• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 #include <trace/hooks/ipv4.h>
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)133 static int udp_lib_lport_inuse(struct net *net, __u16 num,
134 			       const struct udp_hslot *hslot,
135 			       unsigned long *bitmap,
136 			       struct sock *sk, unsigned int log)
137 {
138 	struct sock *sk2;
139 	kuid_t uid = sock_i_uid(sk);
140 
141 	sk_for_each(sk2, &hslot->head) {
142 		if (net_eq(sock_net(sk2), net) &&
143 		    sk2 != sk &&
144 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
146 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 		    inet_rcv_saddr_equal(sk, sk2, true)) {
149 			if (sk2->sk_reuseport && sk->sk_reuseport &&
150 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
151 			    uid_eq(uid, sock_i_uid(sk2))) {
152 				if (!bitmap)
153 					return 0;
154 			} else {
155 				if (!bitmap)
156 					return 1;
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			}
160 		}
161 	}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 				struct udp_hslot *hslot2,
171 				struct sock *sk)
172 {
173 	struct sock *sk2;
174 	kuid_t uid = sock_i_uid(sk);
175 	int res = 0;
176 
177 	spin_lock(&hslot2->lock);
178 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
179 		if (net_eq(sock_net(sk2), net) &&
180 		    sk2 != sk &&
181 		    (udp_sk(sk2)->udp_port_hash == num) &&
182 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
183 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
184 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
185 		    inet_rcv_saddr_equal(sk, sk2, true)) {
186 			if (sk2->sk_reuseport && sk->sk_reuseport &&
187 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
188 			    uid_eq(uid, sock_i_uid(sk2))) {
189 				res = 0;
190 			} else {
191 				res = 1;
192 			}
193 			break;
194 		}
195 	}
196 	spin_unlock(&hslot2->lock);
197 	return res;
198 }
199 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)200 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
201 {
202 	struct net *net = sock_net(sk);
203 	kuid_t uid = sock_i_uid(sk);
204 	struct sock *sk2;
205 
206 	sk_for_each(sk2, &hslot->head) {
207 		if (net_eq(sock_net(sk2), net) &&
208 		    sk2 != sk &&
209 		    sk2->sk_family == sk->sk_family &&
210 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
211 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
212 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
213 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
214 		    inet_rcv_saddr_equal(sk, sk2, false)) {
215 			return reuseport_add_sock(sk, sk2,
216 						  inet_rcv_saddr_any(sk));
217 		}
218 	}
219 
220 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
221 }
222 
223 /**
224  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
225  *
226  *  @sk:          socket struct in question
227  *  @snum:        port number to look up
228  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
229  *                   with NULL address
230  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)231 int udp_lib_get_port(struct sock *sk, unsigned short snum,
232 		     unsigned int hash2_nulladdr)
233 {
234 	struct udp_hslot *hslot, *hslot2;
235 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
236 	int    error = 1;
237 	struct net *net = sock_net(sk);
238 
239 	if (!snum) {
240 		int low, high, remaining;
241 		unsigned int rand;
242 		unsigned short first, last;
243 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
244 
245 		inet_get_local_port_range(net, &low, &high);
246 		remaining = (high - low) + 1;
247 
248 		rand = prandom_u32();
249 		first = reciprocal_scale(rand, remaining) + low;
250 		/*
251 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
252 		 */
253 		rand = (rand | 1) * (udptable->mask + 1);
254 		last = first + udptable->mask + 1;
255 		do {
256 			hslot = udp_hashslot(udptable, net, first);
257 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
258 			spin_lock_bh(&hslot->lock);
259 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
260 					    udptable->log);
261 
262 			snum = first;
263 			/*
264 			 * Iterate on all possible values of snum for this hash.
265 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
266 			 * give us randomization and full range coverage.
267 			 */
268 			do {
269 				if (low <= snum && snum <= high &&
270 				    !test_bit(snum >> udptable->log, bitmap) &&
271 				    !inet_is_local_reserved_port(net, snum))
272 					goto found;
273 				snum += rand;
274 			} while (snum != first);
275 			spin_unlock_bh(&hslot->lock);
276 			cond_resched();
277 		} while (++first != last);
278 		goto fail;
279 	} else {
280 		hslot = udp_hashslot(udptable, net, snum);
281 		spin_lock_bh(&hslot->lock);
282 		if (hslot->count > 10) {
283 			int exist;
284 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
285 
286 			slot2          &= udptable->mask;
287 			hash2_nulladdr &= udptable->mask;
288 
289 			hslot2 = udp_hashslot2(udptable, slot2);
290 			if (hslot->count < hslot2->count)
291 				goto scan_primary_hash;
292 
293 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
294 			if (!exist && (hash2_nulladdr != slot2)) {
295 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
296 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
297 							     sk);
298 			}
299 			if (exist)
300 				goto fail_unlock;
301 			else
302 				goto found;
303 		}
304 scan_primary_hash:
305 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
306 			goto fail_unlock;
307 	}
308 found:
309 	inet_sk(sk)->inet_num = snum;
310 	udp_sk(sk)->udp_port_hash = snum;
311 	udp_sk(sk)->udp_portaddr_hash ^= snum;
312 	if (sk_unhashed(sk)) {
313 		if (sk->sk_reuseport &&
314 		    udp_reuseport_add_sock(sk, hslot)) {
315 			inet_sk(sk)->inet_num = 0;
316 			udp_sk(sk)->udp_port_hash = 0;
317 			udp_sk(sk)->udp_portaddr_hash ^= snum;
318 			goto fail_unlock;
319 		}
320 
321 		sk_add_node_rcu(sk, &hslot->head);
322 		hslot->count++;
323 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
324 
325 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
326 		spin_lock(&hslot2->lock);
327 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
328 		    sk->sk_family == AF_INET6)
329 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
330 					   &hslot2->head);
331 		else
332 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
333 					   &hslot2->head);
334 		hslot2->count++;
335 		spin_unlock(&hslot2->lock);
336 	}
337 	sock_set_flag(sk, SOCK_RCU_FREE);
338 	error = 0;
339 fail_unlock:
340 	spin_unlock_bh(&hslot->lock);
341 fail:
342 	return error;
343 }
344 EXPORT_SYMBOL(udp_lib_get_port);
345 
udp_v4_get_port(struct sock * sk,unsigned short snum)346 int udp_v4_get_port(struct sock *sk, unsigned short snum)
347 {
348 	unsigned int hash2_nulladdr =
349 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
350 	unsigned int hash2_partial =
351 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
352 
353 	/* precompute partial secondary hash */
354 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
355 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
356 }
357 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)358 static int compute_score(struct sock *sk, struct net *net,
359 			 __be32 saddr, __be16 sport,
360 			 __be32 daddr, unsigned short hnum,
361 			 int dif, int sdif)
362 {
363 	int score;
364 	struct inet_sock *inet;
365 	bool dev_match;
366 
367 	if (!net_eq(sock_net(sk), net) ||
368 	    udp_sk(sk)->udp_port_hash != hnum ||
369 	    ipv6_only_sock(sk))
370 		return -1;
371 
372 	if (sk->sk_rcv_saddr != daddr)
373 		return -1;
374 
375 	score = (sk->sk_family == PF_INET) ? 2 : 1;
376 
377 	inet = inet_sk(sk);
378 	if (inet->inet_daddr) {
379 		if (inet->inet_daddr != saddr)
380 			return -1;
381 		score += 4;
382 	}
383 
384 	if (inet->inet_dport) {
385 		if (inet->inet_dport != sport)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
391 					dif, sdif);
392 	if (!dev_match)
393 		return -1;
394 	if (sk->sk_bound_dev_if)
395 		score += 4;
396 
397 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
398 		score++;
399 	return score;
400 }
401 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)402 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
403 		       const __u16 lport, const __be32 faddr,
404 		       const __be16 fport)
405 {
406 	static u32 udp_ehash_secret __read_mostly;
407 
408 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
409 
410 	return __inet_ehashfn(laddr, lport, faddr, fport,
411 			      udp_ehash_secret + net_hash_mix(net));
412 }
413 
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)414 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
415 				     struct sk_buff *skb,
416 				     __be32 saddr, __be16 sport,
417 				     __be32 daddr, unsigned short hnum)
418 {
419 	struct sock *reuse_sk = NULL;
420 	u32 hash;
421 
422 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
423 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
424 		reuse_sk = reuseport_select_sock(sk, hash, skb,
425 						 sizeof(struct udphdr));
426 	}
427 	return reuse_sk;
428 }
429 
430 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)431 static struct sock *udp4_lib_lookup2(struct net *net,
432 				     __be32 saddr, __be16 sport,
433 				     __be32 daddr, unsigned int hnum,
434 				     int dif, int sdif,
435 				     struct udp_hslot *hslot2,
436 				     struct sk_buff *skb)
437 {
438 	struct sock *sk, *result;
439 	int score, badness;
440 
441 	result = NULL;
442 	badness = 0;
443 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
444 		score = compute_score(sk, net, saddr, sport,
445 				      daddr, hnum, dif, sdif);
446 		if (score > badness) {
447 			badness = score;
448 			result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
449 			if (!result) {
450 				result = sk;
451 				continue;
452 			}
453 
454 			/* Fall back to scoring if group has connections */
455 			if (!reuseport_has_conns(sk))
456 				return result;
457 
458 			/* Reuseport logic returned an error, keep original score. */
459 			if (IS_ERR(result))
460 				continue;
461 
462 			badness = compute_score(result, net, saddr, sport,
463 						daddr, hnum, dif, sdif);
464 
465 		}
466 	}
467 	return result;
468 }
469 
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)470 static struct sock *udp4_lookup_run_bpf(struct net *net,
471 					struct udp_table *udptable,
472 					struct sk_buff *skb,
473 					__be32 saddr, __be16 sport,
474 					__be32 daddr, u16 hnum)
475 {
476 	struct sock *sk, *reuse_sk;
477 	bool no_reuseport;
478 
479 	if (udptable != &udp_table)
480 		return NULL; /* only UDP is supported */
481 
482 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
483 					    saddr, sport, daddr, hnum, &sk);
484 	if (no_reuseport || IS_ERR_OR_NULL(sk))
485 		return sk;
486 
487 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
488 	if (reuse_sk)
489 		sk = reuse_sk;
490 	return sk;
491 }
492 
493 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
494  * harder than this. -DaveM
495  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)496 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
497 		__be16 sport, __be32 daddr, __be16 dport, int dif,
498 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
499 {
500 	unsigned short hnum = ntohs(dport);
501 	unsigned int hash2, slot2;
502 	struct udp_hslot *hslot2;
503 	struct sock *result, *sk;
504 
505 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
506 	slot2 = hash2 & udptable->mask;
507 	hslot2 = &udptable->hash2[slot2];
508 
509 	/* Lookup connected or non-wildcard socket */
510 	result = udp4_lib_lookup2(net, saddr, sport,
511 				  daddr, hnum, dif, sdif,
512 				  hslot2, skb);
513 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
514 		goto done;
515 
516 	/* Lookup redirect from BPF */
517 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
518 		sk = udp4_lookup_run_bpf(net, udptable, skb,
519 					 saddr, sport, daddr, hnum);
520 		if (sk) {
521 			result = sk;
522 			goto done;
523 		}
524 	}
525 
526 	/* Got non-wildcard socket or error on first lookup */
527 	if (result)
528 		goto done;
529 
530 	/* Lookup wildcard sockets */
531 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
532 	slot2 = hash2 & udptable->mask;
533 	hslot2 = &udptable->hash2[slot2];
534 
535 	result = udp4_lib_lookup2(net, saddr, sport,
536 				  htonl(INADDR_ANY), hnum, dif, sdif,
537 				  hslot2, skb);
538 done:
539 	if (IS_ERR(result))
540 		return NULL;
541 	return result;
542 }
543 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
544 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)545 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
546 						 __be16 sport, __be16 dport,
547 						 struct udp_table *udptable)
548 {
549 	const struct iphdr *iph = ip_hdr(skb);
550 
551 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
552 				 iph->daddr, dport, inet_iif(skb),
553 				 inet_sdif(skb), udptable, skb);
554 }
555 
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)556 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
557 				 __be16 sport, __be16 dport)
558 {
559 	const struct iphdr *iph = ip_hdr(skb);
560 
561 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
562 				 iph->daddr, dport, inet_iif(skb),
563 				 inet_sdif(skb), &udp_table, NULL);
564 }
565 
566 /* Must be called under rcu_read_lock().
567  * Does increment socket refcount.
