1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <acpi/processor.h>
24
25 /*
26 * Include the apic definitions for x86 to have the APIC timer related defines
27 * available also for UP (on SMP it gets magically included via linux/smp.h).
28 * asm/acpi.h is not an option, as it would require more include magic. Also
29 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
30 */
31 #ifdef CONFIG_X86
32 #include <asm/apic.h>
33 #include <asm/cpu.h>
34 #endif
35
36 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
37
38 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
39 module_param(max_cstate, uint, 0000);
40 static unsigned int nocst __read_mostly;
41 module_param(nocst, uint, 0000);
42 static int bm_check_disable __read_mostly;
43 module_param(bm_check_disable, uint, 0000);
44
45 static unsigned int latency_factor __read_mostly = 2;
46 module_param(latency_factor, uint, 0644);
47
48 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
49
50 struct cpuidle_driver acpi_idle_driver = {
51 .name = "acpi_idle",
52 .owner = THIS_MODULE,
53 };
54
55 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
56 static
57 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
58
disabled_by_idle_boot_param(void)59 static int disabled_by_idle_boot_param(void)
60 {
61 return boot_option_idle_override == IDLE_POLL ||
62 boot_option_idle_override == IDLE_HALT;
63 }
64
65 /*
66 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
67 * For now disable this. Probably a bug somewhere else.
68 *
69 * To skip this limit, boot/load with a large max_cstate limit.
70 */
set_max_cstate(const struct dmi_system_id * id)71 static int set_max_cstate(const struct dmi_system_id *id)
72 {
73 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
74 return 0;
75
76 pr_notice("%s detected - limiting to C%ld max_cstate."
77 " Override with \"processor.max_cstate=%d\"\n", id->ident,
78 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
79
80 max_cstate = (long)id->driver_data;
81
82 return 0;
83 }
84
85 static const struct dmi_system_id processor_power_dmi_table[] = {
86 { set_max_cstate, "Clevo 5600D", {
87 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
88 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
89 (void *)2},
90 { set_max_cstate, "Pavilion zv5000", {
91 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
92 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
93 (void *)1},
94 { set_max_cstate, "Asus L8400B", {
95 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
96 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
97 (void *)1},
98 {},
99 };
100
101
102 /*
103 * Callers should disable interrupts before the call and enable
104 * interrupts after return.
105 */
acpi_safe_halt(void)106 static void __cpuidle acpi_safe_halt(void)
107 {
108 if (!tif_need_resched()) {
109 safe_halt();
110 local_irq_disable();
111 }
112 }
113
114 #ifdef ARCH_APICTIMER_STOPS_ON_C3
115
116 /*
117 * Some BIOS implementations switch to C3 in the published C2 state.
118 * This seems to be a common problem on AMD boxen, but other vendors
119 * are affected too. We pick the most conservative approach: we assume
120 * that the local APIC stops in both C2 and C3.
121 */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)122 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
123 struct acpi_processor_cx *cx)
124 {
125 struct acpi_processor_power *pwr = &pr->power;
126 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
127
128 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
129 return;
130
131 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
132 type = ACPI_STATE_C1;
133
134 /*
135 * Check, if one of the previous states already marked the lapic
136 * unstable
137 */
138 if (pwr->timer_broadcast_on_state < state)
139 return;
140
141 if (cx->type >= type)
142 pr->power.timer_broadcast_on_state = state;
143 }
144
__lapic_timer_propagate_broadcast(void * arg)145 static void __lapic_timer_propagate_broadcast(void *arg)
146 {
147 struct acpi_processor *pr = (struct acpi_processor *) arg;
148
149 if (pr->power.timer_broadcast_on_state < INT_MAX)
150 tick_broadcast_enable();
151 else
152 tick_broadcast_disable();
153 }
154
lapic_timer_propagate_broadcast(struct acpi_processor * pr)155 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
156 {
157 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
158 (void *)pr, 1);
159 }
160
161 /* Power(C) State timer broadcast control */
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)162 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
163 struct acpi_processor_cx *cx)
164 {
165 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
166 }
167
168 #else
169
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)170 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
171 struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)172 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
173
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)174 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
175 struct acpi_processor_cx *cx)
176 {
177 return false;
178 }
179
180 #endif
181
182 #if defined(CONFIG_X86)
tsc_check_state(int state)183 static void tsc_check_state(int state)
184 {
185 switch (boot_cpu_data.x86_vendor) {
186 case X86_VENDOR_HYGON:
187 case X86_VENDOR_AMD:
188 case X86_VENDOR_INTEL:
189 case X86_VENDOR_CENTAUR:
190 case X86_VENDOR_ZHAOXIN:
191 /*
192 * AMD Fam10h TSC will tick in all
193 * C/P/S0/S1 states when this bit is set.
194 */
195 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
196 return;
197 fallthrough;
198 default:
199 /* TSC could halt in idle, so notify users */
200 if (state > ACPI_STATE_C1)
201 mark_tsc_unstable("TSC halts in idle");
202 }
203 }
204 #else
tsc_check_state(int state)205 static void tsc_check_state(int state) { return; }
206 #endif
207
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)208 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
209 {
210
211 if (!pr->pblk)
212 return -ENODEV;
213
214 /* if info is obtained from pblk/fadt, type equals state */
215 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
216 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
217
218 #ifndef CONFIG_HOTPLUG_CPU
219 /*
220 * Check for P_LVL2_UP flag before entering C2 and above on
221 * an SMP system.
