1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
105 (cpc)->cpc_entry.reg.space_id == \
106 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
110 (cpc)->cpc_entry.reg.space_id == \
111 ACPI_ADR_SPACE_SYSTEM_IO)
112
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 (reg)->address == 0 && \
116 (reg)->bit_width == 0 && \
117 (reg)->bit_offset == 0 && \
118 (reg)->access_width == 0)
119
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
122 !!(cpc)->cpc_entry.int_value : \
123 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124 /*
125 * Arbitrary Retries in case the remote processor is slow to respond
126 * to PCC commands. Keeping it high enough to cover emulators where
127 * the processors run painfully slow.
128 */
129 #define NUM_RETRIES 500ULL
130
131 #define define_one_cppc_ro(_name) \
132 static struct kobj_attribute _name = \
133 __ATTR(_name, 0444, show_##_name, NULL)
134
135 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
136
137 #define show_cppc_data(access_fn, struct_name, member_name) \
138 static ssize_t show_##member_name(struct kobject *kobj, \
139 struct kobj_attribute *attr, char *buf) \
140 { \
141 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
142 struct struct_name st_name = {0}; \
143 int ret; \
144 \
145 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
146 if (ret) \
147 return ret; \
148 \
149 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
150 (u64)st_name.member_name); \
151 } \
152 define_one_cppc_ro(member_name)
153
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
160
161 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
162 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
163
show_feedback_ctrs(struct kobject * kobj,struct kobj_attribute * attr,char * buf)164 static ssize_t show_feedback_ctrs(struct kobject *kobj,
165 struct kobj_attribute *attr, char *buf)
166 {
167 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
168 struct cppc_perf_fb_ctrs fb_ctrs = {0};
169 int ret;
170
171 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
172 if (ret)
173 return ret;
174
175 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
176 fb_ctrs.reference, fb_ctrs.delivered);
177 }
178 define_one_cppc_ro(feedback_ctrs);
179
180 static struct attribute *cppc_attrs[] = {
181 &feedback_ctrs.attr,
182 &reference_perf.attr,
183 &wraparound_time.attr,
184 &highest_perf.attr,
185 &lowest_perf.attr,
186 &lowest_nonlinear_perf.attr,
187 &nominal_perf.attr,
188 &nominal_freq.attr,
189 &lowest_freq.attr,
190 NULL
191 };
192
193 static struct kobj_type cppc_ktype = {
194 .sysfs_ops = &kobj_sysfs_ops,
195 .default_attrs = cppc_attrs,
196 };
197
check_pcc_chan(int pcc_ss_id,bool chk_err_bit)198 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
199 {
200 int ret, status;
201 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
202 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
203 pcc_ss_data->pcc_comm_addr;
204
205 if (!pcc_ss_data->platform_owns_pcc)
206 return 0;
207
208 /*
209 * Poll PCC status register every 3us(delay_us) for maximum of
210 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
211 */
212 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
213 status & PCC_CMD_COMPLETE_MASK, 3,
214 pcc_ss_data->deadline_us);
215
216 if (likely(!ret)) {
217 pcc_ss_data->platform_owns_pcc = false;
218 if (chk_err_bit && (status & PCC_ERROR_MASK))
219 ret = -EIO;
220 }
221
222 if (unlikely(ret))
223 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
224 pcc_ss_id, ret);
225
226 return ret;
227 }
228
229 /*
230 * This function transfers the ownership of the PCC to the platform
231 * So it must be called while holding write_lock(pcc_lock)
232 */
send_pcc_cmd(int pcc_ss_id,u16 cmd)233 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
234 {
235 int ret = -EIO, i;
236 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
237 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
238 pcc_ss_data->pcc_comm_addr;
239 unsigned int time_delta;
240
241 /*
242 * For CMD_WRITE we know for a fact the caller should have checked
243 * the channel before writing to PCC space
244 */
245 if (cmd == CMD_READ) {
246 /*
247 * If there are pending cpc_writes, then we stole the channel
248 * before write completion, so first send a WRITE command to
249 * platform
250 */
251 if (pcc_ss_data->pending_pcc_write_cmd)
252 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
253
254 ret = check_pcc_chan(pcc_ss_id, false);
255 if (ret)
256 goto end;
257 } else /* CMD_WRITE */
258 pcc_ss_data->pending_pcc_write_cmd = FALSE;
259
260 /*
261 * Handle the Minimum Request Turnaround Time(MRTT)
262 * "The minimum amount of time that OSPM must wait after the completion
263 * of a command before issuing the next command, in microseconds"
264 */
265 if (pcc_ss_data->pcc_mrtt) {
266 time_delta = ktime_us_delta(ktime_get(),
267 pcc_ss_data->last_cmd_cmpl_time);
268 if (pcc_ss_data->pcc_mrtt > time_delta)
269 udelay(pcc_ss_data->pcc_mrtt - time_delta);
270 }
271
272 /*
273 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
274 * "The maximum number of periodic requests that the subspace channel can
275 * support, reported in commands per minute. 0 indicates no limitation."
