1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned long xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags;
100 };
101
102 struct ata_force_ent {
103 int port;
104 int device;
105 struct ata_force_param param;
106 };
107
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161
ata_dev_print_info(struct ata_device * dev)162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 struct ata_eh_context *ehc = &dev->link->eh_context;
165
166 return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168
ata_sstatus_online(u32 sstatus)169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 return (sstatus & 0xf) == 0x3;
172 }
173
174 /**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
182 *
183 * RETURNS:
184 * Pointer to the next link.
185 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
188 {
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 fallthrough;
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
203
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 fallthrough;
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 fallthrough;
215 case ATA_LITER_EDGE:
216 return NULL;
217 }
218
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
230 return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233
234 /**
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
239 *
240 * LOCKING:
241 * Host lock or EH context.
242 *
243 * RETURNS:
244 * Pointer to the next device.
245 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
248 {
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
263 }
264
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
278 }
279
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287
288 /**
289 * ata_dev_phys_link - find physical link for a device
290 * @dev: ATA device to look up physical link for
291 *
292 * Look up physical link which @dev is attached to. Note that
293 * this is different from @dev->link only when @dev is on slave
294 * link. For all other cases, it's the same as @dev->link.
295 *
296 * LOCKING:
297 * Don't care.
298 *
299 * RETURNS:
300 * Pointer to the found physical link.
301 */
ata_dev_phys_link(struct ata_device * dev)302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 struct ata_port *ap = dev->link->ap;
305
306 if (!ap->slave_link)
307 return dev->link;
308 if (!dev->devno)
309 return &ap->link;
310 return ap->slave_link;
311 }
312
313 #ifdef CONFIG_ATA_FORCE
314 /**
315 * ata_force_cbl - force cable type according to libata.force
316 * @ap: ATA port of interest
317 *
318 * Force cable type according to libata.force and whine about it.
319 * The last entry which has matching port number is used, so it
320 * can be specified as part of device force parameters. For
321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 * same effect.
323 *
324 * LOCKING:
325 * EH context.
326 */
ata_force_cbl(struct ata_port * ap)327 void ata_force_cbl(struct ata_port *ap)
328 {
329 int i;
330
331 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 const struct ata_force_ent *fe = &ata_force_tbl[i];
333
334 if (fe->port != -1 && fe->port != ap->print_id)
335 continue;
336
337 if (fe->param.cbl == ATA_CBL_NONE)
338 continue;
339
340 ap->cbl = fe->param.cbl;
341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 return;
343 }
344 }
345
346 /**
347 * ata_force_link_limits - force link limits according to libata.force
348 * @link: ATA link of interest
349 *
350 * Force link flags and SATA spd limit according to libata.force
351 * and whine about it. When only the port part is specified
352 * (e.g. 1:), the limit applies to all links connected to both
353 * the host link and all fan-out ports connected via PMP. If the
354 * device part is specified as 0 (e.g. 1.00:), it specifies the
355 * first fan-out link not the host link. Device number 15 always
356 * points to the host link whether PMP is attached or not. If the
357 * controller has slave link, device number 16 points to it.
358 *
359 * LOCKING:
360 * EH context.
361 */
ata_force_link_limits(struct ata_link * link)362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 bool did_spd = false;
365 int linkno = link->pmp;
366 int i;
367
368 if (ata_is_host_link(link))
369 linkno += 15;
370
371 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 const struct ata_force_ent *fe = &ata_force_tbl[i];
373
374 if (fe->port != -1 && fe->port != link->ap->print_id)
375 continue;
376
377 if (fe->device != -1 && fe->device != linkno)
378 continue;
379
380 /* only honor the first spd limit */
381 if (!did_spd && fe->param.spd_limit) {
382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 fe->param.name);
385 did_spd = true;
386 }
387
388 /* let lflags stack */
389 if (fe->param.lflags) {
390 link->flags |= fe->param.lflags;
391 ata_link_notice(link,
392 "FORCE: link flag 0x%x forced -> 0x%x\n",
393 fe->param.lflags, link->flags);
394 }
395 }
396 }
397
398 /**
399 * ata_force_xfermask - force xfermask according to libata.force
400 * @dev: ATA device of interest
401 *
402 * Force xfer_mask according to libata.force and whine about it.
403 * For consistency with link selection, device number 15 selects
404 * the first device connected to the host link.
405 *
406 * LOCKING:
407 * EH context.
408 */
ata_force_xfermask(struct ata_device * dev)409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 int devno = dev->link->pmp + dev->devno;
412 int alt_devno = devno;
413 int i;
414
415 /* allow n.15/16 for devices attached to host port */
416 if (ata_is_host_link(dev->link))
417 alt_devno += 15;
418
419 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 const struct ata_force_ent *fe = &ata_force_tbl[i];
421 unsigned long pio_mask, mwdma_mask, udma_mask;
422
423 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 continue;
425
426 if (fe->device != -1 && fe->device != devno &&
427 fe->device != alt_devno)
428 continue;
429
430 if (!fe->param.xfer_mask)
431 continue;
432
433 ata_unpack_xfermask(fe->param.xfer_mask,
434 &pio_mask, &mwdma_mask, &udma_mask);
435 if (udma_mask)
436 dev->udma_mask = udma_mask;
437 else if (mwdma_mask) {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = mwdma_mask;
440 } else {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = 0;
443 dev->pio_mask = pio_mask;
444 }
445
446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 fe->param.name);
448 return;
449 }
450 }
451
452 /**
453 * ata_force_horkage - force horkage according to libata.force
454 * @dev: ATA device of interest
455 *
456 * Force horkage according to libata.force and whine about it.
457 * For consistency with link selection, device number 15 selects
458 * the first device connected to the host link.
459 *
460 * LOCKING:
461 * EH context.
462 */
ata_force_horkage(struct ata_device * dev)463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 int devno = dev->link->pmp + dev->devno;
466 int alt_devno = devno;
467 int i;
468
469 /* allow n.15/16 for devices attached to host port */
470 if (ata_is_host_link(dev->link))
471 alt_devno += 15;
472
473 for (i = 0; i < ata_force_tbl_size; i++) {
474 const struct ata_force_ent *fe = &ata_force_tbl[i];
475
476 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 continue;
478
479 if (fe->device != -1 && fe->device != devno &&
480 fe->device != alt_devno)
481 continue;
482
483 if (!(~dev->horkage & fe->param.horkage_on) &&
484 !(dev->horkage & fe->param.horkage_off))
485 continue;
486
487 dev->horkage |= fe->param.horkage_on;
488 dev->horkage &= ~fe->param.horkage_off;
489
490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 fe->param.name);
492 }
493 }
494 #else
ata_force_link_limits(struct ata_link * link)495 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)496 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499
500 /**
501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 * @opcode: SCSI opcode
503 *
504 * Determine ATAPI command type from @opcode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511 */
atapi_cmd_type(u8 opcode)512 int atapi_cmd_type(u8 opcode)
513 {
514 switch (opcode) {
515 case GPCMD_READ_10:
516 case GPCMD_READ_12:
517 return ATAPI_READ;
518
519 case GPCMD_WRITE_10:
520 case GPCMD_WRITE_12:
521 case GPCMD_WRITE_AND_VERIFY_10:
522 return ATAPI_WRITE;
523
524 case GPCMD_READ_CD:
525 case GPCMD_READ_CD_MSF:
526 return ATAPI_READ_CD;
527
528 case ATA_16:
529 case ATA_12:
530 if (atapi_passthru16)
531 return ATAPI_PASS_THRU;
532 fallthrough;
533 default:
534 return ATAPI_MISC;
535 }
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538
539 static const u8 ata_rw_cmds[] = {
540 /* pio multi */
541 ATA_CMD_READ_MULTI,
542 ATA_CMD_WRITE_MULTI,
543 ATA_CMD_READ_MULTI_EXT,
544 ATA_CMD_WRITE_MULTI_EXT,
545 0,
546 0,
547 0,
548 ATA_CMD_WRITE_MULTI_FUA_EXT,
549 /* pio */
550 ATA_CMD_PIO_READ,
551 ATA_CMD_PIO_WRITE,
552 ATA_CMD_PIO_READ_EXT,
553 ATA_CMD_PIO_WRITE_EXT,
554 0,
555 0,
556 0,
557 0,
558 /* dma */
559 ATA_CMD_READ,
560 ATA_CMD_WRITE,
561 ATA_CMD_READ_EXT,
562 ATA_CMD_WRITE_EXT,
563 0,
564 0,
565 0,
566 ATA_CMD_WRITE_FUA_EXT
567 };
568
569 /**
570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
571 * @tf: command to examine and configure
572 * @dev: device tf belongs to
573 *
574 * Examine the device configuration and tf->flags to calculate
575 * the proper read/write commands and protocol to use.
576 *
577 * LOCKING:
578 * caller.
579 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 u8 cmd;
583
584 int index, fua, lba48, write;
585
586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589
590 if (dev->flags & ATA_DFLAG_PIO) {
591 tf->protocol = ATA_PROT_PIO;
592 index = dev->multi_count ? 0 : 8;
593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 /* Unable to use DMA due to host limitation */
595 tf->protocol = ATA_PROT_PIO;
596 index = dev->multi_count ? 0 : 8;
597 } else {
598 tf->protocol = ATA_PROT_DMA;
599 index = 16;
600 }
601
602 cmd = ata_rw_cmds[index + fua + lba48 + write];
603 if (cmd) {
604 tf->command = cmd;
605 return 0;
606 }
607 return -1;
608 }
609
610 /**
611 * ata_tf_read_block - Read block address from ATA taskfile
612 * @tf: ATA taskfile of interest
613 * @dev: ATA device @tf belongs to
614 *
615 * LOCKING:
616 * None.
617 *
618 * Read block address from @tf. This function can handle all
619 * three address formats - LBA, LBA48 and CHS. tf->protocol and
620 * flags select the address format to use.
621 *
622 * RETURNS:
623 * Block address read from @tf.
624 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 u64 block = 0;
628
629 if (tf->flags & ATA_TFLAG_LBA) {
630 if (tf->flags & ATA_TFLAG_LBA48) {
631 block |= (u64)tf->hob_lbah << 40;
632 block |= (u64)tf->hob_lbam << 32;
633 block |= (u64)tf->hob_lbal << 24;
634 } else
635 block |= (tf->device & 0xf) << 24;
636
637 block |= tf->lbah << 16;
638 block |= tf->lbam << 8;
639 block |= tf->lbal;
640 } else {
641 u32 cyl, head, sect;
642
643 cyl = tf->lbam | (tf->lbah << 8);
644 head = tf->device & 0xf;
645 sect = tf->lbal;
646
647 if (!sect) {
648 ata_dev_warn(dev,
649 "device reported invalid CHS sector 0\n");
650 return U64_MAX;
651 }
652
653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 }
655
656 return block;
657 }
658
659 /**
660 * ata_build_rw_tf - Build ATA taskfile for given read/write request
661 * @tf: Target ATA taskfile
662 * @dev: ATA device @tf belongs to
663 * @block: Block address
664 * @n_block: Number of blocks
665 * @tf_flags: RW/FUA etc...
666 * @tag: tag
667 * @class: IO priority class
668 *
669 * LOCKING:
670 * None.
671 *
672 * Build ATA taskfile @tf for read/write request described by
673 * @block, @n_block, @tf_flags and @tag on @dev.
674 *
675 * RETURNS:
676 *
677 * 0 on success, -ERANGE if the request is too large for @dev,
678 * -EINVAL if the request is invalid.
679 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 u64 block, u32 n_block, unsigned int tf_flags,
682 unsigned int tag, int class)
683 {
684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 tf->flags |= tf_flags;
686
687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 /* yay, NCQ */
689 if (!lba_48_ok(block, n_block))
690 return -ERANGE;
691
692 tf->protocol = ATA_PROT_NCQ;
693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694
695 if (tf->flags & ATA_TFLAG_WRITE)
696 tf->command = ATA_CMD_FPDMA_WRITE;
697 else
698 tf->command = ATA_CMD_FPDMA_READ;
699
700 tf->nsect = tag << 3;
701 tf->hob_feature = (n_block >> 8) & 0xff;
702 tf->feature = n_block & 0xff;
703
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 tf->lbah = (block >> 16) & 0xff;
708 tf->lbam = (block >> 8) & 0xff;
709 tf->lbal = block & 0xff;
710
711 tf->device = ATA_LBA;
712 if (tf->flags & ATA_TFLAG_FUA)
713 tf->device |= 1 << 7;
714
715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 class == IOPRIO_CLASS_RT)
717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 } else if (dev->flags & ATA_DFLAG_LBA) {
719 tf->flags |= ATA_TFLAG_LBA;
720
721 if (lba_28_ok(block, n_block)) {
722 /* use LBA28 */
723 tf->device |= (block >> 24) & 0xf;
724 } else if (lba_48_ok(block, n_block)) {
725 if (!(dev->flags & ATA_DFLAG_LBA48))
726 return -ERANGE;
727
728 /* use LBA48 */
729 tf->flags |= ATA_TFLAG_LBA48;
730
731 tf->hob_nsect = (n_block >> 8) & 0xff;
732
733 tf->hob_lbah = (block >> 40) & 0xff;
734 tf->hob_lbam = (block >> 32) & 0xff;
735 tf->hob_lbal = (block >> 24) & 0xff;
736 } else
737 /* request too large even for LBA48 */
738 return -ERANGE;
739
740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 return -EINVAL;
742
743 tf->nsect = n_block & 0xff;
744
745 tf->lbah = (block >> 16) & 0xff;
746 tf->lbam = (block >> 8) & 0xff;
747 tf->lbal = block & 0xff;
748
749 tf->device |= ATA_LBA;
750 } else {
751 /* CHS */
752 u32 sect, head, cyl, track;
753
754 /* The request -may- be too large for CHS addressing. */
755 if (!lba_28_ok(block, n_block))
756 return -ERANGE;
757
758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 return -EINVAL;
760
761 /* Convert LBA to CHS */
762 track = (u32)block / dev->sectors;
763 cyl = track / dev->heads;
764 head = track % dev->heads;
765 sect = (u32)block % dev->sectors + 1;
766
767 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
768 (u32)block, track, cyl, head, sect);
769
770 /* Check whether the converted CHS can fit.
771 Cylinder: 0-65535
772 Head: 0-15
773 Sector: 1-255*/
774 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
775 return -ERANGE;
776
777 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
778 tf->lbal = sect;
779 tf->lbam = cyl;
780 tf->lbah = cyl >> 8;
781 tf->device |= head;
782 }
783
784 return 0;
785 }
786
787 /**
788 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
789 * @pio_mask: pio_mask
790 * @mwdma_mask: mwdma_mask
791 * @udma_mask: udma_mask
792 *
793 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
794 * unsigned int xfer_mask.
795 *
796 * LOCKING:
797 * None.
798 *
799 * RETURNS:
800 * Packed xfer_mask.
801 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)802 unsigned long ata_pack_xfermask(unsigned long pio_mask,
803 unsigned long mwdma_mask,
804 unsigned long udma_mask)
805 {
806 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
807 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
808 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
809 }
810 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
811
812 /**
813 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
814 * @xfer_mask: xfer_mask to unpack
815 * @pio_mask: resulting pio_mask
816 * @mwdma_mask: resulting mwdma_mask
817 * @udma_mask: resulting udma_mask
818 *
819 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
820 * Any NULL destination masks will be ignored.
