1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Based on arch/arm/include/asm/uaccess.h
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 */
7 #ifndef __ASM_UACCESS_H
8 #define __ASM_UACCESS_H
9
10 #include <asm/alternative.h>
11 #include <asm/kernel-pgtable.h>
12 #include <asm/sysreg.h>
13
14 /*
15 * User space memory access functions
16 */
17 #include <linux/bitops.h>
18 #include <linux/kasan-checks.h>
19 #include <linux/string.h>
20
21 #include <asm/cpufeature.h>
22 #include <asm/mmu.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/memory.h>
26 #include <asm/extable.h>
27
28 #define HAVE_GET_KERNEL_NOFAULT
29
30 /*
31 * Test whether a block of memory is a valid user space address.
32 * Returns 1 if the range is valid, 0 otherwise.
33 *
34 * This is equivalent to the following test:
35 * (u65)addr + (u65)size <= (u65)TASK_SIZE_MAX
36 */
__range_ok(const void __user * addr,unsigned long size)37 static inline unsigned long __range_ok(const void __user *addr, unsigned long size)
38 {
39 unsigned long ret, limit = TASK_SIZE_MAX - 1;
40
41 /*
42 * Asynchronous I/O running in a kernel thread does not have the
43 * TIF_TAGGED_ADDR flag of the process owning the mm, so always untag
44 * the user address before checking.
45 */
46 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI) &&
47 (current->flags & PF_KTHREAD || test_thread_flag(TIF_TAGGED_ADDR)))
48 addr = untagged_addr(addr);
49
50 __chk_user_ptr(addr);
51 asm volatile(
52 // A + B <= C + 1 for all A,B,C, in four easy steps:
53 // 1: X = A + B; X' = X % 2^64
54 " adds %0, %3, %2\n"
55 // 2: Set C = 0 if X > 2^64, to guarantee X' > C in step 4
56 " csel %1, xzr, %1, hi\n"
57 // 3: Set X' = ~0 if X >= 2^64. For X == 2^64, this decrements X'
58 // to compensate for the carry flag being set in step 4. For
59 // X > 2^64, X' merely has to remain nonzero, which it does.
60 " csinv %0, %0, xzr, cc\n"
61 // 4: For X < 2^64, this gives us X' - C - 1 <= 0, where the -1
62 // comes from the carry in being clear. Otherwise, we are
63 // testing X' - C == 0, subject to the previous adjustments.
64 " sbcs xzr, %0, %1\n"
65 " cset %0, ls\n"
66 : "=&r" (ret), "+r" (limit) : "Ir" (size), "0" (addr) : "cc");
67
68 return ret;
69 }
70
71 #define access_ok(addr, size) __range_ok(addr, size)
72
73 #define _ASM_EXTABLE(from, to) \
74 " .pushsection __ex_table, \"a\"\n" \
75 " .align 3\n" \
76 " .long (" #from " - .), (" #to " - .)\n" \
77 " .popsection\n"
78
79 /*
80 * User access enabling/disabling.
81 */
82 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
__uaccess_ttbr0_disable(void)83 static inline void __uaccess_ttbr0_disable(void)
84 {
85 unsigned long flags, ttbr;
86
87 local_irq_save(flags);
88 ttbr = read_sysreg(ttbr1_el1);
89 ttbr &= ~TTBR_ASID_MASK;
90 /* reserved_pg_dir placed before swapper_pg_dir */
91 write_sysreg(ttbr - RESERVED_SWAPPER_OFFSET, ttbr0_el1);
92 isb();
93 /* Set reserved ASID */
94 write_sysreg(ttbr, ttbr1_el1);
95 isb();
96 local_irq_restore(flags);
97 }
98
__uaccess_ttbr0_enable(void)99 static inline void __uaccess_ttbr0_enable(void)
100 {
101 unsigned long flags, ttbr0, ttbr1;
102
103 /*
104 * Disable interrupts to avoid preemption between reading the 'ttbr0'
105 * variable and the MSR. A context switch could trigger an ASID
106 * roll-over and an update of 'ttbr0'.