276 *
277 * This parameter should be ideally zero or large enough so that it can
278 * handle maximum number of requests that all the cores in the system can
279 * collectively generate. If it is not, we will follow the spec and just
280 * not send the request to the platform after hitting the MPAR limit in
281 * any 60s window
282 */
283 if (pcc_ss_data->pcc_mpar) {
284 if (pcc_ss_data->mpar_count == 0) {
285 time_delta = ktime_ms_delta(ktime_get(),
286 pcc_ss_data->last_mpar_reset);
287 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
288 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
289 pcc_ss_id);
290 ret = -EIO;
291 goto end;
292 }
293 pcc_ss_data->last_mpar_reset = ktime_get();
294 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
295 }
296 pcc_ss_data->mpar_count--;
297 }
298
299 /* Write to the shared comm region. */
300 writew_relaxed(cmd, &generic_comm_base->command);
301
302 /* Flip CMD COMPLETE bit */
303 writew_relaxed(0, &generic_comm_base->status);
304
305 pcc_ss_data->platform_owns_pcc = true;
306
307 /* Ring doorbell */
308 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
309 if (ret < 0) {
310 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
311 pcc_ss_id, cmd, ret);
312 goto end;
313 }
314
315 /* wait for completion and check for PCC errro bit */
316 ret = check_pcc_chan(pcc_ss_id, true);
317
318 if (pcc_ss_data->pcc_mrtt)
319 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
320
321 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
322 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
323 else
324 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
325
326 end:
327 if (cmd == CMD_WRITE) {
328 if (unlikely(ret)) {
329 for_each_possible_cpu(i) {
330 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
331
332 if (!desc)
333 continue;
334
335 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
336 desc->write_cmd_status = ret;
337 }
338 }
339 pcc_ss_data->pcc_write_cnt++;
340 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
341 }
342
343 return ret;
344 }
345
cppc_chan_tx_done(struct mbox_client * cl,void * msg,int ret)346 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
347 {
348 if (ret < 0)
349 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
350 *(u16 *)msg, ret);
351 else
352 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
353 *(u16 *)msg, ret);
354 }
355
356 static struct mbox_client cppc_mbox_cl = {
357 .tx_done = cppc_chan_tx_done,
358 .knows_txdone = true,
359 };
360
acpi_get_psd(struct cpc_desc * cpc_ptr,acpi_handle handle)361 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
362 {
363 int result = -EFAULT;
364 acpi_status status = AE_OK;
365 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
366 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
367 struct acpi_buffer state = {0, NULL};
368 union acpi_object *psd = NULL;
369 struct acpi_psd_package *pdomain;
370
371 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
372 &buffer, ACPI_TYPE_PACKAGE);
373 if (status == AE_NOT_FOUND) /* _PSD is optional */
374 return 0;
375 if (ACPI_FAILURE(status))
376 return -ENODEV;
377
378 psd = buffer.pointer;
379 if (!psd || psd->package.count != 1) {
380 pr_debug("Invalid _PSD data\n");
381 goto end;
382 }
383
384 pdomain = &(cpc_ptr->domain_info);
385
386 state.length = sizeof(struct acpi_psd_package);
387 state.pointer = pdomain;
388
389 status = acpi_extract_package(&(psd->package.elements[0]),
390 &format, &state);
391 if (ACPI_FAILURE(status)) {
392 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
393 goto end;
394 }
395
396 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
397 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
398 goto end;
399 }
400
401 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
402 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
403 goto end;
404 }
405
406 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
407 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
408 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
409 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
410 goto end;
411 }
412
413 result = 0;
414 end:
415 kfree(buffer.pointer);
416 return result;
417 }
418
acpi_cpc_valid(void)419 bool acpi_cpc_valid(void)
420 {
421 struct cpc_desc *cpc_ptr;
422 int cpu;
423
424 for_each_present_cpu(cpu) {
425 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
426 if (!cpc_ptr)
427 return false;
428 }
429
430 return true;
431 }
432 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
433
434 /**
435 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
436 * @cpu: Find all CPUs that share a domain with cpu.
437 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
438 *
439 * Return: 0 for success or negative value for err.
440 */
acpi_get_psd_map(unsigned int cpu,struct cppc_cpudata * cpu_data)441 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
442 {
443 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
444 struct acpi_psd_package *match_pdomain;
445 struct acpi_psd_package *pdomain;
446 int count_target, i;
447
448 /*
449 * Now that we have _PSD data from all CPUs, let's setup P-state
450 * domain info.
