nfsd stay at
854 * whatever uid it wants to). It normally shadows "euid", except when
855 * explicitly set by setfsuid() or for access..
856 */
__sys_setfsuid(uid_t uid)857 long __sys_setfsuid(uid_t uid)
858 {
859 const struct cred *old;
860 struct cred *new;
861 uid_t old_fsuid;
862 kuid_t kuid;
863
864 old = current_cred();
865 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
866
867 kuid = make_kuid(old->user_ns, uid);
868 if (!uid_valid(kuid))
869 return old_fsuid;
870
871 new = prepare_creds();
872 if (!new)
873 return old_fsuid;
874
875 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
876 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
877 ns_capable_setid(old->user_ns, CAP_SETUID)) {
878 if (!uid_eq(kuid, old->fsuid)) {
879 new->fsuid = kuid;
880 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
881 goto change_okay;
882 }
883 }
884
885 abort_creds(new);
886 return old_fsuid;
887
888 change_okay:
889 commit_creds(new);
890 return old_fsuid;
891 }
892
SYSCALL_DEFINE1(setfsuid,uid_t,uid)893 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
894 {
895 return __sys_setfsuid(uid);
896 }
897
898 /*
899 * Samma på svenska..
900 */
__sys_setfsgid(gid_t gid)901 long __sys_setfsgid(gid_t gid)
902 {
903 const struct cred *old;
904 struct cred *new;
905 gid_t old_fsgid;
906 kgid_t kgid;
907
908 old = current_cred();
909 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
910
911 kgid = make_kgid(old->user_ns, gid);
912 if (!gid_valid(kgid))
913 return old_fsgid;
914
915 new = prepare_creds();
916 if (!new)
917 return old_fsgid;
918
919 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
920 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
921 ns_capable_setid(old->user_ns, CAP_SETGID)) {
922 if (!gid_eq(kgid, old->fsgid)) {
923 new->fsgid = kgid;
924 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
925 goto change_okay;
926 }
927 }
928
929 abort_creds(new);
930 return old_fsgid;
931
932 change_okay:
933 commit_creds(new);
934 return old_fsgid;
935 }
936
SYSCALL_DEFINE1(setfsgid,gid_t,gid)937 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
938 {
939 return __sys_setfsgid(gid);
940 }
941 #endif /* CONFIG_MULTIUSER */
942
943 /**
944 * sys_getpid - return the thread group id of the current process
945 *
946 * Note, despite the name, this returns the tgid not the pid. The tgid and
947 * the pid are identical unless CLONE_THREAD was specified on clone() in
948 * which case the tgid is the same in all threads of the same group.
949 *
950 * This is SMP safe as current->tgid does not change.
951 */
SYSCALL_DEFINE0(getpid)952 SYSCALL_DEFINE0(getpid)
953 {
954 return task_tgid_vnr(current);
955 }
956
957 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)958 SYSCALL_DEFINE0(gettid)
959 {
960 return task_pid_vnr(current);
961 }
962
963 /*
964 * Accessing ->real_parent is not SMP-safe, it could
965 * change from under us. However, we can use a stale
966 * value of ->real_parent under rcu_read_lock(), see
967 * release_task()->call_rcu(delayed_put_task_struct).
968 */
SYSCALL_DEFINE0(getppid)969 SYSCALL_DEFINE0(getppid)
970 {
971 int pid;
972
973 rcu_read_lock();
974 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
975 rcu_read_unlock();
976
977 return pid;
978 }
979
SYSCALL_DEFINE0(getuid)980 SYSCALL_DEFINE0(getuid)
981 {
982 /* Only we change this so SMP safe */
983 return from_kuid_munged(current_user_ns(), current_uid());
984 }
985
SYSCALL_DEFINE0(geteuid)986 SYSCALL_DEFINE0(geteuid)
987 {
988 /* Only we change this so SMP safe */
989 return from_kuid_munged(current_user_ns(), current_euid());
990 }
991
SYSCALL_DEFINE0(getgid)992 SYSCALL_DEFINE0(getgid)
993 {
994 /* Only we change this so SMP safe */
995 return from_kgid_munged(current_user_ns(), current_gid());
996 }
997
SYSCALL_DEFINE0(getegid)998 SYSCALL_DEFINE0(getegid)
999 {
1000 /* Only we change this so SMP safe */
1001 return from_kgid_munged(current_user_ns(), current_egid());
1002 }
1003
do_sys_times(struct tms * tms)1004 static void do_sys_times(struct tms *tms)
1005 {
1006 u64 tgutime, tgstime, cutime, cstime;
1007
1008 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1009 cutime = current->signal->cutime;
1010 cstime = current->signal->cstime;
1011 tms->tms_utime = nsec_to_clock_t(tgutime);
1012 tms->tms_stime = nsec_to_clock_t(tgstime);
1013 tms->tms_cutime = nsec_to_clock_t(cutime);
1014 tms->tms_cstime = nsec_to_clock_t(cstime);
1015 }
1016
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1017 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1018 {
1019 if (tbuf) {
1020 struct tms tmp;
1021
1022 do_sys_times(&tmp);
1023 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1024 return -EFAULT;
1025 }
1026 force_successful_syscall_return();
1027 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1028 }
1029
1030 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1031 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1032 {
1033 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1034 }
1035
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1036 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1037 {
1038 if (tbuf) {
1039 struct tms tms;
1040 struct compat_tms tmp;
1041
1042 do_sys_times(&tms);
1043 /* Convert our struct tms to the compat version. */
1044 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1045 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1046 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1047 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1048 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1049 return -EFAULT;
1050 }
1051 force_successful_syscall_return();
1052 return compat_jiffies_to_clock_t(jiffies);
1053 }
1054 #endif
1055
1056 /*
1057 * This needs some heavy checking ...
1058 * I just haven't the stomach for it. I also don't fully
1059 * understand sessions/pgrp etc. Let somebody who does explain it.
1060 *
1061 * OK, I think I have the protection semantics right.... this is really
1062 * only important on a multi-user system anyway, to make sure one user
1063 * can't send a signal to a process owned by another. -TYT, 12/12/91
1064 *
1065 * !PF_FORKNOEXEC check to conform completely to POSIX.