107 */
108 local_irq_save(flags);
109 ttbr0 = READ_ONCE(current_thread_info()->ttbr0);
110
111 /* Restore active ASID */
112 ttbr1 = read_sysreg(ttbr1_el1);
113 ttbr1 &= ~TTBR_ASID_MASK; /* safety measure */
114 ttbr1 |= ttbr0 & TTBR_ASID_MASK;
115 write_sysreg(ttbr1, ttbr1_el1);
116 isb();
117
118 /* Restore user page table */
119 write_sysreg(ttbr0, ttbr0_el1);
120 isb();
121 local_irq_restore(flags);
122 }
123
uaccess_ttbr0_disable(void)124 static inline bool uaccess_ttbr0_disable(void)
125 {
126 if (!system_uses_ttbr0_pan())
127 return false;
128 __uaccess_ttbr0_disable();
129 return true;
130 }
131
uaccess_ttbr0_enable(void)132 static inline bool uaccess_ttbr0_enable(void)
133 {
134 if (!system_uses_ttbr0_pan())
135 return false;
136 __uaccess_ttbr0_enable();
137 return true;
138 }
139 #else
uaccess_ttbr0_disable(void)140 static inline bool uaccess_ttbr0_disable(void)
141 {
142 return false;
143 }
144
uaccess_ttbr0_enable(void)145 static inline bool uaccess_ttbr0_enable(void)
146 {
147 return false;
148 }
149 #endif
150
__uaccess_disable_hw_pan(void)151 static inline void __uaccess_disable_hw_pan(void)
152 {
153 asm(ALTERNATIVE("nop", SET_PSTATE_PAN(0), ARM64_HAS_PAN,
154 CONFIG_ARM64_PAN));
155 }
156
__uaccess_enable_hw_pan(void)157 static inline void __uaccess_enable_hw_pan(void)
158 {
159 asm(ALTERNATIVE("nop", SET_PSTATE_PAN(1), ARM64_HAS_PAN,
160 CONFIG_ARM64_PAN));
161 }
162
163 /*
164 * The Tag Check Flag (TCF) mode for MTE is per EL, hence TCF0
165 * affects EL0 and TCF affects EL1 irrespective of which TTBR is
166 * used.
167 * The kernel accesses TTBR0 usually with LDTR/STTR instructions
168 * when UAO is available, so these would act as EL0 accesses using
169 * TCF0.
170 * However futex.h code uses exclusives which would be executed as
171 * EL1, this can potentially cause a tag check fault even if the
172 * user disables TCF0.
173 *
174 * To address the problem we set the PSTATE.TCO bit in uaccess_enable()
175 * and reset it in uaccess_disable().
176 *
177 * The Tag check override (TCO) bit disables temporarily the tag checking
178 * preventing the issue.
179 */
__uaccess_disable_tco(void)180 static inline void __uaccess_disable_tco(void)
181 {
182 asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(0),
183 ARM64_MTE, CONFIG_KASAN_HW_TAGS));
184 }
185
__uaccess_enable_tco(void)186 static inline void __uaccess_enable_tco(void)
187 {
188 asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(1),
189 ARM64_MTE, CONFIG_KASAN_HW_TAGS));
190 }
191
192 /*
193 * These functions disable tag checking only if in MTE async mode
194 * since the sync mode generates exceptions synchronously and the
195 * nofault or load_unaligned_zeropad can handle them.
196 */
__uaccess_disable_tco_async(void)197 static inline void __uaccess_disable_tco_async(void)
198 {
199 if (system_uses_mte_async_or_asymm_mode())
200 __uaccess_disable_tco();
201 }
202
__uaccess_enable_tco_async(void)203 static inline void __uaccess_enable_tco_async(void)
204 {
205 if (system_uses_mte_async_or_asymm_mode())
206 __uaccess_enable_tco();
207 }
208
uaccess_disable_privileged(void)209 static inline void uaccess_disable_privileged(void)
210 {
211 mte_disable_tco();
212
213 if (uaccess_ttbr0_disable())
214 return;
215
216 __uaccess_enable_hw_pan();
217 }
218
uaccess_enable_privileged(void)219 static inline void uaccess_enable_privileged(void)
220 {
221 mte_enable_tco();
222
223 if (uaccess_ttbr0_enable())
224 return;
225
226 __uaccess_disable_hw_pan();
227 }
228
229 /*
230 * Sanitise a uaccess pointer such that it becomes NULL if above the maximum
231 * user address. In case the pointer is tagged (has the top byte set), untag
232 * the pointer before checking.
233 */
234 #define uaccess_mask_ptr(ptr) (__typeof__(ptr))__uaccess_mask_ptr(ptr)
__uaccess_mask_ptr(const void __user * ptr)235 static inline void __user *__uaccess_mask_ptr(const void __user *ptr)
236 {
237 void __user *safe_ptr;
238
239 asm volatile(
240 " bics xzr, %3, %2\n"
241 " csel %0, %1, xzr, eq\n"
242 : "=&r" (safe_ptr)
243 : "r" (ptr), "r" (TASK_SIZE_MAX - 1),
244 "r" (untagged_addr(ptr))
245 : "cc");
246
247 csdb();
248 return safe_ptr;
249 }
250
251 /*
252 * The "__xxx" versions of the user access functions do not verify the address
253 * space - it must have been done previously with a separate "access_ok()"
254 * call.
255 *
256 * The "__xxx_error" versions set the third argument to -EFAULT if an error
257 * occurs, and leave it unchanged on success.