451 */
452 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
453 if (!cpc_ptr)
454 return -EFAULT;
455
456 pdomain = &(cpc_ptr->domain_info);
457 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
458 if (pdomain->num_processors <= 1)
459 return 0;
460
461 /* Validate the Domain info */
462 count_target = pdomain->num_processors;
463 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
464 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
465 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
466 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
467 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
468 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
469
470 for_each_possible_cpu(i) {
471 if (i == cpu)
472 continue;
473
474 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
475 if (!match_cpc_ptr)
476 goto err_fault;
477
478 match_pdomain = &(match_cpc_ptr->domain_info);
479 if (match_pdomain->domain != pdomain->domain)
480 continue;
481
482 /* Here i and cpu are in the same domain */
483 if (match_pdomain->num_processors != count_target)
484 goto err_fault;
485
486 if (pdomain->coord_type != match_pdomain->coord_type)
487 goto err_fault;
488
489 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
490 }
491
492 return 0;
493
494 err_fault:
495 /* Assume no coordination on any error parsing domain info */
496 cpumask_clear(cpu_data->shared_cpu_map);
497 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
498 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
499
500 return -EFAULT;
501 }
502 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
503
register_pcc_channel(int pcc_ss_idx)504 static int register_pcc_channel(int pcc_ss_idx)
505 {
506 struct acpi_pcct_hw_reduced *cppc_ss;
507 u64 usecs_lat;
508
509 if (pcc_ss_idx >= 0) {
510 pcc_data[pcc_ss_idx]->pcc_channel =
511 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
512
513 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
514 pr_err("Failed to find PCC channel for subspace %d\n",
515 pcc_ss_idx);
516 return -ENODEV;
517 }
518
519 /*
520 * The PCC mailbox controller driver should
521 * have parsed the PCCT (global table of all
522 * PCC channels) and stored pointers to the
523 * subspace communication region in con_priv.
524 */
525 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
526
527 if (!cppc_ss) {
528 pr_err("No PCC subspace found for %d CPPC\n",
529 pcc_ss_idx);
530 return -ENODEV;
531 }
532
533 /*
534 * cppc_ss->latency is just a Nominal value. In reality
535 * the remote processor could be much slower to reply.
536 * So add an arbitrary amount of wait on top of Nominal.
537 */
538 usecs_lat = NUM_RETRIES * cppc_ss->latency;
539 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
540 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
541 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
542 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
543
544 pcc_data[pcc_ss_idx]->pcc_comm_addr =
545 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
546 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
547 pr_err("Failed to ioremap PCC comm region mem for %d\n",
548 pcc_ss_idx);
549 return -ENOMEM;
550 }
551
552 /* Set flag so that we don't come here for each CPU. */
553 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
554 }
555
556 return 0;
557 }
558
559 /**
560 * cpc_ffh_supported() - check if FFH reading supported
561 *
562 * Check if the architecture has support for functional fixed hardware
563 * read/write capability.
564 *
565 * Return: true for supported, false for not supported
566 */
cpc_ffh_supported(void)567 bool __weak cpc_ffh_supported(void)
568 {
569 return false;
570 }
571
572 /**
573 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
574 *
575 * Check and allocate the cppc_pcc_data memory.
576 * In some processor configurations it is possible that same subspace
577 * is shared between multiple CPUs. This is seen especially in CPUs
578 * with hardware multi-threading support.
579 *
580 * Return: 0 for success, errno for failure
581 */
pcc_data_alloc(int pcc_ss_id)582 static int pcc_data_alloc(int pcc_ss_id)
583 {
584 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
585 return -EINVAL;
586
587 if (pcc_data[pcc_ss_id]) {
588 pcc_data[pcc_ss_id]->refcount++;
589 } else {
590 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
591 GFP_KERNEL);
592 if (!pcc_data[pcc_ss_id])
593 return -ENOMEM;
594 pcc_data[pcc_ss_id]->refcount++;
595 }
596
597 return 0;
598 }
599
600 /*
601 * An example CPC table looks like the following.
602 *
603 * Name(_CPC, Package()
604 * {
605 * 17,
606 * NumEntries
607 * 1,
608 * // Revision
609 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
610 * // Highest Performance
611 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
612 * // Nominal Performance
613 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
614 * // Lowest Nonlinear Performance
615 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
616 * // Lowest Performance
617 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
618 * // Guaranteed Performance Register
619 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
620 * // Desired Performance Register
621 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
622 * ..
623 * ..
624 * ..
625 *
626 * }
627 * Each Register() encodes how to access that specific register.