1066 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1067 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1068 {
1069 struct task_struct *p;
1070 struct task_struct *group_leader = current->group_leader;
1071 struct pid *pgrp;
1072 int err;
1073
1074 if (!pid)
1075 pid = task_pid_vnr(group_leader);
1076 if (!pgid)
1077 pgid = pid;
1078 if (pgid < 0)
1079 return -EINVAL;
1080 rcu_read_lock();
1081
1082 /* From this point forward we keep holding onto the tasklist lock
1083 * so that our parent does not change from under us. -DaveM
1084 */
1085 write_lock_irq(&tasklist_lock);
1086
1087 err = -ESRCH;
1088 p = find_task_by_vpid(pid);
1089 if (!p)
1090 goto out;
1091
1092 err = -EINVAL;
1093 if (!thread_group_leader(p))
1094 goto out;
1095
1096 if (same_thread_group(p->real_parent, group_leader)) {
1097 err = -EPERM;
1098 if (task_session(p) != task_session(group_leader))
1099 goto out;
1100 err = -EACCES;
1101 if (!(p->flags & PF_FORKNOEXEC))
1102 goto out;
1103 } else {
1104 err = -ESRCH;
1105 if (p != group_leader)
1106 goto out;
1107 }
1108
1109 err = -EPERM;
1110 if (p->signal->leader)
1111 goto out;
1112
1113 pgrp = task_pid(p);
1114 if (pgid != pid) {
1115 struct task_struct *g;
1116
1117 pgrp = find_vpid(pgid);
1118 g = pid_task(pgrp, PIDTYPE_PGID);
1119 if (!g || task_session(g) != task_session(group_leader))
1120 goto out;
1121 }
1122
1123 err = security_task_setpgid(p, pgid);
1124 if (err)
1125 goto out;
1126
1127 if (task_pgrp(p) != pgrp)
1128 change_pid(p, PIDTYPE_PGID, pgrp);
1129
1130 err = 0;
1131 out:
1132 /* All paths lead to here, thus we are safe. -DaveM */
1133 write_unlock_irq(&tasklist_lock);
1134 rcu_read_unlock();
1135 return err;
1136 }
1137
do_getpgid(pid_t pid)1138 static int do_getpgid(pid_t pid)
1139 {
1140 struct task_struct *p;
1141 struct pid *grp;
1142 int retval;
1143
1144 rcu_read_lock();
1145 if (!pid)
1146 grp = task_pgrp(current);
1147 else {
1148 retval = -ESRCH;
1149 p = find_task_by_vpid(pid);
1150 if (!p)
1151 goto out;
1152 grp = task_pgrp(p);
1153 if (!grp)
1154 goto out;
1155
1156 retval = security_task_getpgid(p);
1157 if (retval)
1158 goto out;
1159 }
1160 retval = pid_vnr(grp);
1161 out:
1162 rcu_read_unlock();
1163 return retval;
1164 }
1165
SYSCALL_DEFINE1(getpgid,pid_t,pid)1166 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1167 {
1168 return do_getpgid(pid);
1169 }
1170
1171 #ifdef __ARCH_WANT_SYS_GETPGRP
1172
SYSCALL_DEFINE0(getpgrp)1173 SYSCALL_DEFINE0(getpgrp)
1174 {
1175 return do_getpgid(0);
1176 }
1177
1178 #endif
1179
SYSCALL_DEFINE1(getsid,pid_t,pid)1180 SYSCALL_DEFINE1(getsid, pid_t, pid)
1181 {
1182 struct task_struct *p;
1183 struct pid *sid;
1184 int retval;
1185
1186 rcu_read_lock();
1187 if (!pid)
1188 sid = task_session(current);
1189 else {
1190 retval = -ESRCH;
1191 p = find_task_by_vpid(pid);
1192 if (!p)
1193 goto out;
1194 sid = task_session(p);
1195 if (!sid)
1196 goto out;
1197
1198 retval = security_task_getsid(p);
1199 if (retval)
1200 goto out;
1201 }
1202 retval = pid_vnr(sid);
1203 out:
1204 rcu_read_unlock();
1205 return retval;
1206 }
1207
set_special_pids(struct pid * pid)1208 static void set_special_pids(struct pid *pid)
1209 {
1210 struct task_struct *curr = current->group_leader;
1211
1212 if (task_session(curr) != pid)
1213 change_pid(curr, PIDTYPE_SID, pid);
1214
1215 if (task_pgrp(curr) != pid)
1216 change_pid(curr, PIDTYPE_PGID, pid);
1217 }
1218
ksys_setsid(void)1219 int ksys_setsid(void)
1220 {
1221 struct task_struct *group_leader = current->group_leader;
1222 struct pid *sid = task_pid(group_leader);
1223 pid_t session = pid_vnr(sid);
1224 int err = -EPERM;
1225
1226 write_lock_irq(&tasklist_lock);
1227 /* Fail if I am already a session leader */
1228 if (group_leader->signal->leader)
1229 goto out;
1230
1231 /* Fail if a process group id already exists that equals the
1232 * proposed session id.
1233 */
1234 if (pid_task(sid, PIDTYPE_PGID))
1235 goto out;
1236
1237 group_leader->signal->leader = 1;
1238 set_special_pids(sid);
1239
1240 proc_clear_tty(group_leader);
1241
1242 err = session;
1243 out:
1244 write_unlock_irq(&tasklist_lock);
1245 if (err > 0) {
1246 proc_sid_connector(group_leader);
1247 sched_autogroup_create_attach(group_leader);
1248 }
1249 return err;
1250 }
1251
SYSCALL_DEFINE0(setsid)1252 SYSCALL_DEFINE0(setsid)
1253 {
1254 return ksys_setsid();
1255 }
1256
1257 DECLARE_RWSEM(uts_sem);
1258
1259 #ifdef COMPAT_UTS_MACHINE
1260 #define override_architecture(name) \
1261 (personality(current->personality) == PER_LINUX32 && \
1262 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1263 sizeof(COMPAT_UTS_MACHINE)))
1264 #else
1265 #define override_architecture(name) 0
1266 #endif
1267
1268 /*
1269 * Work around broken programs that cannot handle "Linux 3.0".
1270 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1271 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1272 * 2.6.60.
1273 */
override_release(char __user * release,size_t len)1274 static int override_release(char __user *release, size_t len)
1275 {
1276 int ret = 0;
1277
1278 if (current->personality & UNAME26) {
1279 const char *rest = UTS_RELEASE;
1280 char buf[65] = { 0 };
1281 int ndots = 0;
1282 unsigned v;
1283 size_t copy;
1284
1285 while (*rest) {
1286 if (*rest == '.' && ++ndots >= 3)
1287 break;
1288 if (!isdigit(*rest) && *rest != '.')
1289 break;
1290 rest++;
1291 }
1292 v = LINUX_VERSION_PATCHLEVEL + 60;
1293 copy = clamp_t(size_t, len, 1, sizeof(buf));
1294 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1295 ret = copy_to_user(release, buf, copy + 1);
1296 }
1297 return ret;
1298 }
1299
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1300 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1301 {
1302 struct new_utsname tmp;
1303
1304 down_read(&uts_sem);
1305 memcpy(&tmp, utsname(), sizeof(tmp));
1306 up_read(&uts_sem);
1307 if (copy_to_user(name, &tmp, sizeof(tmp)))
1308 return -EFAULT;
1309
1310 if (override_release(name->release, sizeof(name->release)))
1311 return -EFAULT;
1312 if (override_architecture(name))
1313 return -EFAULT;
1314 return 0;
1315 }
1316
1317 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1318 /*
1319 * Old cruft
1320 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1321 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1322 {
1323 struct old_utsname tmp;
1324
1325 if (!name)
1326 return -EFAULT;
1327
1328 down_read(&uts_sem);
1329 memcpy(&tmp, utsname(), sizeof(tmp));
1330 up_read(&uts_sem);
1331 if (copy_to_user(name, &tmp, sizeof(tmp)))
1332 return -EFAULT;
1333
1334 if (override_release(name->release, sizeof(name->release)))
1335 return -EFAULT;
1336 if (override_architecture(name))
1337 return -EFAULT;
1338 return 0;
1339 }
1340
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1341 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1342 {
1343 struct oldold_utsname tmp;
1344
1345 if (!name)
1346 return -EFAULT;
1347
1348 memset(&tmp, 0, sizeof(tmp));
1349
1350 down_read(&uts_sem);
1351 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1352 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1353 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1354 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1355 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1356 up_read(&uts_sem);
1357 if (copy_to_user(name, &tmp, sizeof(tmp)))
1358 return -EFAULT;
1359
1360 if (override_architecture(name))
1361 return -EFAULT;
1362 if (override_release(name->release, sizeof(name->release)))
1363 return -EFAULT;
1364 return 0;
1365 }
1366 #endif
1367
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1368 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1369 {