821 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
823 unsigned long *mwdma_mask, unsigned long *udma_mask)
824 {
825 if (pio_mask)
826 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
827 if (mwdma_mask)
828 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
829 if (udma_mask)
830 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
831 }
832
833 static const struct ata_xfer_ent {
834 int shift, bits;
835 u8 base;
836 } ata_xfer_tbl[] = {
837 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
838 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
839 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
840 { -1, },
841 };
842
843 /**
844 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
845 * @xfer_mask: xfer_mask of interest
846 *
847 * Return matching XFER_* value for @xfer_mask. Only the highest
848 * bit of @xfer_mask is considered.
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Matching XFER_* value, 0xff if no match found.
855 */
ata_xfer_mask2mode(unsigned long xfer_mask)856 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
857 {
858 int highbit = fls(xfer_mask) - 1;
859 const struct ata_xfer_ent *ent;
860
861 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
862 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
863 return ent->base + highbit - ent->shift;
864 return 0xff;
865 }
866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
867
868 /**
869 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
870 * @xfer_mode: XFER_* of interest
871 *
872 * Return matching xfer_mask for @xfer_mode.
873 *
874 * LOCKING:
875 * None.
876 *
877 * RETURNS:
878 * Matching xfer_mask, 0 if no match found.
879 */
ata_xfer_mode2mask(u8 xfer_mode)880 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
881 {
882 const struct ata_xfer_ent *ent;
883
884 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
885 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
886 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
887 & ~((1 << ent->shift) - 1);
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
891
892 /**
893 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
894 * @xfer_mode: XFER_* of interest
895 *
896 * Return matching xfer_shift for @xfer_mode.
897 *
898 * LOCKING:
899 * None.
900 *
901 * RETURNS:
902 * Matching xfer_shift, -1 if no match found.
903 */
ata_xfer_mode2shift(unsigned long xfer_mode)904 int ata_xfer_mode2shift(unsigned long xfer_mode)
905 {
906 const struct ata_xfer_ent *ent;
907
908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
910 return ent->shift;
911 return -1;
912 }
913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
914
915 /**
916 * ata_mode_string - convert xfer_mask to string
917 * @xfer_mask: mask of bits supported; only highest bit counts.
918 *
919 * Determine string which represents the highest speed
920 * (highest bit in @modemask).
921 *
922 * LOCKING:
923 * None.
924 *
925 * RETURNS:
926 * Constant C string representing highest speed listed in
927 * @mode_mask, or the constant C string "<n/a>".
928 */
ata_mode_string(unsigned long xfer_mask)929 const char *ata_mode_string(unsigned long xfer_mask)
930 {
931 static const char * const xfer_mode_str[] = {
932 "PIO0",
933 "PIO1",
934 "PIO2",
935 "PIO3",
936 "PIO4",
937 "PIO5",
938 "PIO6",
939 "MWDMA0",
940 "MWDMA1",
941 "MWDMA2",
942 "MWDMA3",
943 "MWDMA4",
944 "UDMA/16",
945 "UDMA/25",
946 "UDMA/33",
947 "UDMA/44",
948 "UDMA/66",
949 "UDMA/100",
950 "UDMA/133",
951 "UDMA7",
952 };
953 int highbit;
954
955 highbit = fls(xfer_mask) - 1;
956 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
957 return xfer_mode_str[highbit];
958 return "<n/a>";
959 }
960 EXPORT_SYMBOL_GPL(ata_mode_string);
961
sata_spd_string(unsigned int spd)962 const char *sata_spd_string(unsigned int spd)
963 {
964 static const char * const spd_str[] = {
965 "1.5 Gbps",
966 "3.0 Gbps",
967 "6.0 Gbps",
968 };
969
970 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
971 return "<unknown>";
972 return spd_str[spd - 1];
973 }
974
975 /**
976 * ata_dev_classify - determine device type based on ATA-spec signature
977 * @tf: ATA taskfile register set for device to be identified
978 *
979 * Determine from taskfile register contents whether a device is
980 * ATA or ATAPI, as per "Signature and persistence" section
981 * of ATA/PI spec (volume 1, sect 5.14).
982 *
983 * LOCKING:
984 * None.
985 *
986 * RETURNS:
987 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
988 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
989 */
ata_dev_classify(const struct ata_taskfile * tf)990 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
991 {
992 /* Apple's open source Darwin code hints that some devices only
993 * put a proper signature into the LBA mid/high registers,
994 * So, we only check those. It's sufficient for uniqueness.
995 *
996 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
997 * signatures for ATA and ATAPI devices attached on SerialATA,
998 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
999 * spec has never mentioned about using different signatures
1000 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1001 * Multiplier specification began to use 0x69/0x96 to identify
1002 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004 * 0x69/0x96 shortly and described them as reserved for
1005 * SerialATA.
1006 *
1007 * We follow the current spec and consider that 0x69/0x96
1008 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010 * SEMB signature. This is worked around in
1011 * ata_dev_read_id().
1012 */
1013 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014 DPRINTK("found ATA device by sig\n");
1015 return ATA_DEV_ATA;
1016 }
1017
1018 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019 DPRINTK("found ATAPI device by sig\n");
1020 return ATA_DEV_ATAPI;
1021 }
1022
1023 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024 DPRINTK("found PMP device by sig\n");
1025 return ATA_DEV_PMP;
1026 }
1027
1028 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030 return ATA_DEV_SEMB;
1031 }
1032
1033 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034 DPRINTK("found ZAC device by sig\n");
1035 return ATA_DEV_ZAC;
1036 }
1037
1038 DPRINTK("unknown device\n");
1039 return ATA_DEV_UNKNOWN;
1040 }
1041 EXPORT_SYMBOL_GPL(ata_dev_classify);
1042
1043 /**
1044 * ata_id_string - Convert IDENTIFY DEVICE page into string
1045 * @id: IDENTIFY DEVICE results we will examine
1046 * @s: string into which data is output
1047 * @ofs: offset into identify device page
1048 * @len: length of string to return. must be an even number.
1049 *
1050 * The strings in the IDENTIFY DEVICE page are broken up into
1051 * 16-bit chunks. Run through the string, and output each
1052 * 8-bit chunk linearly, regardless of platform.
1053 *
1054 * LOCKING:
1055 * caller.
1056 */
1057
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1058 void ata_id_string(const u16 *id, unsigned char *s,
1059 unsigned int ofs, unsigned int len)
1060 {
1061 unsigned int c;
1062
1063 BUG_ON(len & 1);
1064
1065 while (len > 0) {
1066 c = id[ofs] >> 8;
1067 *s = c;
1068 s++;
1069
1070 c = id[ofs] & 0xff;
1071 *s = c;
1072 s++;
1073
1074 ofs++;
1075 len -= 2;
1076 }
1077 }
1078 EXPORT_SYMBOL_GPL(ata_id_string);
1079
1080 /**
1081 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082 * @id: IDENTIFY DEVICE results we will examine
1083 * @s: string into which data is output
1084 * @ofs: offset into identify device page
1085 * @len: length of string to return. must be an odd number.
1086 *
1087 * This function is identical to ata_id_string except that it
1088 * trims trailing spaces and terminates the resulting string with
1089 * null. @len must be actual maximum length (even number) + 1.
1090 *
1091 * LOCKING:
1092 * caller.
1093 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1094 void ata_id_c_string(const u16 *id, unsigned char *s,
1095 unsigned int ofs, unsigned int len)
1096 {
1097 unsigned char *p;
1098
1099 ata_id_string(id, s, ofs, len - 1);
1100
1101 p = s + strnlen(s, len - 1);
1102 while (p > s && p[-1] == ' ')
1103 p--;
1104 *p = '\0';
1105 }
1106 EXPORT_SYMBOL_GPL(ata_id_c_string);
1107
ata_id_n_sectors(const u16 * id)1108 static u64 ata_id_n_sectors(const u16 *id)
1109 {
1110 if (ata_id_has_lba(id)) {
1111 if (ata_id_has_lba48(id))
1112 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113 else
1114 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115 } else {
1116 if (ata_id_current_chs_valid(id))
1117 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118 id[ATA_ID_CUR_SECTORS];
1119 else
1120 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121 id[ATA_ID_SECTORS];
1122 }
1123 }
1124
ata_tf_to_lba48(const struct ata_taskfile * tf)1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126 {
1127 u64 sectors = 0;
1128
1129 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132 sectors |= (tf->lbah & 0xff) << 16;
1133 sectors |= (tf->lbam & 0xff) << 8;
1134 sectors |= (tf->lbal & 0xff);
1135
1136 return sectors;
1137 }
1138
ata_tf_to_lba(const struct ata_taskfile * tf)1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140 {
1141 u64 sectors = 0;
1142
1143 sectors |= (tf->device & 0x0f) << 24;
1144 sectors |= (tf->lbah & 0xff) << 16;
1145 sectors |= (tf->lbam & 0xff) << 8;
1146 sectors |= (tf->lbal & 0xff);
1147
1148 return sectors;
1149 }
1150
1151 /**
1152 * ata_read_native_max_address - Read native max address
1153 * @dev: target device
1154 * @max_sectors: out parameter for the result native max address
1155 *
1156 * Perform an LBA48 or LBA28 native size query upon the device in
1157 * question.
1158 *
1159 * RETURNS:
1160 * 0 on success, -EACCES if command is aborted by the drive.
1161 * -EIO on other errors.
1162 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164 {
1165 unsigned int err_mask;
1166 struct ata_taskfile tf;
1167 int lba48 = ata_id_has_lba48(dev->id);
1168
1169 ata_tf_init(dev, &tf);
1170
1171 /* always clear all address registers */
1172 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173
1174 if (lba48) {
1175 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176 tf.flags |= ATA_TFLAG_LBA48;
1177 } else
1178 tf.command = ATA_CMD_READ_NATIVE_MAX;
1179
1180 tf.protocol = ATA_PROT_NODATA;
1181 tf.device |= ATA_LBA;
1182
1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 if (err_mask) {
1185 ata_dev_warn(dev,
1186 "failed to read native max address (err_mask=0x%x)\n",
1187 err_mask);
1188 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1189 return -EACCES;
1190 return -EIO;
1191 }
1192
1193 if (lba48)
1194 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1195 else
1196 *max_sectors = ata_tf_to_lba(&tf) + 1;
1197 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198 (*max_sectors)--;
1199 return 0;
1200 }
1201
1202 /**
1203 * ata_set_max_sectors - Set max sectors
1204 * @dev: target device
1205 * @new_sectors: new max sectors value to set for the device
1206 *
1207 * Set max sectors of @dev to @new_sectors.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted or denied (due to
1211 * previous non-volatile SET_MAX) by the drive. -EIO on other
1212 * errors.
1213 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215 {
1216 unsigned int err_mask;
1217 struct ata_taskfile tf;
1218 int lba48 = ata_id_has_lba48(dev->id);
1219
1220 new_sectors--;
1221
1222 ata_tf_init(dev, &tf);
1223
1224 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225
1226 if (lba48) {
1227 tf.command = ATA_CMD_SET_MAX_EXT;
1228 tf.flags |= ATA_TFLAG_LBA48;
1229
1230 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233 } else {
1234 tf.command = ATA_CMD_SET_MAX;
1235
1236 tf.device |= (new_sectors >> 24) & 0xf;
1237 }
1238
1239 tf.protocol = ATA_PROT_NODATA;
1240 tf.device |= ATA_LBA;
1241
1242 tf.lbal = (new_sectors >> 0) & 0xff;
1243 tf.lbam = (new_sectors >> 8) & 0xff;
1244 tf.lbah = (new_sectors >> 16) & 0xff;
1245
1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247 if (err_mask) {
1248 ata_dev_warn(dev,
1249 "failed to set max address (err_mask=0x%x)\n",
1250 err_mask);
1251 if (err_mask == AC_ERR_DEV &&
1252 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1253 return -EACCES;
1254 return -EIO;
1255 }
1256
1257 return 0;
1258 }
1259
1260 /**
1261 * ata_hpa_resize - Resize a device with an HPA set
1262 * @dev: Device to resize
1263 *
1264 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265 * it if required to the full size of the media. The caller must check
1266 * the drive has the HPA feature set enabled.
1267 *
1268 * RETURNS:
1269 * 0 on success, -errno on failure.
1270 */
ata_hpa_resize(struct ata_device * dev)1271 static int ata_hpa_resize(struct ata_device *dev)
1272 {
1273 bool print_info = ata_dev_print_info(dev);
1274 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275 u64 sectors = ata_id_n_sectors(dev->id);
1276 u64 native_sectors;
1277 int rc;
1278
1279 /* do we need to do it? */
1280 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283 return 0;
1284
1285 /* read native max address */
1286 rc = ata_read_native_max_address(dev, &native_sectors);
1287 if (rc) {
1288 /* If device aborted the command or HPA isn't going to
1289 * be unlocked, skip HPA resizing.
1290 */
1291 if (rc == -EACCES || !unlock_hpa) {
1292 ata_dev_warn(dev,
1293 "HPA support seems broken, skipping HPA handling\n");
1294 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295
1296 /* we can continue if device aborted the command */
1297 if (rc == -EACCES)
1298 rc = 0;
1299 }
1300
1301 return rc;
1302 }
1303 dev->n_native_sectors = native_sectors;
1304
1305 /* nothing to do? */
1306 if (native_sectors <= sectors || !unlock_hpa) {
1307 if (!print_info || native_sectors == sectors)
1308 return 0;
1309
1310 if (native_sectors > sectors)
1311 ata_dev_info(dev,
1312 "HPA detected: current %llu, native %llu\n",
1313 (unsigned long long)sectors,
1314 (unsigned long long)native_sectors);
1315 else if (native_sectors < sectors)
1316 ata_dev_warn(dev,
1317 "native sectors (%llu) is smaller than sectors (%llu)\n",
1318 (unsigned long long)native_sectors,
1319 (unsigned long long)sectors);
1320 return 0;
1321 }
1322
1323 /* let's unlock HPA */
1324 rc = ata_set_max_sectors(dev, native_sectors);
1325 if (rc == -EACCES) {
1326 /* if device aborted the command, skip HPA resizing */
1327 ata_dev_warn(dev,
1328 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329 (unsigned long long)sectors,
1330 (unsigned long long)native_sectors);
1331 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332 return 0;
1333 } else if (rc)
1334 return rc;
1335
1336 /* re-read IDENTIFY data */
1337 rc = ata_dev_reread_id(dev, 0);
1338 if (rc) {
1339 ata_dev_err(dev,
1340 "failed to re-read IDENTIFY data after HPA resizing\n");
1341 return rc;
1342 }
1343
1344 if (print_info) {
1345 u64 new_sectors = ata_id_n_sectors(dev->id);
1346 ata_dev_info(dev,
1347 "HPA unlocked: %llu -> %llu, native %llu\n",
1348 (unsigned long long)sectors,
1349 (unsigned long long)new_sectors,
1350 (unsigned long long)native_sectors);
1351 }
1352
1353 return 0;
1354 }
1355
1356 /**
1357 * ata_dump_id - IDENTIFY DEVICE info debugging output
1358 * @id: IDENTIFY DEVICE page to dump
1359 *
1360 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1361 * page.
1362 *
1363 * LOCKING:
1364 * caller.