628 * e.g. a sample PCC entry has the following encoding:
629 *
630 * Register (
631 * PCC,
632 * AddressSpaceKeyword
633 * 8,
634 * //RegisterBitWidth
635 * 8,
636 * //RegisterBitOffset
637 * 0x30,
638 * //RegisterAddress
639 * 9
640 * //AccessSize (subspace ID)
641 * 0
642 * )
643 * }
644 */
645
646 #ifndef init_freq_invariance_cppc
init_freq_invariance_cppc(void)647 static inline void init_freq_invariance_cppc(void) { }
648 #endif
649
650 /**
651 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
652 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
653 *
654 * Return: 0 for success or negative value for err.
655 */
acpi_cppc_processor_probe(struct acpi_processor * pr)656 int acpi_cppc_processor_probe(struct acpi_processor *pr)
657 {
658 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
659 union acpi_object *out_obj, *cpc_obj;
660 struct cpc_desc *cpc_ptr;
661 struct cpc_reg *gas_t;
662 struct device *cpu_dev;
663 acpi_handle handle = pr->handle;
664 unsigned int num_ent, i, cpc_rev;
665 int pcc_subspace_id = -1;
666 acpi_status status;
667 int ret = -EFAULT;
668
669 /* Parse the ACPI _CPC table for this CPU. */
670 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
671 ACPI_TYPE_PACKAGE);
672 if (ACPI_FAILURE(status)) {
673 ret = -ENODEV;
674 goto out_buf_free;
675 }
676
677 out_obj = (union acpi_object *) output.pointer;
678
679 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
680 if (!cpc_ptr) {
681 ret = -ENOMEM;
682 goto out_buf_free;
683 }
684
685 /* First entry is NumEntries. */
686 cpc_obj = &out_obj->package.elements[0];
687 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
688 num_ent = cpc_obj->integer.value;
689 if (num_ent <= 1) {
690 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
691 num_ent, pr->id);
692 goto out_free;
693 }
694 } else {
695 pr_debug("Unexpected entry type(%d) for NumEntries\n",
696 cpc_obj->type);
697 goto out_free;
698 }
699
700 /* Second entry should be revision. */
701 cpc_obj = &out_obj->package.elements[1];
702 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
703 cpc_rev = cpc_obj->integer.value;
704 } else {
705 pr_debug("Unexpected entry type(%d) for Revision\n",
706 cpc_obj->type);
707 goto out_free;
708 }
709
710 if (cpc_rev < CPPC_V2_REV) {
711 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
712 pr->id);
713 goto out_free;
714 }
715
716 /*
717 * Disregard _CPC if the number of entries in the return pachage is not
718 * as expected, but support future revisions being proper supersets of
719 * the v3 and only causing more entries to be returned by _CPC.
720 */
721 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
722 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
723 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
724 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
725 num_ent, pr->id);
726 goto out_free;
727 }
728 if (cpc_rev > CPPC_V3_REV) {
729 num_ent = CPPC_V3_NUM_ENT;
730 cpc_rev = CPPC_V3_REV;
731 }
732
733 cpc_ptr->num_entries = num_ent;
734 cpc_ptr->version = cpc_rev;
735
736 /* Iterate through remaining entries in _CPC */
737 for (i = 2; i < num_ent; i++) {
738 cpc_obj = &out_obj->package.elements[i];
739
740 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
741 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
742 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
743 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
744 gas_t = (struct cpc_reg *)
745 cpc_obj->buffer.pointer;
746
747 /*
748 * The PCC Subspace index is encoded inside
749 * the CPC table entries. The same PCC index
750 * will be used for all the PCC entries,
751 * so extract it only once.
752 */
753 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
754 if (pcc_subspace_id < 0) {
755 pcc_subspace_id = gas_t->access_width;
756 if (pcc_data_alloc(pcc_subspace_id))
757 goto out_free;
758 } else if (pcc_subspace_id != gas_t->access_width) {
759 pr_debug("Mismatched PCC ids.\n");
760 goto out_free;
761 }
762 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
763 if (gas_t->address) {
764 void __iomem *addr;
765
766 addr = ioremap(gas_t->address, gas_t->bit_width/8);
767 if (!addr)
768 goto out_free;
769 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
770 }
771 } else {
772 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
773 /* Support only PCC ,SYS MEM and FFH type regs */
774 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
775 goto out_free;
776 }
777 }
778
779 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
780 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
781 } else {
782 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
783 goto out_free;
784 }
785 }
786 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
787
788 /*
789 * Initialize the remaining cpc_regs as unsupported.