222 */
223 if ((num_online_cpus() > 1) &&
224 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
225 return -ENODEV;
226 #endif
227
228 /* determine C2 and C3 address from pblk */
229 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
230 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
231
232 /* determine latencies from FADT */
233 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
234 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
235
236 /*
237 * FADT specified C2 latency must be less than or equal to
238 * 100 microseconds.
239 */
240 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
241 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
242 acpi_gbl_FADT.c2_latency);
243 /* invalidate C2 */
244 pr->power.states[ACPI_STATE_C2].address = 0;
245 }
246
247 /*
248 * FADT supplied C3 latency must be less than or equal to
249 * 1000 microseconds.
250 */
251 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
252 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
253 acpi_gbl_FADT.c3_latency);
254 /* invalidate C3 */
255 pr->power.states[ACPI_STATE_C3].address = 0;
256 }
257
258 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
259 pr->power.states[ACPI_STATE_C2].address,
260 pr->power.states[ACPI_STATE_C3].address);
261
262 snprintf(pr->power.states[ACPI_STATE_C2].desc,
263 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
264 pr->power.states[ACPI_STATE_C2].address);
265 snprintf(pr->power.states[ACPI_STATE_C3].desc,
266 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
267 pr->power.states[ACPI_STATE_C3].address);
268
269 return 0;
270 }
271
acpi_processor_get_power_info_default(struct acpi_processor * pr)272 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
273 {
274 if (!pr->power.states[ACPI_STATE_C1].valid) {
275 /* set the first C-State to C1 */
276 /* all processors need to support C1 */
277 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
278 pr->power.states[ACPI_STATE_C1].valid = 1;
279 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
280
281 snprintf(pr->power.states[ACPI_STATE_C1].desc,
282 ACPI_CX_DESC_LEN, "ACPI HLT");
283 }
284 /* the C0 state only exists as a filler in our array */
285 pr->power.states[ACPI_STATE_C0].valid = 1;
286 return 0;
287 }
288
acpi_processor_get_power_info_cst(struct acpi_processor * pr)289 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
290 {
291 int ret;
292
293 if (nocst)
294 return -ENODEV;
295
296 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
297 if (ret)
298 return ret;
299
300 if (!pr->power.count)
301 return -EFAULT;
302
303 pr->flags.has_cst = 1;
304 return 0;
305 }
306
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)307 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
308 struct acpi_processor_cx *cx)
309 {
310 static int bm_check_flag = -1;
311 static int bm_control_flag = -1;
312
313
314 if (!cx->address)
315 return;
316
317 /*
318 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
319 * DMA transfers are used by any ISA device to avoid livelock.
320 * Note that we could disable Type-F DMA (as recommended by
321 * the erratum), but this is known to disrupt certain ISA
322 * devices thus we take the conservative approach.
323 */
324 else if (errata.piix4.fdma) {
325 acpi_handle_debug(pr->handle,
326 "C3 not supported on PIIX4 with Type-F DMA\n");
327 return;
328 }
329
330 /* All the logic here assumes flags.bm_check is same across all CPUs */
331 if (bm_check_flag == -1) {
332 /* Determine whether bm_check is needed based on CPU */
333 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
334 bm_check_flag = pr->flags.bm_check;
335 bm_control_flag = pr->flags.bm_control;
336 } else {
337 pr->flags.bm_check = bm_check_flag;
338 pr->flags.bm_control = bm_control_flag;
339 }
340
341 if (pr->flags.bm_check) {
342 if (!pr->flags.bm_control) {
343 if (pr->flags.has_cst != 1) {
344 /* bus mastering control is necessary */
345 acpi_handle_debug(pr->handle,
346 "C3 support requires BM control\n");
347 return;
348 } else {
349 /* Here we enter C3 without bus mastering */
350 acpi_handle_debug(pr->handle,
351 "C3 support without BM control\n");
352 }
353 }
354 } else {
355 /*
356 * WBINVD should be set in fadt, for C3 state to be
357 * supported on when bm_check is not required.
358 */
359 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
360 acpi_handle_debug(pr->handle,
361 "Cache invalidation should work properly"
362 " for C3 to be enabled on SMP systems\n");
363 return;
364 }
365 }
366
367 /*
368 * Otherwise we've met all of our C3 requirements.
369 * Normalize the C3 latency to expidite policy. Enable
370 * checking of bus mastering status (bm_check) so we can
371 * use this in our C3 policy
372 */
373 cx->valid = 1;
374
375 /*
376 * On older chipsets, BM_RLD needs to be set
377 * in order for Bus Master activity to wake the
378 * system from C3. Newer chipsets handle DMA
379 * during C3 automatically and BM_RLD is a NOP.
380 * In either case, the proper way to
381 * handle BM_RLD is to set it and leave it set.