1365 */
1366
ata_dump_id(const u16 * id)1367 static inline void ata_dump_id(const u16 *id)
1368 {
1369 DPRINTK("49==0x%04x "
1370 "53==0x%04x "
1371 "63==0x%04x "
1372 "64==0x%04x "
1373 "75==0x%04x \n",
1374 id[49],
1375 id[53],
1376 id[63],
1377 id[64],
1378 id[75]);
1379 DPRINTK("80==0x%04x "
1380 "81==0x%04x "
1381 "82==0x%04x "
1382 "83==0x%04x "
1383 "84==0x%04x \n",
1384 id[80],
1385 id[81],
1386 id[82],
1387 id[83],
1388 id[84]);
1389 DPRINTK("88==0x%04x "
1390 "93==0x%04x\n",
1391 id[88],
1392 id[93]);
1393 }
1394
1395 /**
1396 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397 * @id: IDENTIFY data to compute xfer mask from
1398 *
1399 * Compute the xfermask for this device. This is not as trivial
1400 * as it seems if we must consider early devices correctly.
1401 *
1402 * FIXME: pre IDE drive timing (do we care ?).
1403 *
1404 * LOCKING:
1405 * None.
1406 *
1407 * RETURNS:
1408 * Computed xfermask
1409 */
ata_id_xfermask(const u16 * id)1410 unsigned long ata_id_xfermask(const u16 *id)
1411 {
1412 unsigned long pio_mask, mwdma_mask, udma_mask;
1413
1414 /* Usual case. Word 53 indicates word 64 is valid */
1415 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417 pio_mask <<= 3;
1418 pio_mask |= 0x7;
1419 } else {
1420 /* If word 64 isn't valid then Word 51 high byte holds
1421 * the PIO timing number for the maximum. Turn it into
1422 * a mask.
1423 */
1424 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425 if (mode < 5) /* Valid PIO range */
1426 pio_mask = (2 << mode) - 1;
1427 else
1428 pio_mask = 1;
1429
1430 /* But wait.. there's more. Design your standards by
1431 * committee and you too can get a free iordy field to
1432 * process. However its the speeds not the modes that
1433 * are supported... Note drivers using the timing API
1434 * will get this right anyway
1435 */
1436 }
1437
1438 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439
1440 if (ata_id_is_cfa(id)) {
1441 /*
1442 * Process compact flash extended modes
1443 */
1444 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446
1447 if (pio)
1448 pio_mask |= (1 << 5);
1449 if (pio > 1)
1450 pio_mask |= (1 << 6);
1451 if (dma)
1452 mwdma_mask |= (1 << 3);
1453 if (dma > 1)
1454 mwdma_mask |= (1 << 4);
1455 }
1456
1457 udma_mask = 0;
1458 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460
1461 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462 }
1463 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464
ata_qc_complete_internal(struct ata_queued_cmd * qc)1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466 {
1467 struct completion *waiting = qc->private_data;
1468
1469 complete(waiting);
1470 }
1471
1472 /**
1473 * ata_exec_internal_sg - execute libata internal command
1474 * @dev: Device to which the command is sent
1475 * @tf: Taskfile registers for the command and the result
1476 * @cdb: CDB for packet command
1477 * @dma_dir: Data transfer direction of the command
1478 * @sgl: sg list for the data buffer of the command
1479 * @n_elem: Number of sg entries
1480 * @timeout: Timeout in msecs (0 for default)
1481 *
1482 * Executes libata internal command with timeout. @tf contains
1483 * command on entry and result on return. Timeout and error
1484 * conditions are reported via return value. No recovery action
1485 * is taken after a command times out. It's caller's duty to
1486 * clean up after timeout.
1487 *
1488 * LOCKING:
1489 * None. Should be called with kernel context, might sleep.
1490 *
1491 * RETURNS:
1492 * Zero on success, AC_ERR_* mask on failure
1493 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1494 unsigned ata_exec_internal_sg(struct ata_device *dev,
1495 struct ata_taskfile *tf, const u8 *cdb,
1496 int dma_dir, struct scatterlist *sgl,
1497 unsigned int n_elem, unsigned long timeout)
1498 {
1499 struct ata_link *link = dev->link;
1500 struct ata_port *ap = link->ap;
1501 u8 command = tf->command;
1502 int auto_timeout = 0;
1503 struct ata_queued_cmd *qc;
1504 unsigned int preempted_tag;
1505 u32 preempted_sactive;
1506 u64 preempted_qc_active;
1507 int preempted_nr_active_links;
1508 DECLARE_COMPLETION_ONSTACK(wait);
1509 unsigned long flags;
1510 unsigned int err_mask;
1511 int rc;
1512
1513 spin_lock_irqsave(ap->lock, flags);
1514
1515 /* no internal command while frozen */
1516 if (ap->pflags & ATA_PFLAG_FROZEN) {
1517 spin_unlock_irqrestore(ap->lock, flags);
1518 return AC_ERR_SYSTEM;
1519 }
1520
1521 /* initialize internal qc */
1522 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523
1524 qc->tag = ATA_TAG_INTERNAL;
1525 qc->hw_tag = 0;
1526 qc->scsicmd = NULL;
1527 qc->ap = ap;
1528 qc->dev = dev;
1529 ata_qc_reinit(qc);
1530
1531 preempted_tag = link->active_tag;
1532 preempted_sactive = link->sactive;
1533 preempted_qc_active = ap->qc_active;
1534 preempted_nr_active_links = ap->nr_active_links;
1535 link->active_tag = ATA_TAG_POISON;
1536 link->sactive = 0;
1537 ap->qc_active = 0;
1538 ap->nr_active_links = 0;
1539
1540 /* prepare & issue qc */
1541 qc->tf = *tf;
1542 if (cdb)
1543 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544
1545 /* some SATA bridges need us to indicate data xfer direction */
1546 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547 dma_dir == DMA_FROM_DEVICE)
1548 qc->tf.feature |= ATAPI_DMADIR;
1549
1550 qc->flags |= ATA_QCFLAG_RESULT_TF;
1551 qc->dma_dir = dma_dir;
1552 if (dma_dir != DMA_NONE) {
1553 unsigned int i, buflen = 0;
1554 struct scatterlist *sg;
1555
1556 for_each_sg(sgl, sg, n_elem, i)
1557 buflen += sg->length;
1558
1559 ata_sg_init(qc, sgl, n_elem);
1560 qc->nbytes = buflen;
1561 }
1562
1563 qc->private_data = &wait;
1564 qc->complete_fn = ata_qc_complete_internal;
1565
1566 ata_qc_issue(qc);
1567
1568 spin_unlock_irqrestore(ap->lock, flags);
1569
1570 if (!timeout) {
1571 if (ata_probe_timeout)
1572 timeout = ata_probe_timeout * 1000;
1573 else {
1574 timeout = ata_internal_cmd_timeout(dev, command);
1575 auto_timeout = 1;
1576 }
1577 }
1578
1579 if (ap->ops->error_handler)
1580 ata_eh_release(ap);
1581
1582 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583
1584 if (ap->ops->error_handler)
1585 ata_eh_acquire(ap);
1586
1587 ata_sff_flush_pio_task(ap);
1588
1589 if (!rc) {
1590 spin_lock_irqsave(ap->lock, flags);
1591
1592 /* We're racing with irq here. If we lose, the
1593 * following test prevents us from completing the qc
1594 * twice. If we win, the port is frozen and will be
1595 * cleaned up by ->post_internal_cmd().
1596 */
1597 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598 qc->err_mask |= AC_ERR_TIMEOUT;
1599
1600 if (ap->ops->error_handler)
1601 ata_port_freeze(ap);
1602 else
1603 ata_qc_complete(qc);
1604
1605 if (ata_msg_warn(ap))
1606 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607 command);
1608 }
1609
1610 spin_unlock_irqrestore(ap->lock, flags);
1611 }
1612
1613 /* do post_internal_cmd */
1614 if (ap->ops->post_internal_cmd)
1615 ap->ops->post_internal_cmd(qc);
1616
1617 /* perform minimal error analysis */
1618 if (qc->flags & ATA_QCFLAG_FAILED) {
1619 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1620 qc->err_mask |= AC_ERR_DEV;
1621
1622 if (!qc->err_mask)
1623 qc->err_mask |= AC_ERR_OTHER;
1624
1625 if (qc->err_mask & ~AC_ERR_OTHER)
1626 qc->err_mask &= ~AC_ERR_OTHER;
1627 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628 qc->result_tf.status |= ATA_SENSE;
1629 }
1630
1631 /* finish up */
1632 spin_lock_irqsave(ap->lock, flags);
1633
1634 *tf = qc->result_tf;
1635 err_mask = qc->err_mask;
1636
1637 ata_qc_free(qc);
1638 link->active_tag = preempted_tag;
1639 link->sactive = preempted_sactive;
1640 ap->qc_active = preempted_qc_active;
1641 ap->nr_active_links = preempted_nr_active_links;
1642
1643 spin_unlock_irqrestore(ap->lock, flags);
1644
1645 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646 ata_internal_cmd_timed_out(dev, command);
1647
1648 return err_mask;
1649 }
1650
1651 /**
1652 * ata_exec_internal - execute libata internal command
1653 * @dev: Device to which the command is sent
1654 * @tf: Taskfile registers for the command and the result
1655 * @cdb: CDB for packet command
1656 * @dma_dir: Data transfer direction of the command
1657 * @buf: Data buffer of the command
1658 * @buflen: Length of data buffer
1659 * @timeout: Timeout in msecs (0 for default)
1660 *
1661 * Wrapper around ata_exec_internal_sg() which takes simple
1662 * buffer instead of sg list.
1663 *
1664 * LOCKING:
1665 * None. Should be called with kernel context, might sleep.
1666 *
1667 * RETURNS:
1668 * Zero on success, AC_ERR_* mask on failure
1669 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1670 unsigned ata_exec_internal(struct ata_device *dev,
1671 struct ata_taskfile *tf, const u8 *cdb,
1672 int dma_dir, void *buf, unsigned int buflen,
1673 unsigned long timeout)
1674 {
1675 struct scatterlist *psg = NULL, sg;
1676 unsigned int n_elem = 0;
1677
1678 if (dma_dir != DMA_NONE) {
1679 WARN_ON(!buf);
1680 sg_init_one(&sg, buf, buflen);
1681 psg = &sg;
1682 n_elem++;
1683 }
1684
1685 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686 timeout);
1687 }
1688
1689 /**
1690 * ata_pio_need_iordy - check if iordy needed
1691 * @adev: ATA device
1692 *
1693 * Check if the current speed of the device requires IORDY. Used
1694 * by various controllers for chip configuration.
1695 */
ata_pio_need_iordy(const struct ata_device * adev)1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697 {
1698 /* Don't set IORDY if we're preparing for reset. IORDY may
1699 * lead to controller lock up on certain controllers if the
1700 * port is not occupied. See bko#11703 for details.
1701 */
1702 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703 return 0;
1704 /* Controller doesn't support IORDY. Probably a pointless
1705 * check as the caller should know this.
1706 */
1707 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708 return 0;
1709 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1710 if (ata_id_is_cfa(adev->id)
1711 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712 return 0;
1713 /* PIO3 and higher it is mandatory */
1714 if (adev->pio_mode > XFER_PIO_2)
1715 return 1;
1716 /* We turn it on when possible */
1717 if (ata_id_has_iordy(adev->id))
1718 return 1;
1719 return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722
1723 /**
1724 * ata_pio_mask_no_iordy - Return the non IORDY mask
1725 * @adev: ATA device
1726 *
1727 * Compute the highest mode possible if we are not using iordy. Return
1728 * -1 if no iordy mode is available.
1729 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731 {
1732 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1734 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735 /* Is the speed faster than the drive allows non IORDY ? */
1736 if (pio) {
1737 /* This is cycle times not frequency - watch the logic! */
1738 if (pio > 240) /* PIO2 is 240nS per cycle */
1739 return 3 << ATA_SHIFT_PIO;
1740 return 7 << ATA_SHIFT_PIO;
1741 }
1742 }
1743 return 3 << ATA_SHIFT_PIO;
1744 }
1745
1746 /**
1747 * ata_do_dev_read_id - default ID read method
1748 * @dev: device
1749 * @tf: proposed taskfile
1750 * @id: data buffer
1751 *
1752 * Issue the identify taskfile and hand back the buffer containing
1753 * identify data. For some RAID controllers and for pre ATA devices
1754 * this function is wrapped or replaced by the driver
1755 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1756 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757 struct ata_taskfile *tf, u16 *id)
1758 {
1759 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763
1764 /**
1765 * ata_dev_read_id - Read ID data from the specified device
1766 * @dev: target device
1767 * @p_class: pointer to class of the target device (may be changed)
1768 * @flags: ATA_READID_* flags
1769 * @id: buffer to read IDENTIFY data into
1770 *
1771 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1772 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1774 * for pre-ATA4 drives.
1775 *
1776 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777 * now we abort if we hit that case.
1778 *
1779 * LOCKING:
1780 * Kernel thread context (may sleep)
1781 *
1782 * RETURNS:
1783 * 0 on success, -errno otherwise.
1784 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786 unsigned int flags, u16 *id)
1787 {
1788 struct ata_port *ap = dev->link->ap;
1789 unsigned int class = *p_class;
1790 struct ata_taskfile tf;
1791 unsigned int err_mask = 0;
1792 const char *reason;
1793 bool is_semb = class == ATA_DEV_SEMB;
1794 int may_fallback = 1, tried_spinup = 0;
1795 int rc;
1796
1797 if (ata_msg_ctl(ap))
1798 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799
1800 retry:
1801 ata_tf_init(dev, &tf);
1802
1803 switch (class) {
1804 case ATA_DEV_SEMB:
1805 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1806 fallthrough;
1807 case ATA_DEV_ATA:
1808 case ATA_DEV_ZAC:
1809 tf.command = ATA_CMD_ID_ATA;
1810 break;
1811 case ATA_DEV_ATAPI:
1812 tf.command = ATA_CMD_ID_ATAPI;
1813 break;
1814 default:
1815 rc = -ENODEV;
1816 reason = "unsupported class";
1817 goto err_out;
1818 }
1819
1820 tf.protocol = ATA_PROT_PIO;
1821
1822 /* Some devices choke if TF registers contain garbage. Make
1823 * sure those are properly initialized.
1824 */
1825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826
1827 /* Device presence detection is unreliable on some
1828 * controllers. Always poll IDENTIFY if available.
1829 */
1830 tf.flags |= ATA_TFLAG_POLLING;
1831
1832 if (ap->ops->read_id)
1833 err_mask = ap->ops->read_id(dev, &tf, id);
1834 else
1835 err_mask = ata_do_dev_read_id(dev, &tf, id);
1836
1837 if (err_mask) {
1838 if (err_mask & AC_ERR_NODEV_HINT) {
1839 ata_dev_dbg(dev, "NODEV after polling detection\n");
1840 return -ENOENT;
1841 }
1842
1843 if (is_semb) {
1844 ata_dev_info(dev,
1845 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846 /* SEMB is not supported yet */
1847 *p_class = ATA_DEV_SEMB_UNSUP;
1848 return 0;
1849 }
1850
1851 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1852 /* Device or controller might have reported
1853 * the wrong device class. Give a shot at the
1854 * other IDENTIFY if the current one is
1855 * aborted by the device.
1856 */
1857 if (may_fallback) {
1858 may_fallback = 0;
1859
1860 if (class == ATA_DEV_ATA)
1861 class = ATA_DEV_ATAPI;
1862 else
1863 class = ATA_DEV_ATA;
1864 goto retry;
1865 }
1866
1867 /* Control reaches here iff the device aborted
1868 * both flavors of IDENTIFYs which happens
1869 * sometimes with phantom devices.