1370 int errno;
1371 char tmp[__NEW_UTS_LEN];
1372
1373 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1374 return -EPERM;
1375
1376 if (len < 0 || len > __NEW_UTS_LEN)
1377 return -EINVAL;
1378 errno = -EFAULT;
1379 if (!copy_from_user(tmp, name, len)) {
1380 struct new_utsname *u;
1381
1382 down_write(&uts_sem);
1383 u = utsname();
1384 memcpy(u->nodename, tmp, len);
1385 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1386 errno = 0;
1387 uts_proc_notify(UTS_PROC_HOSTNAME);
1388 up_write(&uts_sem);
1389 }
1390 return errno;
1391 }
1392
1393 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1394
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1395 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1396 {
1397 int i;
1398 struct new_utsname *u;
1399 char tmp[__NEW_UTS_LEN + 1];
1400
1401 if (len < 0)
1402 return -EINVAL;
1403 down_read(&uts_sem);
1404 u = utsname();
1405 i = 1 + strlen(u->nodename);
1406 if (i > len)
1407 i = len;
1408 memcpy(tmp, u->nodename, i);
1409 up_read(&uts_sem);
1410 if (copy_to_user(name, tmp, i))
1411 return -EFAULT;
1412 return 0;
1413 }
1414
1415 #endif
1416
1417 /*
1418 * Only setdomainname; getdomainname can be implemented by calling
1419 * uname()
1420 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1421 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1422 {
1423 int errno;
1424 char tmp[__NEW_UTS_LEN];
1425
1426 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1427 return -EPERM;
1428 if (len < 0 || len > __NEW_UTS_LEN)
1429 return -EINVAL;
1430
1431 errno = -EFAULT;
1432 if (!copy_from_user(tmp, name, len)) {
1433 struct new_utsname *u;
1434
1435 down_write(&uts_sem);
1436 u = utsname();
1437 memcpy(u->domainname, tmp, len);
1438 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1439 errno = 0;
1440 uts_proc_notify(UTS_PROC_DOMAINNAME);
1441 up_write(&uts_sem);
1442 }
1443 return errno;
1444 }
1445
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1446 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1447 {
1448 struct rlimit value;
1449 int ret;
1450
1451 ret = do_prlimit(current, resource, NULL, &value);
1452 if (!ret)
1453 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1454
1455 return ret;
1456 }
1457
1458 #ifdef CONFIG_COMPAT
1459
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1460 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1461 struct compat_rlimit __user *, rlim)
1462 {
1463 struct rlimit r;
1464 struct compat_rlimit r32;
1465
1466 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1467 return -EFAULT;
1468
1469 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1470 r.rlim_cur = RLIM_INFINITY;
1471 else
1472 r.rlim_cur = r32.rlim_cur;
1473 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1474 r.rlim_max = RLIM_INFINITY;
1475 else
1476 r.rlim_max = r32.rlim_max;
1477 return do_prlimit(current, resource, &r, NULL);
1478 }
1479
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1480 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1481 struct compat_rlimit __user *, rlim)
1482 {
1483 struct rlimit r;
1484 int ret;
1485
1486 ret = do_prlimit(current, resource, NULL, &r);
1487 if (!ret) {
1488 struct compat_rlimit r32;
1489 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1490 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1491 else
1492 r32.rlim_cur = r.rlim_cur;
1493 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1494 r32.rlim_max = COMPAT_RLIM_INFINITY;
1495 else
1496 r32.rlim_max = r.rlim_max;
1497
1498 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1499 return -EFAULT;
1500 }
1501 return ret;
1502 }
1503
1504 #endif
1505
1506 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1507
1508 /*
1509 * Back compatibility for getrlimit. Needed for some apps.
1510 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1511 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1512 struct rlimit __user *, rlim)
1513 {
1514 struct rlimit x;
1515 if (resource >= RLIM_NLIMITS)
1516 return -EINVAL;
1517
1518 resource = array_index_nospec(resource, RLIM_NLIMITS);
1519 task_lock(current->group_leader);
1520 x = current->signal->rlim[resource];
1521 task_unlock(current->group_leader);
1522 if (x.rlim_cur > 0x7FFFFFFF)
1523 x.rlim_cur = 0x7FFFFFFF;
1524 if (x.rlim_max > 0x7FFFFFFF)
1525 x.rlim_max = 0x7FFFFFFF;
1526 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1527 }
1528
1529 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1530 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1531 struct compat_rlimit __user *, rlim)
1532 {
1533 struct rlimit r;
1534
1535 if (resource >= RLIM_NLIMITS)
1536 return -EINVAL;
1537
1538 resource = array_index_nospec(resource, RLIM_NLIMITS);
1539 task_lock(current->group_leader);
1540 r = current->signal->rlim[resource];
1541 task_unlock(current->group_leader);
1542 if (r.rlim_cur > 0x7FFFFFFF)
1543 r.rlim_cur = 0x7FFFFFFF;
1544 if (r.rlim_max > 0x7FFFFFFF)
1545 r.rlim_max = 0x7FFFFFFF;
1546
1547 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1548 put_user(r.rlim_max, &rlim->rlim_max))
1549 return -EFAULT;
1550 return 0;
1551 }
1552 #endif
1553
1554 #endif
1555
rlim64_is_infinity(__u64 rlim64)1556 static inline bool rlim64_is_infinity(__u64 rlim64)
1557 {
1558 #if BITS_PER_LONG < 64
1559 return rlim64 >= ULONG_MAX;
1560 #else
1561 return rlim64 == RLIM64_INFINITY;
1562 #endif
1563 }
1564
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1565 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1566 {
1567 if (rlim->rlim_cur == RLIM_INFINITY)
1568 rlim64->rlim_cur = RLIM64_INFINITY;
1569 else
1570 rlim64->rlim_cur = rlim->rlim_cur;
1571 if (rlim->rlim_max == RLIM_INFINITY)
1572 rlim64->rlim_max = RLIM64_INFINITY;
1573 else
1574 rlim64->rlim_max = rlim->rlim_max;
1575 }
1576
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1577 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1578 {
1579 if (rlim64_is_infinity(rlim64->rlim_cur))
1580 rlim->rlim_cur = RLIM_INFINITY;
1581 else
1582 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1583 if (rlim64_is_infinity(rlim64->rlim_max))
1584 rlim->rlim_max = RLIM_INFINITY;
1585 else
1586 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1587 }
1588
1589 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1590 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1591 struct rlimit *new_rlim, struct rlimit *old_rlim)
1592 {
1593 struct rlimit *rlim;
1594 int retval = 0;
1595
1596 if (resource >= RLIM_NLIMITS)
1597 return -EINVAL;
1598 resource = array_index_nospec(resource, RLIM_NLIMITS);
1599
1600 if (new_rlim) {
1601 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1602 return -EINVAL;
1603 if (resource == RLIMIT_NOFILE &&
1604 new_rlim->rlim_max > sysctl_nr_open)
1605 return -EPERM;
1606 }
1607
1608 /* protect tsk->signal and tsk->sighand from disappearing */
1609 read_lock(&tasklist_lock);
1610 if (!tsk->sighand) {
1611 retval = -ESRCH;
1612 goto out;
1613 }
1614
1615 rlim = tsk->signal->rlim + resource;
1616 task_lock(tsk->group_leader);
1617 if (new_rlim) {
1618 /* Keep the capable check against init_user_ns until
1619 cgroups can contain all limits */
1620 if (new_rlim->rlim_max > rlim->rlim_max &&
1621 !capable(CAP_SYS_RESOURCE))
1622 retval = -EPERM;
1623 if (!retval)
1624 retval = security_task_setrlimit(tsk, resource, new_rlim);
1625 }
1626 if (!retval) {
1627 if (old_rlim)
1628 *old_rlim = *rlim;
1629 if (new_rlim)
1630 *rlim = *new_rlim;
1631 }
1632 task_unlock(tsk->group_leader);
1633
1634 /*
1635 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1636 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1637 * ignores the rlimit.