568  */
569 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 			     __be32 daddr, __be16 dport, int dif)
572 {
573 	struct sock *sk;
574 
575 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
576 			       dif, 0, &udp_table, NULL);
577 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
578 		sk = NULL;
579 	return sk;
580 }
581 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
582 #endif
583 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)584 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
585 				       __be16 loc_port, __be32 loc_addr,
586 				       __be16 rmt_port, __be32 rmt_addr,
587 				       int dif, int sdif, unsigned short hnum)
588 {
589 	struct inet_sock *inet = inet_sk(sk);
590 
591 	if (!net_eq(sock_net(sk), net) ||
592 	    udp_sk(sk)->udp_port_hash != hnum ||
593 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
594 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
595 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
596 	    ipv6_only_sock(sk) ||
597 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
598 		return false;
599 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
600 		return false;
601 	return true;
602 }
603 
604 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)605 void udp_encap_enable(void)
606 {
607 	static_branch_inc(&udp_encap_needed_key);
608 }
609 EXPORT_SYMBOL(udp_encap_enable);
610 
udp_encap_disable(void)611 void udp_encap_disable(void)
612 {
613 	static_branch_dec(&udp_encap_needed_key);
614 }
615 EXPORT_SYMBOL(udp_encap_disable);
616 
617 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
618  * through error handlers in encapsulations looking for a match.
619  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)620 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
621 {
622 	int i;
623 
624 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
625 		int (*handler)(struct sk_buff *skb, u32 info);
626 		const struct ip_tunnel_encap_ops *encap;
627 
628 		encap = rcu_dereference(iptun_encaps[i]);
629 		if (!encap)
630 			continue;
631 		handler = encap->err_handler;
632 		if (handler && !handler(skb, info))
633 			return 0;
634 	}
635 
636 	return -ENOENT;
637 }
638 
639 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
640  * reversing source and destination port: this will match tunnels that force the
641  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
642  * lwtunnels might actually break this assumption by being configured with
643  * different destination ports on endpoints, in this case we won't be able to
644  * trace ICMP messages back to them.
645  *
646  * If this doesn't match any socket, probe tunnels with arbitrary destination
647  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
648  * we've sent packets to won't necessarily match the local destination port.
649  *
650  * Then ask the tunnel implementation to match the error against a valid
651  * association.
652  *
653  * Return an error if we can't find a match, the socket if we need further
654  * processing, zero otherwise.
655  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)656 static struct sock *__udp4_lib_err_encap(struct net *net,
657 					 const struct iphdr *iph,
658 					 struct udphdr *uh,
659 					 struct udp_table *udptable,
660 					 struct sock *sk,
661 					 struct sk_buff *skb, u32 info)
662 {
663 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
664 	int network_offset, transport_offset;
665 	struct udp_sock *up;
666 
667 	network_offset = skb_network_offset(skb);
668 	transport_offset = skb_transport_offset(skb);
669 
670 	/* Network header needs to point to the outer IPv4 header inside ICMP */
671 	skb_reset_network_header(skb);
672 
673 	/* Transport header needs to point to the UDP header */
674 	skb_set_transport_header(skb, iph->ihl << 2);
675 
676 	if (sk) {
677 		up = udp_sk(sk);
678 
679 		lookup = READ_ONCE(up->encap_err_lookup);
680 		if (lookup && lookup(sk, skb))
681 			sk = NULL;
682 
683 		goto out;
684 	}
685 
686 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
687 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
688 			       udptable, NULL);
689 	if (sk) {
690 		up = udp_sk(sk);
691 
692 		lookup = READ_ONCE(up->encap_err_lookup);
693 		if (!lookup || lookup(sk, skb))
694 			sk = NULL;
695 	}
696 
697 out:
698 	if (!sk)
699 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
700 
701 	skb_set_transport_header(skb, transport_offset);
702 	skb_set_network_header(skb, network_offset);
703 
704 	return sk;
705 }
706 
707 /*
708  * This routine is called by the ICMP module when it gets some
709  * sort of error condition.  If err < 0 then the socket should
710  * be closed and the error returned to the user.  If err > 0
711  * it's just the icmp type << 8 | icmp code.
712  * Header points to the ip header of the error packet. We move
713  * on past this. Then (as it used to claim before adjustment)
714  * header points to the first 8 bytes of the udp header.  We need
715  * to find the appropriate port.
716  */
717 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)718 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
719 {
720 	struct inet_sock *inet;
721 	const struct iphdr *iph = (const struct iphdr *)skb->data;
722 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
723 	const int type = icmp_hdr(skb)->type;
724 	const int code = icmp_hdr(skb)->code;
725 	bool tunnel = false;
726 	struct sock *sk;
727 	int harderr;
728 	int err;
729 	struct net *net = dev_net(skb->dev);
730 
731 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
732 			       iph->saddr, uh->source, skb->dev->ifindex,
733 			       inet_sdif(skb), udptable, NULL);
734 
735 	if (!sk || udp_sk(sk)->encap_type) {
736 		/* No socket for error: try tunnels before discarding */
737 		if (static_branch_unlikely(&udp_encap_needed_key)) {
738 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
739 						  info);
740 			if (!sk)
741 				return 0;
742 		} else
743 			sk = ERR_PTR(-ENOENT);
744 
745 		if (IS_ERR(sk)) {
746 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
747 			return PTR_ERR(sk);
748 		}
749 
750 		tunnel = true;
751 	}
752 
753 	err = 0;
754 	harderr = 0;
755 	inet = inet_sk(sk);
756 
757 	switch (type) {
758 	default:
759 	case ICMP_TIME_EXCEEDED:
760 		err = EHOSTUNREACH;
761 		break;
762 	case ICMP_SOURCE_QUENCH:
763 		goto out;
764 	case ICMP_PARAMETERPROB:
765 		err = EPROTO;
766 		harderr = 1;
767 		break;
768 	case ICMP_DEST_UNREACH:
769 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
770 			ipv4_sk_update_pmtu(skb, sk, info);
771 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
772 				err = EMSGSIZE;
773 				harderr = 1;
774 				break;
775 			}
776 			goto out;
777 		}
778 		err = EHOSTUNREACH;
779 		if (code <= NR_ICMP_UNREACH) {
780 			harderr = icmp_err_convert[code].fatal;
781 			err = icmp_err_convert[code].errno;
782 		}
783 		break;
784 	case ICMP_REDIRECT:
785 		ipv4_sk_redirect(skb, sk);
786 		goto out;
787 	}
788 
789 	/*
790 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
791 	 *	4.1.3.3.
792 	 */
793 	if (tunnel) {
794 		/* ...not for tunnels though: we don't have a sending socket */
795 		if (udp_sk(sk)->encap_err_rcv)
796 			udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
797 		goto out;
798 	}
799 	if (!inet->recverr) {
800 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
801 			goto out;
802 	} else
803 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
804 
805 	sk->sk_err = err;
806 	sk_error_report(sk);
807 out:
808 	return 0;
809 }
810 
udp_err(struct sk_buff * skb,u32 info)811 int udp_err(struct sk_buff *skb, u32 info)
812 {
813 	return __udp4_lib_err(skb, info, &udp_table);
814 }
815 
816 /*
817  * Throw away all pending data and cancel the corking. Socket is locked.
818  */
udp_flush_pending_frames(struct sock * sk)819 void udp_flush_pending_frames(struct sock *sk)
820 {
821 	struct udp_sock *up = udp_sk(sk);
822 
823 	if (up->pending) {
824 		up->len = 0;
825 		up->pending = 0;
826 		ip_flush_pending_frames(sk);
827 	}
828 }
829 EXPORT_SYMBOL(udp_flush_pending_frames);
830 
831 /**
832  * 	udp4_hwcsum  -  handle outgoing HW checksumming
833  * 	@skb: 	sk_buff containing the filled-in UDP header
834  * 	        (checksum field must be zeroed out)
835  *	@src:	source IP address
836  *	@dst:	destination IP address
837  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)838 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
839 {
840 	struct udphdr *uh = udp_hdr(skb);
841 	int offset = skb_transport_offset(skb);
842 	int len = skb->len - offset;
843 	int hlen = len;
844 	__wsum csum = 0;
845 
846 	if (!skb_has_frag_list(skb)) {
847 		/*
848 		 * Only one fragment on the socket.
849 		 */
850 		skb->csum_start = skb_transport_header(skb) - skb->head;
851 		skb->csum_offset = offsetof(struct udphdr, check);
852 		uh->check = ~csum_tcpudp_magic(src, dst, len,
853 					       IPPROTO_UDP, 0);
854 	} else {
855 		struct sk_buff *frags;
856 
857 		/*
858 		 * HW-checksum won't work as there are two or more
859 		 * fragments on the socket so that all csums of sk_buffs
860 		 * should be together
861 		 */
862 		skb_walk_frags(skb, frags) {
863 			csum = csum_add(csum, frags->csum);
864 			hlen -= frags->len;
865 		}
866 
867 		csum = skb_checksum(skb, offset, hlen, csum);
868 		skb->ip_summed = CHECKSUM_NONE;
869 
870 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
871 		if (uh->check == 0)
872 			uh->check = CSUM_MANGLED_0;
873 	}
874 }
875 EXPORT_SYMBOL_GPL(udp4_hwcsum);
876 
877 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
878  * for the simple case like when setting the checksum for a UDP tunnel.
879  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)880 void udp_set_csum(bool nocheck, struct sk_buff *skb,
881 		  __be32 saddr, __be32 daddr, int len)
882 {
883 	struct udphdr *uh = udp_hdr(skb);
884 
885 	if (nocheck) {
886 		uh->check = 0;
887 	} else if (skb_is_gso(skb)) {
888 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
889 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
890 		uh->check = 0;
891 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
892 		if (uh->check == 0)
893 			uh->check = CSUM_MANGLED_0;
894 	} else {
895 		skb->ip_summed = CHECKSUM_PARTIAL;
896 		skb->csum_start = skb_transport_header(skb) - skb->head;
897 		skb->csum_offset = offsetof(struct udphdr, check);
898 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
899 	}
900 }
901 EXPORT_SYMBOL(udp_set_csum);
902 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)903 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
904 			struct inet_cork *cork)
905 {
906 	struct sock *sk = skb->sk;
907 	struct inet_sock *inet = inet_sk(sk);
908 	struct udphdr *uh;
909 	int err;
910 	int is_udplite = IS_UDPLITE(sk);
911 	int offset = skb_transport_offset(skb);
912 	int len = skb->len - offset;
913 	int datalen = len - sizeof(*uh);
914 	__wsum csum = 0;
915 
916 	/*
917 	 * Create a UDP header
918 	 */
919 	uh = udp_hdr(skb);
920 	uh->source = inet->inet_sport;
921 	uh->dest = fl4->fl4_dport;
922 	uh->len = htons(len);
923 	uh->check = 0;
924 
925 	if (cork->gso_size) {
926 		const int hlen = skb_network_header_len(skb) +
927 				 sizeof(struct udphdr);
928 
929 		if (hlen + cork->gso_size > cork->fragsize) {
930 			kfree_skb(skb);
931 			return -EINVAL;
932 		}
933 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
934 			kfree_skb(skb);
935 			return -EINVAL;
936 		}
937 		if (sk->sk_no_check_tx) {
938 			kfree_skb(skb);
939 			return -EINVAL;
940 		}
941 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
942 		    dst_xfrm(skb_dst(skb))) {
943 			kfree_skb(skb);
944 			return -EIO;
945 		}
946 
947 		if (datalen > cork->gso_size) {
948 			skb_shinfo(skb)->gso_size = cork->gso_size;
949 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
950 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
951 								 cork->gso_size);
952 		}
953 		goto csum_partial;
954 	}
955 
956 	if (is_udplite)  				 /*     UDP-Lite      */
957 		csum = udplite_csum(skb);
958 
959 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
960 
961 		skb->ip_summed = CHECKSUM_NONE;
962 		goto send;
963 
964 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
965 csum_partial:
966 
967 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
968 		goto send;
969 
970 	} else
971 		csum = udp_csum(skb);
972 
973 	/* add protocol-dependent pseudo-header */
974 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
975 				      sk->sk_protocol, csum);
976 	if (uh->check == 0)
977 		uh->check = CSUM_MANGLED_0;
978 
979 send:
980 	err = ip_send_skb(sock_net(sk), skb);
981 	if (err) {
982 		if (err == -ENOBUFS && !inet->recverr) {
983 			UDP_INC_STATS(sock_net(sk),
984 				      UDP_MIB_SNDBUFERRORS, is_udplite);
985 			err = 0;
986 		}
987 	} else
988 		UDP_INC_STATS(sock_net(sk),
989 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
990 	return err;
991 }
992 
993 /*
994  * Push out all pending data as one UDP datagram. Socket is locked.