1870 */
1871 ata_dev_dbg(dev,
1872 "both IDENTIFYs aborted, assuming NODEV\n");
1873 return -ENOENT;
1874 }
1875
1876 rc = -EIO;
1877 reason = "I/O error";
1878 goto err_out;
1879 }
1880
1881 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883 "class=%d may_fallback=%d tried_spinup=%d\n",
1884 class, may_fallback, tried_spinup);
1885 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887 }
1888
1889 /* Falling back doesn't make sense if ID data was read
1890 * successfully at least once.
1891 */
1892 may_fallback = 0;
1893
1894 swap_buf_le16(id, ATA_ID_WORDS);
1895
1896 /* sanity check */
1897 rc = -EINVAL;
1898 reason = "device reports invalid type";
1899
1900 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902 goto err_out;
1903 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904 ata_id_is_ata(id)) {
1905 ata_dev_dbg(dev,
1906 "host indicates ignore ATA devices, ignored\n");
1907 return -ENOENT;
1908 }
1909 } else {
1910 if (ata_id_is_ata(id))
1911 goto err_out;
1912 }
1913
1914 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915 tried_spinup = 1;
1916 /*
1917 * Drive powered-up in standby mode, and requires a specific
1918 * SET_FEATURES spin-up subcommand before it will accept
1919 * anything other than the original IDENTIFY command.
1920 */
1921 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922 if (err_mask && id[2] != 0x738c) {
1923 rc = -EIO;
1924 reason = "SPINUP failed";
1925 goto err_out;
1926 }
1927 /*
1928 * If the drive initially returned incomplete IDENTIFY info,
1929 * we now must reissue the IDENTIFY command.
1930 */
1931 if (id[2] == 0x37c8)
1932 goto retry;
1933 }
1934
1935 if ((flags & ATA_READID_POSTRESET) &&
1936 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937 /*
1938 * The exact sequence expected by certain pre-ATA4 drives is:
1939 * SRST RESET
1940 * IDENTIFY (optional in early ATA)
1941 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942 * anything else..
1943 * Some drives were very specific about that exact sequence.
1944 *
1945 * Note that ATA4 says lba is mandatory so the second check
1946 * should never trigger.
1947 */
1948 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950 if (err_mask) {
1951 rc = -EIO;
1952 reason = "INIT_DEV_PARAMS failed";
1953 goto err_out;
1954 }
1955
1956 /* current CHS translation info (id[53-58]) might be
1957 * changed. reread the identify device info.
1958 */
1959 flags &= ~ATA_READID_POSTRESET;
1960 goto retry;
1961 }
1962 }
1963
1964 *p_class = class;
1965
1966 return 0;
1967
1968 err_out:
1969 if (ata_msg_warn(ap))
1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 reason, err_mask);
1972 return rc;
1973 }
1974
1975 /**
1976 * ata_read_log_page - read a specific log page
1977 * @dev: target device
1978 * @log: log to read
1979 * @page: page to read
1980 * @buf: buffer to store read page
1981 * @sectors: number of sectors to read
1982 *
1983 * Read log page using READ_LOG_EXT command.
1984 *
1985 * LOCKING:
1986 * Kernel thread context (may sleep).
1987 *
1988 * RETURNS:
1989 * 0 on success, AC_ERR_* mask otherwise.
1990 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 u8 page, void *buf, unsigned int sectors)
1993 {
1994 unsigned long ap_flags = dev->link->ap->flags;
1995 struct ata_taskfile tf;
1996 unsigned int err_mask;
1997 bool dma = false;
1998
1999 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000
2001 /*
2002 * Return error without actually issuing the command on controllers
2003 * which e.g. lockup on a read log page.
2004 */
2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 return AC_ERR_DEV;
2007
2008 retry:
2009 ata_tf_init(dev, &tf);
2010 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 tf.protocol = ATA_PROT_DMA;
2014 dma = true;
2015 } else {
2016 tf.command = ATA_CMD_READ_LOG_EXT;
2017 tf.protocol = ATA_PROT_PIO;
2018 dma = false;
2019 }
2020 tf.lbal = log;
2021 tf.lbam = page;
2022 tf.nsect = sectors;
2023 tf.hob_nsect = sectors >> 8;
2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025
2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 buf, sectors * ATA_SECT_SIZE, 0);
2028
2029 if (err_mask) {
2030 if (dma) {
2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 goto retry;
2033 }
2034 ata_dev_err(dev,
2035 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2036 (unsigned int)log, (unsigned int)page, err_mask);
2037 }
2038
2039 return err_mask;
2040 }
2041
ata_log_supported(struct ata_device * dev,u8 log)2042 static bool ata_log_supported(struct ata_device *dev, u8 log)
2043 {
2044 struct ata_port *ap = dev->link->ap;
2045
2046 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2047 return false;
2048 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2049 }
2050
ata_identify_page_supported(struct ata_device * dev,u8 page)2051 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2052 {
2053 struct ata_port *ap = dev->link->ap;
2054 unsigned int err, i;
2055
2056 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2057 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2058 return false;
2059 }
2060
2061 /*
2062 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2063 * supported.
2064 */
2065 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2066 1);
2067 if (err)
2068 return false;
2069
2070 for (i = 0; i < ap->sector_buf[8]; i++) {
2071 if (ap->sector_buf[9 + i] == page)
2072 return true;
2073 }
2074
2075 return false;
2076 }
2077
ata_do_link_spd_horkage(struct ata_device * dev)2078 static int ata_do_link_spd_horkage(struct ata_device *dev)
2079 {
2080 struct ata_link *plink = ata_dev_phys_link(dev);
2081 u32 target, target_limit;
2082
2083 if (!sata_scr_valid(plink))
2084 return 0;
2085
2086 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2087 target = 1;
2088 else
2089 return 0;
2090
2091 target_limit = (1 << target) - 1;
2092
2093 /* if already on stricter limit, no need to push further */
2094 if (plink->sata_spd_limit <= target_limit)
2095 return 0;
2096
2097 plink->sata_spd_limit = target_limit;
2098
2099 /* Request another EH round by returning -EAGAIN if link is
2100 * going faster than the target speed. Forward progress is
2101 * guaranteed by setting sata_spd_limit to target_limit above.
2102 */
2103 if (plink->sata_spd > target) {
2104 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2105 sata_spd_string(target));
2106 return -EAGAIN;
2107 }
2108 return 0;
2109 }
2110
ata_dev_knobble(struct ata_device * dev)2111 static inline u8 ata_dev_knobble(struct ata_device *dev)
2112 {
2113 struct ata_port *ap = dev->link->ap;
2114
2115 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2116 return 0;
2117
2118 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2119 }
2120
ata_dev_config_ncq_send_recv(struct ata_device * dev)2121 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2122 {
2123 struct ata_port *ap = dev->link->ap;
2124 unsigned int err_mask;
2125
2126 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2127 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2128 return;
2129 }
2130 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2131 0, ap->sector_buf, 1);
2132 if (!err_mask) {
2133 u8 *cmds = dev->ncq_send_recv_cmds;
2134
2135 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2136 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2137
2138 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2139 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2140 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2141 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2142 }
2143 }
2144 }
2145
ata_dev_config_ncq_non_data(struct ata_device * dev)2146 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2147 {
2148 struct ata_port *ap = dev->link->ap;
2149 unsigned int err_mask;
2150
2151 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2152 ata_dev_warn(dev,
2153 "NCQ Send/Recv Log not supported\n");
2154 return;
2155 }
2156 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2157 0, ap->sector_buf, 1);
2158 if (!err_mask) {
2159 u8 *cmds = dev->ncq_non_data_cmds;
2160
2161 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2162 }
2163 }
2164
ata_dev_config_ncq_prio(struct ata_device * dev)2165 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2166 {
2167 struct ata_port *ap = dev->link->ap;
2168 unsigned int err_mask;
2169
2170 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2171 return;
2172
2173 err_mask = ata_read_log_page(dev,
2174 ATA_LOG_IDENTIFY_DEVICE,
2175 ATA_LOG_SATA_SETTINGS,
2176 ap->sector_buf,
2177 1);
2178 if (err_mask)
2179 goto not_supported;
2180
2181 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2182 goto not_supported;
2183
2184 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2185
2186 return;
2187
2188 not_supported:
2189 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2190 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2191 }
2192
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2193 static bool ata_dev_check_adapter(struct ata_device *dev,
2194 unsigned short vendor_id)
2195 {
2196 struct pci_dev *pcidev = NULL;
2197 struct device *parent_dev = NULL;
2198
2199 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2200 parent_dev = parent_dev->parent) {
2201 if (dev_is_pci(parent_dev)) {
2202 pcidev = to_pci_dev(parent_dev);
2203 if (pcidev->vendor == vendor_id)
2204 return true;
2205 break;
2206 }
2207 }
2208
2209 return false;
2210 }
2211
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2212 static int ata_dev_config_ncq(struct ata_device *dev,
2213 char *desc, size_t desc_sz)
2214 {
2215 struct ata_port *ap = dev->link->ap;
2216 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2217 unsigned int err_mask;
2218 char *aa_desc = "";
2219
2220 if (!ata_id_has_ncq(dev->id)) {
2221 desc[0] = '\0';
2222 return 0;
2223 }
2224 if (!IS_ENABLED(CONFIG_SATA_HOST))
2225 return 0;
2226 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2227 snprintf(desc, desc_sz, "NCQ (not used)");
2228 return 0;
2229 }
2230
2231 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2232 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2233 snprintf(desc, desc_sz, "NCQ (not used)");
2234 return 0;
2235 }
2236
2237 if (ap->flags & ATA_FLAG_NCQ) {
2238 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2239 dev->flags |= ATA_DFLAG_NCQ;
2240 }
2241
2242 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2243 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2244 ata_id_has_fpdma_aa(dev->id)) {
2245 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2246 SATA_FPDMA_AA);
2247 if (err_mask) {
2248 ata_dev_err(dev,
2249 "failed to enable AA (error_mask=0x%x)\n",
2250 err_mask);
2251 if (err_mask != AC_ERR_DEV) {
2252 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2253 return -EIO;
2254 }
2255 } else
2256 aa_desc = ", AA";
2257 }
2258
2259 if (hdepth >= ddepth)
2260 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2261 else
2262 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2263 ddepth, aa_desc);
2264
2265 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2266 if (ata_id_has_ncq_send_and_recv(dev->id))
2267 ata_dev_config_ncq_send_recv(dev);
2268 if (ata_id_has_ncq_non_data(dev->id))
2269 ata_dev_config_ncq_non_data(dev);
2270 if (ata_id_has_ncq_prio(dev->id))
2271 ata_dev_config_ncq_prio(dev);
2272 }
2273
2274 return 0;
2275 }
2276
ata_dev_config_sense_reporting(struct ata_device * dev)2277 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2278 {
2279 unsigned int err_mask;
2280
2281 if (!ata_id_has_sense_reporting(dev->id))
2282 return;
2283
2284 if (ata_id_sense_reporting_enabled(dev->id))
2285 return;
2286
2287 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2288 if (err_mask) {
2289 ata_dev_dbg(dev,
2290 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2291 err_mask);
2292 }
2293 }
2294
ata_dev_config_zac(struct ata_device * dev)2295 static void ata_dev_config_zac(struct ata_device *dev)
2296 {
2297 struct ata_port *ap = dev->link->ap;
2298 unsigned int err_mask;
2299 u8 *identify_buf = ap->sector_buf;
2300
2301 dev->zac_zones_optimal_open = U32_MAX;
2302 dev->zac_zones_optimal_nonseq = U32_MAX;
2303 dev->zac_zones_max_open = U32_MAX;
2304
2305 /*
2306 * Always set the 'ZAC' flag for Host-managed devices.
2307 */
2308 if (dev->class == ATA_DEV_ZAC)
2309 dev->flags |= ATA_DFLAG_ZAC;
2310 else if (ata_id_zoned_cap(dev->id) == 0x01)
2311 /*
2312 * Check for host-aware devices.
2313 */
2314 dev->flags |= ATA_DFLAG_ZAC;
2315
2316 if (!(dev->flags & ATA_DFLAG_ZAC))
2317 return;
2318
2319 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2320 ata_dev_warn(dev,
2321 "ATA Zoned Information Log not supported\n");
2322 return;
2323 }
2324
2325 /*
2326 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2327 */
2328 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2329 ATA_LOG_ZONED_INFORMATION,
2330 identify_buf, 1);
2331 if (!err_mask) {
2332 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2333
2334 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2335 if ((zoned_cap >> 63))
2336 dev->zac_zoned_cap = (zoned_cap & 1);
2337 opt_open = get_unaligned_le64(&identify_buf[24]);
2338 if ((opt_open >> 63))
2339 dev->zac_zones_optimal_open = (u32)opt_open;
2340 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2341 if ((opt_nonseq >> 63))
2342 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2343 max_open = get_unaligned_le64(&identify_buf[40]);
2344 if ((max_open >> 63))
2345 dev->zac_zones_max_open = (u32)max_open;
2346 }
2347 }
2348
ata_dev_config_trusted(struct ata_device * dev)2349 static void ata_dev_config_trusted(struct ata_device *dev)
2350 {
2351 struct ata_port *ap = dev->link->ap;
2352 u64 trusted_cap;
2353 unsigned int err;
2354
2355 if (!ata_id_has_trusted(dev->id))
2356 return;
2357
2358 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2359 ata_dev_warn(dev,
2360 "Security Log not supported\n");
2361 return;
2362 }
2363
2364 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2365 ap->sector_buf, 1);
2366 if (err)
2367 return;
2368
2369 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2370 if (!(trusted_cap & (1ULL << 63))) {
2371 ata_dev_dbg(dev,
2372 "Trusted Computing capability qword not valid!\n");
2373 return;
2374 }
2375
2376 if (trusted_cap & (1 << 0))
2377 dev->flags |= ATA_DFLAG_TRUSTED;
2378 }
2379
ata_dev_config_lba(struct ata_device * dev)2380 static int ata_dev_config_lba(struct ata_device *dev)
2381 {
2382 struct ata_port *ap = dev->link->ap;
2383 const u16 *id = dev->id;
2384 const char *lba_desc;
2385 char ncq_desc[32];
2386 int ret;
2387
2388 dev->flags |= ATA_DFLAG_LBA;
2389
2390 if (ata_id_has_lba48(id)) {
2391 lba_desc = "LBA48";
2392 dev->flags |= ATA_DFLAG_LBA48;
2393 if (dev->n_sectors >= (1UL << 28) &&
2394 ata_id_has_flush_ext(id))
2395 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2396 } else {
2397 lba_desc = "LBA";
2398 }
2399
2400 /* config NCQ */
2401 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2402
2403 /* print device info to dmesg */
2404 if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2405 ata_dev_info(dev,
2406 "%llu sectors, multi %u: %s %s\n",
2407 (unsigned long long)dev->n_sectors,
2408 dev->multi_count, lba_desc, ncq_desc);
2409
2410 return ret;
2411 }
2412
ata_dev_config_chs(struct ata_device * dev)2413 static void ata_dev_config_chs(struct ata_device *dev)
2414 {
2415 struct ata_port *ap = dev->link->ap;
2416 const u16 *id = dev->id;
2417
2418 if (ata_id_current_chs_valid(id)) {
2419 /* Current CHS translation is valid. */
2420 dev->cylinders = id[54];
2421 dev->heads = id[55];
2422 dev->sectors = id[56];
2423 } else {
2424 /* Default translation */
2425 dev->cylinders = id[1];
2426 dev->heads = id[3];
2427 dev->sectors = id[6];
2428 }
2429
2430 /* print device info to dmesg */
2431 if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2432 ata_dev_info(dev,
2433 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2434 (unsigned long long)dev->n_sectors,
2435 dev->multi_count, dev->cylinders,
2436 dev->heads, dev->sectors);
2437 }
2438
ata_dev_config_devslp(struct ata_device * dev)2439 static void ata_dev_config_devslp(struct ata_device *dev)
2440 {
2441 u8 *sata_setting = dev->link->ap->sector_buf;
2442 unsigned int err_mask;
2443 int i, j;
2444
2445 /*
2446 * Check device sleep capability. Get DevSlp timing variables
2447 * from SATA Settings page of Identify Device Data Log.