1638 */
1639 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1640 new_rlim->rlim_cur != RLIM_INFINITY &&
1641 IS_ENABLED(CONFIG_POSIX_TIMERS))
1642 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1643 out:
1644 read_unlock(&tasklist_lock);
1645 return retval;
1646 }
1647
1648 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1649 static int check_prlimit_permission(struct task_struct *task,
1650 unsigned int flags)
1651 {
1652 const struct cred *cred = current_cred(), *tcred;
1653 bool id_match;
1654
1655 if (current == task)
1656 return 0;
1657
1658 tcred = __task_cred(task);
1659 id_match = (uid_eq(cred->uid, tcred->euid) &&
1660 uid_eq(cred->uid, tcred->suid) &&
1661 uid_eq(cred->uid, tcred->uid) &&
1662 gid_eq(cred->gid, tcred->egid) &&
1663 gid_eq(cred->gid, tcred->sgid) &&
1664 gid_eq(cred->gid, tcred->gid));
1665 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1666 return -EPERM;
1667
1668 return security_task_prlimit(cred, tcred, flags);
1669 }
1670
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1671 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1672 const struct rlimit64 __user *, new_rlim,
1673 struct rlimit64 __user *, old_rlim)
1674 {
1675 struct rlimit64 old64, new64;
1676 struct rlimit old, new;
1677 struct task_struct *tsk;
1678 unsigned int checkflags = 0;
1679 int ret;
1680
1681 if (old_rlim)
1682 checkflags |= LSM_PRLIMIT_READ;
1683
1684 if (new_rlim) {
1685 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1686 return -EFAULT;
1687 rlim64_to_rlim(&new64, &new);
1688 checkflags |= LSM_PRLIMIT_WRITE;
1689 }
1690
1691 rcu_read_lock();
1692 tsk = pid ? find_task_by_vpid(pid) : current;
1693 if (!tsk) {
1694 rcu_read_unlock();
1695 return -ESRCH;
1696 }
1697 ret = check_prlimit_permission(tsk, checkflags);
1698 if (ret) {
1699 rcu_read_unlock();
1700 return ret;
1701 }
1702 get_task_struct(tsk);
1703 rcu_read_unlock();
1704
1705 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1706 old_rlim ? &old : NULL);
1707
1708 if (!ret && old_rlim) {
1709 rlim_to_rlim64(&old, &old64);
1710 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1711 ret = -EFAULT;
1712 }
1713
1714 put_task_struct(tsk);
1715 return ret;
1716 }
1717
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1718 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1719 {
1720 struct rlimit new_rlim;
1721
1722 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1723 return -EFAULT;
1724 return do_prlimit(current, resource, &new_rlim, NULL);
1725 }
1726
1727 /*
1728 * It would make sense to put struct rusage in the task_struct,
1729 * except that would make the task_struct be *really big*. After
1730 * task_struct gets moved into malloc'ed memory, it would
1731 * make sense to do this. It will make moving the rest of the information
1732 * a lot simpler! (Which we're not doing right now because we're not
1733 * measuring them yet).
1734 *
1735 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1736 * races with threads incrementing their own counters. But since word
1737 * reads are atomic, we either get new values or old values and we don't
1738 * care which for the sums. We always take the siglock to protect reading
1739 * the c* fields from p->signal from races with exit.c updating those
1740 * fields when reaping, so a sample either gets all the additions of a
1741 * given child after it's reaped, or none so this sample is before reaping.
1742 *
1743 * Locking:
1744 * We need to take the siglock for CHILDEREN, SELF and BOTH
1745 * for the cases current multithreaded, non-current single threaded
1746 * non-current multithreaded. Thread traversal is now safe with
1747 * the siglock held.
1748 * Strictly speaking, we donot need to take the siglock if we are current and
1749 * single threaded, as no one else can take our signal_struct away, no one
1750 * else can reap the children to update signal->c* counters, and no one else
1751 * can race with the signal-> fields. If we do not take any lock, the
1752 * signal-> fields could be read out of order while another thread was just
1753 * exiting. So we should place a read memory barrier when we avoid the lock.
1754 * On the writer side, write memory barrier is implied in __exit_signal
1755 * as __exit_signal releases the siglock spinlock after updating the signal->
1756 * fields. But we don't do this yet to keep things simple.
1757 *
1758 */
1759
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1760 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1761 {
1762 r->ru_nvcsw += t->nvcsw;
1763 r->ru_nivcsw += t->nivcsw;
1764 r->ru_minflt += t->min_flt;
1765 r->ru_majflt += t->maj_flt;
1766 r->ru_inblock += task_io_get_inblock(t);
1767 r->ru_oublock += task_io_get_oublock(t);
1768 }
1769
getrusage(struct task_struct * p,int who,struct rusage * r)1770 void getrusage(struct task_struct *p, int who, struct rusage *r)
1771 {
1772 struct task_struct *t;
1773 unsigned long flags;
1774 u64 tgutime, tgstime, utime, stime;
1775 unsigned long maxrss = 0;
1776
1777 memset((char *)r, 0, sizeof (*r));
1778 utime = stime = 0;
1779
1780 if (who == RUSAGE_THREAD) {
1781 task_cputime_adjusted(current, &utime, &stime);
1782 accumulate_thread_rusage(p, r);
1783 maxrss = p->signal->maxrss;
1784 goto out;
1785 }
1786
1787 if (!lock_task_sighand(p, &flags))
1788 return;
1789
1790 switch (who) {
1791 case RUSAGE_BOTH:
1792 case RUSAGE_CHILDREN:
1793 utime = p->signal->cutime;
1794 stime = p->signal->cstime;
1795 r->ru_nvcsw = p->signal->cnvcsw;
1796 r->ru_nivcsw = p->signal->cnivcsw;
1797 r->ru_minflt = p->signal->cmin_flt;
1798 r->ru_majflt = p->signal->cmaj_flt;
1799 r->ru_inblock = p->signal->cinblock;
1800 r->ru_oublock = p->signal->coublock;
1801 maxrss = p->signal->cmaxrss;
1802
1803 if (who == RUSAGE_CHILDREN)
1804 break;
1805 fallthrough;
1806
1807 case RUSAGE_SELF:
1808 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1809 utime += tgutime;
1810 stime += tgstime;
1811 r->ru_nvcsw += p->signal->nvcsw;
1812 r->ru_nivcsw += p->signal->nivcsw;
1813 r->ru_minflt += p->signal->min_flt;
1814 r->ru_majflt += p->signal->maj_flt;
1815 r->ru_inblock += p->signal->inblock;
1816 r->ru_oublock += p->signal->oublock;
1817 if (maxrss < p->signal->maxrss)
1818 maxrss = p->signal->maxrss;
1819 t = p;
1820 do {
1821 accumulate_thread_rusage(t, r);
1822 } while_each_thread(p, t);
1823 break;
1824
1825 default:
1826 BUG();
1827 }
1828 unlock_task_sighand(p, &flags);
1829
1830 out:
1831 r->ru_utime = ns_to_kernel_old_timeval(utime);
1832 r->ru_stime = ns_to_kernel_old_timeval(stime);
1833
1834 if (who != RUSAGE_CHILDREN) {
1835 struct mm_struct *mm = get_task_mm(p);
1836
1837 if (mm) {
1838 setmax_mm_hiwater_rss(&maxrss, mm);
1839 mmput(mm);
1840 }
1841 }
1842 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1843 }
1844
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1845 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1846 {
1847 struct rusage r;
1848
1849 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1850 who != RUSAGE_THREAD)
1851 return -EINVAL;
1852
1853 getrusage(current, who, &r);
1854 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1855 }
1856
1857 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1858 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1859 {
1860 struct rusage r;
1861
1862 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1863 who != RUSAGE_THREAD)
1864 return -EINVAL;
1865
1866 getrusage(current, who, &r);
1867 return put_compat_rusage(&r, ru);
1868 }
1869 #endif
1870
SYSCALL_DEFINE1(umask,int,mask)1871 SYSCALL_DEFINE1(umask, int, mask)
1872 {
1873 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1874 return mask;
1875 }
1876
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1877 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1878 {
1879 struct fd exe;
1880 struct inode *inode;
1881 int err;
1882
1883 exe = fdget(fd);
1884 if (!exe.file)
1885 return -EBADF;
1886
1887 inode = file_inode(exe.file);
1888
1889 /*
1890 * Because the original mm->exe_file points to executable file, make
1891 * sure that this one is executable as well, to avoid breaking an
1892 * overall picture.