790 * Example: In case FW exposes CPPC v2, the below loop will initialize
791 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
792 */
793 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
794 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
795 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
796 }
797
798
799 /* Store CPU Logical ID */
800 cpc_ptr->cpu_id = pr->id;
801
802 /* Parse PSD data for this CPU */
803 ret = acpi_get_psd(cpc_ptr, handle);
804 if (ret)
805 goto out_free;
806
807 /* Register PCC channel once for all PCC subspace ID. */
808 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
809 ret = register_pcc_channel(pcc_subspace_id);
810 if (ret)
811 goto out_free;
812
813 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
814 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
815 }
816
817 /* Everything looks okay */
818 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
819
820 /* Add per logical CPU nodes for reading its feedback counters. */
821 cpu_dev = get_cpu_device(pr->id);
822 if (!cpu_dev) {
823 ret = -EINVAL;
824 goto out_free;
825 }
826
827 /* Plug PSD data into this CPU's CPC descriptor. */
828 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
829
830 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
831 "acpi_cppc");
832 if (ret) {
833 per_cpu(cpc_desc_ptr, pr->id) = NULL;
834 kobject_put(&cpc_ptr->kobj);
835 goto out_free;
836 }
837
838 init_freq_invariance_cppc();
839
840 kfree(output.pointer);
841 return 0;
842
843 out_free:
844 /* Free all the mapped sys mem areas for this CPU */
845 for (i = 2; i < cpc_ptr->num_entries; i++) {
846 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
847
848 if (addr)
849 iounmap(addr);
850 }
851 kfree(cpc_ptr);
852
853 out_buf_free:
854 kfree(output.pointer);
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
858
859 /**
860 * acpi_cppc_processor_exit - Cleanup CPC structs.
861 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
862 *
863 * Return: Void
864 */
acpi_cppc_processor_exit(struct acpi_processor * pr)865 void acpi_cppc_processor_exit(struct acpi_processor *pr)
866 {
867 struct cpc_desc *cpc_ptr;
868 unsigned int i;
869 void __iomem *addr;
870 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
871
872 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
873 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
874 pcc_data[pcc_ss_id]->refcount--;
875 if (!pcc_data[pcc_ss_id]->refcount) {
876 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
877 kfree(pcc_data[pcc_ss_id]);
878 pcc_data[pcc_ss_id] = NULL;
879 }
880 }
881 }
882
883 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
884 if (!cpc_ptr)
885 return;
886
887 /* Free all the mapped sys mem areas for this CPU */
888 for (i = 2; i < cpc_ptr->num_entries; i++) {
889 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
890 if (addr)
891 iounmap(addr);
892 }
893
894 kobject_put(&cpc_ptr->kobj);
895 kfree(cpc_ptr);
896 }
897 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
898
899 /**
900 * cpc_read_ffh() - Read FFH register
901 * @cpunum: CPU number to read
902 * @reg: cppc register information
903 * @val: place holder for return value
904 *
905 * Read bit_width bits from a specified address and bit_offset
906 *
907 * Return: 0 for success and error code
908 */
cpc_read_ffh(int cpunum,struct cpc_reg * reg,u64 * val)909 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
910 {
911 return -ENOTSUPP;
912 }
913
914 /**
915 * cpc_write_ffh() - Write FFH register
916 * @cpunum: CPU number to write
917 * @reg: cppc register information
918 * @val: value to write
919 *
920 * Write value of bit_width bits to a specified address and bit_offset
921 *
922 * Return: 0 for success and error code
923 */
cpc_write_ffh(int cpunum,struct cpc_reg * reg,u64 val)924 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
925 {
926 return -ENOTSUPP;
927 }
928
929 /*
930 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
931 * as fast as possible. We have already mapped the PCC subspace during init, so
932 * we can directly write to it.
933 */
934
cpc_read(int cpu,struct cpc_register_resource * reg_res,u64 * val)935 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
936 {
937 int ret_val = 0;
938 void __iomem *vaddr = NULL;
939 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
940 struct cpc_reg *reg = ®_res->cpc_entry.reg;
941
942 if (reg_res->type == ACPI_TYPE_INTEGER) {
943 *val = reg_res->cpc_entry.int_value;
944 return ret_val;
945 }
946
947 *val = 0;
948 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
949 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
950 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
951 vaddr = reg_res->sys_mem_vaddr;
952 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
953 return cpc_read_ffh(cpu, reg, val);
954 else
955 return acpi_os_read_memory((acpi_physical_address)reg->address,
956 val, reg->bit_width);
957
958 switch (reg->bit_width) {
959 case 8:
960 *val = readb_relaxed(vaddr);
961 break;
962 case 16:
963 *val = readw_relaxed(vaddr);
964 break;
965 case 32:
966 *val = readl_relaxed(vaddr);
967 break;
968 case 64:
969 *val = readq_relaxed(vaddr);
970 break;
971 default:
972 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
973 reg->bit_width, pcc_ss_id);
974 ret_val = -EFAULT;
975 }
976
977 return ret_val;
978 }
979
cpc_write(int cpu,struct cpc_register_resource * reg_res,u64 val)980 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
981 {
982 int ret_val = 0;
983 void __iomem *vaddr = NULL;
984 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
985 struct cpc_reg *reg = ®_res->cpc_entry.reg;
986
987 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
988 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
989 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