995  */
udp_push_pending_frames(struct sock * sk)996 int udp_push_pending_frames(struct sock *sk)
997 {
998 	struct udp_sock  *up = udp_sk(sk);
999 	struct inet_sock *inet = inet_sk(sk);
1000 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1001 	struct sk_buff *skb;
1002 	int err = 0;
1003 
1004 	skb = ip_finish_skb(sk, fl4);
1005 	if (!skb)
1006 		goto out;
1007 
1008 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1009 
1010 out:
1011 	up->len = 0;
1012 	up->pending = 0;
1013 	return err;
1014 }
1015 EXPORT_SYMBOL(udp_push_pending_frames);
1016 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1017 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1018 {
1019 	switch (cmsg->cmsg_type) {
1020 	case UDP_SEGMENT:
1021 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1022 			return -EINVAL;
1023 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1024 		return 0;
1025 	default:
1026 		return -EINVAL;
1027 	}
1028 }
1029 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1030 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1031 {
1032 	struct cmsghdr *cmsg;
1033 	bool need_ip = false;
1034 	int err;
1035 
1036 	for_each_cmsghdr(cmsg, msg) {
1037 		if (!CMSG_OK(msg, cmsg))
1038 			return -EINVAL;
1039 
1040 		if (cmsg->cmsg_level != SOL_UDP) {
1041 			need_ip = true;
1042 			continue;
1043 		}
1044 
1045 		err = __udp_cmsg_send(cmsg, gso_size);
1046 		if (err)
1047 			return err;
1048 	}
1049 
1050 	return need_ip;
1051 }
1052 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1053 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1054 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1055 {
1056 	struct inet_sock *inet = inet_sk(sk);
1057 	struct udp_sock *up = udp_sk(sk);
1058 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1059 	struct flowi4 fl4_stack;
1060 	struct flowi4 *fl4;
1061 	int ulen = len;
1062 	struct ipcm_cookie ipc;
1063 	struct rtable *rt = NULL;
1064 	int free = 0;
1065 	int connected = 0;
1066 	__be32 daddr, faddr, saddr;
1067 	__be16 dport;
1068 	u8  tos;
1069 	int err, is_udplite = IS_UDPLITE(sk);
1070 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1071 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1072 	struct sk_buff *skb;
1073 	struct ip_options_data opt_copy;
1074 
1075 	if (len > 0xFFFF)
1076 		return -EMSGSIZE;
1077 
1078 	/*
1079 	 *	Check the flags.
1080 	 */
1081 
1082 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1083 		return -EOPNOTSUPP;
1084 	trace_android_rvh_udp_sendmsg(sk);
1085 
1086 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1087 
1088 	fl4 = &inet->cork.fl.u.ip4;
1089 	if (up->pending) {
1090 		/*
1091 		 * There are pending frames.
1092 		 * The socket lock must be held while it's corked.
1093 		 */
1094 		lock_sock(sk);
1095 		if (likely(up->pending)) {
1096 			if (unlikely(up->pending != AF_INET)) {
1097 				release_sock(sk);
1098 				return -EINVAL;
1099 			}
1100 			goto do_append_data;
1101 		}
1102 		release_sock(sk);
1103 	}
1104 	ulen += sizeof(struct udphdr);
1105 
1106 	/*
1107 	 *	Get and verify the address.
1108 	 */
1109 	if (usin) {
1110 		if (msg->msg_namelen < sizeof(*usin))
1111 			return -EINVAL;
1112 		if (usin->sin_family != AF_INET) {
1113 			if (usin->sin_family != AF_UNSPEC)
1114 				return -EAFNOSUPPORT;
1115 		}
1116 
1117 		daddr = usin->sin_addr.s_addr;
1118 		dport = usin->sin_port;
1119 		if (dport == 0)
1120 			return -EINVAL;
1121 	} else {
1122 		if (sk->sk_state != TCP_ESTABLISHED)
1123 			return -EDESTADDRREQ;
1124 		daddr = inet->inet_daddr;
1125 		dport = inet->inet_dport;
1126 		/* Open fast path for connected socket.
1127 		   Route will not be used, if at least one option is set.
1128 		 */
1129 		connected = 1;
1130 	}
1131 
1132 	ipcm_init_sk(&ipc, inet);
1133 	ipc.gso_size = READ_ONCE(up->gso_size);
1134 
1135 	if (msg->msg_controllen) {
1136 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1137 		if (err > 0)
1138 			err = ip_cmsg_send(sk, msg, &ipc,
1139 					   sk->sk_family == AF_INET6);
1140 		if (unlikely(err < 0)) {
1141 			kfree(ipc.opt);
1142 			return err;
1143 		}
1144 		if (ipc.opt)
1145 			free = 1;
1146 		connected = 0;
1147 	}
1148 	if (!ipc.opt) {
1149 		struct ip_options_rcu *inet_opt;
1150 
1151 		rcu_read_lock();
1152 		inet_opt = rcu_dereference(inet->inet_opt);
1153 		if (inet_opt) {
1154 			memcpy(&opt_copy, inet_opt,
1155 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1156 			ipc.opt = &opt_copy.opt;
1157 		}
1158 		rcu_read_unlock();
1159 	}
1160 
1161 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1162 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1163 					    (struct sockaddr *)usin, &ipc.addr);
1164 		if (err)
1165 			goto out_free;
1166 		if (usin) {
1167 			if (usin->sin_port == 0) {
1168 				/* BPF program set invalid port. Reject it. */
1169 				err = -EINVAL;
1170 				goto out_free;
1171 			}
1172 			daddr = usin->sin_addr.s_addr;
1173 			dport = usin->sin_port;
1174 		}
1175 	}
1176 
1177 	saddr = ipc.addr;
1178 	ipc.addr = faddr = daddr;
1179 
1180 	if (ipc.opt && ipc.opt->opt.srr) {
1181 		if (!daddr) {
1182 			err = -EINVAL;
1183 			goto out_free;
1184 		}
1185 		faddr = ipc.opt->opt.faddr;
1186 		connected = 0;
1187 	}
1188 	tos = get_rttos(&ipc, inet);
1189 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1190 	    (msg->msg_flags & MSG_DONTROUTE) ||
1191 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1192 		tos |= RTO_ONLINK;
1193 		connected = 0;
1194 	}
1195 
1196 	if (ipv4_is_multicast(daddr)) {
1197 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1198 			ipc.oif = inet->mc_index;
1199 		if (!saddr)
1200 			saddr = inet->mc_addr;
1201 		connected = 0;
1202 	} else if (!ipc.oif) {
1203 		ipc.oif = inet->uc_index;
1204 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1205 		/* oif is set, packet is to local broadcast and
1206 		 * uc_index is set. oif is most likely set
1207 		 * by sk_bound_dev_if. If uc_index != oif check if the
1208 		 * oif is an L3 master and uc_index is an L3 slave.
1209 		 * If so, we want to allow the send using the uc_index.
1210 		 */
1211 		if (ipc.oif != inet->uc_index &&
1212 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1213 							      inet->uc_index)) {
1214 			ipc.oif = inet->uc_index;
1215 		}
1216 	}
1217 
1218 	if (connected)
1219 		rt = (struct rtable *)sk_dst_check(sk, 0);
1220 
1221 	if (!rt) {
1222 		struct net *net = sock_net(sk);
1223 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1224 
1225 		fl4 = &fl4_stack;
1226 
1227 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1228 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1229 				   flow_flags,
1230 				   faddr, saddr, dport, inet->inet_sport,
1231 				   sk->sk_uid);
1232 
1233 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1234 		rt = ip_route_output_flow(net, fl4, sk);
1235 		if (IS_ERR(rt)) {
1236 			err = PTR_ERR(rt);
1237 			rt = NULL;
1238 			if (err == -ENETUNREACH)
1239 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1240 			goto out;
1241 		}
1242 
1243 		err = -EACCES;
1244 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1245 		    !sock_flag(sk, SOCK_BROADCAST))
1246 			goto out;
1247 		if (connected)
1248 			sk_dst_set(sk, dst_clone(&rt->dst));
1249 	}
1250 
1251 	if (msg->msg_flags&MSG_CONFIRM)
1252 		goto do_confirm;
1253 back_from_confirm:
1254 
1255 	saddr = fl4->saddr;
1256 	if (!ipc.addr)
1257 		daddr = ipc.addr = fl4->daddr;
1258 
1259 	/* Lockless fast path for the non-corking case. */
1260 	if (!corkreq) {
1261 		struct inet_cork cork;
1262 
1263 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1264 				  sizeof(struct udphdr), &ipc, &rt,
1265 				  &cork, msg->msg_flags);
1266 		err = PTR_ERR(skb);
1267 		if (!IS_ERR_OR_NULL(skb))
1268 			err = udp_send_skb(skb, fl4, &cork);
1269 		goto out;
1270 	}
1271 
1272 	lock_sock(sk);
1273 	if (unlikely(up->pending)) {
1274 		/* The socket is already corked while preparing it. */
1275 		/* ... which is an evident application bug. --ANK */
1276 		release_sock(sk);
1277 
1278 		net_dbg_ratelimited("socket already corked\n");
1279 		err = -EINVAL;
1280 		goto out;
1281 	}
1282 	/*
1283 	 *	Now cork the socket to pend data.
1284 	 */
1285 	fl4 = &inet->cork.fl.u.ip4;
1286 	fl4->daddr = daddr;
1287 	fl4->saddr = saddr;
1288 	fl4->fl4_dport = dport;
1289 	fl4->fl4_sport = inet->inet_sport;
1290 	up->pending = AF_INET;
1291 
1292 do_append_data:
1293 	up->len += ulen;
1294 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1295 			     sizeof(struct udphdr), &ipc, &rt,
1296 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1297 	if (err)
1298 		udp_flush_pending_frames(sk);
1299 	else if (!corkreq)
1300 		err = udp_push_pending_frames(sk);
1301 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1302 		up->pending = 0;
1303 	release_sock(sk);
1304 
1305 out:
1306 	ip_rt_put(rt);
1307 out_free:
1308 	if (free)
1309 		kfree(ipc.opt);
1310 	if (!err)
1311 		return len;
1312 	/*
1313 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1314 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1315 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1316 	 * things).  We could add another new stat but at least for now that
1317 	 * seems like overkill.
1318 	 */
1319 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1320 		UDP_INC_STATS(sock_net(sk),
1321 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1322 	}
1323 	return err;
1324 
1325 do_confirm:
1326 	if (msg->msg_flags & MSG_PROBE)
1327 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1328 	if (!(msg->msg_flags&MSG_PROBE) || len)
1329 		goto back_from_confirm;
1330 	err = 0;
1331 	goto out;
1332 }
1333 EXPORT_SYMBOL(udp_sendmsg);
1334 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1335 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1336 		 size_t size, int flags)
1337 {
1338 	struct inet_sock *inet = inet_sk(sk);
1339 	struct udp_sock *up = udp_sk(sk);
1340 	int ret;
1341 
1342 	if (flags & MSG_SENDPAGE_NOTLAST)
1343 		flags |= MSG_MORE;
1344 
1345 	if (!up->pending) {
1346 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1347 
1348 		/* Call udp_sendmsg to specify destination address which
1349 		 * sendpage interface can't pass.
1350 		 * This will succeed only when the socket is connected.
1351 		 */
1352 		ret = udp_sendmsg(sk, &msg, 0);
1353 		if (ret < 0)
1354 			return ret;
1355 	}
1356 
1357 	lock_sock(sk);
1358 
1359 	if (unlikely(!up->pending)) {
1360 		release_sock(sk);
1361 
1362 		net_dbg_ratelimited("cork failed\n");
1363 		return -EINVAL;
1364 	}
1365 
1366 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1367 			     page, offset, size, flags);
1368 	if (ret == -EOPNOTSUPP) {
1369 		release_sock(sk);
1370 		return sock_no_sendpage(sk->sk_socket, page, offset,
1371 					size, flags);
1372 	}
1373 	if (ret < 0) {
1374 		udp_flush_pending_frames(sk);
1375 		goto out;
1376 	}
1377 
1378 	up->len += size;
1379 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1380 		ret = udp_push_pending_frames(sk);
1381 	if (!ret)
1382 		ret = size;
1383 out:
1384 	release_sock(sk);
1385 	return ret;
1386 }
1387 
1388 #define UDP_SKB_IS_STATELESS 0x80000000
1389 
1390 /* all head states (dst, sk, nf conntrack) except skb extensions are
1391  * cleared by udp_rcv().
1392  *
1393  * We need to preserve secpath, if present, to eventually process
1394  * IP_CMSG_PASSSEC at recvmsg() time.
1395  *
1396  * Other extensions can be cleared.