2448 */
2449 if (!ata_id_has_devslp(dev->id) ||
2450 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2451 return;
2452
2453 err_mask = ata_read_log_page(dev,
2454 ATA_LOG_IDENTIFY_DEVICE,
2455 ATA_LOG_SATA_SETTINGS,
2456 sata_setting, 1);
2457 if (err_mask)
2458 return;
2459
2460 dev->flags |= ATA_DFLAG_DEVSLP;
2461 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2462 j = ATA_LOG_DEVSLP_OFFSET + i;
2463 dev->devslp_timing[i] = sata_setting[j];
2464 }
2465 }
2466
ata_dev_print_features(struct ata_device * dev)2467 static void ata_dev_print_features(struct ata_device *dev)
2468 {
2469 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2470 return;
2471
2472 ata_dev_info(dev,
2473 "Features:%s%s%s%s%s\n",
2474 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2475 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2476 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2477 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2478 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "");
2479 }
2480
2481 /**
2482 * ata_dev_configure - Configure the specified ATA/ATAPI device
2483 * @dev: Target device to configure
2484 *
2485 * Configure @dev according to @dev->id. Generic and low-level
2486 * driver specific fixups are also applied.
2487 *
2488 * LOCKING:
2489 * Kernel thread context (may sleep)
2490 *
2491 * RETURNS:
2492 * 0 on success, -errno otherwise
2493 */
ata_dev_configure(struct ata_device * dev)2494 int ata_dev_configure(struct ata_device *dev)
2495 {
2496 struct ata_port *ap = dev->link->ap;
2497 bool print_info = ata_dev_print_info(dev);
2498 const u16 *id = dev->id;
2499 unsigned long xfer_mask;
2500 unsigned int err_mask;
2501 char revbuf[7]; /* XYZ-99\0 */
2502 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2503 char modelbuf[ATA_ID_PROD_LEN+1];
2504 int rc;
2505
2506 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2507 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2508 return 0;
2509 }
2510
2511 if (ata_msg_probe(ap))
2512 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2513
2514 /* set horkage */
2515 dev->horkage |= ata_dev_blacklisted(dev);
2516 ata_force_horkage(dev);
2517
2518 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2519 ata_dev_info(dev, "unsupported device, disabling\n");
2520 ata_dev_disable(dev);
2521 return 0;
2522 }
2523
2524 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2525 dev->class == ATA_DEV_ATAPI) {
2526 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2527 atapi_enabled ? "not supported with this driver"
2528 : "disabled");
2529 ata_dev_disable(dev);
2530 return 0;
2531 }
2532
2533 rc = ata_do_link_spd_horkage(dev);
2534 if (rc)
2535 return rc;
2536
2537 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2538 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2539 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2540 dev->horkage |= ATA_HORKAGE_NOLPM;
2541
2542 if (ap->flags & ATA_FLAG_NO_LPM)
2543 dev->horkage |= ATA_HORKAGE_NOLPM;
2544
2545 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2546 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2547 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2548 }
2549
2550 /* let ACPI work its magic */
2551 rc = ata_acpi_on_devcfg(dev);
2552 if (rc)
2553 return rc;
2554
2555 /* massage HPA, do it early as it might change IDENTIFY data */
2556 rc = ata_hpa_resize(dev);
2557 if (rc)
2558 return rc;
2559
2560 /* print device capabilities */
2561 if (ata_msg_probe(ap))
2562 ata_dev_dbg(dev,
2563 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2564 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2565 __func__,
2566 id[49], id[82], id[83], id[84],
2567 id[85], id[86], id[87], id[88]);
2568
2569 /* initialize to-be-configured parameters */
2570 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2571 dev->max_sectors = 0;
2572 dev->cdb_len = 0;
2573 dev->n_sectors = 0;
2574 dev->cylinders = 0;
2575 dev->heads = 0;
2576 dev->sectors = 0;
2577 dev->multi_count = 0;
2578
2579 /*
2580 * common ATA, ATAPI feature tests
2581 */
2582
2583 /* find max transfer mode; for printk only */
2584 xfer_mask = ata_id_xfermask(id);
2585
2586 if (ata_msg_probe(ap))
2587 ata_dump_id(id);
2588
2589 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2590 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2591 sizeof(fwrevbuf));
2592
2593 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2594 sizeof(modelbuf));
2595
2596 /* ATA-specific feature tests */
2597 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2598 if (ata_id_is_cfa(id)) {
2599 /* CPRM may make this media unusable */
2600 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2601 ata_dev_warn(dev,
2602 "supports DRM functions and may not be fully accessible\n");
2603 snprintf(revbuf, 7, "CFA");
2604 } else {
2605 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2606 /* Warn the user if the device has TPM extensions */
2607 if (ata_id_has_tpm(id))
2608 ata_dev_warn(dev,
2609 "supports DRM functions and may not be fully accessible\n");
2610 }
2611
2612 dev->n_sectors = ata_id_n_sectors(id);
2613
2614 /* get current R/W Multiple count setting */
2615 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2616 unsigned int max = dev->id[47] & 0xff;
2617 unsigned int cnt = dev->id[59] & 0xff;
2618 /* only recognize/allow powers of two here */
2619 if (is_power_of_2(max) && is_power_of_2(cnt))
2620 if (cnt <= max)
2621 dev->multi_count = cnt;
2622 }
2623
2624 /* print device info to dmesg */
2625 if (ata_msg_drv(ap) && print_info)
2626 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2627 revbuf, modelbuf, fwrevbuf,
2628 ata_mode_string(xfer_mask));
2629
2630 if (ata_id_has_lba(id)) {
2631 rc = ata_dev_config_lba(dev);
2632 if (rc)
2633 return rc;
2634 } else {
2635 ata_dev_config_chs(dev);
2636 }
2637
2638 ata_dev_config_devslp(dev);
2639 ata_dev_config_sense_reporting(dev);
2640 ata_dev_config_zac(dev);
2641 ata_dev_config_trusted(dev);
2642 dev->cdb_len = 32;
2643
2644 if (ata_msg_drv(ap) && print_info)
2645 ata_dev_print_features(dev);
2646 }
2647
2648 /* ATAPI-specific feature tests */
2649 else if (dev->class == ATA_DEV_ATAPI) {
2650 const char *cdb_intr_string = "";
2651 const char *atapi_an_string = "";
2652 const char *dma_dir_string = "";
2653 u32 sntf;
2654
2655 rc = atapi_cdb_len(id);
2656 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2657 if (ata_msg_warn(ap))
2658 ata_dev_warn(dev, "unsupported CDB len\n");
2659 rc = -EINVAL;
2660 goto err_out_nosup;
2661 }
2662 dev->cdb_len = (unsigned int) rc;
2663
2664 /* Enable ATAPI AN if both the host and device have
2665 * the support. If PMP is attached, SNTF is required
2666 * to enable ATAPI AN to discern between PHY status
2667 * changed notifications and ATAPI ANs.
2668 */
2669 if (atapi_an &&
2670 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2671 (!sata_pmp_attached(ap) ||
2672 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2673 /* issue SET feature command to turn this on */
2674 err_mask = ata_dev_set_feature(dev,
2675 SETFEATURES_SATA_ENABLE, SATA_AN);
2676 if (err_mask)
2677 ata_dev_err(dev,
2678 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2679 err_mask);
2680 else {
2681 dev->flags |= ATA_DFLAG_AN;
2682 atapi_an_string = ", ATAPI AN";
2683 }
2684 }
2685
2686 if (ata_id_cdb_intr(dev->id)) {
2687 dev->flags |= ATA_DFLAG_CDB_INTR;
2688 cdb_intr_string = ", CDB intr";
2689 }
2690
2691 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2692 dev->flags |= ATA_DFLAG_DMADIR;
2693 dma_dir_string = ", DMADIR";
2694 }
2695
2696 if (ata_id_has_da(dev->id)) {
2697 dev->flags |= ATA_DFLAG_DA;
2698 zpodd_init(dev);
2699 }
2700
2701 /* print device info to dmesg */
2702 if (ata_msg_drv(ap) && print_info)
2703 ata_dev_info(dev,
2704 "ATAPI: %s, %s, max %s%s%s%s\n",
2705 modelbuf, fwrevbuf,
2706 ata_mode_string(xfer_mask),
2707 cdb_intr_string, atapi_an_string,
2708 dma_dir_string);
2709 }
2710
2711 /* determine max_sectors */
2712 dev->max_sectors = ATA_MAX_SECTORS;
2713 if (dev->flags & ATA_DFLAG_LBA48)
2714 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2715
2716 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2717 200 sectors */
2718 if (ata_dev_knobble(dev)) {
2719 if (ata_msg_drv(ap) && print_info)
2720 ata_dev_info(dev, "applying bridge limits\n");
2721 dev->udma_mask &= ATA_UDMA5;
2722 dev->max_sectors = ATA_MAX_SECTORS;
2723 }
2724
2725 if ((dev->class == ATA_DEV_ATAPI) &&
2726 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2727 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2728 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2729 }
2730
2731 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2732 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2733 dev->max_sectors);
2734
2735 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2736 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2737 dev->max_sectors);
2738
2739 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2740 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2741
2742 if (ap->ops->dev_config)
2743 ap->ops->dev_config(dev);
2744
2745 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2746 /* Let the user know. We don't want to disallow opens for
2747 rescue purposes, or in case the vendor is just a blithering
2748 idiot. Do this after the dev_config call as some controllers
2749 with buggy firmware may want to avoid reporting false device
2750 bugs */
2751
2752 if (print_info) {
2753 ata_dev_warn(dev,
2754 "Drive reports diagnostics failure. This may indicate a drive\n");
2755 ata_dev_warn(dev,
2756 "fault or invalid emulation. Contact drive vendor for information.\n");
2757 }
2758 }
2759
2760 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2761 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2762 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2763 }
2764
2765 return 0;
2766
2767 err_out_nosup:
2768 if (ata_msg_probe(ap))
2769 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2770 return rc;
2771 }
2772
2773 /**
2774 * ata_cable_40wire - return 40 wire cable type
2775 * @ap: port
2776 *
2777 * Helper method for drivers which want to hardwire 40 wire cable
2778 * detection.
2779 */
2780
ata_cable_40wire(struct ata_port * ap)2781 int ata_cable_40wire(struct ata_port *ap)
2782 {
2783 return ATA_CBL_PATA40;
2784 }
2785 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2786
2787 /**
2788 * ata_cable_80wire - return 80 wire cable type
2789 * @ap: port
2790 *
2791 * Helper method for drivers which want to hardwire 80 wire cable
2792 * detection.
2793 */
2794
ata_cable_80wire(struct ata_port * ap)2795 int ata_cable_80wire(struct ata_port *ap)
2796 {
2797 return ATA_CBL_PATA80;
2798 }
2799 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2800
2801 /**
2802 * ata_cable_unknown - return unknown PATA cable.
2803 * @ap: port
2804 *
2805 * Helper method for drivers which have no PATA cable detection.
2806 */
2807
ata_cable_unknown(struct ata_port * ap)2808 int ata_cable_unknown(struct ata_port *ap)
2809 {
2810 return ATA_CBL_PATA_UNK;
2811 }
2812 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2813
2814 /**
2815 * ata_cable_ignore - return ignored PATA cable.
2816 * @ap: port
2817 *
2818 * Helper method for drivers which don't use cable type to limit
2819 * transfer mode.
2820 */
ata_cable_ignore(struct ata_port * ap)2821 int ata_cable_ignore(struct ata_port *ap)
2822 {
2823 return ATA_CBL_PATA_IGN;
2824 }
2825 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2826
2827 /**
2828 * ata_cable_sata - return SATA cable type
2829 * @ap: port
2830 *
2831 * Helper method for drivers which have SATA cables
2832 */
2833
ata_cable_sata(struct ata_port * ap)2834 int ata_cable_sata(struct ata_port *ap)
2835 {
2836 return ATA_CBL_SATA;
2837 }
2838 EXPORT_SYMBOL_GPL(ata_cable_sata);
2839
2840 /**
2841 * ata_bus_probe - Reset and probe ATA bus
2842 * @ap: Bus to probe
2843 *
2844 * Master ATA bus probing function. Initiates a hardware-dependent
2845 * bus reset, then attempts to identify any devices found on
2846 * the bus.
2847 *
2848 * LOCKING:
2849 * PCI/etc. bus probe sem.
2850 *
2851 * RETURNS:
2852 * Zero on success, negative errno otherwise.
2853 */
2854
ata_bus_probe(struct ata_port * ap)2855 int ata_bus_probe(struct ata_port *ap)
2856 {
2857 unsigned int classes[ATA_MAX_DEVICES];
2858 int tries[ATA_MAX_DEVICES];
2859 int rc;
2860 struct ata_device *dev;
2861
2862 ata_for_each_dev(dev, &ap->link, ALL)
2863 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2864
2865 retry:
2866 ata_for_each_dev(dev, &ap->link, ALL) {
2867 /* If we issue an SRST then an ATA drive (not ATAPI)
2868 * may change configuration and be in PIO0 timing. If
2869 * we do a hard reset (or are coming from power on)
2870 * this is true for ATA or ATAPI. Until we've set a
2871 * suitable controller mode we should not touch the
2872 * bus as we may be talking too fast.
2873 */
2874 dev->pio_mode = XFER_PIO_0;
2875 dev->dma_mode = 0xff;
2876
2877 /* If the controller has a pio mode setup function
2878 * then use it to set the chipset to rights. Don't
2879 * touch the DMA setup as that will be dealt with when
2880 * configuring devices.
2881 */
2882 if (ap->ops->set_piomode)
2883 ap->ops->set_piomode(ap, dev);
2884 }
2885
2886 /* reset and determine device classes */
2887 ap->ops->phy_reset(ap);
2888
2889 ata_for_each_dev(dev, &ap->link, ALL) {
2890 if (dev->class != ATA_DEV_UNKNOWN)
2891 classes[dev->devno] = dev->class;
2892 else
2893 classes[dev->devno] = ATA_DEV_NONE;
2894
2895 dev->class = ATA_DEV_UNKNOWN;
2896 }
2897
2898 /* read IDENTIFY page and configure devices. We have to do the identify
2899 specific sequence bass-ackwards so that PDIAG- is released by
2900 the slave device */
2901
2902 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2903 if (tries[dev->devno])
2904 dev->class = classes[dev->devno];
2905
2906 if (!ata_dev_enabled(dev))
2907 continue;
2908
2909 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2910 dev->id);
2911 if (rc)
2912 goto fail;
2913 }
2914
2915 /* Now ask for the cable type as PDIAG- should have been released */
2916 if (ap->ops->cable_detect)
2917 ap->cbl = ap->ops->cable_detect(ap);
2918
2919 /* We may have SATA bridge glue hiding here irrespective of
2920 * the reported cable types and sensed types. When SATA
2921 * drives indicate we have a bridge, we don't know which end
2922 * of the link the bridge is which is a problem.