990 vaddr = reg_res->sys_mem_vaddr;
991 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
992 return cpc_write_ffh(cpu, reg, val);
993 else
994 return acpi_os_write_memory((acpi_physical_address)reg->address,
995 val, reg->bit_width);
996
997 switch (reg->bit_width) {
998 case 8:
999 writeb_relaxed(val, vaddr);
1000 break;
1001 case 16:
1002 writew_relaxed(val, vaddr);
1003 break;
1004 case 32:
1005 writel_relaxed(val, vaddr);
1006 break;
1007 case 64:
1008 writeq_relaxed(val, vaddr);
1009 break;
1010 default:
1011 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1012 reg->bit_width, pcc_ss_id);
1013 ret_val = -EFAULT;
1014 break;
1015 }
1016
1017 return ret_val;
1018 }
1019
cppc_get_perf(int cpunum,enum cppc_regs reg_idx,u64 * perf)1020 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1021 {
1022 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1023 struct cpc_register_resource *reg;
1024
1025 if (!cpc_desc) {
1026 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1027 return -ENODEV;
1028 }
1029
1030 reg = &cpc_desc->cpc_regs[reg_idx];
1031
1032 if (CPC_IN_PCC(reg)) {
1033 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1034 struct cppc_pcc_data *pcc_ss_data = NULL;
1035 int ret = 0;
1036
1037 if (pcc_ss_id < 0)
1038 return -EIO;
1039
1040 pcc_ss_data = pcc_data[pcc_ss_id];
1041
1042 down_write(&pcc_ss_data->pcc_lock);
1043
1044 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1045 cpc_read(cpunum, reg, perf);
1046 else
1047 ret = -EIO;
1048
1049 up_write(&pcc_ss_data->pcc_lock);
1050
1051 return ret;
1052 }
1053
1054 cpc_read(cpunum, reg, perf);
1055
1056 return 0;
1057 }
1058
1059 /**
1060 * cppc_get_desired_perf - Get the desired performance register value.
1061 * @cpunum: CPU from which to get desired performance.
1062 * @desired_perf: Return address.
1063 *
1064 * Return: 0 for success, -EIO otherwise.
1065 */
cppc_get_desired_perf(int cpunum,u64 * desired_perf)1066 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1067 {
1068 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1069 }
1070 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1071
1072 /**
1073 * cppc_get_nominal_perf - Get the nominal performance register value.
1074 * @cpunum: CPU from which to get nominal performance.
1075 * @nominal_perf: Return address.
1076 *
1077 * Return: 0 for success, -EIO otherwise.
1078 */
cppc_get_nominal_perf(int cpunum,u64 * nominal_perf)1079 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1080 {
1081 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1082 }
1083
1084 /**
1085 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1086 * @cpunum: CPU from which to get capabilities info.
1087 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1088 *
1089 * Return: 0 for success with perf_caps populated else -ERRNO.
1090 */
cppc_get_perf_caps(int cpunum,struct cppc_perf_caps * perf_caps)1091 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1092 {
1093 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1094 struct cpc_register_resource *highest_reg, *lowest_reg,
1095 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1096 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1097 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1098 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1099 struct cppc_pcc_data *pcc_ss_data = NULL;
1100 int ret = 0, regs_in_pcc = 0;
1101
1102 if (!cpc_desc) {
1103 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1104 return -ENODEV;
1105 }
1106
1107 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1108 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1109 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1110 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1111 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1112 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1113 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1114
1115 /* Are any of the regs PCC ?*/
1116 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1117 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1118 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1119 if (pcc_ss_id < 0) {
1120 pr_debug("Invalid pcc_ss_id\n");
1121 return -ENODEV;
1122 }
1123 pcc_ss_data = pcc_data[pcc_ss_id];
1124 regs_in_pcc = 1;
1125 down_write(&pcc_ss_data->pcc_lock);
1126 /* Ring doorbell once to update PCC subspace */
1127 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1128 ret = -EIO;
1129 goto out_err;
1130 }
1131 }
1132
1133 cpc_read(cpunum, highest_reg, &high);
1134 perf_caps->highest_perf = high;
1135
1136 cpc_read(cpunum, lowest_reg, &low);
1137 perf_caps->lowest_perf = low;
1138
1139 cpc_read(cpunum, nominal_reg, &nom);
1140 perf_caps->nominal_perf = nom;
1141
1142 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1143 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1144 perf_caps->guaranteed_perf = 0;
1145 } else {
1146 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1147 perf_caps->guaranteed_perf = guaranteed;
1148 }
1149
1150 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1151 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1152
1153 if (!high || !low || !nom || !min_nonlinear)
1154 ret = -EFAULT;
1155
1156 /* Read optional lowest and nominal frequencies if present */
1157 if (CPC_SUPPORTED(low_freq_reg))
1158 cpc_read(cpunum, low_freq_reg, &low_f);
1159
1160 if (CPC_SUPPORTED(nom_freq_reg))
1161 cpc_read(cpunum, nom_freq_reg, &nom_f);
1162
1163 perf_caps->lowest_freq = low_f;
1164 perf_caps->nominal_freq = nom_f;
1165
1166
1167 out_err:
1168 if (regs_in_pcc)
1169 up_write(&pcc_ss_data->pcc_lock);
1170 return ret;
1171 }
1172 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1173
1174 /**
1175 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1176 * @cpunum: CPU from which to read counters.
