1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Per Entity Load Tracking
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 *
23 * Move PELT related code from fair.c into this pelt.c file
24 * Author: Vincent Guittot <vincent.guittot@linaro.org>
25 */
26
27 #include <linux/sched.h>
28 #include <trace/hooks/sched.h>
29 #include "sched.h"
30 #include "pelt.h"
31
32 /*
33 * Approximate:
34 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
35 */
decay_load(u64 val,u64 n)36 static u64 decay_load(u64 val, u64 n)
37 {
38 unsigned int local_n;
39
40 if (unlikely(n > LOAD_AVG_PERIOD * 63))
41 return 0;
42
43 /* after bounds checking we can collapse to 32-bit */
44 local_n = n;
45
46 /*
47 * As y^PERIOD = 1/2, we can combine
48 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
49 * With a look-up table which covers y^n (n<PERIOD)
50 *
51 * To achieve constant time decay_load.
52 */
53 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
54 val >>= local_n / LOAD_AVG_PERIOD;
55 local_n %= LOAD_AVG_PERIOD;
56 }
57
58 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
59 return val;
60 }
61
__accumulate_pelt_segments(u64 periods,u32 d1,u32 d3)62 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
63 {
64 u32 c1, c2, c3 = d3; /* y^0 == 1 */
65
66 /*
67 * c1 = d1 y^p
68 */
69 c1 = decay_load((u64)d1, periods);
70
71 /*
72 * p-1
73 * c2 = 1024 \Sum y^n
74 * n=1
75 *
76 * inf inf
77 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
78 * n=0 n=p
79 */
80 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
81
82 return c1 + c2 + c3;
83 }
84
85 /*
86 * Accumulate the three separate parts of the sum; d1 the remainder
87 * of the last (incomplete) period, d2 the span of full periods and d3
88 * the remainder of the (incomplete) current period.
89 *
90 * d1 d2 d3
91 * ^ ^ ^
92 * | | |
93 * |<->|<----------------->|<--->|
94 * ... |---x---|------| ... |------|-----x (now)
95 *
96 * p-1
97 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
98 * n=1
99 *
100 * = u y^p + (Step 1)
101 *
102 * p-1
103 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
104 * n=1
105 */
106 static __always_inline u32
accumulate_sum(u64 delta,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)107 accumulate_sum(u64 delta, struct sched_avg *sa,
108 unsigned long load, unsigned long runnable, int running)
109 {
110 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
111 u64 periods;
112
113 delta += sa->period_contrib;
114 periods = delta / 1024; /* A period is 1024us (~1ms) */
115
116 /*
117 * Step 1: decay old *_sum if we crossed period boundaries.
118 */
119 if (periods) {
120 sa->load_sum = decay_load(sa->load_sum, periods);
121 sa->runnable_sum =
122 decay_load(sa->runnable_sum, periods);
123 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
124
125 /*
126 * Step 2
127 */
128 delta %= 1024;
129 if (load) {
130 /*
131 * This relies on the:
132 *
133 * if (!load)
134 * runnable = running = 0;
135 *
136 * clause from ___update_load_sum(); this results in
137 * the below usage of @contrib to disappear entirely,
138 * so no point in calculating it.
139 */
140 contrib = __accumulate_pelt_segments(periods,
141 1024 - sa->period_contrib, delta);
142 }
143 }
144 sa->period_contrib = delta;
145
146 if (load)
147 sa->load_sum += load * contrib;
148 if (runnable)
149 sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
150 if (running)
151 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
152
153 return periods;
154 }
155
156 /*
157 * We can represent the historical contribution to runnable average as the
158 * coefficients of a geometric series. To do this we sub-divide our runnable
159 * history into segments of approximately 1ms (1024us); label the segment that
160 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
161 *
162 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
163 * p0 p1 p2
164 * (now) (~1ms ago) (~2ms ago)
165 *
166 * Let u_i denote the fraction of p_i that the entity was runnable.
167 *
168 * We then designate the fractions u_i as our co-efficients, yielding the
169 * following representation of historical load:
170 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
171 *
172 * We choose y based on the with of a reasonably scheduling period, fixing:
173 * y^32 = 0.5
174 *
175 * This means that the contribution to load ~32ms ago (u_32) will be weighted
176 * approximately half as much as the contribution to load within the last ms
177 * (u_0).
178 *
179 * When a period "rolls over" and we have new u_0`, multiplying the previous
180 * sum again by y is sufficient to update:
181 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
182 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
183 */
___update_load_sum(u64 now,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)184 int ___update_load_sum(u64 now, struct sched_avg *sa,
185 unsigned long load, unsigned long runnable, int running)
186 {
187 u64 delta;
188
189 delta = now - sa->last_update_time;
190 /*
191 * This should only happen when time goes backwards, which it
192 * unfortunately does during sched clock init when we swap over to TSC.