1397  */
udp_try_make_stateless(struct sk_buff * skb)1398 static bool udp_try_make_stateless(struct sk_buff *skb)
1399 {
1400 	if (!skb_has_extensions(skb))
1401 		return true;
1402 
1403 	if (!secpath_exists(skb)) {
1404 		skb_ext_reset(skb);
1405 		return true;
1406 	}
1407 
1408 	return false;
1409 }
1410 
udp_set_dev_scratch(struct sk_buff * skb)1411 static void udp_set_dev_scratch(struct sk_buff *skb)
1412 {
1413 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1414 
1415 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1416 	scratch->_tsize_state = skb->truesize;
1417 #if BITS_PER_LONG == 64
1418 	scratch->len = skb->len;
1419 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1420 	scratch->is_linear = !skb_is_nonlinear(skb);
1421 #endif
1422 	if (udp_try_make_stateless(skb))
1423 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1424 }
1425 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1426 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1427 {
1428 	/* We come here after udp_lib_checksum_complete() returned 0.
1429 	 * This means that __skb_checksum_complete() might have
1430 	 * set skb->csum_valid to 1.
1431 	 * On 64bit platforms, we can set csum_unnecessary
1432 	 * to true, but only if the skb is not shared.
1433 	 */
1434 #if BITS_PER_LONG == 64
1435 	if (!skb_shared(skb))
1436 		udp_skb_scratch(skb)->csum_unnecessary = true;
1437 #endif
1438 }
1439 
udp_skb_truesize(struct sk_buff * skb)1440 static int udp_skb_truesize(struct sk_buff *skb)
1441 {
1442 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1443 }
1444 
udp_skb_has_head_state(struct sk_buff * skb)1445 static bool udp_skb_has_head_state(struct sk_buff *skb)
1446 {
1447 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1448 }
1449 
1450 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1451 static void udp_rmem_release(struct sock *sk, int size, int partial,
1452 			     bool rx_queue_lock_held)
1453 {
1454 	struct udp_sock *up = udp_sk(sk);
1455 	struct sk_buff_head *sk_queue;
1456 	int amt;
1457 
1458 	if (likely(partial)) {
1459 		up->forward_deficit += size;
1460 		size = up->forward_deficit;
1461 		if (size < (sk->sk_rcvbuf >> 2) &&
1462 		    !skb_queue_empty(&up->reader_queue))
1463 			return;
1464 	} else {
1465 		size += up->forward_deficit;
1466 	}
1467 	up->forward_deficit = 0;
1468 
1469 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1470 	 * if the called don't held it already
1471 	 */
1472 	sk_queue = &sk->sk_receive_queue;
1473 	if (!rx_queue_lock_held)
1474 		spin_lock(&sk_queue->lock);
1475 
1476 
1477 	sk->sk_forward_alloc += size;
1478 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1479 	sk->sk_forward_alloc -= amt;
1480 
1481 	if (amt)
1482 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1483 
1484 	atomic_sub(size, &sk->sk_rmem_alloc);
1485 
1486 	/* this can save us from acquiring the rx queue lock on next receive */
1487 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1488 
1489 	if (!rx_queue_lock_held)
1490 		spin_unlock(&sk_queue->lock);
1491 }
1492 
1493 /* Note: called with reader_queue.lock held.
1494  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1495  * This avoids a cache line miss while receive_queue lock is held.
1496  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1497  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1498 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1499 {
1500 	prefetch(&skb->data);
1501 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1502 }
1503 EXPORT_SYMBOL(udp_skb_destructor);
1504 
1505 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1506 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1507 {
1508 	prefetch(&skb->data);
1509 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1510 }
1511 
1512 /* Idea of busylocks is to let producers grab an extra spinlock
1513  * to relieve pressure on the receive_queue spinlock shared by consumer.
1514  * Under flood, this means that only one producer can be in line
1515  * trying to acquire the receive_queue spinlock.
1516  * These busylock can be allocated on a per cpu manner, instead of a
1517  * per socket one (that would consume a cache line per socket)
1518  */
1519 static int udp_busylocks_log __read_mostly;
1520 static spinlock_t *udp_busylocks __read_mostly;
1521 
busylock_acquire(void * ptr)1522 static spinlock_t *busylock_acquire(void *ptr)
1523 {
1524 	spinlock_t *busy;
1525 
1526 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1527 	spin_lock(busy);
1528 	return busy;
1529 }
1530 
busylock_release(spinlock_t * busy)1531 static void busylock_release(spinlock_t *busy)
1532 {
1533 	if (busy)
1534 		spin_unlock(busy);
1535 }
1536 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1537 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1538 {
1539 	struct sk_buff_head *list = &sk->sk_receive_queue;
1540 	int rmem, delta, amt, err = -ENOMEM;
1541 	spinlock_t *busy = NULL;
1542 	int size;
1543 
1544 	/* try to avoid the costly atomic add/sub pair when the receive
1545 	 * queue is full; always allow at least a packet
1546 	 */
1547 	rmem = atomic_read(&sk->sk_rmem_alloc);
1548 	if (rmem > sk->sk_rcvbuf)
1549 		goto drop;
1550 
1551 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1552 	 * having linear skbs :
1553 	 * - Reduce memory overhead and thus increase receive queue capacity
1554 	 * - Less cache line misses at copyout() time
1555 	 * - Less work at consume_skb() (less alien page frag freeing)
1556 	 */
1557 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1558 		skb_condense(skb);
1559 
1560 		busy = busylock_acquire(sk);
1561 	}
1562 	size = skb->truesize;
1563 	udp_set_dev_scratch(skb);
1564 
1565 	/* we drop only if the receive buf is full and the receive
1566 	 * queue contains some other skb
1567 	 */
1568 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1569 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1570 		goto uncharge_drop;
1571 
1572 	spin_lock(&list->lock);
1573 	if (size >= sk->sk_forward_alloc) {
1574 		amt = sk_mem_pages(size);
1575 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1576 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1577 			err = -ENOBUFS;
1578 			spin_unlock(&list->lock);
1579 			goto uncharge_drop;
1580 		}
1581 
1582 		sk->sk_forward_alloc += delta;
1583 	}
1584 
1585 	sk->sk_forward_alloc -= size;
1586 
1587 	/* no need to setup a destructor, we will explicitly release the
1588 	 * forward allocated memory on dequeue
1589 	 */
1590 	sock_skb_set_dropcount(sk, skb);
1591 
1592 	__skb_queue_tail(list, skb);
1593 	spin_unlock(&list->lock);
1594 
1595 	if (!sock_flag(sk, SOCK_DEAD))
1596 		sk->sk_data_ready(sk);
1597 
1598 	busylock_release(busy);
1599 	return 0;
1600 
1601 uncharge_drop:
1602 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1603 
1604 drop:
1605 	atomic_inc(&sk->sk_drops);
1606 	busylock_release(busy);
1607 	return err;
1608 }
1609 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1610 
udp_destruct_common(struct sock * sk)1611 void udp_destruct_common(struct sock *sk)
1612 {
1613 	/* reclaim completely the forward allocated memory */
1614 	struct udp_sock *up = udp_sk(sk);
1615 	unsigned int total = 0;
1616 	struct sk_buff *skb;
1617 
1618 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1619 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1620 		total += skb->truesize;
1621 		kfree_skb(skb);
1622 	}
1623 	udp_rmem_release(sk, total, 0, true);
1624 }
1625 EXPORT_SYMBOL_GPL(udp_destruct_common);
1626 
udp_destruct_sock(struct sock * sk)1627 static void udp_destruct_sock(struct sock *sk)
1628 {
1629 	udp_destruct_common(sk);
1630 	inet_sock_destruct(sk);
1631 }
1632 
udp_init_sock(struct sock * sk)1633 int udp_init_sock(struct sock *sk)
1634 {
1635 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1636 	sk->sk_destruct = udp_destruct_sock;
1637 	return 0;
1638 }
1639 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1640 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1641 {
1642 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1643 		bool slow = lock_sock_fast(sk);
1644 
1645 		sk_peek_offset_bwd(sk, len);
1646 		unlock_sock_fast(sk, slow);
1647 	}
1648 
1649 	if (!skb_unref(skb))
1650 		return;
1651 
1652 	/* In the more common cases we cleared the head states previously,
1653 	 * see __udp_queue_rcv_skb().
1654 	 */
1655 	if (unlikely(udp_skb_has_head_state(skb)))
1656 		skb_release_head_state(skb);
1657 	__consume_stateless_skb(skb);
1658 }
1659 EXPORT_SYMBOL_GPL(skb_consume_udp);
1660 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1661 static struct sk_buff *__first_packet_length(struct sock *sk,
1662 					     struct sk_buff_head *rcvq,
1663 					     int *total)
1664 {
1665 	struct sk_buff *skb;
1666 
1667 	while ((skb = skb_peek(rcvq)) != NULL) {
1668 		if (udp_lib_checksum_complete(skb)) {
1669 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1670 					IS_UDPLITE(sk));
1671 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1672 					IS_UDPLITE(sk));
1673 			atomic_inc(&sk->sk_drops);
1674 			__skb_unlink(skb, rcvq);
1675 			*total += skb->truesize;
1676 			kfree_skb(skb);
1677 		} else {
1678 			udp_skb_csum_unnecessary_set(skb);
1679 			break;
1680 		}
1681 	}
1682 	return skb;
1683 }
1684 
1685 /**
1686  *	first_packet_length	- return length of first packet in receive queue
1687  *	@sk: socket
1688  *
1689  *	Drops all bad checksum frames, until a valid one is found.
1690  *	Returns the length of found skb, or -1 if none is found.
1691  */
first_packet_length(struct sock * sk)1692 static int first_packet_length(struct sock *sk)
1693 {
1694 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1695 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1696 	struct sk_buff *skb;
1697 	int total = 0;
1698 	int res;
1699 
1700 	spin_lock_bh(&rcvq->lock);
1701 	skb = __first_packet_length(sk, rcvq, &total);
1702 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1703 		spin_lock(&sk_queue->lock);
1704 		skb_queue_splice_tail_init(sk_queue, rcvq);
1705 		spin_unlock(&sk_queue->lock);
1706 
1707 		skb = __first_packet_length(sk, rcvq, &total);
1708 	}
1709 	res = skb ? skb->len : -1;
1710 	if (total)
1711 		udp_rmem_release(sk, total, 1, false);
1712 	spin_unlock_bh(&rcvq->lock);
1713 	return res;
1714 }
1715 
1716 /*
1717  *	IOCTL requests applicable to the UDP protocol
1718  */
1719 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1720 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1721 {
1722 	switch (cmd) {
1723 	case SIOCOUTQ:
1724 	{
1725 		int amount = sk_wmem_alloc_get(sk);
1726 
1727 		return put_user(amount, (int __user *)arg);
1728 	}
1729 
1730 	case SIOCINQ:
1731 	{
1732 		int amount = max_t(int, 0, first_packet_length(sk));
1733 
1734 		return put_user(amount, (int __user *)arg);
1735 	}
1736 
1737 	default:
1738 		return -ENOIOCTLCMD;
1739 	}
1740 
1741 	return 0;
1742 }
1743 EXPORT_SYMBOL(udp_ioctl);
1744 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1745 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1746 			       int noblock, int *off, int *err)
1747 {
1748 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1749 	struct sk_buff_head *queue;
1750 	struct sk_buff *last;
1751 	long timeo;
1752 	int error;
1753 
1754 	queue = &udp_sk(sk)->reader_queue;
1755 	flags |= noblock ? MSG_DONTWAIT : 0;
1756 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1757 	do {
1758 		struct sk_buff *skb;
1759 
1760 		error = sock_error(sk);
1761 		if (error)
1762 			break;
1763 
1764 		error = -EAGAIN;
1765 		do {
1766 			spin_lock_bh(&queue->lock);
1767 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1768 							err, &last);
1769 			if (skb) {
1770 				if (!(flags & MSG_PEEK))
1771 					udp_skb_destructor(sk, skb);
1772 				spin_unlock_bh(&queue->lock);
1773 				return skb;
1774 			}
1775 
1776 			if (skb_queue_empty_lockless(sk_queue)) {
1777 				spin_unlock_bh(&queue->lock);
1778 				goto busy_check;
1779 			}
1780 
1781 			/* refill the reader queue and walk it again
1782 			 * keep both queues locked to avoid re-acquiring
1783 			 * the sk_receive_queue lock if fwd memory scheduling
1784 			 * is needed.