2923 */
2924 ata_for_each_dev(dev, &ap->link, ENABLED)
2925 if (ata_id_is_sata(dev->id))
2926 ap->cbl = ATA_CBL_SATA;
2927
2928 /* After the identify sequence we can now set up the devices. We do
2929 this in the normal order so that the user doesn't get confused */
2930
2931 ata_for_each_dev(dev, &ap->link, ENABLED) {
2932 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2933 rc = ata_dev_configure(dev);
2934 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2935 if (rc)
2936 goto fail;
2937 }
2938
2939 /* configure transfer mode */
2940 rc = ata_set_mode(&ap->link, &dev);
2941 if (rc)
2942 goto fail;
2943
2944 ata_for_each_dev(dev, &ap->link, ENABLED)
2945 return 0;
2946
2947 return -ENODEV;
2948
2949 fail:
2950 tries[dev->devno]--;
2951
2952 switch (rc) {
2953 case -EINVAL:
2954 /* eeek, something went very wrong, give up */
2955 tries[dev->devno] = 0;
2956 break;
2957
2958 case -ENODEV:
2959 /* give it just one more chance */
2960 tries[dev->devno] = min(tries[dev->devno], 1);
2961 fallthrough;
2962 case -EIO:
2963 if (tries[dev->devno] == 1) {
2964 /* This is the last chance, better to slow
2965 * down than lose it.
2966 */
2967 sata_down_spd_limit(&ap->link, 0);
2968 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2969 }
2970 }
2971
2972 if (!tries[dev->devno])
2973 ata_dev_disable(dev);
2974
2975 goto retry;
2976 }
2977
2978 /**
2979 * sata_print_link_status - Print SATA link status
2980 * @link: SATA link to printk link status about
2981 *
2982 * This function prints link speed and status of a SATA link.
2983 *
2984 * LOCKING:
2985 * None.
2986 */
sata_print_link_status(struct ata_link * link)2987 static void sata_print_link_status(struct ata_link *link)
2988 {
2989 u32 sstatus, scontrol, tmp;
2990
2991 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2992 return;
2993 sata_scr_read(link, SCR_CONTROL, &scontrol);
2994
2995 if (ata_phys_link_online(link)) {
2996 tmp = (sstatus >> 4) & 0xf;
2997 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2998 sata_spd_string(tmp), sstatus, scontrol);
2999 } else {
3000 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3001 sstatus, scontrol);
3002 }
3003 }
3004
3005 /**
3006 * ata_dev_pair - return other device on cable
3007 * @adev: device
3008 *
3009 * Obtain the other device on the same cable, or if none is
3010 * present NULL is returned
3011 */
3012
ata_dev_pair(struct ata_device * adev)3013 struct ata_device *ata_dev_pair(struct ata_device *adev)
3014 {
3015 struct ata_link *link = adev->link;
3016 struct ata_device *pair = &link->device[1 - adev->devno];
3017 if (!ata_dev_enabled(pair))
3018 return NULL;
3019 return pair;
3020 }
3021 EXPORT_SYMBOL_GPL(ata_dev_pair);
3022
3023 /**
3024 * sata_down_spd_limit - adjust SATA spd limit downward
3025 * @link: Link to adjust SATA spd limit for
3026 * @spd_limit: Additional limit
3027 *
3028 * Adjust SATA spd limit of @link downward. Note that this
3029 * function only adjusts the limit. The change must be applied
3030 * using sata_set_spd().
3031 *
3032 * If @spd_limit is non-zero, the speed is limited to equal to or
3033 * lower than @spd_limit if such speed is supported. If
3034 * @spd_limit is slower than any supported speed, only the lowest
3035 * supported speed is allowed.
3036 *
3037 * LOCKING:
3038 * Inherited from caller.
3039 *
3040 * RETURNS:
3041 * 0 on success, negative errno on failure
3042 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3043 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3044 {
3045 u32 sstatus, spd, mask;
3046 int rc, bit;
3047
3048 if (!sata_scr_valid(link))
3049 return -EOPNOTSUPP;
3050
3051 /* If SCR can be read, use it to determine the current SPD.
3052 * If not, use cached value in link->sata_spd.
3053 */
3054 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3055 if (rc == 0 && ata_sstatus_online(sstatus))
3056 spd = (sstatus >> 4) & 0xf;
3057 else
3058 spd = link->sata_spd;
3059
3060 mask = link->sata_spd_limit;
3061 if (mask <= 1)
3062 return -EINVAL;
3063
3064 /* unconditionally mask off the highest bit */
3065 bit = fls(mask) - 1;
3066 mask &= ~(1 << bit);
3067
3068 /*
3069 * Mask off all speeds higher than or equal to the current one. At
3070 * this point, if current SPD is not available and we previously
3071 * recorded the link speed from SStatus, the driver has already
3072 * masked off the highest bit so mask should already be 1 or 0.
3073 * Otherwise, we should not force 1.5Gbps on a link where we have
3074 * not previously recorded speed from SStatus. Just return in this
3075 * case.
3076 */
3077 if (spd > 1)
3078 mask &= (1 << (spd - 1)) - 1;
3079 else if (link->sata_spd)
3080 return -EINVAL;
3081
3082 /* were we already at the bottom? */
3083 if (!mask)
3084 return -EINVAL;
3085
3086 if (spd_limit) {
3087 if (mask & ((1 << spd_limit) - 1))
3088 mask &= (1 << spd_limit) - 1;
3089 else {
3090 bit = ffs(mask) - 1;
3091 mask = 1 << bit;
3092 }
3093 }
3094
3095 link->sata_spd_limit = mask;
3096
3097 ata_link_warn(link, "limiting SATA link speed to %s\n",
3098 sata_spd_string(fls(mask)));
3099
3100 return 0;
3101 }
3102
3103 #ifdef CONFIG_ATA_ACPI
3104 /**
3105 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3106 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3107 * @cycle: cycle duration in ns
3108 *
3109 * Return matching xfer mode for @cycle. The returned mode is of
3110 * the transfer type specified by @xfer_shift. If @cycle is too
3111 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3112 * than the fastest known mode, the fasted mode is returned.
3113 *
3114 * LOCKING:
3115 * None.
3116 *
3117 * RETURNS:
3118 * Matching xfer_mode, 0xff if no match found.
3119 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3120 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3121 {
3122 u8 base_mode = 0xff, last_mode = 0xff;
3123 const struct ata_xfer_ent *ent;
3124 const struct ata_timing *t;
3125
3126 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3127 if (ent->shift == xfer_shift)
3128 base_mode = ent->base;
3129
3130 for (t = ata_timing_find_mode(base_mode);
3131 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3132 unsigned short this_cycle;
3133
3134 switch (xfer_shift) {
3135 case ATA_SHIFT_PIO:
3136 case ATA_SHIFT_MWDMA:
3137 this_cycle = t->cycle;
3138 break;
3139 case ATA_SHIFT_UDMA:
3140 this_cycle = t->udma;
3141 break;
3142 default:
3143 return 0xff;
3144 }
3145
3146 if (cycle > this_cycle)
3147 break;
3148
3149 last_mode = t->mode;
3150 }
3151
3152 return last_mode;
3153 }
3154 #endif
3155
3156 /**
3157 * ata_down_xfermask_limit - adjust dev xfer masks downward
3158 * @dev: Device to adjust xfer masks
3159 * @sel: ATA_DNXFER_* selector
3160 *
3161 * Adjust xfer masks of @dev downward. Note that this function
3162 * does not apply the change. Invoking ata_set_mode() afterwards
3163 * will apply the limit.
3164 *
3165 * LOCKING:
3166 * Inherited from caller.
3167 *
3168 * RETURNS:
3169 * 0 on success, negative errno on failure
3170 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3171 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3172 {
3173 char buf[32];
3174 unsigned long orig_mask, xfer_mask;
3175 unsigned long pio_mask, mwdma_mask, udma_mask;
3176 int quiet, highbit;
3177
3178 quiet = !!(sel & ATA_DNXFER_QUIET);
3179 sel &= ~ATA_DNXFER_QUIET;
3180
3181 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3182 dev->mwdma_mask,
3183 dev->udma_mask);
3184 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3185
3186 switch (sel) {
3187 case ATA_DNXFER_PIO:
3188 highbit = fls(pio_mask) - 1;
3189 pio_mask &= ~(1 << highbit);
3190 break;
3191
3192 case ATA_DNXFER_DMA:
3193 if (udma_mask) {
3194 highbit = fls(udma_mask) - 1;
3195 udma_mask &= ~(1 << highbit);
3196 if (!udma_mask)
3197 return -ENOENT;
3198 } else if (mwdma_mask) {
3199 highbit = fls(mwdma_mask) - 1;
3200 mwdma_mask &= ~(1 << highbit);
3201 if (!mwdma_mask)
3202 return -ENOENT;
3203 }
3204 break;
3205
3206 case ATA_DNXFER_40C:
3207 udma_mask &= ATA_UDMA_MASK_40C;
3208 break;
3209
3210 case ATA_DNXFER_FORCE_PIO0:
3211 pio_mask &= 1;
3212 fallthrough;
3213 case ATA_DNXFER_FORCE_PIO:
3214 mwdma_mask = 0;
3215 udma_mask = 0;
3216 break;
3217
3218 default:
3219 BUG();
3220 }
3221
3222 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3223
3224 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3225 return -ENOENT;
3226
3227 if (!quiet) {
3228 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3229 snprintf(buf, sizeof(buf), "%s:%s",
3230 ata_mode_string(xfer_mask),
3231 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3232 else
3233 snprintf(buf, sizeof(buf), "%s",
3234 ata_mode_string(xfer_mask));
3235
3236 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3237 }
3238
3239 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3240 &dev->udma_mask);
3241
3242 return 0;
3243 }
3244
ata_dev_set_mode(struct ata_device * dev)3245 static int ata_dev_set_mode(struct ata_device *dev)
3246 {
3247 struct ata_port *ap = dev->link->ap;
3248 struct ata_eh_context *ehc = &dev->link->eh_context;
3249 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3250 const char *dev_err_whine = "";
3251 int ign_dev_err = 0;
3252 unsigned int err_mask = 0;
3253 int rc;
3254
3255 dev->flags &= ~ATA_DFLAG_PIO;
3256 if (dev->xfer_shift == ATA_SHIFT_PIO)
3257 dev->flags |= ATA_DFLAG_PIO;
3258
3259 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3260 dev_err_whine = " (SET_XFERMODE skipped)";
3261 else {
3262 if (nosetxfer)
3263 ata_dev_warn(dev,
3264 "NOSETXFER but PATA detected - can't "
3265 "skip SETXFER, might malfunction\n");
3266 err_mask = ata_dev_set_xfermode(dev);
3267 }
3268
3269 if (err_mask & ~AC_ERR_DEV)
3270 goto fail;
3271
3272 /* revalidate */
3273 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3274 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3275 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3276 if (rc)
3277 return rc;
3278
3279 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3280 /* Old CFA may refuse this command, which is just fine */
3281 if (ata_id_is_cfa(dev->id))
3282 ign_dev_err = 1;
3283 /* Catch several broken garbage emulations plus some pre
3284 ATA devices */
3285 if (ata_id_major_version(dev->id) == 0 &&
3286 dev->pio_mode <= XFER_PIO_2)
3287 ign_dev_err = 1;
3288 /* Some very old devices and some bad newer ones fail
3289 any kind of SET_XFERMODE request but support PIO0-2
3290 timings and no IORDY */
3291 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3292 ign_dev_err = 1;
3293 }
3294 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3295 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3296 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3297 dev->dma_mode == XFER_MW_DMA_0 &&
3298 (dev->id[63] >> 8) & 1)
3299 ign_dev_err = 1;
3300
3301 /* if the device is actually configured correctly, ignore dev err */
3302 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3303 ign_dev_err = 1;
3304
3305 if (err_mask & AC_ERR_DEV) {
3306 if (!ign_dev_err)
3307 goto fail;
3308 else
3309 dev_err_whine = " (device error ignored)";
3310 }
3311
3312 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3313 dev->xfer_shift, (int)dev->xfer_mode);
3314
3315 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3316 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3317 ata_dev_info(dev, "configured for %s%s\n",
3318 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3319 dev_err_whine);
3320
3321 return 0;
3322
3323 fail:
3324 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3325 return -EIO;
3326 }
3327
3328 /**
3329 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3330 * @link: link on which timings will be programmed
3331 * @r_failed_dev: out parameter for failed device
3332 *
3333 * Standard implementation of the function used to tune and set
3334 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3335 * ata_dev_set_mode() fails, pointer to the failing device is
3336 * returned in @r_failed_dev.
3337 *
3338 * LOCKING:
3339 * PCI/etc. bus probe sem.
3340 *
3341 * RETURNS:
3342 * 0 on success, negative errno otherwise
3343 */
3344
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3345 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3346 {
3347 struct ata_port *ap = link->ap;
3348 struct ata_device *dev;
3349 int rc = 0, used_dma = 0, found = 0;
3350
3351 /* step 1: calculate xfer_mask */
3352 ata_for_each_dev(dev, link, ENABLED) {
3353 unsigned long pio_mask, dma_mask;
3354 unsigned int mode_mask;
3355
3356 mode_mask = ATA_DMA_MASK_ATA;
3357 if (dev->class == ATA_DEV_ATAPI)
3358 mode_mask = ATA_DMA_MASK_ATAPI;
3359 else if (ata_id_is_cfa(dev->id))
3360 mode_mask = ATA_DMA_MASK_CFA;
3361
3362 ata_dev_xfermask(dev);
3363 ata_force_xfermask(dev);
3364
3365 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3366
3367 if (libata_dma_mask & mode_mask)
3368 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3369 dev->udma_mask);
3370 else
3371 dma_mask = 0;
3372
3373 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3374 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3375
3376 found = 1;
3377 if (ata_dma_enabled(dev))
3378 used_dma = 1;
3379 }
3380 if (!found)
3381 goto out;
3382
3383 /* step 2: always set host PIO timings */
3384 ata_for_each_dev(dev, link, ENABLED) {
3385 if (dev->pio_mode == 0xff) {
3386 ata_dev_warn(dev, "no PIO support\n");
3387 rc = -EINVAL;
3388 goto out;
3389 }
3390
3391 dev->xfer_mode = dev->pio_mode;
3392 dev->xfer_shift = ATA_SHIFT_PIO;
3393 if (ap->ops->set_piomode)
3394 ap->ops->set_piomode(ap, dev);
3395 }
3396
3397 /* step 3: set host DMA timings */
3398 ata_for_each_dev(dev, link, ENABLED) {
3399 if (!ata_dma_enabled(dev))
3400 continue;
3401
3402 dev->xfer_mode = dev->dma_mode;
3403 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3404 if (ap->ops->set_dmamode)
3405 ap->ops->set_dmamode(ap, dev);
3406 }
3407
3408 /* step 4: update devices' xfer mode */
3409 ata_for_each_dev(dev, link, ENABLED) {
3410 rc = ata_dev_set_mode(dev);
3411 if (rc)
3412 goto out;
3413 }
3414
3415 /* Record simplex status. If we selected DMA then the other
3416 * host channels are not permitted to do so.