382 */
383 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
384
385 return;
386 }
387
acpi_cst_latency_cmp(const void * a,const void * b)388 static int acpi_cst_latency_cmp(const void *a, const void *b)
389 {
390 const struct acpi_processor_cx *x = a, *y = b;
391
392 if (!(x->valid && y->valid))
393 return 0;
394 if (x->latency > y->latency)
395 return 1;
396 if (x->latency < y->latency)
397 return -1;
398 return 0;
399 }
acpi_cst_latency_swap(void * a,void * b,int n)400 static void acpi_cst_latency_swap(void *a, void *b, int n)
401 {
402 struct acpi_processor_cx *x = a, *y = b;
403 u32 tmp;
404
405 if (!(x->valid && y->valid))
406 return;
407 tmp = x->latency;
408 x->latency = y->latency;
409 y->latency = tmp;
410 }
411
acpi_processor_power_verify(struct acpi_processor * pr)412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414 unsigned int i;
415 unsigned int working = 0;
416 unsigned int last_latency = 0;
417 unsigned int last_type = 0;
418 bool buggy_latency = false;
419
420 pr->power.timer_broadcast_on_state = INT_MAX;
421
422 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423 struct acpi_processor_cx *cx = &pr->power.states[i];
424
425 switch (cx->type) {
426 case ACPI_STATE_C1:
427 cx->valid = 1;
428 break;
429
430 case ACPI_STATE_C2:
431 if (!cx->address)
432 break;
433 cx->valid = 1;
434 break;
435
436 case ACPI_STATE_C3:
437 acpi_processor_power_verify_c3(pr, cx);
438 break;
439 }
440 if (!cx->valid)
441 continue;
442 if (cx->type >= last_type && cx->latency < last_latency)
443 buggy_latency = true;
444 last_latency = cx->latency;
445 last_type = cx->type;
446
447 lapic_timer_check_state(i, pr, cx);
448 tsc_check_state(cx->type);
449 working++;
450 }
451
452 if (buggy_latency) {
453 pr_notice("FW issue: working around C-state latencies out of order\n");
454 sort(&pr->power.states[1], max_cstate,
455 sizeof(struct acpi_processor_cx),
456 acpi_cst_latency_cmp,
457 acpi_cst_latency_swap);
458 }
459
460 lapic_timer_propagate_broadcast(pr);
461
462 return (working);
463 }
464
acpi_processor_get_cstate_info(struct acpi_processor * pr)465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466 {
467 unsigned int i;
468 int result;
469
470
471 /* NOTE: the idle thread may not be running while calling
472 * this function */
473
474 /* Zero initialize all the C-states info. */
475 memset(pr->power.states, 0, sizeof(pr->power.states));
476
477 result = acpi_processor_get_power_info_cst(pr);
478 if (result == -ENODEV)
479 result = acpi_processor_get_power_info_fadt(pr);
480
481 if (result)
482 return result;
483
484 acpi_processor_get_power_info_default(pr);
485
486 pr->power.count = acpi_processor_power_verify(pr);
487
488 /*
489 * if one state of type C2 or C3 is available, mark this
490 * CPU as being "idle manageable"
491 */
492 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493 if (pr->power.states[i].valid) {
494 pr->power.count = i;
495 pr->flags.power = 1;
496 }
497 }
498
499 return 0;
500 }
501
502 /**
503 * acpi_idle_bm_check - checks if bus master activity was detected
504 */
acpi_idle_bm_check(void)505 static int acpi_idle_bm_check(void)
506 {
507 u32 bm_status = 0;
508
509 if (bm_check_disable)
510 return 0;
511
512 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513 if (bm_status)
514 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515 /*
516 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517 * the true state of bus mastering activity; forcing us to
518 * manually check the BMIDEA bit of each IDE channel.
519 */
520 else if (errata.piix4.bmisx) {
521 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523 bm_status = 1;
524 }
525 return bm_status;
526 }
527
wait_for_freeze(void)528 static void wait_for_freeze(void)
529 {
530 #ifdef CONFIG_X86
531 /* No delay is needed if we are in guest */
532 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533 return;
534 /*
535 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
536 * not this code. Assume that any Intel systems using this
537 * are ancient and may need the dummy wait. This also assumes
538 * that the motivating chipset issue was Intel-only.
539 */
540 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
541 return;
542 #endif
543 /*
544 * Dummy wait op - must do something useless after P_LVL2 read
545 * because chipsets cannot guarantee that STPCLK# signal gets
546 * asserted in time to freeze execution properly
547 *
548 * This workaround has been in place since the original ACPI
549 * implementation was merged, circa 2002.
550 *
551 * If a profile is pointing to this instruction, please first
552 * consider moving your system to a more modern idle
553 * mechanism.
554 */
555 inl(acpi_gbl_FADT.xpm_timer_block.address);
556 }
557
558 /**
559 * acpi_idle_do_entry - enter idle state using the appropriate method
560 * @cx: cstate data
561 *
562 * Caller disables interrupt before call and enables interrupt after return.