1893 */
1894 err = -EACCES;
1895 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1896 goto exit;
1897
1898 err = file_permission(exe.file, MAY_EXEC);
1899 if (err)
1900 goto exit;
1901
1902 err = replace_mm_exe_file(mm, exe.file);
1903 exit:
1904 fdput(exe);
1905 return err;
1906 }
1907
1908 /*
1909 * Check arithmetic relations of passed addresses.
1910 *
1911 * WARNING: we don't require any capability here so be very careful
1912 * in what is allowed for modification from userspace.
1913 */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1914 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1915 {
1916 unsigned long mmap_max_addr = TASK_SIZE;
1917 int error = -EINVAL, i;
1918
1919 static const unsigned char offsets[] = {
1920 offsetof(struct prctl_mm_map, start_code),
1921 offsetof(struct prctl_mm_map, end_code),
1922 offsetof(struct prctl_mm_map, start_data),
1923 offsetof(struct prctl_mm_map, end_data),
1924 offsetof(struct prctl_mm_map, start_brk),
1925 offsetof(struct prctl_mm_map, brk),
1926 offsetof(struct prctl_mm_map, start_stack),
1927 offsetof(struct prctl_mm_map, arg_start),
1928 offsetof(struct prctl_mm_map, arg_end),
1929 offsetof(struct prctl_mm_map, env_start),
1930 offsetof(struct prctl_mm_map, env_end),
1931 };
1932
1933 /*
1934 * Make sure the members are not somewhere outside
1935 * of allowed address space.
1936 */
1937 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1938 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1939
1940 if ((unsigned long)val >= mmap_max_addr ||
1941 (unsigned long)val < mmap_min_addr)
1942 goto out;
1943 }
1944
1945 /*
1946 * Make sure the pairs are ordered.
1947 */
1948 #define __prctl_check_order(__m1, __op, __m2) \
1949 ((unsigned long)prctl_map->__m1 __op \
1950 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1951 error = __prctl_check_order(start_code, <, end_code);
1952 error |= __prctl_check_order(start_data,<=, end_data);
1953 error |= __prctl_check_order(start_brk, <=, brk);
1954 error |= __prctl_check_order(arg_start, <=, arg_end);
1955 error |= __prctl_check_order(env_start, <=, env_end);
1956 if (error)
1957 goto out;
1958 #undef __prctl_check_order
1959
1960 error = -EINVAL;
1961
1962 /*
1963 * Neither we should allow to override limits if they set.
1964 */
1965 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1966 prctl_map->start_brk, prctl_map->end_data,
1967 prctl_map->start_data))
1968 goto out;
1969
1970 error = 0;
1971 out:
1972 return error;
1973 }
1974
1975 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1976 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1977 {
1978 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1979 unsigned long user_auxv[AT_VECTOR_SIZE];
1980 struct mm_struct *mm = current->mm;
1981 int error;
1982
1983 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1984 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1985
1986 if (opt == PR_SET_MM_MAP_SIZE)
1987 return put_user((unsigned int)sizeof(prctl_map),
1988 (unsigned int __user *)addr);
1989
1990 if (data_size != sizeof(prctl_map))
1991 return -EINVAL;
1992
1993 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1994 return -EFAULT;
1995
1996 error = validate_prctl_map_addr(&prctl_map);
1997 if (error)
1998 return error;
1999
2000 if (prctl_map.auxv_size) {
2001 /*
2002 * Someone is trying to cheat the auxv vector.
2003 */
2004 if (!prctl_map.auxv ||
2005 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2006 return -EINVAL;
2007
2008 memset(user_auxv, 0, sizeof(user_auxv));
2009 if (copy_from_user(user_auxv,
2010 (const void __user *)prctl_map.auxv,
2011 prctl_map.auxv_size))
2012 return -EFAULT;
2013
2014 /* Last entry must be AT_NULL as specification requires */
2015 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2016 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2017 }
2018
2019 if (prctl_map.exe_fd != (u32)-1) {
2020 /*
2021 * Check if the current user is checkpoint/restore capable.
2022 * At the time of this writing, it checks for CAP_SYS_ADMIN
2023 * or CAP_CHECKPOINT_RESTORE.
2024 * Note that a user with access to ptrace can masquerade an
2025 * arbitrary program as any executable, even setuid ones.
2026 * This may have implications in the tomoyo subsystem.
2027 */
2028 if (!checkpoint_restore_ns_capable(current_user_ns()))
2029 return -EPERM;
2030
2031 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2032 if (error)
2033 return error;
2034 }
2035
2036 /*
2037 * arg_lock protects concurrent updates but we still need mmap_lock for
2038 * read to exclude races with sys_brk.
2039 */
2040 mmap_read_lock(mm);
2041
2042 /*
2043 * We don't validate if these members are pointing to
2044 * real present VMAs because application may have correspond
2045 * VMAs already unmapped and kernel uses these members for statistics
2046 * output in procfs mostly, except
2047 *
2048 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2049 * for VMAs when updating these members so anything wrong written
2050 * here cause kernel to swear at userspace program but won't lead
2051 * to any problem in kernel itself
2052 */
2053
2054 spin_lock(&mm->arg_lock);
2055 mm->start_code = prctl_map.start_code;
2056 mm->end_code = prctl_map.end_code;
2057 mm->start_data = prctl_map.start_data;
2058 mm->end_data = prctl_map.end_data;
2059 mm->start_brk = prctl_map.start_brk;
2060 mm->brk = prctl_map.brk;
2061 mm->start_stack = prctl_map.start_stack;
2062 mm->arg_start = prctl_map.arg_start;
2063 mm->arg_end = prctl_map.arg_end;
2064 mm->env_start = prctl_map.env_start;
2065 mm->env_end = prctl_map.env_end;
2066 spin_unlock(&mm->arg_lock);
2067
2068 /*
2069 * Note this update of @saved_auxv is lockless thus
2070 * if someone reads this member in procfs while we're
2071 * updating -- it may get partly updated results. It's
2072 * known and acceptable trade off: we leave it as is to
2073 * not introduce additional locks here making the kernel
2074 * more complex.
2075 */
2076 if (prctl_map.auxv_size)
2077 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2078
2079 mmap_read_unlock(mm);
2080 return 0;
2081 }
2082 #endif /* CONFIG_CHECKPOINT_RESTORE */
2083
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2084 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2085 unsigned long len)
2086 {
2087 /*
2088 * This doesn't move the auxiliary vector itself since it's pinned to
2089 * mm_struct, but it permits filling the vector with new values. It's
2090 * up to the caller to provide sane values here, otherwise userspace
2091 * tools which use this vector might be unhappy.