258 */
259 #define __get_mem_asm(load, reg, x, addr, err) \
260 asm volatile( \
261 "1: " load " " reg "1, [%2]\n" \
262 "2:\n" \
263 " .section .fixup, \"ax\"\n" \
264 " .align 2\n" \
265 "3: mov %w0, %3\n" \
266 " mov %1, #0\n" \
267 " b 2b\n" \
268 " .previous\n" \
269 _ASM_EXTABLE(1b, 3b) \
270 : "+r" (err), "=&r" (x) \
271 : "r" (addr), "i" (-EFAULT))
272
273 #define __raw_get_mem(ldr, x, ptr, err) \
274 do { \
275 unsigned long __gu_val; \
276 switch (sizeof(*(ptr))) { \
277 case 1: \
278 __get_mem_asm(ldr "b", "%w", __gu_val, (ptr), (err)); \
279 break; \
280 case 2: \
281 __get_mem_asm(ldr "h", "%w", __gu_val, (ptr), (err)); \
282 break; \
283 case 4: \
284 __get_mem_asm(ldr, "%w", __gu_val, (ptr), (err)); \
285 break; \
286 case 8: \
287 __get_mem_asm(ldr, "%x", __gu_val, (ptr), (err)); \
288 break; \
289 default: \
290 BUILD_BUG(); \
291 } \
292 (x) = (__force __typeof__(*(ptr)))__gu_val; \
293 } while (0)
294
295 /*
296 * We must not call into the scheduler between uaccess_ttbr0_enable() and
297 * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions,
298 * we must evaluate these outside of the critical section.
299 */
300 #define __raw_get_user(x, ptr, err) \
301 do { \
302 __typeof__(*(ptr)) __user *__rgu_ptr = (ptr); \
303 __typeof__(x) __rgu_val; \
304 __chk_user_ptr(ptr); \
305 \
306 uaccess_ttbr0_enable(); \
307 __raw_get_mem("ldtr", __rgu_val, __rgu_ptr, err); \
308 uaccess_ttbr0_disable(); \
309 \
310 (x) = __rgu_val; \
311 } while (0)
312
313 #define __get_user_error(x, ptr, err) \
314 do { \
315 __typeof__(*(ptr)) __user *__p = (ptr); \
316 might_fault(); \
317 if (access_ok(__p, sizeof(*__p))) { \
318 __p = uaccess_mask_ptr(__p); \
319 __raw_get_user((x), __p, (err)); \
320 } else { \
321 (x) = (__force __typeof__(x))0; (err) = -EFAULT; \
322 } \
323 } while (0)
324
325 #define __get_user(x, ptr) \
326 ({ \
327 int __gu_err = 0; \
328 __get_user_error((x), (ptr), __gu_err); \
329 __gu_err; \
330 })
331
332 #define get_user __get_user
333
334 /*
335 * We must not call into the scheduler between __mte_enable_tco_async() and
336 * __mte_disable_tco_async(). As `dst` and `src` may contain blocking
337 * functions, we must evaluate these outside of the critical section.
338 */
339 #define __get_kernel_nofault(dst, src, type, err_label) \
340 do { \
341 __typeof__(dst) __gkn_dst = (dst); \
342 __typeof__(src) __gkn_src = (src); \
343 int __gkn_err = 0; \
344 \
345 __mte_enable_tco_async(); \
346 __raw_get_mem("ldr", *((type *)(__gkn_dst)), \
347 (__force type *)(__gkn_src), __gkn_err); \
348 __mte_disable_tco_async(); \
349 \
350 if (unlikely(__gkn_err)) \
351 goto err_label; \
352 } while (0)
353
354 #define __put_mem_asm(store, reg, x, addr, err) \
355 asm volatile( \
356 "1: " store " " reg "1, [%2]\n" \
357 "2:\n" \
358 " .section .fixup,\"ax\"\n" \
359 " .align 2\n" \
360 "3: mov %w0, %3\n" \
361 " b 2b\n" \
362 " .previous\n" \
363 _ASM_EXTABLE(1b, 3b) \
364 : "+r" (err) \
365 : "r" (x), "r" (addr), "i" (-EFAULT))
366
367 #define __raw_put_mem(str, x, ptr, err) \
368 do { \
369 __typeof__(*(ptr)) __pu_val = (x); \
370 switch (sizeof(*(ptr))) { \
371 case 1: \
372 __put_mem_asm(str "b", "%w", __pu_val, (ptr), (err)); \
373 break; \
374 case 2: \
375 __put_mem_asm(str "h", "%w", __pu_val, (ptr), (err)); \
376 break; \
377 case 4: \
378 __put_mem_asm(str, "%w", __pu_val, (ptr), (err)); \
379 break; \
380 case 8: \
381 __put_mem_asm(str, "%x", __pu_val, (ptr), (err)); \
382 break; \
383 default: \
384 BUILD_BUG(); \
385 } \
386 } while (0)
387
388 /*
389 * We must not call into the scheduler between uaccess_ttbr0_enable() and
390 * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions,
391 * we must evaluate these outside of the critical section.