563 */
acpi_idle_do_entry(struct acpi_processor_cx * cx)564 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
565 {
566 if (cx->entry_method == ACPI_CSTATE_FFH) {
567 /* Call into architectural FFH based C-state */
568 acpi_processor_ffh_cstate_enter(cx);
569 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
570 acpi_safe_halt();
571 } else {
572 /* IO port based C-state */
573 inb(cx->address);
574 wait_for_freeze();
575 }
576 }
577
578 /**
579 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
580 * @dev: the target CPU
581 * @index: the index of suggested state
582 */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)583 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
584 {
585 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
586
587 ACPI_FLUSH_CPU_CACHE();
588
589 while (1) {
590
591 if (cx->entry_method == ACPI_CSTATE_HALT)
592 safe_halt();
593 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
594 inb(cx->address);
595 wait_for_freeze();
596 } else
597 return -ENODEV;
598
599 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
600 cond_wakeup_cpu0();
601 #endif
602 }
603
604 /* Never reached */
605 return 0;
606 }
607
acpi_idle_fallback_to_c1(struct acpi_processor * pr)608 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
609 {
610 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
611 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
612 }
613
614 static int c3_cpu_count;
615 static DEFINE_RAW_SPINLOCK(c3_lock);
616
617 /**
618 * acpi_idle_enter_bm - enters C3 with proper BM handling
619 * @drv: cpuidle driver
620 * @pr: Target processor
621 * @cx: Target state context
622 * @index: index of target state
623 */
acpi_idle_enter_bm(struct cpuidle_driver * drv,struct acpi_processor * pr,struct acpi_processor_cx * cx,int index)624 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
625 struct acpi_processor *pr,
626 struct acpi_processor_cx *cx,
627 int index)
628 {
629 static struct acpi_processor_cx safe_cx = {
630 .entry_method = ACPI_CSTATE_HALT,
631 };
632
633 /*
634 * disable bus master
635 * bm_check implies we need ARB_DIS
636 * bm_control implies whether we can do ARB_DIS
637 *
638 * That leaves a case where bm_check is set and bm_control is not set.
639 * In that case we cannot do much, we enter C3 without doing anything.
640 */
641 bool dis_bm = pr->flags.bm_control;
642
643 /* If we can skip BM, demote to a safe state. */
644 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
645 dis_bm = false;
646 index = drv->safe_state_index;
647 if (index >= 0) {
648 cx = this_cpu_read(acpi_cstate[index]);
649 } else {
650 cx = &safe_cx;
651 index = -EBUSY;
652 }
653 }
654
655 if (dis_bm) {
656 raw_spin_lock(&c3_lock);
657 c3_cpu_count++;
658 /* Disable bus master arbitration when all CPUs are in C3 */
659 if (c3_cpu_count == num_online_cpus())
660 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
661 raw_spin_unlock(&c3_lock);
662 }
663
664 rcu_idle_enter();
665
666 acpi_idle_do_entry(cx);
667
668 rcu_idle_exit();
669
670 /* Re-enable bus master arbitration */
671 if (dis_bm) {
672 raw_spin_lock(&c3_lock);
673 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
674 c3_cpu_count--;
675 raw_spin_unlock(&c3_lock);
676 }
677
678 return index;
679 }
680
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)681 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
682 struct cpuidle_driver *drv, int index)
683 {
684 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
685 struct acpi_processor *pr;
686
687 pr = __this_cpu_read(processors);
688 if (unlikely(!pr))
689 return -EINVAL;
690
691 if (cx->type != ACPI_STATE_C1) {
692 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
693 return acpi_idle_enter_bm(drv, pr, cx, index);
694
695 /* C2 to C1 demotion. */
696 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
697 index = ACPI_IDLE_STATE_START;
698 cx = per_cpu(acpi_cstate[index], dev->cpu);
699 }
700 }
701
702 if (cx->type == ACPI_STATE_C3)
703 ACPI_FLUSH_CPU_CACHE();
704
705 acpi_idle_do_entry(cx);
706
707 return index;
708 }
709
acpi_idle_enter_s2idle(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)710 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
711 struct cpuidle_driver *drv, int index)
712 {
713 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
714
715 if (cx->type == ACPI_STATE_C3) {
716 struct acpi_processor *pr = __this_cpu_read(processors);
717
718 if (unlikely(!pr))
719 return 0;
720
721 if (pr->flags.bm_check) {
722 u8 bm_sts_skip = cx->bm_sts_skip;
723
724 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
725 cx->bm_sts_skip = 1;
726 acpi_idle_enter_bm(drv, pr, cx, index);
727 cx->bm_sts_skip = bm_sts_skip;
728
729 return 0;
730 } else {
731 ACPI_FLUSH_CPU_CACHE();
732 }
733 }
734 acpi_idle_do_entry(cx);
735
736 return 0;
737 }
738
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)739 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
740 struct cpuidle_device *dev)
741 {
742 int i, count = ACPI_IDLE_STATE_START;
743 struct acpi_processor_cx *cx;
744 struct cpuidle_state *state;
745
746 if (max_cstate == 0)
747 max_cstate = 1;
748
749 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
750 state = &acpi_idle_driver.states[count];
751 cx = &pr->power.states[i];
752
753 if (!cx->valid)
754 continue;
755
756 per_cpu(acpi_cstate[count], dev->cpu) = cx;
757
758 if (lapic_timer_needs_broadcast(pr, cx))
759 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
760
761 if (cx->type == ACPI_STATE_C3) {
762 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
763 if (pr->flags.bm_check)