2092 */
2093 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2094
2095 if (len > sizeof(user_auxv))
2096 return -EINVAL;
2097
2098 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2099 return -EFAULT;
2100
2101 /* Make sure the last entry is always AT_NULL */
2102 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2103 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2104
2105 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2106
2107 task_lock(current);
2108 memcpy(mm->saved_auxv, user_auxv, len);
2109 task_unlock(current);
2110
2111 return 0;
2112 }
2113
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2114 static int prctl_set_mm(int opt, unsigned long addr,
2115 unsigned long arg4, unsigned long arg5)
2116 {
2117 struct mm_struct *mm = current->mm;
2118 struct prctl_mm_map prctl_map = {
2119 .auxv = NULL,
2120 .auxv_size = 0,
2121 .exe_fd = -1,
2122 };
2123 struct vm_area_struct *vma;
2124 int error;
2125
2126 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2127 opt != PR_SET_MM_MAP &&
2128 opt != PR_SET_MM_MAP_SIZE)))
2129 return -EINVAL;
2130
2131 #ifdef CONFIG_CHECKPOINT_RESTORE
2132 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2133 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2134 #endif
2135
2136 if (!capable(CAP_SYS_RESOURCE))
2137 return -EPERM;
2138
2139 if (opt == PR_SET_MM_EXE_FILE)
2140 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2141
2142 if (opt == PR_SET_MM_AUXV)
2143 return prctl_set_auxv(mm, addr, arg4);
2144
2145 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2146 return -EINVAL;
2147
2148 error = -EINVAL;
2149
2150 /*
2151 * arg_lock protects concurrent updates of arg boundaries, we need
2152 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2153 * validation.
2154 */
2155 mmap_read_lock(mm);
2156 vma = find_vma(mm, addr);
2157
2158 spin_lock(&mm->arg_lock);
2159 prctl_map.start_code = mm->start_code;
2160 prctl_map.end_code = mm->end_code;
2161 prctl_map.start_data = mm->start_data;
2162 prctl_map.end_data = mm->end_data;
2163 prctl_map.start_brk = mm->start_brk;
2164 prctl_map.brk = mm->brk;
2165 prctl_map.start_stack = mm->start_stack;
2166 prctl_map.arg_start = mm->arg_start;
2167 prctl_map.arg_end = mm->arg_end;
2168 prctl_map.env_start = mm->env_start;
2169 prctl_map.env_end = mm->env_end;
2170
2171 switch (opt) {
2172 case PR_SET_MM_START_CODE:
2173 prctl_map.start_code = addr;
2174 break;
2175 case PR_SET_MM_END_CODE:
2176 prctl_map.end_code = addr;
2177 break;
2178 case PR_SET_MM_START_DATA:
2179 prctl_map.start_data = addr;
2180 break;
2181 case PR_SET_MM_END_DATA:
2182 prctl_map.end_data = addr;
2183 break;
2184 case PR_SET_MM_START_STACK:
2185 prctl_map.start_stack = addr;
2186 break;
2187 case PR_SET_MM_START_BRK:
2188 prctl_map.start_brk = addr;
2189 break;
2190 case PR_SET_MM_BRK:
2191 prctl_map.brk = addr;
2192 break;
2193 case PR_SET_MM_ARG_START:
2194 prctl_map.arg_start = addr;
2195 break;
2196 case PR_SET_MM_ARG_END:
2197 prctl_map.arg_end = addr;
2198 break;
2199 case PR_SET_MM_ENV_START:
2200 prctl_map.env_start = addr;
2201 break;
2202 case PR_SET_MM_ENV_END:
2203 prctl_map.env_end = addr;
2204 break;
2205 default:
2206 goto out;
2207 }
2208
2209 error = validate_prctl_map_addr(&prctl_map);
2210 if (error)
2211 goto out;
2212
2213 switch (opt) {
2214 /*
2215 * If command line arguments and environment
2216 * are placed somewhere else on stack, we can
2217 * set them up here, ARG_START/END to setup
2218 * command line arguments and ENV_START/END
2219 * for environment.
2220 */
2221 case PR_SET_MM_START_STACK:
2222 case PR_SET_MM_ARG_START:
2223 case PR_SET_MM_ARG_END:
2224 case PR_SET_MM_ENV_START:
2225 case PR_SET_MM_ENV_END:
2226 if (!vma) {
2227 error = -EFAULT;
2228 goto out;
2229 }
2230 }
2231
2232 mm->start_code = prctl_map.start_code;
2233 mm->end_code = prctl_map.end_code;
2234 mm->start_data = prctl_map.start_data;
2235 mm->end_data = prctl_map.end_data;
2236 mm->start_brk = prctl_map.start_brk;
2237 mm->brk = prctl_map.brk;
2238 mm->start_stack = prctl_map.start_stack;
2239 mm->arg_start = prctl_map.arg_start;
2240 mm->arg_end = prctl_map.arg_end;
2241 mm->env_start = prctl_map.env_start;
2242 mm->env_end = prctl_map.env_end;
2243
2244 error = 0;
2245 out:
2246 spin_unlock(&mm->arg_lock);
2247 mmap_read_unlock(mm);
2248 return error;
2249 }
2250
2251 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2252 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2253 {
2254 return put_user(me->clear_child_tid, tid_addr);
2255 }
2256 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2257 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2258 {
2259 return -EINVAL;
2260 }
2261 #endif
2262
propagate_has_child_subreaper(struct task_struct * p,void * data)2263 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2264 {
2265 /*
2266 * If task has has_child_subreaper - all its descendants
2267 * already have these flag too and new descendants will
2268 * inherit it on fork, skip them.
2269 *
2270 * If we've found child_reaper - skip descendants in
2271 * it's subtree as they will never get out pidns.