1785 			 */
1786 			spin_lock(&sk_queue->lock);
1787 			skb_queue_splice_tail_init(sk_queue, queue);
1788 
1789 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1790 							err, &last);
1791 			if (skb && !(flags & MSG_PEEK))
1792 				udp_skb_dtor_locked(sk, skb);
1793 			spin_unlock(&sk_queue->lock);
1794 			spin_unlock_bh(&queue->lock);
1795 			if (skb)
1796 				return skb;
1797 
1798 busy_check:
1799 			if (!sk_can_busy_loop(sk))
1800 				break;
1801 
1802 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1803 		} while (!skb_queue_empty_lockless(sk_queue));
1804 
1805 		/* sk_queue is empty, reader_queue may contain peeked packets */
1806 	} while (timeo &&
1807 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1808 					      &error, &timeo,
1809 					      (struct sk_buff *)sk_queue));
1810 
1811 	*err = error;
1812 	return NULL;
1813 }
1814 EXPORT_SYMBOL(__skb_recv_udp);
1815 
udp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1816 int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1817 		  sk_read_actor_t recv_actor)
1818 {
1819 	int copied = 0;
1820 
1821 	while (1) {
1822 		struct sk_buff *skb;
1823 		int err, used;
1824 
1825 		skb = skb_recv_udp(sk, 0, 1, &err);
1826 		if (!skb)
1827 			return err;
1828 
1829 		if (udp_lib_checksum_complete(skb)) {
1830 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1831 					IS_UDPLITE(sk));
1832 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1833 					IS_UDPLITE(sk));
1834 			atomic_inc(&sk->sk_drops);
1835 			kfree_skb(skb);
1836 			continue;
1837 		}
1838 
1839 		used = recv_actor(desc, skb, 0, skb->len);
1840 		if (used <= 0) {
1841 			if (!copied)
1842 				copied = used;
1843 			kfree_skb(skb);
1844 			break;
1845 		} else if (used <= skb->len) {
1846 			copied += used;
1847 		}
1848 
1849 		kfree_skb(skb);
1850 		if (!desc->count)
1851 			break;
1852 	}
1853 
1854 	return copied;
1855 }
1856 EXPORT_SYMBOL(udp_read_sock);
1857 
1858 /*
1859  * 	This should be easy, if there is something there we
1860  * 	return it, otherwise we block.
1861  */
1862 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1863 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1864 		int flags, int *addr_len)
1865 {
1866 	struct inet_sock *inet = inet_sk(sk);
1867 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1868 	struct sk_buff *skb;
1869 	unsigned int ulen, copied;
1870 	int off, err, peeking = flags & MSG_PEEK;
1871 	int is_udplite = IS_UDPLITE(sk);
1872 	bool checksum_valid = false;
1873 
1874 	if (flags & MSG_ERRQUEUE)
1875 		return ip_recv_error(sk, msg, len, addr_len);
1876 
1877 try_again:
1878 	off = sk_peek_offset(sk, flags);
1879 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1880 	if (!skb)
1881 		return err;
1882 	trace_android_rvh_udp_recvmsg(sk);
1883 
1884 	ulen = udp_skb_len(skb);
1885 	copied = len;
1886 	if (copied > ulen - off)
1887 		copied = ulen - off;
1888 	else if (copied < ulen)
1889 		msg->msg_flags |= MSG_TRUNC;
1890 
1891 	/*
1892 	 * If checksum is needed at all, try to do it while copying the
1893 	 * data.  If the data is truncated, or if we only want a partial
1894 	 * coverage checksum (UDP-Lite), do it before the copy.
1895 	 */
1896 
1897 	if (copied < ulen || peeking ||
1898 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1899 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1900 				!__udp_lib_checksum_complete(skb);
1901 		if (!checksum_valid)
1902 			goto csum_copy_err;
1903 	}
1904 
1905 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1906 		if (udp_skb_is_linear(skb))
1907 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1908 		else
1909 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1910 	} else {
1911 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1912 
1913 		if (err == -EINVAL)
1914 			goto csum_copy_err;
1915 	}
1916 
1917 	if (unlikely(err)) {
1918 		if (!peeking) {
1919 			atomic_inc(&sk->sk_drops);
1920 			UDP_INC_STATS(sock_net(sk),
1921 				      UDP_MIB_INERRORS, is_udplite);
1922 		}
1923 		kfree_skb(skb);
1924 		return err;
1925 	}
1926 
1927 	if (!peeking)
1928 		UDP_INC_STATS(sock_net(sk),
1929 			      UDP_MIB_INDATAGRAMS, is_udplite);
1930 
1931 	sock_recv_cmsgs(msg, sk, skb);
1932 
1933 	/* Copy the address. */
1934 	if (sin) {
1935 		sin->sin_family = AF_INET;
1936 		sin->sin_port = udp_hdr(skb)->source;
1937 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1938 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1939 		*addr_len = sizeof(*sin);
1940 
1941 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1942 						      (struct sockaddr *)sin);
1943 	}
1944 
1945 	if (udp_sk(sk)->gro_enabled)
1946 		udp_cmsg_recv(msg, sk, skb);
1947 
1948 	if (inet->cmsg_flags)
1949 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1950 
1951 	err = copied;
1952 	if (flags & MSG_TRUNC)
1953 		err = ulen;
1954 
1955 	skb_consume_udp(sk, skb, peeking ? -err : err);
1956 	return err;
1957 
1958 csum_copy_err:
1959 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1960 				 udp_skb_destructor)) {
1961 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1962 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1963 	}
1964 	kfree_skb(skb);
1965 
1966 	/* starting over for a new packet, but check if we need to yield */
1967 	cond_resched();
1968 	msg->msg_flags &= ~MSG_TRUNC;
1969 	goto try_again;
1970 }
1971 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1972 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1973 {
1974 	/* This check is replicated from __ip4_datagram_connect() and
1975 	 * intended to prevent BPF program called below from accessing bytes
1976 	 * that are out of the bound specified by user in addr_len.
1977 	 */
1978 	if (addr_len < sizeof(struct sockaddr_in))
1979 		return -EINVAL;
1980 
1981 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1982 }
1983 EXPORT_SYMBOL(udp_pre_connect);
1984 
__udp_disconnect(struct sock * sk,int flags)1985 int __udp_disconnect(struct sock *sk, int flags)
1986 {
1987 	struct inet_sock *inet = inet_sk(sk);
1988 	/*
1989 	 *	1003.1g - break association.
1990 	 */
1991 
1992 	sk->sk_state = TCP_CLOSE;
1993 	inet->inet_daddr = 0;
1994 	inet->inet_dport = 0;
1995 	sock_rps_reset_rxhash(sk);
1996 	sk->sk_bound_dev_if = 0;
1997 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1998 		inet_reset_saddr(sk);
1999 		if (sk->sk_prot->rehash &&
2000 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2001 			sk->sk_prot->rehash(sk);
2002 	}
2003 
2004 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2005 		sk->sk_prot->unhash(sk);
2006 		inet->inet_sport = 0;
2007 	}
2008 	sk_dst_reset(sk);
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL(__udp_disconnect);
2012 
udp_disconnect(struct sock * sk,int flags)2013 int udp_disconnect(struct sock *sk, int flags)
2014 {
2015 	lock_sock(sk);
2016 	__udp_disconnect(sk, flags);
2017 	release_sock(sk);
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(udp_disconnect);
2021 
udp_lib_unhash(struct sock * sk)2022 void udp_lib_unhash(struct sock *sk)
2023 {
2024 	if (sk_hashed(sk)) {
2025 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2026 		struct udp_hslot *hslot, *hslot2;
2027 
2028 		hslot  = udp_hashslot(udptable, sock_net(sk),
2029 				      udp_sk(sk)->udp_port_hash);
2030 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2031 
2032 		spin_lock_bh(&hslot->lock);
2033 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2034 			reuseport_detach_sock(sk);
2035 		if (sk_del_node_init_rcu(sk)) {
2036 			hslot->count--;
2037 			inet_sk(sk)->inet_num = 0;
2038 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2039 
2040 			spin_lock(&hslot2->lock);
2041 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2042 			hslot2->count--;
2043 			spin_unlock(&hslot2->lock);
2044 		}
2045 		spin_unlock_bh(&hslot->lock);
2046 	}
2047 }
2048 EXPORT_SYMBOL(udp_lib_unhash);
2049 
2050 /*
2051  * inet_rcv_saddr was changed, we must rehash secondary hash
2052  */
udp_lib_rehash(struct sock * sk,u16 newhash)2053 void udp_lib_rehash(struct sock *sk, u16 newhash)
2054 {
2055 	if (sk_hashed(sk)) {
2056 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2057 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2058 
2059 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2060 		nhslot2 = udp_hashslot2(udptable, newhash);
2061 		udp_sk(sk)->udp_portaddr_hash = newhash;
2062 
2063 		if (hslot2 != nhslot2 ||
2064 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2065 			hslot = udp_hashslot(udptable, sock_net(sk),
2066 					     udp_sk(sk)->udp_port_hash);
2067 			/* we must lock primary chain too */
2068 			spin_lock_bh(&hslot->lock);
2069 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2070 				reuseport_detach_sock(sk);
2071 
2072 			if (hslot2 != nhslot2) {
2073 				spin_lock(&hslot2->lock);
2074 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2075 				hslot2->count--;
2076 				spin_unlock(&hslot2->lock);
2077 
2078 				spin_lock(&nhslot2->lock);
2079 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2080 							 &nhslot2->head);
2081 				nhslot2->count++;
2082 				spin_unlock(&nhslot2->lock);
2083 			}
2084 
2085 			spin_unlock_bh(&hslot->lock);
2086 		}
2087 	}
2088 }
2089 EXPORT_SYMBOL(udp_lib_rehash);
2090 
udp_v4_rehash(struct sock * sk)2091 void udp_v4_rehash(struct sock *sk)
2092 {
2093 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2094 					  inet_sk(sk)->inet_rcv_saddr,
2095 					  inet_sk(sk)->inet_num);
2096 	udp_lib_rehash(sk, new_hash);
2097 }
2098 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2099 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2100 {
2101 	int rc;
2102 
2103 	if (inet_sk(sk)->inet_daddr) {
2104 		sock_rps_save_rxhash(sk, skb);
2105 		sk_mark_napi_id(sk, skb);
2106 		sk_incoming_cpu_update(sk);
2107 	} else {
2108 		sk_mark_napi_id_once(sk, skb);
2109 	}
2110 
2111 	rc = __udp_enqueue_schedule_skb(sk, skb);
2112 	if (rc < 0) {
2113 		int is_udplite = IS_UDPLITE(sk);
2114 
2115 		/* Note that an ENOMEM error is charged twice */
2116 		if (rc == -ENOMEM)
2117 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2118 					is_udplite);
2119 		else
2120 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2121 				      is_udplite);
2122 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2123 		kfree_skb(skb);
2124 		trace_udp_fail_queue_rcv_skb(rc, sk);
2125 		return -1;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 /* returns:
2132  *  -1: error
2133  *   0: success
2134  *  >0: "udp encap" protocol resubmission
2135  *
2136  * Note that in the success and error cases, the skb is assumed to
2137  * have either been requeued or freed.
2138  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2139 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2140 {
2141 	struct udp_sock *up = udp_sk(sk);
2142 	int is_udplite = IS_UDPLITE(sk);
2143 
2144 	/*
2145 	 *	Charge it to the socket, dropping if the queue is full.
2146 	 */
2147 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2148 		goto drop;
2149 	nf_reset_ct(skb);
2150 
2151 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2152 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2153 
2154 		/*
2155 		 * This is an encapsulation socket so pass the skb to
2156 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2157 		 * fall through and pass this up the UDP socket.
2158 		 * up->encap_rcv() returns the following value:
2159 		 * =0 if skb was successfully passed to the encap
2160 		 *    handler or was discarded by it.
2161 		 * >0 if skb should be passed on to UDP.
2162 		 * <0 if skb should be resubmitted as proto -N
2163 		 */
2164 
2165 		/* if we're overly short, let UDP handle it */
2166 		encap_rcv = READ_ONCE(up->encap_rcv);
2167 		if (encap_rcv) {
2168 			int ret;
2169 
2170 			/* Verify checksum before giving to encap */
2171 			if (udp_lib_checksum_complete(skb))
2172 				goto csum_error;
2173 
2174 			ret = encap_rcv(sk, skb);
2175 			if (ret <= 0) {
2176 				__UDP_INC_STATS(sock_net(sk),
2177 						UDP_MIB_INDATAGRAMS,
2178 						is_udplite);
2179 				return -ret;
2180 			}
2181 		}
2182 
2183 		/* FALLTHROUGH -- it's a UDP Packet */
2184 	}
2185 
2186 	/*
2187 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2188 	 */
2189 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2190 
2191 		/*
2192 		 * MIB statistics other than incrementing the error count are
2193 		 * disabled for the following two types of errors: these depend
2194 		 * on the application settings, not on the functioning of the
2195 		 * protocol stack as such.