764 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
765 }
766
767 count++;
768 if (count == CPUIDLE_STATE_MAX)
769 break;
770 }
771
772 if (!count)
773 return -EINVAL;
774
775 return 0;
776 }
777
acpi_processor_setup_cstates(struct acpi_processor * pr)778 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
779 {
780 int i, count;
781 struct acpi_processor_cx *cx;
782 struct cpuidle_state *state;
783 struct cpuidle_driver *drv = &acpi_idle_driver;
784
785 if (max_cstate == 0)
786 max_cstate = 1;
787
788 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
789 cpuidle_poll_state_init(drv);
790 count = 1;
791 } else {
792 count = 0;
793 }
794
795 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
796 cx = &pr->power.states[i];
797
798 if (!cx->valid)
799 continue;
800
801 state = &drv->states[count];
802 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
803 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
804 state->exit_latency = cx->latency;
805 state->target_residency = cx->latency * latency_factor;
806 state->enter = acpi_idle_enter;
807
808 state->flags = 0;
809 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
810 cx->type == ACPI_STATE_C3) {
811 state->enter_dead = acpi_idle_play_dead;
812 if (cx->type != ACPI_STATE_C3)
813 drv->safe_state_index = count;
814 }
815 /*
816 * Halt-induced C1 is not good for ->enter_s2idle, because it
817 * re-enables interrupts on exit. Moreover, C1 is generally not
818 * particularly interesting from the suspend-to-idle angle, so
819 * avoid C1 and the situations in which we may need to fall back
820 * to it altogether.
821 */
822 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
823 state->enter_s2idle = acpi_idle_enter_s2idle;
824
825 count++;
826 if (count == CPUIDLE_STATE_MAX)
827 break;
828 }
829
830 drv->state_count = count;
831
832 if (!count)
833 return -EINVAL;
834
835 return 0;
836 }
837
acpi_processor_cstate_first_run_checks(void)838 static inline void acpi_processor_cstate_first_run_checks(void)
839 {
840 static int first_run;
841
842 if (first_run)
843 return;
844 dmi_check_system(processor_power_dmi_table);
845 max_cstate = acpi_processor_cstate_check(max_cstate);
846 if (max_cstate < ACPI_C_STATES_MAX)
847 pr_notice("processor limited to max C-state %d\n", max_cstate);
848
849 first_run++;
850
851 if (nocst)
852 return;
853
854 acpi_processor_claim_cst_control();
855 }
856 #else
857
disabled_by_idle_boot_param(void)858 static inline int disabled_by_idle_boot_param(void) { return 0; }
acpi_processor_cstate_first_run_checks(void)859 static inline void acpi_processor_cstate_first_run_checks(void) { }
acpi_processor_get_cstate_info(struct acpi_processor * pr)860 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
861 {
862 return -ENODEV;
863 }
864
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)865 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
866 struct cpuidle_device *dev)
867 {
868 return -EINVAL;
869 }
870
acpi_processor_setup_cstates(struct acpi_processor * pr)871 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
872 {
873 return -EINVAL;
874 }
875
876 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
877
878 struct acpi_lpi_states_array {
879 unsigned int size;
880 unsigned int composite_states_size;
881 struct acpi_lpi_state *entries;
882 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
883 };
884
obj_get_integer(union acpi_object * obj,u32 * value)885 static int obj_get_integer(union acpi_object *obj, u32 *value)
886 {
887 if (obj->type != ACPI_TYPE_INTEGER)
888 return -EINVAL;
889
890 *value = obj->integer.value;
891 return 0;
892 }
893
acpi_processor_evaluate_lpi(acpi_handle handle,struct acpi_lpi_states_array * info)894 static int acpi_processor_evaluate_lpi(acpi_handle handle,
895 struct acpi_lpi_states_array *info)
896 {
897 acpi_status status;
898 int ret = 0;
899 int pkg_count, state_idx = 1, loop;
900 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
901 union acpi_object *lpi_data;
902 struct acpi_lpi_state *lpi_state;
903
904 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
905 if (ACPI_FAILURE(status)) {
906 acpi_handle_debug(handle, "No _LPI, giving up\n");
907 return -ENODEV;
908 }
909
910 lpi_data = buffer.pointer;
911
912 /* There must be at least 4 elements = 3 elements + 1 package */
913 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
914 lpi_data->package.count < 4) {
915 pr_debug("not enough elements in _LPI\n");
916 ret = -ENODATA;
917 goto end;
918 }
919
920 pkg_count = lpi_data->package.elements[2].integer.value;
921
922 /* Validate number of power states. */
923 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
924 pr_debug("count given by _LPI is not valid\n");
925 ret = -ENODATA;
926 goto end;
927 }
928
929 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
930 if (!lpi_state) {
931 ret = -ENOMEM;
932 goto end;
933 }
934
935 info->size = pkg_count;
936 info->entries = lpi_state;
937
938 /* LPI States start at index 3 */
939 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
940 union acpi_object *element, *pkg_elem, *obj;
941
942 element = &lpi_data->package.elements[loop];
943 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
944 continue;
945
946 pkg_elem = element->package.elements;
947
948 obj = pkg_elem + 6;
949 if (obj->type == ACPI_TYPE_BUFFER) {
950 struct acpi_power_register *reg;
951
952 reg = (struct acpi_power_register *)obj->buffer.pointer;
953 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
954 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
955 continue;
956
957 lpi_state->address = reg->address;