2272 */
2273 if (p->signal->has_child_subreaper ||
2274 is_child_reaper(task_pid(p)))
2275 return 0;
2276
2277 p->signal->has_child_subreaper = 1;
2278 return 1;
2279 }
2280
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2281 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2282 {
2283 return -EINVAL;
2284 }
2285
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2286 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2287 unsigned long ctrl)
2288 {
2289 return -EINVAL;
2290 }
2291
2292 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2293
2294 #ifdef CONFIG_ANON_VMA_NAME
2295
2296 #define ANON_VMA_NAME_MAX_LEN 256
2297 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2298
is_valid_name_char(char ch)2299 static inline bool is_valid_name_char(char ch)
2300 {
2301 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2302 return ch > 0x1f && ch < 0x7f &&
2303 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2304 }
2305
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2306 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2307 unsigned long size, unsigned long arg)
2308 {
2309 struct mm_struct *mm = current->mm;
2310 const char __user *uname;
2311 struct anon_vma_name *anon_name = NULL;
2312 int error;
2313
2314 switch (opt) {
2315 case PR_SET_VMA_ANON_NAME:
2316 uname = (const char __user *)arg;
2317 if (uname) {
2318 char *name, *pch;
2319
2320 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2321 if (IS_ERR(name))
2322 return PTR_ERR(name);
2323
2324 for (pch = name; *pch != '\0'; pch++) {
2325 if (!is_valid_name_char(*pch)) {
2326 kfree(name);
2327 return -EINVAL;
2328 }
2329 }
2330 /* anon_vma has its own copy */
2331 anon_name = anon_vma_name_alloc(name);
2332 kfree(name);
2333 if (!anon_name)
2334 return -ENOMEM;
2335
2336 }
2337
2338 mmap_write_lock(mm);
2339 error = madvise_set_anon_name(mm, addr, size, anon_name);
2340 mmap_write_unlock(mm);
2341 anon_vma_name_put(anon_name);
2342 break;
2343 default:
2344 error = -EINVAL;
2345 }
2346
2347 return error;
2348 }
2349
2350 #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2351 static int prctl_set_vma(unsigned long opt, unsigned long start,
2352 unsigned long size, unsigned long arg)
2353 {
2354 return -EINVAL;
2355 }
2356 #endif /* CONFIG_ANON_VMA_NAME */
2357
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2358 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2359 unsigned long, arg4, unsigned long, arg5)
2360 {
2361 struct task_struct *me = current;
2362 unsigned char comm[sizeof(me->comm)];
2363 long error;
2364
2365 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2366 if (error != -ENOSYS)
2367 return error;
2368
2369 error = 0;
2370 switch (option) {
2371 case PR_SET_PDEATHSIG:
2372 if (!valid_signal(arg2)) {
2373 error = -EINVAL;
2374 break;
2375 }
2376 me->pdeath_signal = arg2;
2377 break;
2378 case PR_GET_PDEATHSIG:
2379 error = put_user(me->pdeath_signal, (int __user *)arg2);
2380 break;
2381 case PR_GET_DUMPABLE:
2382 error = get_dumpable(me->mm);
2383 break;
2384 case PR_SET_DUMPABLE:
2385 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2386 error = -EINVAL;
2387 break;
2388 }
2389 set_dumpable(me->mm, arg2);
2390 break;
2391
2392 case PR_SET_UNALIGN:
2393 error = SET_UNALIGN_CTL(me, arg2);
2394 break;
2395 case PR_GET_UNALIGN:
2396 error = GET_UNALIGN_CTL(me, arg2);
2397 break;
2398 case PR_SET_FPEMU:
2399 error = SET_FPEMU_CTL(me, arg2);
2400 break;
2401 case PR_GET_FPEMU:
2402 error = GET_FPEMU_CTL(me, arg2);
2403 break;
2404 case PR_SET_FPEXC:
2405 error = SET_FPEXC_CTL(me, arg2);
2406 break;
2407 case PR_GET_FPEXC:
2408 error = GET_FPEXC_CTL(me, arg2);
2409 break;
2410 case PR_GET_TIMING:
2411 error = PR_TIMING_STATISTICAL;
2412 break;
2413 case PR_SET_TIMING:
2414 if (arg2 != PR_TIMING_STATISTICAL)
2415 error = -EINVAL;
2416 break;
2417 case PR_SET_NAME:
2418 comm[sizeof(me->comm) - 1] = 0;
2419 if (strncpy_from_user(comm, (char __user *)arg2,
2420 sizeof(me->comm) - 1) < 0)
2421 return -EFAULT;
2422 set_task_comm(me, comm);
2423 proc_comm_connector(me);
2424 break;
2425 case PR_GET_NAME:
2426 get_task_comm(comm, me);
2427 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2428 return -EFAULT;
2429 break;
2430 case PR_GET_ENDIAN:
2431 error = GET_ENDIAN(me, arg2);
2432 break;
2433 case PR_SET_ENDIAN:
2434 error = SET_ENDIAN(me, arg2);
2435 break;
2436 case PR_GET_SECCOMP:
2437 error = prctl_get_seccomp();
2438 break;
2439 case PR_SET_SECCOMP:
2440 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2441 break;
2442 case PR_GET_TSC:
2443 error = GET_TSC_CTL(arg2);
2444 break;
2445 case PR_SET_TSC:
2446 error = SET_TSC_CTL(arg2);
2447 break;
2448 case PR_TASK_PERF_EVENTS_DISABLE:
2449 error = perf_event_task_disable();
2450 break;
2451 case PR_TASK_PERF_EVENTS_ENABLE:
2452 error = perf_event_task_enable();
2453 break;
2454 case PR_GET_TIMERSLACK:
2455 if (current->timer_slack_ns > ULONG_MAX)
2456 error = ULONG_MAX;
2457 else
2458 error = current->timer_slack_ns;
2459 break;
2460 case PR_SET_TIMERSLACK:
2461 if (arg2 <= 0)
2462 current->timer_slack_ns =
2463 current->default_timer_slack_ns;
2464 else
2465 current->timer_slack_ns = arg2;
2466 break;
2467 case PR_MCE_KILL:
2468 if (arg4 | arg5)
2469 return -EINVAL;
2470 switch (arg2) {
2471 case PR_MCE_KILL_CLEAR:
2472 if (arg3 != 0)
2473 return -EINVAL;
2474 current->flags &= ~PF_MCE_PROCESS;
2475 break;
2476 case PR_MCE_KILL_SET:
2477 current->flags |= PF_MCE_PROCESS;
2478 if (arg3 == PR_MCE_KILL_EARLY)
2479 current->flags |= PF_MCE_EARLY;
2480 else if (arg3 == PR_MCE_KILL_LATE)
2481 current->flags &= ~PF_MCE_EARLY;
2482 else if (arg3 == PR_MCE_KILL_DEFAULT)
2483 current->flags &=
2484 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2485 else
2486 return -EINVAL;
2487 break;
2488 default:
2489 return -EINVAL;
2490 }
2491 break;
2492 case PR_MCE_KILL_GET:
2493 if (arg2 | arg3 | arg4 | arg5)
2494 return -EINVAL;
2495 if (current->flags & PF_MCE_PROCESS)
2496 error = (current->flags & PF_MCE_EARLY) ?
2497 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2498 else
2499 error = PR_MCE_KILL_DEFAULT;
2500 break;
2501 case PR_SET_MM:
2502 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2503 break;
2504 case PR_GET_TID_ADDRESS:
2505 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2506 break;
2507 case PR_SET_CHILD_SUBREAPER:
2508 me->signal->is_child_subreaper = !!arg2;
2509 if (!arg2)
2510 break;
2511
2512 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2513 break;
2514 case PR_GET_CHILD_SUBREAPER:
2515 error = put_user(me->signal->is_child_subreaper,
2516 (int __user *)arg2);
2517 break;
2518 case PR_SET_NO_NEW_PRIVS:
2519 if (arg2 != 1 || arg3 || arg4 || arg5)
2520 return -EINVAL;
2521
2522 task_set_no_new_privs(current);
2523 break;
2524 case PR_GET_NO_NEW_PRIVS:
2525 if (arg2 || arg3 || arg4 || arg5)
2526 return -EINVAL;
2527 return task_no_new_privs(current) ? 1 : 0;
2528 case PR_GET_THP_DISABLE:
2529 if (arg2 || arg3 || arg4 || arg5)
2530 return -EINVAL;
2531 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2532 break;
2533 case PR_SET_THP_DISABLE:
2534 if (arg3 || arg4 || arg5)