3417 */
3418 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3419 ap->host->simplex_claimed = ap;
3420
3421 out:
3422 if (rc)
3423 *r_failed_dev = dev;
3424 return rc;
3425 }
3426 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3427
3428 /**
3429 * ata_wait_ready - wait for link to become ready
3430 * @link: link to be waited on
3431 * @deadline: deadline jiffies for the operation
3432 * @check_ready: callback to check link readiness
3433 *
3434 * Wait for @link to become ready. @check_ready should return
3435 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3436 * link doesn't seem to be occupied, other errno for other error
3437 * conditions.
3438 *
3439 * Transient -ENODEV conditions are allowed for
3440 * ATA_TMOUT_FF_WAIT.
3441 *
3442 * LOCKING:
3443 * EH context.
3444 *
3445 * RETURNS:
3446 * 0 if @link is ready before @deadline; otherwise, -errno.
3447 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3448 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3449 int (*check_ready)(struct ata_link *link))
3450 {
3451 unsigned long start = jiffies;
3452 unsigned long nodev_deadline;
3453 int warned = 0;
3454
3455 /* choose which 0xff timeout to use, read comment in libata.h */
3456 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3457 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3458 else
3459 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3460
3461 /* Slave readiness can't be tested separately from master. On
3462 * M/S emulation configuration, this function should be called
3463 * only on the master and it will handle both master and slave.
3464 */
3465 WARN_ON(link == link->ap->slave_link);
3466
3467 if (time_after(nodev_deadline, deadline))
3468 nodev_deadline = deadline;
3469
3470 while (1) {
3471 unsigned long now = jiffies;
3472 int ready, tmp;
3473
3474 ready = tmp = check_ready(link);
3475 if (ready > 0)
3476 return 0;
3477
3478 /*
3479 * -ENODEV could be transient. Ignore -ENODEV if link
3480 * is online. Also, some SATA devices take a long
3481 * time to clear 0xff after reset. Wait for
3482 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3483 * offline.
3484 *
3485 * Note that some PATA controllers (pata_ali) explode
3486 * if status register is read more than once when
3487 * there's no device attached.
3488 */
3489 if (ready == -ENODEV) {
3490 if (ata_link_online(link))
3491 ready = 0;
3492 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3493 !ata_link_offline(link) &&
3494 time_before(now, nodev_deadline))
3495 ready = 0;
3496 }
3497
3498 if (ready)
3499 return ready;
3500 if (time_after(now, deadline))
3501 return -EBUSY;
3502
3503 if (!warned && time_after(now, start + 5 * HZ) &&
3504 (deadline - now > 3 * HZ)) {
3505 ata_link_warn(link,
3506 "link is slow to respond, please be patient "
3507 "(ready=%d)\n", tmp);
3508 warned = 1;
3509 }
3510
3511 ata_msleep(link->ap, 50);
3512 }
3513 }
3514
3515 /**
3516 * ata_wait_after_reset - wait for link to become ready after reset
3517 * @link: link to be waited on
3518 * @deadline: deadline jiffies for the operation
3519 * @check_ready: callback to check link readiness
3520 *
3521 * Wait for @link to become ready after reset.
3522 *
3523 * LOCKING:
3524 * EH context.
3525 *
3526 * RETURNS:
3527 * 0 if @link is ready before @deadline; otherwise, -errno.
3528 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3529 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3530 int (*check_ready)(struct ata_link *link))
3531 {
3532 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3533
3534 return ata_wait_ready(link, deadline, check_ready);
3535 }
3536 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3537
3538 /**
3539 * ata_std_prereset - prepare for reset
3540 * @link: ATA link to be reset
3541 * @deadline: deadline jiffies for the operation
3542 *
3543 * @link is about to be reset. Initialize it. Failure from
3544 * prereset makes libata abort whole reset sequence and give up
3545 * that port, so prereset should be best-effort. It does its
3546 * best to prepare for reset sequence but if things go wrong, it
3547 * should just whine, not fail.
3548 *
3549 * LOCKING:
3550 * Kernel thread context (may sleep)
3551 *
3552 * RETURNS:
3553 * 0 on success, -errno otherwise.
3554 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3555 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3556 {
3557 struct ata_port *ap = link->ap;
3558 struct ata_eh_context *ehc = &link->eh_context;
3559 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3560 int rc;
3561
3562 /* if we're about to do hardreset, nothing more to do */
3563 if (ehc->i.action & ATA_EH_HARDRESET)
3564 return 0;
3565
3566 /* if SATA, resume link */
3567 if (ap->flags & ATA_FLAG_SATA) {
3568 rc = sata_link_resume(link, timing, deadline);
3569 /* whine about phy resume failure but proceed */
3570 if (rc && rc != -EOPNOTSUPP)
3571 ata_link_warn(link,
3572 "failed to resume link for reset (errno=%d)\n",
3573 rc);
3574 }
3575
3576 /* no point in trying softreset on offline link */
3577 if (ata_phys_link_offline(link))
3578 ehc->i.action &= ~ATA_EH_SOFTRESET;
3579
3580 return 0;
3581 }
3582 EXPORT_SYMBOL_GPL(ata_std_prereset);
3583
3584 /**
3585 * sata_std_hardreset - COMRESET w/o waiting or classification
3586 * @link: link to reset
3587 * @class: resulting class of attached device
3588 * @deadline: deadline jiffies for the operation
3589 *
3590 * Standard SATA COMRESET w/o waiting or classification.
3591 *
3592 * LOCKING:
3593 * Kernel thread context (may sleep)
3594 *
3595 * RETURNS:
3596 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3597 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3598 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3599 unsigned long deadline)
3600 {
3601 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3602 bool online;
3603 int rc;
3604
3605 /* do hardreset */
3606 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3607 return online ? -EAGAIN : rc;
3608 }
3609 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3610
3611 /**
3612 * ata_std_postreset - standard postreset callback
3613 * @link: the target ata_link
3614 * @classes: classes of attached devices
3615 *
3616 * This function is invoked after a successful reset. Note that
3617 * the device might have been reset more than once using
3618 * different reset methods before postreset is invoked.
3619 *
3620 * LOCKING:
3621 * Kernel thread context (may sleep)
3622 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3623 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3624 {
3625 u32 serror;
3626
3627 DPRINTK("ENTER\n");
3628
3629 /* reset complete, clear SError */
3630 if (!sata_scr_read(link, SCR_ERROR, &serror))
3631 sata_scr_write(link, SCR_ERROR, serror);
3632
3633 /* print link status */
3634 sata_print_link_status(link);
3635
3636 DPRINTK("EXIT\n");
3637 }
3638 EXPORT_SYMBOL_GPL(ata_std_postreset);
3639
3640 /**
3641 * ata_dev_same_device - Determine whether new ID matches configured device
3642 * @dev: device to compare against
3643 * @new_class: class of the new device
3644 * @new_id: IDENTIFY page of the new device
3645 *
3646 * Compare @new_class and @new_id against @dev and determine
3647 * whether @dev is the device indicated by @new_class and
3648 * @new_id.
3649 *
3650 * LOCKING:
3651 * None.
3652 *
3653 * RETURNS:
3654 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3655 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3656 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3657 const u16 *new_id)
3658 {
3659 const u16 *old_id = dev->id;
3660 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3661 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3662
3663 if (dev->class != new_class) {
3664 ata_dev_info(dev, "class mismatch %d != %d\n",
3665 dev->class, new_class);
3666 return 0;
3667 }
3668
3669 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3670 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3671 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3672 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3673
3674 if (strcmp(model[0], model[1])) {
3675 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3676 model[0], model[1]);
3677 return 0;
3678 }
3679
3680 if (strcmp(serial[0], serial[1])) {
3681 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3682 serial[0], serial[1]);
3683 return 0;
3684 }
3685
3686 return 1;
3687 }
3688
3689 /**
3690 * ata_dev_reread_id - Re-read IDENTIFY data
3691 * @dev: target ATA device
3692 * @readid_flags: read ID flags
3693 *
3694 * Re-read IDENTIFY page and make sure @dev is still attached to
3695 * the port.
3696 *
3697 * LOCKING:
3698 * Kernel thread context (may sleep)
3699 *
3700 * RETURNS:
3701 * 0 on success, negative errno otherwise
3702 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3703 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3704 {
3705 unsigned int class = dev->class;
3706 u16 *id = (void *)dev->link->ap->sector_buf;
3707 int rc;
3708
3709 /* read ID data */
3710 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3711 if (rc)
3712 return rc;
3713
3714 /* is the device still there? */
3715 if (!ata_dev_same_device(dev, class, id))
3716 return -ENODEV;
3717
3718 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3719 return 0;
3720 }
3721
3722 /**
3723 * ata_dev_revalidate - Revalidate ATA device
3724 * @dev: device to revalidate
3725 * @new_class: new class code
3726 * @readid_flags: read ID flags
3727 *
3728 * Re-read IDENTIFY page, make sure @dev is still attached to the
3729 * port and reconfigure it according to the new IDENTIFY page.
3730 *
3731 * LOCKING:
3732 * Kernel thread context (may sleep)
3733 *
3734 * RETURNS:
3735 * 0 on success, negative errno otherwise
3736 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3737 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3738 unsigned int readid_flags)
3739 {
3740 u64 n_sectors = dev->n_sectors;
3741 u64 n_native_sectors = dev->n_native_sectors;
3742 int rc;
3743
3744 if (!ata_dev_enabled(dev))
3745 return -ENODEV;
3746
3747 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3748 if (ata_class_enabled(new_class) &&
3749 new_class != ATA_DEV_ATA &&
3750 new_class != ATA_DEV_ATAPI &&
3751 new_class != ATA_DEV_ZAC &&
3752 new_class != ATA_DEV_SEMB) {
3753 ata_dev_info(dev, "class mismatch %u != %u\n",
3754 dev->class, new_class);
3755 rc = -ENODEV;
3756 goto fail;
3757 }
3758
3759 /* re-read ID */
3760 rc = ata_dev_reread_id(dev, readid_flags);
3761 if (rc)
3762 goto fail;
3763
3764 /* configure device according to the new ID */
3765 rc = ata_dev_configure(dev);
3766 if (rc)
3767 goto fail;
3768
3769 /* verify n_sectors hasn't changed */
3770 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3771 dev->n_sectors == n_sectors)
3772 return 0;
3773
3774 /* n_sectors has changed */
3775 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3776 (unsigned long long)n_sectors,
3777 (unsigned long long)dev->n_sectors);
3778
3779 /*
3780 * Something could have caused HPA to be unlocked
3781 * involuntarily. If n_native_sectors hasn't changed and the
3782 * new size matches it, keep the device.
3783 */
3784 if (dev->n_native_sectors == n_native_sectors &&
3785 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3786 ata_dev_warn(dev,
3787 "new n_sectors matches native, probably "
3788 "late HPA unlock, n_sectors updated\n");
3789 /* use the larger n_sectors */
3790 return 0;
3791 }
3792
3793 /*
3794 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3795 * unlocking HPA in those cases.
3796 *
3797 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3798 */
3799 if (dev->n_native_sectors == n_native_sectors &&
3800 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3801 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3802 ata_dev_warn(dev,
3803 "old n_sectors matches native, probably "
3804 "late HPA lock, will try to unlock HPA\n");
3805 /* try unlocking HPA */
3806 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3807 rc = -EIO;
3808 } else
3809 rc = -ENODEV;
3810
3811 /* restore original n_[native_]sectors and fail */
3812 dev->n_native_sectors = n_native_sectors;
3813 dev->n_sectors = n_sectors;
3814 fail:
3815 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3816 return rc;
3817 }
3818
3819 struct ata_blacklist_entry {
3820 const char *model_num;
3821 const char *model_rev;
3822 unsigned long horkage;
3823 };
3824
3825 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3826 /* Devices with DMA related problems under Linux */
3827 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3828 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3829 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3830 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3831 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3832 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3833 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3834 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3835 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3836 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3837 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3838 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3839 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3840 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3841 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3842 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3843 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3844 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3845 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3846 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3847 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3848 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3849 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3850 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3851 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3852 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3853 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3854 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3855 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3856 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3857 /* Odd clown on sil3726/4726 PMPs */
3858 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3859 /* Similar story with ASMedia 1092 */
3860 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
3861
3862 /* Weird ATAPI devices */
3863 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3864 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3865 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3866 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3867
3868 /*
3869 * Causes silent data corruption with higher max sects.
3870 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3871 */
3872 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3873
3874 /*
3875 * These devices time out with higher max sects.
3876 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3877 */
3878 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3879 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3880
3881 /* Devices we expect to fail diagnostics */
3882
3883 /* Devices where NCQ should be avoided */
3884 /* NCQ is slow */
3885 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3886 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3887 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3888 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3889 /* NCQ is broken */
3890 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3891 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3892 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3893 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3894 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3895
3896 /* Seagate NCQ + FLUSH CACHE firmware bug */
3897 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3898 ATA_HORKAGE_FIRMWARE_WARN },
3899
3900 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3901 ATA_HORKAGE_FIRMWARE_WARN },
3902
3903 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3904 ATA_HORKAGE_FIRMWARE_WARN },
3905
3906 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3907 ATA_HORKAGE_FIRMWARE_WARN },
3908
3909 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3910 the ST disks also have LPM issues */
3911 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3912 ATA_HORKAGE_NOLPM, },
3913 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3914
3915 /* Blacklist entries taken from Silicon Image 3124/3132
3916 Windows driver .inf file - also several Linux problem reports */
3917 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3918 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3919 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3920
3921 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3922 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
3923
3924 /* Sandisk SD7/8/9s lock up hard on large trims */
3925 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, },
3926
3927 /* devices which puke on READ_NATIVE_MAX */
3928 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3929 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3930 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3931 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3932
3933 /* this one allows HPA unlocking but fails IOs on the area */
3934 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3935
3936 /* Devices which report 1 sector over size HPA */
3937 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3938 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3939 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3940
3941 /* Devices which get the IVB wrong */
3942 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3943 /* Maybe we should just blacklist TSSTcorp... */
3944 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
3945
3946 /* Devices that do not need bridging limits applied */
3947 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
3948 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
3949
3950 /* Devices which aren't very happy with higher link speeds */
3951 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
3952 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
3953
3954 /*
3955 * Devices which choke on SETXFER. Applies only if both the
3956 * device and controller are SATA.
3957 */
3958 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3959 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3960 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3961 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3962 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3963
3964 /* These specific Pioneer models have LPM issues */
3965 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
3966 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
3967
3968 /* Crucial BX100 SSD 500GB has broken LPM support */
3969 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3970
3971 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3972 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3973 ATA_HORKAGE_ZERO_AFTER_TRIM |
3974 ATA_HORKAGE_NOLPM, },
3975 /* 512GB MX100 with newer firmware has only LPM issues */
3976 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
3977 ATA_HORKAGE_NOLPM, },
3978
3979 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3980 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3981 ATA_HORKAGE_ZERO_AFTER_TRIM |
3982 ATA_HORKAGE_NOLPM, },
3983 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3984 ATA_HORKAGE_ZERO_AFTER_TRIM |
3985 ATA_HORKAGE_NOLPM, },
3986
3987 /* These specific Samsung models/firmware-revs do not handle LPM well */
3988 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3989 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3990 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
3991 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3992
3993 /* devices that don't properly handle queued TRIM commands */
3994 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3995 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3996 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3997 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3998 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3999 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4000 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4001 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4002 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4003 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4004 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4005 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4006 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4007 ATA_HORKAGE_NO_DMA_LOG |
4008 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4009 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4010 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4011 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4012 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4013 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4014 ATA_HORKAGE_ZERO_AFTER_TRIM |
4015 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4016 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4017 ATA_HORKAGE_ZERO_AFTER_TRIM |
4018 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4019 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4020 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4021
4022 /* devices that don't properly handle TRIM commands */
4023 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4024 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM, },
4025
4026 /*
4027 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4028 * (Return Zero After Trim) flags in the ATA Command Set are
4029 * unreliable in the sense that they only define what happens if
4030 * the device successfully executed the DSM TRIM command. TRIM
4031 * is only advisory, however, and the device is free to silently
4032 * ignore all or parts of the request.