193 */
194 if ((s64)delta < 0) {
195 sa->last_update_time = now;
196 return 0;
197 }
198
199 /*
200 * Use 1024ns as the unit of measurement since it's a reasonable
201 * approximation of 1us and fast to compute.
202 */
203 delta >>= 10;
204 if (!delta)
205 return 0;
206
207 sa->last_update_time += delta << 10;
208
209 trace_android_rvh_update_load_sum(sa, &delta, &sched_pelt_lshift);
210
211 /*
212 * running is a subset of runnable (weight) so running can't be set if
213 * runnable is clear. But there are some corner cases where the current
214 * se has been already dequeued but cfs_rq->curr still points to it.
215 * This means that weight will be 0 but not running for a sched_entity
216 * but also for a cfs_rq if the latter becomes idle. As an example,
217 * this happens during idle_balance() which calls
218 * update_blocked_averages().
219 *
220 * Also see the comment in accumulate_sum().
221 */
222 if (!load)
223 runnable = running = 0;
224
225 /*
226 * Now we know we crossed measurement unit boundaries. The *_avg
227 * accrues by two steps:
228 *
229 * Step 1: accumulate *_sum since last_update_time. If we haven't
230 * crossed period boundaries, finish.
231 */
232 if (!accumulate_sum(delta, sa, load, runnable, running))
233 return 0;
234
235 return 1;
236 }
237 EXPORT_SYMBOL_GPL(___update_load_sum);
238
239 /*
240 * When syncing *_avg with *_sum, we must take into account the current
241 * position in the PELT segment otherwise the remaining part of the segment
242 * will be considered as idle time whereas it's not yet elapsed and this will
243 * generate unwanted oscillation in the range [1002..1024[.
244 *
245 * The max value of *_sum varies with the position in the time segment and is
246 * equals to :
247 *
248 * LOAD_AVG_MAX*y + sa->period_contrib
249 *
250 * which can be simplified into:
251 *
252 * LOAD_AVG_MAX - 1024 + sa->period_contrib
253 *
254 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
255 *
256 * The same care must be taken when a sched entity is added, updated or
257 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
258 * and the cfs rq, to which they are attached, have the same position in the
259 * time segment because they use the same clock. This means that we can use
260 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
261 * if it's more convenient.
262 */
___update_load_avg(struct sched_avg * sa,unsigned long load)263 void ___update_load_avg(struct sched_avg *sa, unsigned long load)
264 {
265 u32 divider = get_pelt_divider(sa);
266
267 /*
268 * Step 2: update *_avg.
269 */
270 sa->load_avg = div_u64(load * sa->load_sum, divider);
271 sa->runnable_avg = div_u64(sa->runnable_sum, divider);
272 WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
273 }
274 EXPORT_SYMBOL_GPL(___update_load_avg);
275
276 /*
277 * sched_entity:
278 *
279 * task:
280 * se_weight() = se->load.weight
281 * se_runnable() = !!on_rq
282 *
283 * group: [ see update_cfs_group() ]
284 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
285 * se_runnable() = grq->h_nr_running
286 *
287 * runnable_sum = se_runnable() * runnable = grq->runnable_sum
288 * runnable_avg = runnable_sum
289 *
290 * load_sum := runnable
291 * load_avg = se_weight(se) * load_sum
292 *
293 * cfq_rq:
294 *
295 * runnable_sum = \Sum se->avg.runnable_sum
296 * runnable_avg = \Sum se->avg.runnable_avg
297 *
298 * load_sum = \Sum se_weight(se) * se->avg.load_sum
299 * load_avg = \Sum se->avg.load_avg
300 */
301
__update_load_avg_blocked_se(u64 now,struct sched_entity * se)302 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
303 {
304 if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
305 ___update_load_avg(&se->avg, se_weight(se));
306 trace_pelt_se_tp(se);
307 return 1;
308 }
309
310 return 0;
311 }
312 EXPORT_SYMBOL_GPL(__update_load_avg_blocked_se);
313
__update_load_avg_se(u64 now,struct cfs_rq * cfs_rq,struct sched_entity * se)314 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
315 {
316 if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se),
317 cfs_rq->curr == se)) {
318
319 ___update_load_avg(&se->avg, se_weight(se));
320 cfs_se_util_change(&se->avg);
321 trace_pelt_se_tp(se);
322 return 1;
323 }
324
325 return 0;
326 }
327
__update_load_avg_cfs_rq(u64 now,struct cfs_rq * cfs_rq)328 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
329 {
330 if (___update_load_sum(now, &cfs_rq->avg,
331 scale_load_down(cfs_rq->load.weight),
332 cfs_rq->h_nr_running,
333 cfs_rq->curr != NULL)) {
334
335 ___update_load_avg(&cfs_rq->avg, 1);
336 trace_pelt_cfs_tp(cfs_rq);
337 return 1;
338 }
339
340 return 0;
341 }
342
343 /*
344 * rt_rq:
345 *
346 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
347 * util_sum = cpu_scale * load_sum
348 * runnable_sum = util_sum
349 *
350 * load_avg and runnable_avg are not supported and meaningless.