2535 return -EINVAL;
2536 if (mmap_write_lock_killable(me->mm))
2537 return -EINTR;
2538 if (arg2)
2539 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2540 else
2541 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2542 mmap_write_unlock(me->mm);
2543 break;
2544 case PR_MPX_ENABLE_MANAGEMENT:
2545 case PR_MPX_DISABLE_MANAGEMENT:
2546 /* No longer implemented: */
2547 return -EINVAL;
2548 case PR_SET_FP_MODE:
2549 error = SET_FP_MODE(me, arg2);
2550 break;
2551 case PR_GET_FP_MODE:
2552 error = GET_FP_MODE(me);
2553 break;
2554 case PR_SVE_SET_VL:
2555 error = SVE_SET_VL(arg2);
2556 break;
2557 case PR_SVE_GET_VL:
2558 error = SVE_GET_VL();
2559 break;
2560 case PR_SME_SET_VL:
2561 error = SME_SET_VL(arg2);
2562 break;
2563 case PR_SME_GET_VL:
2564 error = SME_GET_VL();
2565 break;
2566 case PR_GET_SPECULATION_CTRL:
2567 if (arg3 || arg4 || arg5)
2568 return -EINVAL;
2569 error = arch_prctl_spec_ctrl_get(me, arg2);
2570 break;
2571 case PR_SET_SPECULATION_CTRL:
2572 if (arg4 || arg5)
2573 return -EINVAL;
2574 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2575 break;
2576 case PR_PAC_RESET_KEYS:
2577 if (arg3 || arg4 || arg5)
2578 return -EINVAL;
2579 error = PAC_RESET_KEYS(me, arg2);
2580 break;
2581 case PR_PAC_SET_ENABLED_KEYS:
2582 if (arg4 || arg5)
2583 return -EINVAL;
2584 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2585 break;
2586 case PR_PAC_GET_ENABLED_KEYS:
2587 if (arg2 || arg3 || arg4 || arg5)
2588 return -EINVAL;
2589 error = PAC_GET_ENABLED_KEYS(me);
2590 break;
2591 case PR_SET_TAGGED_ADDR_CTRL:
2592 if (arg3 || arg4 || arg5)
2593 return -EINVAL;
2594 error = SET_TAGGED_ADDR_CTRL(arg2);
2595 break;
2596 case PR_GET_TAGGED_ADDR_CTRL:
2597 if (arg2 || arg3 || arg4 || arg5)
2598 return -EINVAL;
2599 error = GET_TAGGED_ADDR_CTRL();
2600 break;
2601 case PR_SET_IO_FLUSHER:
2602 if (!capable(CAP_SYS_RESOURCE))
2603 return -EPERM;
2604
2605 if (arg3 || arg4 || arg5)
2606 return -EINVAL;
2607
2608 if (arg2 == 1)
2609 current->flags |= PR_IO_FLUSHER;
2610 else if (!arg2)
2611 current->flags &= ~PR_IO_FLUSHER;
2612 else
2613 return -EINVAL;
2614 break;
2615 case PR_GET_IO_FLUSHER:
2616 if (!capable(CAP_SYS_RESOURCE))
2617 return -EPERM;
2618
2619 if (arg2 || arg3 || arg4 || arg5)
2620 return -EINVAL;
2621
2622 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2623 break;
2624 case PR_SET_SYSCALL_USER_DISPATCH:
2625 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2626 (char __user *) arg5);
2627 break;
2628 #ifdef CONFIG_SCHED_CORE
2629 case PR_SCHED_CORE:
2630 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2631 break;
2632 #endif
2633 case PR_SET_VMA:
2634 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2635 break;
2636 default:
2637 error = -EINVAL;
2638 break;
2639 }
2640 trace_android_vh_syscall_prctl_finished(option, me);
2641 return error;
2642 }
2643
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2644 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2645 struct getcpu_cache __user *, unused)
2646 {
2647 int err = 0;
2648 int cpu = raw_smp_processor_id();
2649
2650 if (cpup)
2651 err |= put_user(cpu, cpup);
2652 if (nodep)
2653 err |= put_user(cpu_to_node(cpu), nodep);
2654 return err ? -EFAULT : 0;
2655 }
2656
2657 /**
2658 * do_sysinfo - fill in sysinfo struct
2659 * @info: pointer to buffer to fill
2660 */
do_sysinfo(struct sysinfo * info)2661 static int do_sysinfo(struct sysinfo *info)
2662 {
2663 unsigned long mem_total, sav_total;
2664 unsigned int mem_unit, bitcount;
2665 struct timespec64 tp;
2666
2667 memset(info, 0, sizeof(struct sysinfo));
2668
2669 ktime_get_boottime_ts64(&tp);
2670 timens_add_boottime(&tp);
2671 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2672
2673 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2674
2675 info->procs = nr_threads;
2676
2677 si_meminfo(info);
2678 si_swapinfo(info);
2679
2680 /*
2681 * If the sum of all the available memory (i.e. ram + swap)
2682 * is less than can be stored in a 32 bit unsigned long then
2683 * we can be binary compatible with 2.2.x kernels. If not,
2684 * well, in that case 2.2.x was broken anyways...
2685 *
2686 * -Erik Andersen <andersee@debian.org>
2687 */
2688
2689 mem_total = info->totalram + info->totalswap;
2690 if (mem_total < info->totalram || mem_total < info->totalswap)
2691 goto out;
2692 bitcount = 0;
2693 mem_unit = info->mem_unit;
2694 while (mem_unit > 1) {
2695 bitcount++;
2696 mem_unit >>= 1;
2697 sav_total = mem_total;
2698 mem_total <<= 1;
2699 if (mem_total < sav_total)
2700 goto out;
2701 }
2702
2703 /*
2704 * If mem_total did not overflow, multiply all memory values by
2705 * info->mem_unit and set it to 1. This leaves things compatible
2706 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2707 * kernels...
2708 */
2709
2710 info->mem_unit = 1;
2711 info->totalram <<= bitcount;
2712 info->freeram <<= bitcount;
2713 info->sharedram <<= bitcount;
2714 info->bufferram <<= bitcount;
2715 info->totalswap <<= bitcount;
2716 info->freeswap <<= bitcount;
2717 info->totalhigh <<= bitcount;
2718 info->freehigh <<= bitcount;
2719
2720 out:
2721 return 0;
2722 }
2723
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2724 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2725 {
2726 struct sysinfo val;
2727
2728 do_sysinfo(&val);
2729
2730 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2731 return -EFAULT;
2732
2733 return 0;
2734 }
2735
2736 #ifdef CONFIG_COMPAT
2737 struct compat_sysinfo {
2738 s32 uptime;
2739 u32 loads[3];
2740 u32 totalram;
2741 u32 freeram;
2742 u32 sharedram;
2743 u32 bufferram;
2744 u32 totalswap;
2745 u32 freeswap;
2746 u16 procs;
2747 u16 pad;
2748 u32 totalhigh;
2749 u32 freehigh;
2750 u32 mem_unit;
2751 char _f[20-2*sizeof(u32)-sizeof(int)];
2752 };
2753
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2754 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2755 {
2756 struct sysinfo s;
2757 struct compat_sysinfo s_32;
2758
2759 do_sysinfo(&s);
2760
2761 /* Check to see if any memory value is too large for 32-bit and scale
2762 * down if needed
2763 */
2764 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2765 int bitcount = 0;
2766
2767 while (s.mem_unit < PAGE_SIZE) {
2768 s.mem_unit <<= 1;
2769 bitcount++;
2770 }
2771
2772 s.totalram >>= bitcount;
2773 s.freeram >>= bitcount;
2774 s.sharedram >>= bitcount;
2775 s.bufferram >>= bitcount;
2776 s.totalswap >>= bitcount;
2777 s.freeswap >>= bitcount;
2778 s.totalhigh >>= bitcount;
2779 s.freehigh >>= bitcount;
2780 }
2781
2782 memset(&s_32, 0, sizeof(s_32));
2783 s_32.uptime = s.uptime;
2784 s_32.loads[0] = s.loads[0];
2785 s_32.loads[1] = s.loads[1];
2786 s_32.loads[2] = s.loads[2];
2787 s_32.totalram = s.totalram;
2788 s_32.freeram = s.freeram;
2789 s_32.sharedram = s.sharedram;
2790 s_32.bufferram = s.bufferram;
2791 s_32.totalswap = s.totalswap;
2792 s_32.freeswap = s.freeswap;
2793 s_32.procs = s.procs;
2794 s_32.totalhigh = s.totalhigh;
2795 s_32.freehigh = s.freehigh;
2796 s_32.mem_unit = s.mem_unit;
2797 if (copy_to_user(info, &s_32, sizeof(s_32)))
2798 return -EFAULT;
2799 return 0;
2800 }
2801 #endif /* CONFIG_COMPAT */
2802