958 lpi_state->entry_method =
959 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
960 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
961 } else if (obj->type == ACPI_TYPE_INTEGER) {
962 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
963 lpi_state->address = obj->integer.value;
964 } else {
965 continue;
966 }
967
968 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
969
970 obj = pkg_elem + 9;
971 if (obj->type == ACPI_TYPE_STRING)
972 strlcpy(lpi_state->desc, obj->string.pointer,
973 ACPI_CX_DESC_LEN);
974
975 lpi_state->index = state_idx;
976 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
977 pr_debug("No min. residency found, assuming 10 us\n");
978 lpi_state->min_residency = 10;
979 }
980
981 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
982 pr_debug("No wakeup residency found, assuming 10 us\n");
983 lpi_state->wake_latency = 10;
984 }
985
986 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
987 lpi_state->flags = 0;
988
989 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
990 lpi_state->arch_flags = 0;
991
992 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
993 lpi_state->res_cnt_freq = 1;
994
995 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
996 lpi_state->enable_parent_state = 0;
997 }
998
999 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1000 end:
1001 kfree(buffer.pointer);
1002 return ret;
1003 }
1004
1005 /*
1006 * flat_state_cnt - the number of composite LPI states after the process of flattening
1007 */
1008 static int flat_state_cnt;
1009
1010 /**
1011 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1012 *
1013 * @local: local LPI state
1014 * @parent: parent LPI state
1015 * @result: composite LPI state
1016 */
combine_lpi_states(struct acpi_lpi_state * local,struct acpi_lpi_state * parent,struct acpi_lpi_state * result)1017 static bool combine_lpi_states(struct acpi_lpi_state *local,
1018 struct acpi_lpi_state *parent,
1019 struct acpi_lpi_state *result)
1020 {
1021 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1022 if (!parent->address) /* 0 means autopromotable */
1023 return false;
1024 result->address = local->address + parent->address;
1025 } else {
1026 result->address = parent->address;
1027 }
1028
1029 result->min_residency = max(local->min_residency, parent->min_residency);
1030 result->wake_latency = local->wake_latency + parent->wake_latency;
1031 result->enable_parent_state = parent->enable_parent_state;
1032 result->entry_method = local->entry_method;
1033
1034 result->flags = parent->flags;
1035 result->arch_flags = parent->arch_flags;
1036 result->index = parent->index;
1037
1038 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1039 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1040 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1041 return true;
1042 }
1043
1044 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1045
stash_composite_state(struct acpi_lpi_states_array * curr_level,struct acpi_lpi_state * t)1046 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1047 struct acpi_lpi_state *t)
1048 {
1049 curr_level->composite_states[curr_level->composite_states_size++] = t;
1050 }
1051
flatten_lpi_states(struct acpi_processor * pr,struct acpi_lpi_states_array * curr_level,struct acpi_lpi_states_array * prev_level)1052 static int flatten_lpi_states(struct acpi_processor *pr,
1053 struct acpi_lpi_states_array *curr_level,
1054 struct acpi_lpi_states_array *prev_level)
1055 {
1056 int i, j, state_count = curr_level->size;
1057 struct acpi_lpi_state *p, *t = curr_level->entries;
1058
1059 curr_level->composite_states_size = 0;
1060 for (j = 0; j < state_count; j++, t++) {
1061 struct acpi_lpi_state *flpi;
1062
1063 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1064 continue;
1065
1066 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1067 pr_warn("Limiting number of LPI states to max (%d)\n",
1068 ACPI_PROCESSOR_MAX_POWER);
1069 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1070 break;
1071 }
1072
1073 flpi = &pr->power.lpi_states[flat_state_cnt];
1074
1075 if (!prev_level) { /* leaf/processor node */
1076 memcpy(flpi, t, sizeof(*t));
1077 stash_composite_state(curr_level, flpi);
1078 flat_state_cnt++;
1079 continue;
1080 }
1081
1082 for (i = 0; i < prev_level->composite_states_size; i++) {
1083 p = prev_level->composite_states[i];
1084 if (t->index <= p->enable_parent_state &&
1085 combine_lpi_states(p, t, flpi)) {
1086 stash_composite_state(curr_level, flpi);
1087 flat_state_cnt++;
1088 flpi++;
1089 }
1090 }
1091 }
1092
1093 kfree(curr_level->entries);
1094 return 0;
1095 }
1096
acpi_processor_ffh_lpi_probe(unsigned int cpu)1097 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1098 {
1099 return -EOPNOTSUPP;
1100 }
1101
acpi_processor_get_lpi_info(struct acpi_processor * pr)1102 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1103 {
1104 int ret, i;
1105 acpi_status status;
1106 acpi_handle handle = pr->handle, pr_ahandle;
1107 struct acpi_device *d = NULL;
1108 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1109
1110 /* make sure our architecture has support */
1111 ret = acpi_processor_ffh_lpi_probe(pr->id);
1112 if (ret == -EOPNOTSUPP)
1113 return ret;
1114
1115 if (!osc_pc_lpi_support_confirmed)
1116 return -EOPNOTSUPP;
1117
1118 if (!acpi_has_method(handle, "_LPI"))
1119 return -EINVAL;
1120
1121 flat_state_cnt = 0;
1122 prev = &info[0];
1123 curr = &info[1];
1124 handle = pr->handle;
1125 ret = acpi_processor_evaluate_lpi(handle, prev);
1126 if (ret)
1127 return ret;
1128 flatten_lpi_states(pr, prev, NULL);