2196 		 *
2197 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2198 		 * way ... to ... at least let the receiving application block
2199 		 * delivery of packets with coverage values less than a value
2200 		 * provided by the application."
2201 		 */
2202 		if (up->pcrlen == 0) {          /* full coverage was set  */
2203 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2204 					    UDP_SKB_CB(skb)->cscov, skb->len);
2205 			goto drop;
2206 		}
2207 		/* The next case involves violating the min. coverage requested
2208 		 * by the receiver. This is subtle: if receiver wants x and x is
2209 		 * greater than the buffersize/MTU then receiver will complain
2210 		 * that it wants x while sender emits packets of smaller size y.
2211 		 * Therefore the above ...()->partial_cov statement is essential.
2212 		 */
2213 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2214 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2215 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2216 			goto drop;
2217 		}
2218 	}
2219 
2220 	prefetch(&sk->sk_rmem_alloc);
2221 	if (rcu_access_pointer(sk->sk_filter) &&
2222 	    udp_lib_checksum_complete(skb))
2223 			goto csum_error;
2224 
2225 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2226 		goto drop;
2227 
2228 	udp_csum_pull_header(skb);
2229 
2230 	ipv4_pktinfo_prepare(sk, skb);
2231 	return __udp_queue_rcv_skb(sk, skb);
2232 
2233 csum_error:
2234 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2235 drop:
2236 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2237 	atomic_inc(&sk->sk_drops);
2238 	kfree_skb(skb);
2239 	return -1;
2240 }
2241 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2242 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2243 {
2244 	struct sk_buff *next, *segs;
2245 	int ret;
2246 
2247 	if (likely(!udp_unexpected_gso(sk, skb)))
2248 		return udp_queue_rcv_one_skb(sk, skb);
2249 
2250 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2251 	__skb_push(skb, -skb_mac_offset(skb));
2252 	segs = udp_rcv_segment(sk, skb, true);
2253 	skb_list_walk_safe(segs, skb, next) {
2254 		__skb_pull(skb, skb_transport_offset(skb));
2255 
2256 		udp_post_segment_fix_csum(skb);
2257 		ret = udp_queue_rcv_one_skb(sk, skb);
2258 		if (ret > 0)
2259 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2260 	}
2261 	return 0;
2262 }
2263 
2264 /* For TCP sockets, sk_rx_dst is protected by socket lock
2265  * For UDP, we use xchg() to guard against concurrent changes.
2266  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2267 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2268 {
2269 	struct dst_entry *old;
2270 
2271 	if (dst_hold_safe(dst)) {
2272 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2273 		dst_release(old);
2274 		return old != dst;
2275 	}
2276 	return false;
2277 }
2278 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2279 
2280 /*
2281  *	Multicasts and broadcasts go to each listener.
2282  *
2283  *	Note: called only from the BH handler context.
2284  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2285 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2286 				    struct udphdr  *uh,
2287 				    __be32 saddr, __be32 daddr,
2288 				    struct udp_table *udptable,
2289 				    int proto)
2290 {
2291 	struct sock *sk, *first = NULL;
2292 	unsigned short hnum = ntohs(uh->dest);
2293 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2294 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2295 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2296 	int dif = skb->dev->ifindex;
2297 	int sdif = inet_sdif(skb);
2298 	struct hlist_node *node;
2299 	struct sk_buff *nskb;
2300 
2301 	if (use_hash2) {
2302 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2303 			    udptable->mask;
2304 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2305 start_lookup:
2306 		hslot = &udptable->hash2[hash2];
2307 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2308 	}
2309 
2310 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2311 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2312 					 uh->source, saddr, dif, sdif, hnum))
2313 			continue;
2314 
2315 		if (!first) {
2316 			first = sk;
2317 			continue;
2318 		}
2319 		nskb = skb_clone(skb, GFP_ATOMIC);
2320 
2321 		if (unlikely(!nskb)) {
2322 			atomic_inc(&sk->sk_drops);
2323 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2324 					IS_UDPLITE(sk));
2325 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2326 					IS_UDPLITE(sk));
2327 			continue;
2328 		}
2329 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2330 			consume_skb(nskb);
2331 	}
2332 
2333 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2334 	if (use_hash2 && hash2 != hash2_any) {
2335 		hash2 = hash2_any;
2336 		goto start_lookup;
2337 	}
2338 
2339 	if (first) {
2340 		if (udp_queue_rcv_skb(first, skb) > 0)
2341 			consume_skb(skb);
2342 	} else {
2343 		kfree_skb(skb);
2344 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2345 				proto == IPPROTO_UDPLITE);
2346 	}
2347 	return 0;
2348 }
2349 
2350 /* Initialize UDP checksum. If exited with zero value (success),
2351  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2352  * Otherwise, csum completion requires checksumming packet body,
2353  * including udp header and folding it to skb->csum.
2354  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2355 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2356 				 int proto)
2357 {
2358 	int err;
2359 
2360 	UDP_SKB_CB(skb)->partial_cov = 0;
2361 	UDP_SKB_CB(skb)->cscov = skb->len;
2362 
2363 	if (proto == IPPROTO_UDPLITE) {
2364 		err = udplite_checksum_init(skb, uh);
2365 		if (err)
2366 			return err;
2367 
2368 		if (UDP_SKB_CB(skb)->partial_cov) {
2369 			skb->csum = inet_compute_pseudo(skb, proto);
2370 			return 0;
2371 		}
2372 	}
2373 
2374 	/* Note, we are only interested in != 0 or == 0, thus the
2375 	 * force to int.
2376 	 */
2377 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2378 							inet_compute_pseudo);
2379 	if (err)
2380 		return err;
2381 
2382 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2383 		/* If SW calculated the value, we know it's bad */
2384 		if (skb->csum_complete_sw)
2385 			return 1;
2386 
2387 		/* HW says the value is bad. Let's validate that.
2388 		 * skb->csum is no longer the full packet checksum,
2389 		 * so don't treat it as such.
2390 		 */
2391 		skb_checksum_complete_unset(skb);
2392 	}
2393 
2394 	return 0;
2395 }
2396 
2397 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2398  * return code conversion for ip layer consumption
2399  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2400 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2401 			       struct udphdr *uh)
2402 {
2403 	int ret;
2404 
2405 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2406 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2407 
2408 	ret = udp_queue_rcv_skb(sk, skb);
2409 
2410 	/* a return value > 0 means to resubmit the input, but
2411 	 * it wants the return to be -protocol, or 0
2412 	 */
2413 	if (ret > 0)
2414 		return -ret;
2415 	return 0;
2416 }
2417 
2418 /*
2419  *	All we need to do is get the socket, and then do a checksum.
2420  */
2421 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2422 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2423 		   int proto)
2424 {
2425 	struct sock *sk;
2426 	struct udphdr *uh;
2427 	unsigned short ulen;
2428 	struct rtable *rt = skb_rtable(skb);
2429 	__be32 saddr, daddr;
2430 	struct net *net = dev_net(skb->dev);
2431 	bool refcounted;
2432 	int drop_reason;
2433 
2434 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2435 
2436 	/*
2437 	 *  Validate the packet.
2438 	 */
2439 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2440 		goto drop;		/* No space for header. */
2441 
2442 	uh   = udp_hdr(skb);
2443 	ulen = ntohs(uh->len);
2444 	saddr = ip_hdr(skb)->saddr;
2445 	daddr = ip_hdr(skb)->daddr;
2446 
2447 	if (ulen > skb->len)
2448 		goto short_packet;
2449 
2450 	if (proto == IPPROTO_UDP) {
2451 		/* UDP validates ulen. */
2452 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2453 			goto short_packet;
2454 		uh = udp_hdr(skb);
2455 	}
2456 
2457 	if (udp4_csum_init(skb, uh, proto))
2458 		goto csum_error;
2459 
2460 	sk = skb_steal_sock(skb, &refcounted);
2461 	if (sk) {
2462 		struct dst_entry *dst = skb_dst(skb);
2463 		int ret;
2464 
2465 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2466 			udp_sk_rx_dst_set(sk, dst);
2467 
2468 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2469 		if (refcounted)
2470 			sock_put(sk);
2471 		return ret;
2472 	}
2473 
2474 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2475 		return __udp4_lib_mcast_deliver(net, skb, uh,
2476 						saddr, daddr, udptable, proto);
2477 
2478 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2479 	if (sk)
2480 		return udp_unicast_rcv_skb(sk, skb, uh);
2481 
2482 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2483 		goto drop;
2484 	nf_reset_ct(skb);
2485 
2486 	/* No socket. Drop packet silently, if checksum is wrong */
2487 	if (udp_lib_checksum_complete(skb))
2488 		goto csum_error;
2489 
2490 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2491 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2492 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2493 
2494 	/*
2495 	 * Hmm.  We got an UDP packet to a port to which we
2496 	 * don't wanna listen.  Ignore it.
2497 	 */
2498 	kfree_skb_reason(skb, drop_reason);
2499 	return 0;
2500 
2501 short_packet:
2502 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2503 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2504 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2505 			    &saddr, ntohs(uh->source),
2506 			    ulen, skb->len,
2507 			    &daddr, ntohs(uh->dest));
2508 	goto drop;
2509 
2510 csum_error:
2511 	/*
2512 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2513 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2514 	 */
2515 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2516 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2517 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2518 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2519 			    ulen);
2520 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2521 drop:
2522 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2523 	kfree_skb_reason(skb, drop_reason);
2524 	return 0;
2525 }
2526 
2527 /* We can only early demux multicast if there is a single matching socket.
2528  * If more than one socket found returns NULL
2529  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2530 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2531 						  __be16 loc_port, __be32 loc_addr,
2532 						  __be16 rmt_port, __be32 rmt_addr,
2533 						  int dif, int sdif)
2534 {
2535 	struct sock *sk, *result;
2536 	unsigned short hnum = ntohs(loc_port);
2537 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2538 	struct udp_hslot *hslot = &udp_table.hash[slot];
2539 
2540 	/* Do not bother scanning a too big list */
2541 	if (hslot->count > 10)
2542 		return NULL;
2543 
2544 	result = NULL;
2545 	sk_for_each_rcu(sk, &hslot->head) {
2546 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2547 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2548 			if (result)
2549 				return NULL;
2550 			result = sk;
2551 		}
2552 	}
2553 
2554 	return result;
2555 }
2556 
2557 /* For unicast we should only early demux connected sockets or we can
2558  * break forwarding setups.  The chains here can be long so only check
2559  * if the first socket is an exact match and if not move on.
2560  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2561 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2562 					    __be16 loc_port, __be32 loc_addr,
2563 					    __be16 rmt_port, __be32 rmt_addr,
2564 					    int dif, int sdif)
2565 {
2566 	unsigned short hnum = ntohs(loc_port);
2567 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2568 	unsigned int slot2 = hash2 & udp_table.mask;
2569 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2570 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2571 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2572 	struct sock *sk;
2573 
2574 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2575 		if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2576 			return sk;
2577 		/* Only check first socket in chain */
2578 		break;
2579 	}
2580 	return NULL;
2581 }
2582 
udp_v4_early_demux(struct sk_buff * skb)2583 int udp_v4_early_demux(struct sk_buff *skb)
2584 {
2585 	struct net *net = dev_net(skb->dev);
2586 	struct in_device *in_dev = NULL;
2587 	const struct iphdr *iph;
2588 	const struct udphdr *uh;
2589 	struct sock *sk = NULL;
2590 	struct dst_entry *dst;
2591 	int dif = skb->dev->ifindex;
2592 	int sdif = inet_sdif(skb);
2593 	int ours;
2594 
2595 	/* validate the packet */
2596 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2597 		return 0;
2598 
2599 	iph = ip_hdr(skb);
2600 	uh = udp_hdr(skb);
2601 
2602 	if (skb->pkt_type == PACKET_MULTICAST) {
2603 		in_dev = __in_dev_get_rcu(skb->dev);
2604 
2605 		if (!in_dev)
2606 			return 0;
2607 
2608 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2609 				       iph->protocol);
2610 		if (!ours)
2611 			return 0;
2612 
2613 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2614 						   uh->source, iph->saddr,
2615 						   dif, sdif);
2616 	} else if (skb->pkt_type == PACKET_HOST) {
2617 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2618 					     uh->source, iph->saddr, dif, sdif);
2619 	}
2620 
2621 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2622 		return 0;
2623 
2624 	skb->sk = sk;
2625 	skb->destructor = sock_efree;
2626 	dst = rcu_dereference(sk->sk_rx_dst);
2627 
2628 	if (dst)
2629 		dst = dst_check(dst, 0);
2630 	if (dst) {
2631 		u32 itag = 0;
2632 
2633 		/* set noref for now.