392 */
393 #define __raw_put_user(x, ptr, err) \
394 do { \
395 __typeof__(*(ptr)) __user *__rpu_ptr = (ptr); \
396 __typeof__(*(ptr)) __rpu_val = (x); \
397 __chk_user_ptr(__rpu_ptr); \
398 \
399 uaccess_ttbr0_enable(); \
400 __raw_put_mem("sttr", __rpu_val, __rpu_ptr, err); \
401 uaccess_ttbr0_disable(); \
402 } while (0)
403
404 #define __put_user_error(x, ptr, err) \
405 do { \
406 __typeof__(*(ptr)) __user *__p = (ptr); \
407 might_fault(); \
408 if (access_ok(__p, sizeof(*__p))) { \
409 __p = uaccess_mask_ptr(__p); \
410 __raw_put_user((x), __p, (err)); \
411 } else { \
412 (err) = -EFAULT; \
413 } \
414 } while (0)
415
416 #define __put_user(x, ptr) \
417 ({ \
418 int __pu_err = 0; \
419 __put_user_error((x), (ptr), __pu_err); \
420 __pu_err; \
421 })
422
423 #define put_user __put_user
424
425 /*
426 * We must not call into the scheduler between __mte_enable_tco_async() and
427 * __mte_disable_tco_async(). As `dst` and `src` may contain blocking
428 * functions, we must evaluate these outside of the critical section.
429 */
430 #define __put_kernel_nofault(dst, src, type, err_label) \
431 do { \
432 __typeof__(dst) __pkn_dst = (dst); \
433 __typeof__(src) __pkn_src = (src); \
434 int __pkn_err = 0; \
435 \
436 __mte_enable_tco_async(); \
437 __raw_put_mem("str", *((type *)(__pkn_src)), \
438 (__force type *)(__pkn_dst), __pkn_err); \
439 __mte_disable_tco_async(); \
440 \
441 if (unlikely(__pkn_err)) \
442 goto err_label; \
443 } while(0)
444
445 extern unsigned long __must_check __arch_copy_from_user(void *to, const void __user *from, unsigned long n);
446 #define raw_copy_from_user(to, from, n) \
447 ({ \
448 unsigned long __acfu_ret; \
449 uaccess_ttbr0_enable(); \
450 __acfu_ret = __arch_copy_from_user((to), \
451 __uaccess_mask_ptr(from), (n)); \
452 uaccess_ttbr0_disable(); \
453 __acfu_ret; \
454 })
455
456 extern unsigned long __must_check __arch_copy_to_user(void __user *to, const void *from, unsigned long n);
457 #define raw_copy_to_user(to, from, n) \
458 ({ \
459 unsigned long __actu_ret; \
460 uaccess_ttbr0_enable(); \
461 __actu_ret = __arch_copy_to_user(__uaccess_mask_ptr(to), \
462 (from), (n)); \
463 uaccess_ttbr0_disable(); \
464 __actu_ret; \
465 })
466
467 #define INLINE_COPY_TO_USER
468 #define INLINE_COPY_FROM_USER
469
470 extern unsigned long __must_check __arch_clear_user(void __user *to, unsigned long n);
__clear_user(void __user * to,unsigned long n)471 static inline unsigned long __must_check __clear_user(void __user *to, unsigned long n)
472 {
473 if (access_ok(to, n)) {
474 uaccess_ttbr0_enable();
475 n = __arch_clear_user(__uaccess_mask_ptr(to), n);
476 uaccess_ttbr0_disable();
477 }
478 return n;
479 }
480 #define clear_user __clear_user
481
482 extern long strncpy_from_user(char *dest, const char __user *src, long count);
483
484 extern __must_check long strnlen_user(const char __user *str, long n);
485
486 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
487 struct page;
488 void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len);
489 extern unsigned long __must_check __copy_user_flushcache(void *to, const void __user *from, unsigned long n);
490
__copy_from_user_flushcache(void * dst,const void __user * src,unsigned size)491 static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size)
492 {
493 kasan_check_write(dst, size);
494 return __copy_user_flushcache(dst, __uaccess_mask_ptr(src), size);
495 }
496 #endif
497
498 #ifdef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
499
500 /*
501 * Return 0 on success, the number of bytes not probed otherwise.
502 */
probe_subpage_writeable(const char __user * uaddr,size_t size)503 static inline size_t probe_subpage_writeable(const char __user *uaddr,
504 size_t size)
505 {
506 if (!system_supports_mte())
507 return 0;
508 return mte_probe_user_range(uaddr, size);
509 }
510
511 #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
512
513 #endif /* __ASM_UACCESS_H */
514