1129
1130 status = acpi_get_parent(handle, &pr_ahandle);
1131 while (ACPI_SUCCESS(status)) {
1132 acpi_bus_get_device(pr_ahandle, &d);
1133 handle = pr_ahandle;
1134
1135 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1136 break;
1137
1138 /* can be optional ? */
1139 if (!acpi_has_method(handle, "_LPI"))
1140 break;
1141
1142 ret = acpi_processor_evaluate_lpi(handle, curr);
1143 if (ret)
1144 break;
1145
1146 /* flatten all the LPI states in this level of hierarchy */
1147 flatten_lpi_states(pr, curr, prev);
1148
1149 tmp = prev, prev = curr, curr = tmp;
1150
1151 status = acpi_get_parent(handle, &pr_ahandle);
1152 }
1153
1154 pr->power.count = flat_state_cnt;
1155 /* reset the index after flattening */
1156 for (i = 0; i < pr->power.count; i++)
1157 pr->power.lpi_states[i].index = i;
1158
1159 /* Tell driver that _LPI is supported. */
1160 pr->flags.has_lpi = 1;
1161 pr->flags.power = 1;
1162
1163 return 0;
1164 }
1165
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state * lpi)1166 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1167 {
1168 return -ENODEV;
1169 }
1170
1171 /**
1172 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1173 * @dev: the target CPU
1174 * @drv: cpuidle driver containing cpuidle state info
1175 * @index: index of target state
1176 *
1177 * Return: 0 for success or negative value for error
1178 */
acpi_idle_lpi_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)1179 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1180 struct cpuidle_driver *drv, int index)
1181 {
1182 struct acpi_processor *pr;
1183 struct acpi_lpi_state *lpi;
1184
1185 pr = __this_cpu_read(processors);
1186
1187 if (unlikely(!pr))
1188 return -EINVAL;
1189
1190 lpi = &pr->power.lpi_states[index];
1191 if (lpi->entry_method == ACPI_CSTATE_FFH)
1192 return acpi_processor_ffh_lpi_enter(lpi);
1193
1194 return -EINVAL;
1195 }
1196
acpi_processor_setup_lpi_states(struct acpi_processor * pr)1197 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1198 {
1199 int i;
1200 struct acpi_lpi_state *lpi;
1201 struct cpuidle_state *state;
1202 struct cpuidle_driver *drv = &acpi_idle_driver;
1203
1204 if (!pr->flags.has_lpi)
1205 return -EOPNOTSUPP;
1206
1207 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1208 lpi = &pr->power.lpi_states[i];
1209
1210 state = &drv->states[i];
1211 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1212 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1213 state->exit_latency = lpi->wake_latency;
1214 state->target_residency = lpi->min_residency;
1215 if (lpi->arch_flags)
1216 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1217 state->enter = acpi_idle_lpi_enter;
1218 drv->safe_state_index = i;
1219 }
1220
1221 drv->state_count = i;
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1228 * global state data i.e. idle routines
1229 *
1230 * @pr: the ACPI processor
1231 */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)1232 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1233 {
1234 int i;
1235 struct cpuidle_driver *drv = &acpi_idle_driver;
1236
1237 if (!pr->flags.power_setup_done || !pr->flags.power)
1238 return -EINVAL;
1239
1240 drv->safe_state_index = -1;
1241 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1242 drv->states[i].name[0] = '\0';
1243 drv->states[i].desc[0] = '\0';
1244 }
1245
1246 if (pr->flags.has_lpi)
1247 return acpi_processor_setup_lpi_states(pr);
1248
1249 return acpi_processor_setup_cstates(pr);
1250 }
1251
1252 /**
1253 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1254 * device i.e. per-cpu data
1255 *
1256 * @pr: the ACPI processor
1257 * @dev : the cpuidle device
1258 */
acpi_processor_setup_cpuidle_dev(struct acpi_processor * pr,struct cpuidle_device * dev)1259 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1260 struct cpuidle_device *dev)
1261 {
1262 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1263 return -EINVAL;
1264
1265 dev->cpu = pr->id;
1266 if (pr->flags.has_lpi)
1267 return acpi_processor_ffh_lpi_probe(pr->id);
1268
1269 return acpi_processor_setup_cpuidle_cx(pr, dev);
1270 }
1271
acpi_processor_get_power_info(struct acpi_processor * pr)1272 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1273 {
1274 int ret;
1275
1276 ret = acpi_processor_get_lpi_info(pr);
1277 if (ret)
1278 ret = acpi_processor_get_cstate_info(pr);
1279
1280 return ret;
1281 }
1282
acpi_processor_hotplug(struct acpi_processor * pr)1283 int acpi_processor_hotplug(struct acpi_processor *pr)
1284 {
1285 int ret = 0;
1286 struct cpuidle_device *dev;
1287
1288 if (disabled_by_idle_boot_param())
1289 return 0;
1290
1291 if (!pr->flags.power_setup_done)
1292 return -ENODEV;
1293
1294 dev = per_cpu(acpi_cpuidle_device, pr->id);
1295 cpuidle_pause_and_lock();
1296 cpuidle_disable_device(dev);
1297 ret = acpi_processor_get_power_info(pr);
1298 if (!ret && pr->flags.power) {
1299 acpi_processor_setup_cpuidle_dev(pr, dev);
1300 ret = cpuidle_enable_device(dev);
1301 }
1302 cpuidle_resume_and_unlock();
1303
1304 return ret;
1305 }
1306
acpi_processor_power_state_has_changed(struct acpi_processor * pr)1307 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1308 {
1309 int cpu;
1310 struct acpi_processor *_pr;
1311 struct cpuidle_device *dev;
1312
1313 if (disabled_by_idle_boot_param())
1314 return 0;
1315
1316 if (!pr->flags.power_setup_done)
1317 return -ENODEV;
1318
1319 /*
1320 * FIXME: Design the ACPI notification to make it once per
1321 * system instead of once per-cpu. This condition is a hack
1322 * to make the code that updates C-States be called once.