2634 		 * any place which wants to hold dst has to call
2635 		 * dst_hold_safe()
2636 		 */
2637 		skb_dst_set_noref(skb, dst);
2638 
2639 		/* for unconnected multicast sockets we need to validate
2640 		 * the source on each packet
2641 		 */
2642 		if (!inet_sk(sk)->inet_daddr && in_dev)
2643 			return ip_mc_validate_source(skb, iph->daddr,
2644 						     iph->saddr,
2645 						     iph->tos & IPTOS_RT_MASK,
2646 						     skb->dev, in_dev, &itag);
2647 	}
2648 	return 0;
2649 }
2650 
udp_rcv(struct sk_buff * skb)2651 int udp_rcv(struct sk_buff *skb)
2652 {
2653 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2654 }
2655 
udp_destroy_sock(struct sock * sk)2656 void udp_destroy_sock(struct sock *sk)
2657 {
2658 	struct udp_sock *up = udp_sk(sk);
2659 	bool slow = lock_sock_fast(sk);
2660 
2661 	/* protects from races with udp_abort() */
2662 	sock_set_flag(sk, SOCK_DEAD);
2663 	udp_flush_pending_frames(sk);
2664 	unlock_sock_fast(sk, slow);
2665 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2666 		if (up->encap_type) {
2667 			void (*encap_destroy)(struct sock *sk);
2668 			encap_destroy = READ_ONCE(up->encap_destroy);
2669 			if (encap_destroy)
2670 				encap_destroy(sk);
2671 		}
2672 		if (up->encap_enabled)
2673 			static_branch_dec(&udp_encap_needed_key);
2674 	}
2675 }
2676 
2677 /*
2678  *	Socket option code for UDP
2679  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2680 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2681 		       sockptr_t optval, unsigned int optlen,
2682 		       int (*push_pending_frames)(struct sock *))
2683 {
2684 	struct udp_sock *up = udp_sk(sk);
2685 	int val, valbool;
2686 	int err = 0;
2687 	int is_udplite = IS_UDPLITE(sk);
2688 
2689 	if (optlen < sizeof(int))
2690 		return -EINVAL;
2691 
2692 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2693 		return -EFAULT;
2694 
2695 	valbool = val ? 1 : 0;
2696 
2697 	switch (optname) {
2698 	case UDP_CORK:
2699 		if (val != 0) {
2700 			WRITE_ONCE(up->corkflag, 1);
2701 		} else {
2702 			WRITE_ONCE(up->corkflag, 0);
2703 			lock_sock(sk);
2704 			push_pending_frames(sk);
2705 			release_sock(sk);
2706 		}
2707 		break;
2708 
2709 	case UDP_ENCAP:
2710 		switch (val) {
2711 		case 0:
2712 #ifdef CONFIG_XFRM
2713 		case UDP_ENCAP_ESPINUDP:
2714 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2715 #if IS_ENABLED(CONFIG_IPV6)
2716 			if (sk->sk_family == AF_INET6)
2717 				WRITE_ONCE(up->encap_rcv,
2718 					   ipv6_stub->xfrm6_udp_encap_rcv);
2719 			else
2720 #endif
2721 				WRITE_ONCE(up->encap_rcv,
2722 					   xfrm4_udp_encap_rcv);
2723 #endif
2724 			fallthrough;
2725 		case UDP_ENCAP_L2TPINUDP:
2726 			up->encap_type = val;
2727 			lock_sock(sk);
2728 			udp_tunnel_encap_enable(sk->sk_socket);
2729 			release_sock(sk);
2730 			break;
2731 		default:
2732 			err = -ENOPROTOOPT;
2733 			break;
2734 		}
2735 		break;
2736 
2737 	case UDP_NO_CHECK6_TX:
2738 		up->no_check6_tx = valbool;
2739 		break;
2740 
2741 	case UDP_NO_CHECK6_RX:
2742 		up->no_check6_rx = valbool;
2743 		break;
2744 
2745 	case UDP_SEGMENT:
2746 		if (val < 0 || val > USHRT_MAX)
2747 			return -EINVAL;
2748 		WRITE_ONCE(up->gso_size, val);
2749 		break;
2750 
2751 	case UDP_GRO:
2752 		lock_sock(sk);
2753 
2754 		/* when enabling GRO, accept the related GSO packet type */
2755 		if (valbool)
2756 			udp_tunnel_encap_enable(sk->sk_socket);
2757 		up->gro_enabled = valbool;
2758 		up->accept_udp_l4 = valbool;
2759 		release_sock(sk);
2760 		break;
2761 
2762 	/*
2763 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2764 	 */
2765 	/* The sender sets actual checksum coverage length via this option.
2766 	 * The case coverage > packet length is handled by send module. */
2767 	case UDPLITE_SEND_CSCOV:
2768 		if (!is_udplite)         /* Disable the option on UDP sockets */
2769 			return -ENOPROTOOPT;
2770 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2771 			val = 8;
2772 		else if (val > USHRT_MAX)
2773 			val = USHRT_MAX;
2774 		up->pcslen = val;
2775 		up->pcflag |= UDPLITE_SEND_CC;
2776 		break;
2777 
2778 	/* The receiver specifies a minimum checksum coverage value. To make
2779 	 * sense, this should be set to at least 8 (as done below). If zero is
2780 	 * used, this again means full checksum coverage.                     */
2781 	case UDPLITE_RECV_CSCOV:
2782 		if (!is_udplite)         /* Disable the option on UDP sockets */
2783 			return -ENOPROTOOPT;
2784 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2785 			val = 8;
2786 		else if (val > USHRT_MAX)
2787 			val = USHRT_MAX;
2788 		up->pcrlen = val;
2789 		up->pcflag |= UDPLITE_RECV_CC;
2790 		break;
2791 
2792 	default:
2793 		err = -ENOPROTOOPT;
2794 		break;
2795 	}
2796 
2797 	return err;
2798 }
2799 EXPORT_SYMBOL(udp_lib_setsockopt);
2800 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2801 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2802 		   unsigned int optlen)
2803 {
2804 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2805 		return udp_lib_setsockopt(sk, level, optname,
2806 					  optval, optlen,
2807 					  udp_push_pending_frames);
2808 	return ip_setsockopt(sk, level, optname, optval, optlen);
2809 }
2810 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2811 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2812 		       char __user *optval, int __user *optlen)
2813 {
2814 	struct udp_sock *up = udp_sk(sk);
2815 	int val, len;
2816 
2817 	if (get_user(len, optlen))
2818 		return -EFAULT;
2819 
2820 	len = min_t(unsigned int, len, sizeof(int));
2821 
2822 	if (len < 0)
2823 		return -EINVAL;
2824 
2825 	switch (optname) {
2826 	case UDP_CORK:
2827 		val = READ_ONCE(up->corkflag);
2828 		break;
2829 
2830 	case UDP_ENCAP:
2831 		val = up->encap_type;
2832 		break;
2833 
2834 	case UDP_NO_CHECK6_TX:
2835 		val = up->no_check6_tx;
2836 		break;
2837 
2838 	case UDP_NO_CHECK6_RX:
2839 		val = up->no_check6_rx;
2840 		break;
2841 
2842 	case UDP_SEGMENT:
2843 		val = READ_ONCE(up->gso_size);
2844 		break;
2845 
2846 	case UDP_GRO:
2847 		val = up->gro_enabled;
2848 		break;
2849 
2850 	/* The following two cannot be changed on UDP sockets, the return is
2851 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2852 	case UDPLITE_SEND_CSCOV:
2853 		val = up->pcslen;
2854 		break;
2855 
2856 	case UDPLITE_RECV_CSCOV:
2857 		val = up->pcrlen;
2858 		break;
2859 
2860 	default:
2861 		return -ENOPROTOOPT;
2862 	}
2863 
2864 	if (put_user(len, optlen))
2865 		return -EFAULT;
2866 	if (copy_to_user(optval, &val, len))
2867 		return -EFAULT;
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(udp_lib_getsockopt);
2871 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2872 int udp_getsockopt(struct sock *sk, int level, int optname,
2873 		   char __user *optval, int __user *optlen)
2874 {
2875 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2876 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2877 	return ip_getsockopt(sk, level, optname, optval, optlen);
2878 }
2879 
2880 /**
2881  * 	udp_poll - wait for a UDP event.
2882  *	@file: - file struct
2883  *	@sock: - socket
2884  *	@wait: - poll table
2885  *
2886  *	This is same as datagram poll, except for the special case of
2887  *	blocking sockets. If application is using a blocking fd
2888  *	and a packet with checksum error is in the queue;
2889  *	then it could get return from select indicating data available
2890  *	but then block when reading it. Add special case code
2891  *	to work around these arguably broken applications.
2892  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2893 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2894 {
2895 	__poll_t mask = datagram_poll(file, sock, wait);
2896 	struct sock *sk = sock->sk;
2897 
2898 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2899 		mask |= EPOLLIN | EPOLLRDNORM;
2900 
2901 	/* Check for false positives due to checksum errors */
2902 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2903 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2904 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2905 
2906 	/* psock ingress_msg queue should not contain any bad checksum frames */
2907 	if (sk_is_readable(sk))
2908 		mask |= EPOLLIN | EPOLLRDNORM;
2909 	return mask;
2910 
2911 }
2912 EXPORT_SYMBOL(udp_poll);
2913 
udp_abort(struct sock * sk,int err)2914 int udp_abort(struct sock *sk, int err)
2915 {
2916 	lock_sock(sk);
2917 
2918 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2919 	 * with close()
2920 	 */
2921 	if (sock_flag(sk, SOCK_DEAD))
2922 		goto out;
2923 
2924 	sk->sk_err = err;
2925 	sk_error_report(sk);
2926 	__udp_disconnect(sk, 0);
2927 
2928 out:
2929 	release_sock(sk);
2930 
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(udp_abort);
2934 
2935 struct proto udp_prot = {
2936 	.name			= "UDP",
2937 	.owner			= THIS_MODULE,
2938 	.close			= udp_lib_close,
2939 	.pre_connect		= udp_pre_connect,
2940 	.connect		= ip4_datagram_connect,
2941 	.disconnect		= udp_disconnect,
2942 	.ioctl			= udp_ioctl,
2943 	.init			= udp_init_sock,
2944 	.destroy		= udp_destroy_sock,
2945 	.setsockopt		= udp_setsockopt,
2946 	.getsockopt		= udp_getsockopt,
2947 	.sendmsg		= udp_sendmsg,
2948 	.recvmsg		= udp_recvmsg,
2949 	.sendpage		= udp_sendpage,
2950 	.release_cb		= ip4_datagram_release_cb,
2951 	.hash			= udp_lib_hash,
2952 	.unhash			= udp_lib_unhash,
2953 	.rehash			= udp_v4_rehash,
2954 	.get_port		= udp_v4_get_port,
2955 #ifdef CONFIG_BPF_SYSCALL
2956 	.psock_update_sk_prot	= udp_bpf_update_proto,
2957 #endif
2958 	.memory_allocated	= &udp_memory_allocated,
2959 	.sysctl_mem		= sysctl_udp_mem,
2960 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2961 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2962 	.obj_size		= sizeof(struct udp_sock),
2963 	.h.udp_table		= &udp_table,
2964 	.diag_destroy		= udp_abort,
2965 };
2966 EXPORT_SYMBOL(udp_prot);
2967 
2968 /* ------------------------------------------------------------------------ */
2969 #ifdef CONFIG_PROC_FS
2970 
udp_get_first(struct seq_file * seq,int start)2971 static struct sock *udp_get_first(struct seq_file *seq, int start)
2972 {
2973 	struct sock *sk;
2974 	struct udp_seq_afinfo *afinfo;
2975 	struct udp_iter_state *state = seq->private;
2976 	struct net *net = seq_file_net(seq);
2977 
2978 	if (state->bpf_seq_afinfo)
2979 		afinfo = state->bpf_seq_afinfo;
2980 	else
2981 		afinfo = PDE_DATA(file_inode(seq->file));
2982 
2983 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2984 	     ++state->bucket) {
2985 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2986 
2987 		if (hlist_empty(&hslot->head))
2988 			continue;
2989 
2990 		spin_lock_bh(&hslot->lock);
2991 		sk_for_each(sk, &hslot->head) {
2992 			if (!net_eq(sock_net(sk), net))
2993 				continue;
2994 			if (afinfo->family == AF_UNSPEC ||
2995 			    sk->sk_family == afinfo->family)
2996 				goto found;
2997 		}
2998 		spin_unlock_bh(&hslot->lock);
2999 	}
3000 	sk = NULL;
3001 found:
3002 	return sk;
3003 }
3004 
udp_get_next(struct seq_file * seq,struct sock * sk)3005 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3006 {
3007 	struct udp_seq_afinfo *afinfo;
3008 	struct udp_iter_state *state = seq->private;
3009 	struct net *net = seq_file_net(seq);