1177 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1178 *
1179 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1180 */
cppc_get_perf_ctrs(int cpunum,struct cppc_perf_fb_ctrs * perf_fb_ctrs)1181 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1182 {
1183 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1184 struct cpc_register_resource *delivered_reg, *reference_reg,
1185 *ref_perf_reg, *ctr_wrap_reg;
1186 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1187 struct cppc_pcc_data *pcc_ss_data = NULL;
1188 u64 delivered, reference, ref_perf, ctr_wrap_time;
1189 int ret = 0, regs_in_pcc = 0;
1190
1191 if (!cpc_desc) {
1192 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193 return -ENODEV;
1194 }
1195
1196 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1197 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1198 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1199 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1200
1201 /*
1202 * If reference perf register is not supported then we should
1203 * use the nominal perf value
1204 */
1205 if (!CPC_SUPPORTED(ref_perf_reg))
1206 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1207
1208 /* Are any of the regs PCC ?*/
1209 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1210 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1211 if (pcc_ss_id < 0) {
1212 pr_debug("Invalid pcc_ss_id\n");
1213 return -ENODEV;
1214 }
1215 pcc_ss_data = pcc_data[pcc_ss_id];
1216 down_write(&pcc_ss_data->pcc_lock);
1217 regs_in_pcc = 1;
1218 /* Ring doorbell once to update PCC subspace */
1219 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1220 ret = -EIO;
1221 goto out_err;
1222 }
1223 }
1224
1225 cpc_read(cpunum, delivered_reg, &delivered);
1226 cpc_read(cpunum, reference_reg, &reference);
1227 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1228
1229 /*
1230 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1231 * performance counters are assumed to never wrap during the lifetime of
1232 * platform
1233 */
1234 ctr_wrap_time = (u64)(~((u64)0));
1235 if (CPC_SUPPORTED(ctr_wrap_reg))
1236 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1237
1238 if (!delivered || !reference || !ref_perf) {
1239 ret = -EFAULT;
1240 goto out_err;
1241 }
1242
1243 perf_fb_ctrs->delivered = delivered;
1244 perf_fb_ctrs->reference = reference;
1245 perf_fb_ctrs->reference_perf = ref_perf;
1246 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1247 out_err:
1248 if (regs_in_pcc)
1249 up_write(&pcc_ss_data->pcc_lock);
1250 return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1253
1254 /**
1255 * cppc_set_perf - Set a CPU's performance controls.
1256 * @cpu: CPU for which to set performance controls.
1257 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1258 *
1259 * Return: 0 for success, -ERRNO otherwise.
1260 */
cppc_set_perf(int cpu,struct cppc_perf_ctrls * perf_ctrls)1261 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1262 {
1263 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1264 struct cpc_register_resource *desired_reg;
1265 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1266 struct cppc_pcc_data *pcc_ss_data = NULL;
1267 int ret = 0;
1268
1269 if (!cpc_desc) {
1270 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1271 return -ENODEV;
1272 }
1273
1274 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1275
1276 /*
1277 * This is Phase-I where we want to write to CPC registers
1278 * -> We want all CPUs to be able to execute this phase in parallel
1279 *
1280 * Since read_lock can be acquired by multiple CPUs simultaneously we
1281 * achieve that goal here
1282 */
1283 if (CPC_IN_PCC(desired_reg)) {
1284 if (pcc_ss_id < 0) {
1285 pr_debug("Invalid pcc_ss_id\n");
1286 return -ENODEV;
1287 }
1288 pcc_ss_data = pcc_data[pcc_ss_id];
1289 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1290 if (pcc_ss_data->platform_owns_pcc) {
1291 ret = check_pcc_chan(pcc_ss_id, false);
1292 if (ret) {
1293 up_read(&pcc_ss_data->pcc_lock);
1294 return ret;
1295 }
1296 }
1297 /*
1298 * Update the pending_write to make sure a PCC CMD_READ will not
1299 * arrive and steal the channel during the switch to write lock
1300 */
1301 pcc_ss_data->pending_pcc_write_cmd = true;
1302 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1303 cpc_desc->write_cmd_status = 0;
1304 }
1305
1306 /*
1307 * Skip writing MIN/MAX until Linux knows how to come up with
1308 * useful values.