1323 */
1324
1325 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1326
1327 /* Protect against cpu-hotplug */
1328 cpus_read_lock();
1329 cpuidle_pause_and_lock();
1330
1331 /* Disable all cpuidle devices */
1332 for_each_online_cpu(cpu) {
1333 _pr = per_cpu(processors, cpu);
1334 if (!_pr || !_pr->flags.power_setup_done)
1335 continue;
1336 dev = per_cpu(acpi_cpuidle_device, cpu);
1337 cpuidle_disable_device(dev);
1338 }
1339
1340 /* Populate Updated C-state information */
1341 acpi_processor_get_power_info(pr);
1342 acpi_processor_setup_cpuidle_states(pr);
1343
1344 /* Enable all cpuidle devices */
1345 for_each_online_cpu(cpu) {
1346 _pr = per_cpu(processors, cpu);
1347 if (!_pr || !_pr->flags.power_setup_done)
1348 continue;
1349 acpi_processor_get_power_info(_pr);
1350 if (_pr->flags.power) {
1351 dev = per_cpu(acpi_cpuidle_device, cpu);
1352 acpi_processor_setup_cpuidle_dev(_pr, dev);
1353 cpuidle_enable_device(dev);
1354 }
1355 }
1356 cpuidle_resume_and_unlock();
1357 cpus_read_unlock();
1358 }
1359
1360 return 0;
1361 }
1362
1363 static int acpi_processor_registered;
1364
acpi_processor_power_init(struct acpi_processor * pr)1365 int acpi_processor_power_init(struct acpi_processor *pr)
1366 {
1367 int retval;
1368 struct cpuidle_device *dev;
1369
1370 if (disabled_by_idle_boot_param())
1371 return 0;
1372
1373 acpi_processor_cstate_first_run_checks();
1374
1375 if (!acpi_processor_get_power_info(pr))
1376 pr->flags.power_setup_done = 1;
1377
1378 /*
1379 * Install the idle handler if processor power management is supported.
1380 * Note that we use previously set idle handler will be used on
1381 * platforms that only support C1.
1382 */
1383 if (pr->flags.power) {
1384 /* Register acpi_idle_driver if not already registered */
1385 if (!acpi_processor_registered) {
1386 acpi_processor_setup_cpuidle_states(pr);
1387 retval = cpuidle_register_driver(&acpi_idle_driver);
1388 if (retval)
1389 return retval;
1390 pr_debug("%s registered with cpuidle\n",
1391 acpi_idle_driver.name);
1392 }
1393
1394 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1395 if (!dev)
1396 return -ENOMEM;
1397 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1398
1399 acpi_processor_setup_cpuidle_dev(pr, dev);
1400
1401 /* Register per-cpu cpuidle_device. Cpuidle driver
1402 * must already be registered before registering device
1403 */
1404 retval = cpuidle_register_device(dev);
1405 if (retval) {
1406 if (acpi_processor_registered == 0)
1407 cpuidle_unregister_driver(&acpi_idle_driver);
1408 return retval;
1409 }
1410 acpi_processor_registered++;
1411 }
1412 return 0;
1413 }
1414
acpi_processor_power_exit(struct acpi_processor * pr)1415 int acpi_processor_power_exit(struct acpi_processor *pr)
1416 {
1417 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1418
1419 if (disabled_by_idle_boot_param())
1420 return 0;
1421
1422 if (pr->flags.power) {
1423 cpuidle_unregister_device(dev);
1424 acpi_processor_registered--;
1425 if (acpi_processor_registered == 0)
1426 cpuidle_unregister_driver(&acpi_idle_driver);
1427 }
1428
1429 pr->flags.power_setup_done = 0;
1430 return 0;
1431 }
1432