3010 
3011 	if (state->bpf_seq_afinfo)
3012 		afinfo = state->bpf_seq_afinfo;
3013 	else
3014 		afinfo = PDE_DATA(file_inode(seq->file));
3015 
3016 	do {
3017 		sk = sk_next(sk);
3018 	} while (sk && (!net_eq(sock_net(sk), net) ||
3019 			(afinfo->family != AF_UNSPEC &&
3020 			 sk->sk_family != afinfo->family)));
3021 
3022 	if (!sk) {
3023 		if (state->bucket <= afinfo->udp_table->mask)
3024 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3025 		return udp_get_first(seq, state->bucket + 1);
3026 	}
3027 	return sk;
3028 }
3029 
udp_get_idx(struct seq_file * seq,loff_t pos)3030 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3031 {
3032 	struct sock *sk = udp_get_first(seq, 0);
3033 
3034 	if (sk)
3035 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3036 			--pos;
3037 	return pos ? NULL : sk;
3038 }
3039 
udp_seq_start(struct seq_file * seq,loff_t * pos)3040 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3041 {
3042 	struct udp_iter_state *state = seq->private;
3043 	state->bucket = MAX_UDP_PORTS;
3044 
3045 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3046 }
3047 EXPORT_SYMBOL(udp_seq_start);
3048 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3049 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3050 {
3051 	struct sock *sk;
3052 
3053 	if (v == SEQ_START_TOKEN)
3054 		sk = udp_get_idx(seq, 0);
3055 	else
3056 		sk = udp_get_next(seq, v);
3057 
3058 	++*pos;
3059 	return sk;
3060 }
3061 EXPORT_SYMBOL(udp_seq_next);
3062 
udp_seq_stop(struct seq_file * seq,void * v)3063 void udp_seq_stop(struct seq_file *seq, void *v)
3064 {
3065 	struct udp_seq_afinfo *afinfo;
3066 	struct udp_iter_state *state = seq->private;
3067 
3068 	if (state->bpf_seq_afinfo)
3069 		afinfo = state->bpf_seq_afinfo;
3070 	else
3071 		afinfo = PDE_DATA(file_inode(seq->file));
3072 
3073 	if (state->bucket <= afinfo->udp_table->mask)
3074 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3075 }
3076 EXPORT_SYMBOL(udp_seq_stop);
3077 
3078 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3079 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3080 		int bucket)
3081 {
3082 	struct inet_sock *inet = inet_sk(sp);
3083 	__be32 dest = inet->inet_daddr;
3084 	__be32 src  = inet->inet_rcv_saddr;
3085 	__u16 destp	  = ntohs(inet->inet_dport);
3086 	__u16 srcp	  = ntohs(inet->inet_sport);
3087 
3088 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3089 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3090 		bucket, src, srcp, dest, destp, sp->sk_state,
3091 		sk_wmem_alloc_get(sp),
3092 		udp_rqueue_get(sp),
3093 		0, 0L, 0,
3094 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3095 		0, sock_i_ino(sp),
3096 		refcount_read(&sp->sk_refcnt), sp,
3097 		atomic_read(&sp->sk_drops));
3098 }
3099 
udp4_seq_show(struct seq_file * seq,void * v)3100 int udp4_seq_show(struct seq_file *seq, void *v)
3101 {
3102 	seq_setwidth(seq, 127);
3103 	if (v == SEQ_START_TOKEN)
3104 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3105 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3106 			   "inode ref pointer drops");
3107 	else {
3108 		struct udp_iter_state *state = seq->private;
3109 
3110 		udp4_format_sock(v, seq, state->bucket);
3111 	}
3112 	seq_pad(seq, '\n');
3113 	return 0;
3114 }
3115 
3116 #ifdef CONFIG_BPF_SYSCALL
3117 struct bpf_iter__udp {
3118 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3119 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3120 	uid_t uid __aligned(8);
3121 	int bucket __aligned(8);
3122 };
3123 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3124 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3125 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3126 {
3127 	struct bpf_iter__udp ctx;
3128 
3129 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3130 	ctx.meta = meta;
3131 	ctx.udp_sk = udp_sk;
3132 	ctx.uid = uid;
3133 	ctx.bucket = bucket;
3134 	return bpf_iter_run_prog(prog, &ctx);
3135 }
3136 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3137 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3138 {
3139 	struct udp_iter_state *state = seq->private;
3140 	struct bpf_iter_meta meta;
3141 	struct bpf_prog *prog;
3142 	struct sock *sk = v;
3143 	uid_t uid;
3144 
3145 	if (v == SEQ_START_TOKEN)
3146 		return 0;
3147 
3148 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3149 	meta.seq = seq;
3150 	prog = bpf_iter_get_info(&meta, false);
3151 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3152 }
3153 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3154 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3155 {
3156 	struct bpf_iter_meta meta;
3157 	struct bpf_prog *prog;
3158 
3159 	if (!v) {
3160 		meta.seq = seq;
3161 		prog = bpf_iter_get_info(&meta, true);
3162 		if (prog)
3163 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3164 	}
3165 
3166 	udp_seq_stop(seq, v);
3167 }
3168 
3169 static const struct seq_operations bpf_iter_udp_seq_ops = {
3170 	.start		= udp_seq_start,
3171 	.next		= udp_seq_next,
3172 	.stop		= bpf_iter_udp_seq_stop,
3173 	.show		= bpf_iter_udp_seq_show,
3174 };
3175 #endif
3176 
3177 const struct seq_operations udp_seq_ops = {
3178 	.start		= udp_seq_start,
3179 	.next		= udp_seq_next,
3180 	.stop		= udp_seq_stop,
3181 	.show		= udp4_seq_show,
3182 };
3183 EXPORT_SYMBOL(udp_seq_ops);
3184 
3185 static struct udp_seq_afinfo udp4_seq_afinfo = {
3186 	.family		= AF_INET,
3187 	.udp_table	= &udp_table,
3188 };
3189 
udp4_proc_init_net(struct net * net)3190 static int __net_init udp4_proc_init_net(struct net *net)
3191 {
3192 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3193 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3194 		return -ENOMEM;
3195 	return 0;
3196 }
3197 
udp4_proc_exit_net(struct net * net)3198 static void __net_exit udp4_proc_exit_net(struct net *net)
3199 {
3200 	remove_proc_entry("udp", net->proc_net);
3201 }
3202 
3203 static struct pernet_operations udp4_net_ops = {
3204 	.init = udp4_proc_init_net,
3205 	.exit = udp4_proc_exit_net,
3206 };
3207 
udp4_proc_init(void)3208 int __init udp4_proc_init(void)
3209 {
3210 	return register_pernet_subsys(&udp4_net_ops);
3211 }
3212 
udp4_proc_exit(void)3213 void udp4_proc_exit(void)
3214 {
3215 	unregister_pernet_subsys(&udp4_net_ops);
3216 }
3217 #endif /* CONFIG_PROC_FS */
3218 
3219 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3220 static int __init set_uhash_entries(char *str)
3221 {
3222 	ssize_t ret;
3223 
3224 	if (!str)
3225 		return 0;
3226 
3227 	ret = kstrtoul(str, 0, &uhash_entries);
3228 	if (ret)
3229 		return 0;
3230 
3231 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3232 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3233 	return 1;
3234 }
3235 __setup("uhash_entries=", set_uhash_entries);
3236 
udp_table_init(struct udp_table * table,const char * name)3237 void __init udp_table_init(struct udp_table *table, const char *name)
3238 {
3239 	unsigned int i;
3240 
3241 	table->hash = alloc_large_system_hash(name,
3242 					      2 * sizeof(struct udp_hslot),
3243 					      uhash_entries,
3244 					      21, /* one slot per 2 MB */
3245 					      0,
3246 					      &table->log,
3247 					      &table->mask,
3248 					      UDP_HTABLE_SIZE_MIN,
3249 					      64 * 1024);
3250 
3251 	table->hash2 = table->hash + (table->mask + 1);
3252 	for (i = 0; i <= table->mask; i++) {
3253 		INIT_HLIST_HEAD(&table->hash[i].head);
3254 		table->hash[i].count = 0;
3255 		spin_lock_init(&table->hash[i].lock);
3256 	}
3257 	for (i = 0; i <= table->mask; i++) {
3258 		INIT_HLIST_HEAD(&table->hash2[i].head);
3259 		table->hash2[i].count = 0;
3260 		spin_lock_init(&table->hash2[i].lock);
3261 	}
3262 }
3263 
udp_flow_hashrnd(void)3264 u32 udp_flow_hashrnd(void)
3265 {
3266 	static u32 hashrnd __read_mostly;
3267 
3268 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3269 
3270 	return hashrnd;
3271 }
3272 EXPORT_SYMBOL(udp_flow_hashrnd);
3273 
__udp_sysctl_init(struct net * net)3274 static void __udp_sysctl_init(struct net *net)
3275 {
3276 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3277 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3278 
3279 #ifdef CONFIG_NET_L3_MASTER_DEV
3280 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3281 #endif
3282 }
3283 
udp_sysctl_init(struct net * net)3284 static int __net_init udp_sysctl_init(struct net *net)
3285 {
3286 	__udp_sysctl_init(net);
3287 	return 0;
3288 }
3289 
3290 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3291 	.init	= udp_sysctl_init,
3292 };
3293 
3294 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3295 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3296 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3297 
3298 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3299 {
3300 	struct udp_iter_state *st = priv_data;
3301 	struct udp_seq_afinfo *afinfo;
3302 	int ret;
3303 
3304 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3305 	if (!afinfo)
3306 		return -ENOMEM;
3307 
3308 	afinfo->family = AF_UNSPEC;
3309 	afinfo->udp_table = &udp_table;
3310 	st->bpf_seq_afinfo = afinfo;
3311 	ret = bpf_iter_init_seq_net(priv_data, aux);
3312 	if (ret)
3313 		kfree(afinfo);
3314 	return ret;
3315 }
3316 
bpf_iter_fini_udp(void * priv_data)3317 static void bpf_iter_fini_udp(void *priv_data)
3318 {
3319 	struct udp_iter_state *st = priv_data;
3320 
3321 	kfree(st->bpf_seq_afinfo);
3322 	bpf_iter_fini_seq_net(priv_data);
3323 }
3324 
3325 static const struct bpf_iter_seq_info udp_seq_info = {
3326 	.seq_ops		= &bpf_iter_udp_seq_ops,
3327 	.init_seq_private	= bpf_iter_init_udp,
3328 	.fini_seq_private	= bpf_iter_fini_udp,
3329 	.seq_priv_size		= sizeof(struct udp_iter_state),
3330 };
3331 
3332 static struct bpf_iter_reg udp_reg_info = {
3333 	.target			= "udp",
3334 	.ctx_arg_info_size	= 1,
3335 	.ctx_arg_info		= {
3336 		{ offsetof(struct bpf_iter__udp, udp_sk),
3337 		  PTR_TO_BTF_ID_OR_NULL },
3338 	},
3339 	.seq_info		= &udp_seq_info,
3340 };
3341 
bpf_iter_register(void)3342 static void __init bpf_iter_register(void)
3343 {
3344 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3345 	if (bpf_iter_reg_target(&udp_reg_info))
3346 		pr_warn("Warning: could not register bpf iterator udp\n");
3347 }
3348 #endif
3349 
udp_init(void)3350 void __init udp_init(void)
3351 {
3352 	unsigned long limit;
3353 	unsigned int i;
3354 
3355 	udp_table_init(&udp_table, "UDP");
3356 	limit = nr_free_buffer_pages() / 8;
3357 	limit = max(limit, 128UL);
3358 	sysctl_udp_mem[0] = limit / 4 * 3;
3359 	sysctl_udp_mem[1] = limit;
3360 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3361 
3362 	__udp_sysctl_init(&init_net);
3363 
3364 	/* 16 spinlocks per cpu */
3365 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3366 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3367 				GFP_KERNEL);
3368 	if (!udp_busylocks)
3369 		panic("UDP: failed to alloc udp_busylocks\n");
3370 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3371 		spin_lock_init(udp_busylocks + i);
3372 
3373 	if (register_pernet_subsys(&udp_sysctl_ops))
3374 		panic("UDP: failed to init sysctl parameters.\n");
3375 
3376 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3377 	bpf_iter_register();
3378 #endif
3379 }
3380