351 *
352 */
353
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)354 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
355 {
356 if (___update_load_sum(now, &rq->avg_rt,
357 running,
358 running,
359 running)) {
360
361 ___update_load_avg(&rq->avg_rt, 1);
362 trace_pelt_rt_tp(rq);
363 return 1;
364 }
365
366 return 0;
367 }
368
369 /*
370 * dl_rq:
371 *
372 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
373 * util_sum = cpu_scale * load_sum
374 * runnable_sum = util_sum
375 *
376 * load_avg and runnable_avg are not supported and meaningless.
377 *
378 */
379
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)380 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
381 {
382 if (___update_load_sum(now, &rq->avg_dl,
383 running,
384 running,
385 running)) {
386
387 ___update_load_avg(&rq->avg_dl, 1);
388 trace_pelt_dl_tp(rq);
389 return 1;
390 }
391
392 return 0;
393 }
394
395 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
396 /*
397 * thermal:
398 *
399 * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
400 *
401 * util_avg and runnable_load_avg are not supported and meaningless.
402 *
403 * Unlike rt/dl utilization tracking that track time spent by a cpu
404 * running a rt/dl task through util_avg, the average thermal pressure is
405 * tracked through load_avg. This is because thermal pressure signal is
406 * time weighted "delta" capacity unlike util_avg which is binary.
407 * "delta capacity" = actual capacity -
408 * capped capacity a cpu due to a thermal event.
409 */
410
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)411 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
412 {
413 if (___update_load_sum(now, &rq->avg_thermal,
414 capacity,
415 capacity,
416 capacity)) {
417 ___update_load_avg(&rq->avg_thermal, 1);
418 trace_pelt_thermal_tp(rq);
419 return 1;
420 }
421
422 return 0;
423 }
424 #endif
425
426 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
427 /*
428 * irq:
429 *
430 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
431 * util_sum = cpu_scale * load_sum
432 * runnable_sum = util_sum
433 *
434 * load_avg and runnable_avg are not supported and meaningless.
435 *
436 */
437
update_irq_load_avg(struct rq * rq,u64 running)438 int update_irq_load_avg(struct rq *rq, u64 running)
439 {
440 int ret = 0;
441
442 /*
443 * We can't use clock_pelt because irq time is not accounted in
444 * clock_task. Instead we directly scale the running time to
445 * reflect the real amount of computation
446 */
447 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
448 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
449
450 /*
451 * We know the time that has been used by interrupt since last update
452 * but we don't when. Let be pessimistic and assume that interrupt has
453 * happened just before the update. This is not so far from reality
454 * because interrupt will most probably wake up task and trig an update
455 * of rq clock during which the metric is updated.
456 * We start to decay with normal context time and then we add the
457 * interrupt context time.
458 * We can safely remove running from rq->clock because
459 * rq->clock += delta with delta >= running
460 */
461 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
462 0,
463 0,
464 0);
465 ret += ___update_load_sum(rq->clock, &rq->avg_irq,
466 1,
467 1,
468 1);
469
470 if (ret) {
471 ___update_load_avg(&rq->avg_irq, 1);
472 trace_pelt_irq_tp(rq);
473 }
474
475 return ret;
476 }
477 #endif
478
479 unsigned int sysctl_sched_pelt_multiplier = 1;
480 __read_mostly unsigned int sched_pelt_lshift;
481
sched_pelt_multiplier(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)482 int sched_pelt_multiplier(struct ctl_table *table, int write, void *buffer,
483 size_t *lenp, loff_t *ppos)
484 {
485 static DEFINE_MUTEX(mutex);
486 unsigned int old;
487 int ret;
488
489 mutex_lock(&mutex);
490
491 old = sysctl_sched_pelt_multiplier;
492 ret = proc_dointvec(table, write, buffer, lenp, ppos);
493 if (ret)
494 goto undo;
495 if (!write)
496 goto done;
497
498 switch (sysctl_sched_pelt_multiplier) {
499 case 1:
500 fallthrough;
501 case 2:
502 fallthrough;
503 case 4:
504 WRITE_ONCE(sched_pelt_lshift,
505 sysctl_sched_pelt_multiplier >> 1);
506 goto done;
507 default:
508 ret = -EINVAL;
509 }
510
511 undo:
512 sysctl_sched_pelt_multiplier = old;
513 done:
514 mutex_unlock(&mutex);
515
516 return ret;
517 }
518