1309 */
1310 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1311
1312 if (CPC_IN_PCC(desired_reg))
1313 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1314 /*
1315 * This is Phase-II where we transfer the ownership of PCC to Platform
1316 *
1317 * Short Summary: Basically if we think of a group of cppc_set_perf
1318 * requests that happened in short overlapping interval. The last CPU to
1319 * come out of Phase-I will enter Phase-II and ring the doorbell.
1320 *
1321 * We have the following requirements for Phase-II:
1322 * 1. We want to execute Phase-II only when there are no CPUs
1323 * currently executing in Phase-I
1324 * 2. Once we start Phase-II we want to avoid all other CPUs from
1325 * entering Phase-I.
1326 * 3. We want only one CPU among all those who went through Phase-I
1327 * to run phase-II
1328 *
1329 * If write_trylock fails to get the lock and doesn't transfer the
1330 * PCC ownership to the platform, then one of the following will be TRUE
1331 * 1. There is at-least one CPU in Phase-I which will later execute
1332 * write_trylock, so the CPUs in Phase-I will be responsible for
1333 * executing the Phase-II.
1334 * 2. Some other CPU has beaten this CPU to successfully execute the
1335 * write_trylock and has already acquired the write_lock. We know for a
1336 * fact it (other CPU acquiring the write_lock) couldn't have happened
1337 * before this CPU's Phase-I as we held the read_lock.
1338 * 3. Some other CPU executing pcc CMD_READ has stolen the
1339 * down_write, in which case, send_pcc_cmd will check for pending
1340 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1341 * So this CPU can be certain that its request will be delivered
1342 * So in all cases, this CPU knows that its request will be delivered
1343 * by another CPU and can return
1344 *
1345 * After getting the down_write we still need to check for
1346 * pending_pcc_write_cmd to take care of the following scenario
1347 * The thread running this code could be scheduled out between
1348 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1349 * could have delivered the request to Platform by triggering the
1350 * doorbell and transferred the ownership of PCC to platform. So this
1351 * avoids triggering an unnecessary doorbell and more importantly before
1352 * triggering the doorbell it makes sure that the PCC channel ownership
1353 * is still with OSPM.
1354 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1355 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1356 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1357 * case during a CMD_READ and if there are pending writes it delivers
1358 * the write command before servicing the read command
1359 */
1360 if (CPC_IN_PCC(desired_reg)) {
1361 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1362 /* Update only if there are pending write commands */
1363 if (pcc_ss_data->pending_pcc_write_cmd)
1364 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1365 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1366 } else
1367 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1368 wait_event(pcc_ss_data->pcc_write_wait_q,
1369 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1370
1371 /* send_pcc_cmd updates the status in case of failure */
1372 ret = cpc_desc->write_cmd_status;
1373 }
1374 return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(cppc_set_perf);
1377
1378 /**
1379 * cppc_get_transition_latency - returns frequency transition latency in ns
1380 *
1381 * ACPI CPPC does not explicitly specify how a platform can specify the
1382 * transition latency for performance change requests. The closest we have
1383 * is the timing information from the PCCT tables which provides the info
1384 * on the number and frequency of PCC commands the platform can handle.
1385 *
1386 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1387 * then assume there is no latency.
1388 */
cppc_get_transition_latency(int cpu_num)1389 unsigned int cppc_get_transition_latency(int cpu_num)
1390 {
1391 /*
1392 * Expected transition latency is based on the PCCT timing values
1393 * Below are definition from ACPI spec:
1394 * pcc_nominal- Expected latency to process a command, in microseconds
1395 * pcc_mpar - The maximum number of periodic requests that the subspace
1396 * channel can support, reported in commands per minute. 0
1397 * indicates no limitation.
1398 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1399 * completion of a command before issuing the next command,
1400 * in microseconds.
1401 */
1402 unsigned int latency_ns = 0;
1403 struct cpc_desc *cpc_desc;
1404 struct cpc_register_resource *desired_reg;
1405 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1406 struct cppc_pcc_data *pcc_ss_data;
1407
1408 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1409 if (!cpc_desc)
1410 return CPUFREQ_ETERNAL;
1411
1412 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1413 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1414 return 0;
1415 else if (!CPC_IN_PCC(desired_reg))
1416 return CPUFREQ_ETERNAL;
1417
1418 if (pcc_ss_id < 0)
1419 return CPUFREQ_ETERNAL;
1420
1421 pcc_ss_data = pcc_data[pcc_ss_id];
1422 if (pcc_ss_data->pcc_mpar)
1423 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1424
1425 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1426 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1427
1428 return latency_ns;
1429 }
1430 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1431