4033 *
4034 * Whitelist drives that are known to reliably return zeroes
4035 * after TRIM.
4036 */
4037
4038 /*
4039 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4040 * that model before whitelisting all other intel SSDs.
4041 */
4042 { "INTEL*SSDSC2MH*", NULL, 0, },
4043
4044 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4045 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4046 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4047 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4048 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4049 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4050 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4051 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4052
4053 /*
4054 * Some WD SATA-I drives spin up and down erratically when the link
4055 * is put into the slumber mode. We don't have full list of the
4056 * affected devices. Disable LPM if the device matches one of the
4057 * known prefixes and is SATA-1. As a side effect LPM partial is
4058 * lost too.
4059 *
4060 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4061 */
4062 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4063 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4064 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4065 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4066 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4067 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4068 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4069
4070 /* End Marker */
4071 { }
4072 };
4073
ata_dev_blacklisted(const struct ata_device * dev)4074 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4075 {
4076 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4077 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4078 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4079
4080 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4081 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4082
4083 while (ad->model_num) {
4084 if (glob_match(ad->model_num, model_num)) {
4085 if (ad->model_rev == NULL)
4086 return ad->horkage;
4087 if (glob_match(ad->model_rev, model_rev))
4088 return ad->horkage;
4089 }
4090 ad++;
4091 }
4092 return 0;
4093 }
4094
ata_dma_blacklisted(const struct ata_device * dev)4095 static int ata_dma_blacklisted(const struct ata_device *dev)
4096 {
4097 /* We don't support polling DMA.
4098 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4099 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4100 */
4101 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4102 (dev->flags & ATA_DFLAG_CDB_INTR))
4103 return 1;
4104 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4105 }
4106
4107 /**
4108 * ata_is_40wire - check drive side detection
4109 * @dev: device
4110 *
4111 * Perform drive side detection decoding, allowing for device vendors
4112 * who can't follow the documentation.
4113 */
4114
ata_is_40wire(struct ata_device * dev)4115 static int ata_is_40wire(struct ata_device *dev)
4116 {
4117 if (dev->horkage & ATA_HORKAGE_IVB)
4118 return ata_drive_40wire_relaxed(dev->id);
4119 return ata_drive_40wire(dev->id);
4120 }
4121
4122 /**
4123 * cable_is_40wire - 40/80/SATA decider
4124 * @ap: port to consider
4125 *
4126 * This function encapsulates the policy for speed management
4127 * in one place. At the moment we don't cache the result but
4128 * there is a good case for setting ap->cbl to the result when
4129 * we are called with unknown cables (and figuring out if it
4130 * impacts hotplug at all).
4131 *
4132 * Return 1 if the cable appears to be 40 wire.
4133 */
4134
cable_is_40wire(struct ata_port * ap)4135 static int cable_is_40wire(struct ata_port *ap)
4136 {
4137 struct ata_link *link;
4138 struct ata_device *dev;
4139
4140 /* If the controller thinks we are 40 wire, we are. */
4141 if (ap->cbl == ATA_CBL_PATA40)
4142 return 1;
4143
4144 /* If the controller thinks we are 80 wire, we are. */
4145 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4146 return 0;
4147
4148 /* If the system is known to be 40 wire short cable (eg
4149 * laptop), then we allow 80 wire modes even if the drive
4150 * isn't sure.
4151 */
4152 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4153 return 0;
4154
4155 /* If the controller doesn't know, we scan.
4156 *
4157 * Note: We look for all 40 wire detects at this point. Any
4158 * 80 wire detect is taken to be 80 wire cable because
4159 * - in many setups only the one drive (slave if present) will
4160 * give a valid detect
4161 * - if you have a non detect capable drive you don't want it
4162 * to colour the choice
4163 */
4164 ata_for_each_link(link, ap, EDGE) {
4165 ata_for_each_dev(dev, link, ENABLED) {
4166 if (!ata_is_40wire(dev))
4167 return 0;
4168 }
4169 }
4170 return 1;
4171 }
4172
4173 /**
4174 * ata_dev_xfermask - Compute supported xfermask of the given device
4175 * @dev: Device to compute xfermask for
4176 *
4177 * Compute supported xfermask of @dev and store it in
4178 * dev->*_mask. This function is responsible for applying all
4179 * known limits including host controller limits, device
4180 * blacklist, etc...
4181 *
4182 * LOCKING:
4183 * None.
4184 */
ata_dev_xfermask(struct ata_device * dev)4185 static void ata_dev_xfermask(struct ata_device *dev)
4186 {
4187 struct ata_link *link = dev->link;
4188 struct ata_port *ap = link->ap;
4189 struct ata_host *host = ap->host;
4190 unsigned long xfer_mask;
4191
4192 /* controller modes available */
4193 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4194 ap->mwdma_mask, ap->udma_mask);
4195
4196 /* drive modes available */
4197 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4198 dev->mwdma_mask, dev->udma_mask);
4199 xfer_mask &= ata_id_xfermask(dev->id);
4200
4201 /*
4202 * CFA Advanced TrueIDE timings are not allowed on a shared
4203 * cable
4204 */
4205 if (ata_dev_pair(dev)) {
4206 /* No PIO5 or PIO6 */
4207 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4208 /* No MWDMA3 or MWDMA 4 */
4209 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4210 }
4211
4212 if (ata_dma_blacklisted(dev)) {
4213 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4214 ata_dev_warn(dev,
4215 "device is on DMA blacklist, disabling DMA\n");
4216 }
4217
4218 if ((host->flags & ATA_HOST_SIMPLEX) &&
4219 host->simplex_claimed && host->simplex_claimed != ap) {
4220 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4221 ata_dev_warn(dev,
4222 "simplex DMA is claimed by other device, disabling DMA\n");
4223 }
4224
4225 if (ap->flags & ATA_FLAG_NO_IORDY)
4226 xfer_mask &= ata_pio_mask_no_iordy(dev);
4227
4228 if (ap->ops->mode_filter)
4229 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4230
4231 /* Apply cable rule here. Don't apply it early because when
4232 * we handle hot plug the cable type can itself change.
4233 * Check this last so that we know if the transfer rate was
4234 * solely limited by the cable.
4235 * Unknown or 80 wire cables reported host side are checked
4236 * drive side as well. Cases where we know a 40wire cable
4237 * is used safely for 80 are not checked here.
4238 */
4239 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4240 /* UDMA/44 or higher would be available */
4241 if (cable_is_40wire(ap)) {
4242 ata_dev_warn(dev,
4243 "limited to UDMA/33 due to 40-wire cable\n");
4244 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4245 }
4246
4247 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4248 &dev->mwdma_mask, &dev->udma_mask);
4249 }
4250
4251 /**
4252 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4253 * @dev: Device to which command will be sent
4254 *
4255 * Issue SET FEATURES - XFER MODE command to device @dev
4256 * on port @ap.
4257 *
4258 * LOCKING:
4259 * PCI/etc. bus probe sem.
4260 *
4261 * RETURNS:
4262 * 0 on success, AC_ERR_* mask otherwise.
4263 */
4264
ata_dev_set_xfermode(struct ata_device * dev)4265 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4266 {
4267 struct ata_taskfile tf;
4268 unsigned int err_mask;
4269
4270 /* set up set-features taskfile */
4271 DPRINTK("set features - xfer mode\n");
4272
4273 /* Some controllers and ATAPI devices show flaky interrupt
4274 * behavior after setting xfer mode. Use polling instead.
4275 */
4276 ata_tf_init(dev, &tf);
4277 tf.command = ATA_CMD_SET_FEATURES;
4278 tf.feature = SETFEATURES_XFER;
4279 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4280 tf.protocol = ATA_PROT_NODATA;
4281 /* If we are using IORDY we must send the mode setting command */
4282 if (ata_pio_need_iordy(dev))
4283 tf.nsect = dev->xfer_mode;
4284 /* If the device has IORDY and the controller does not - turn it off */
4285 else if (ata_id_has_iordy(dev->id))
4286 tf.nsect = 0x01;
4287 else /* In the ancient relic department - skip all of this */
4288 return 0;
4289
4290 /* On some disks, this command causes spin-up, so we need longer timeout */
4291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4292
4293 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4294 return err_mask;
4295 }
4296
4297 /**
4298 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4299 * @dev: Device to which command will be sent
4300 * @enable: Whether to enable or disable the feature
4301 * @feature: The sector count represents the feature to set
4302 *
4303 * Issue SET FEATURES - SATA FEATURES command to device @dev
4304 * on port @ap with sector count
4305 *
4306 * LOCKING:
4307 * PCI/etc. bus probe sem.
4308 *
4309 * RETURNS:
4310 * 0 on success, AC_ERR_* mask otherwise.
4311 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4312 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4313 {
4314 struct ata_taskfile tf;
4315 unsigned int err_mask;
4316 unsigned long timeout = 0;
4317
4318 /* set up set-features taskfile */
4319 DPRINTK("set features - SATA features\n");
4320
4321 ata_tf_init(dev, &tf);
4322 tf.command = ATA_CMD_SET_FEATURES;
4323 tf.feature = enable;
4324 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4325 tf.protocol = ATA_PROT_NODATA;
4326 tf.nsect = feature;
4327
4328 if (enable == SETFEATURES_SPINUP)
4329 timeout = ata_probe_timeout ?
4330 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4331 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4332
4333 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4334 return err_mask;
4335 }
4336 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4337
4338 /**
4339 * ata_dev_init_params - Issue INIT DEV PARAMS command
4340 * @dev: Device to which command will be sent
4341 * @heads: Number of heads (taskfile parameter)
4342 * @sectors: Number of sectors (taskfile parameter)
4343 *
4344 * LOCKING:
4345 * Kernel thread context (may sleep)
4346 *
4347 * RETURNS:
4348 * 0 on success, AC_ERR_* mask otherwise.
4349 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4350 static unsigned int ata_dev_init_params(struct ata_device *dev,
4351 u16 heads, u16 sectors)
4352 {
4353 struct ata_taskfile tf;
4354 unsigned int err_mask;
4355
4356 /* Number of sectors per track 1-255. Number of heads 1-16 */
4357 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4358 return AC_ERR_INVALID;
4359
4360 /* set up init dev params taskfile */
4361 DPRINTK("init dev params \n");
4362
4363 ata_tf_init(dev, &tf);
4364 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4365 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4366 tf.protocol = ATA_PROT_NODATA;
4367 tf.nsect = sectors;
4368 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4369
4370 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4371 /* A clean abort indicates an original or just out of spec drive
4372 and we should continue as we issue the setup based on the
4373 drive reported working geometry */
4374 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4375 err_mask = 0;
4376
4377 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4378 return err_mask;
4379 }
4380
4381 /**
4382 * atapi_check_dma - Check whether ATAPI DMA can be supported
4383 * @qc: Metadata associated with taskfile to check
4384 *
4385 * Allow low-level driver to filter ATA PACKET commands, returning
4386 * a status indicating whether or not it is OK to use DMA for the
4387 * supplied PACKET command.
4388 *
4389 * LOCKING:
4390 * spin_lock_irqsave(host lock)
4391 *
4392 * RETURNS: 0 when ATAPI DMA can be used
4393 * nonzero otherwise
4394 */
atapi_check_dma(struct ata_queued_cmd * qc)4395 int atapi_check_dma(struct ata_queued_cmd *qc)
4396 {
4397 struct ata_port *ap = qc->ap;
4398
4399 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4400 * few ATAPI devices choke on such DMA requests.
4401 */
4402 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4403 unlikely(qc->nbytes & 15))
4404 return 1;
4405
4406 if (ap->ops->check_atapi_dma)
4407 return ap->ops->check_atapi_dma(qc);
4408
4409 return 0;
4410 }
4411
4412 /**
4413 * ata_std_qc_defer - Check whether a qc needs to be deferred
4414 * @qc: ATA command in question
4415 *
4416 * Non-NCQ commands cannot run with any other command, NCQ or
4417 * not. As upper layer only knows the queue depth, we are
4418 * responsible for maintaining exclusion. This function checks
4419 * whether a new command @qc can be issued.
4420 *
4421 * LOCKING:
4422 * spin_lock_irqsave(host lock)
4423 *
4424 * RETURNS:
4425 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4426 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4427 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4428 {
4429 struct ata_link *link = qc->dev->link;
4430
4431 if (ata_is_ncq(qc->tf.protocol)) {
4432 if (!ata_tag_valid(link->active_tag))
4433 return 0;
4434 } else {
4435 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4436 return 0;
4437 }
4438
4439 return ATA_DEFER_LINK;
4440 }
4441 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4442
ata_noop_qc_prep(struct ata_queued_cmd * qc)4443 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4444 {
4445 return AC_ERR_OK;
4446 }
4447 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4448
4449 /**
4450 * ata_sg_init - Associate command with scatter-gather table.
4451 * @qc: Command to be associated
4452 * @sg: Scatter-gather table.
4453 * @n_elem: Number of elements in s/g table.
4454 *
4455 * Initialize the data-related elements of queued_cmd @qc
4456 * to point to a scatter-gather table @sg, containing @n_elem
4457 * elements.
4458 *
4459 * LOCKING:
4460 * spin_lock_irqsave(host lock)
4461 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4462 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4463 unsigned int n_elem)
4464 {
4465 qc->sg = sg;
4466 qc->n_elem = n_elem;
4467 qc->cursg = qc->sg;
4468 }
4469
4470 #ifdef CONFIG_HAS_DMA
4471
4472 /**
4473 * ata_sg_clean - Unmap DMA memory associated with command
4474 * @qc: Command containing DMA memory to be released
4475 *
4476 * Unmap all mapped DMA memory associated with this command.
4477 *
4478 * LOCKING:
4479 * spin_lock_irqsave(host lock)
4480 */
ata_sg_clean(struct ata_queued_cmd * qc)4481 static void ata_sg_clean(struct ata_queued_cmd *qc)
4482 {
4483 struct ata_port *ap = qc->ap;
4484 struct scatterlist *sg = qc->sg;
4485 int dir = qc->dma_dir;
4486
4487 WARN_ON_ONCE(sg == NULL);
4488
4489 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4490
4491 if (qc->n_elem)
4492 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4493
4494 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4495 qc->sg = NULL;
4496 }
4497
4498 /**
4499 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4500 * @qc: Command with scatter-gather table to be mapped.
4501 *
4502 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4503 *
4504 * LOCKING:
4505 * spin_lock_irqsave(host lock)
4506 *
4507 * RETURNS:
4508 * Zero on success, negative on error.
4509 *
4510 */
ata_sg_setup(struct ata_queued_cmd * qc)4511 static int ata_sg_setup(struct ata_queued_cmd *qc)
4512 {
4513 struct ata_port *ap = qc->ap;
4514 unsigned int n_elem;
4515
4516 VPRINTK("ENTER, ata%u\n", ap->print_id);
4517
4518 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4519 if (n_elem < 1)
4520 return -1;
4521
4522 VPRINTK("%d sg elements mapped\n", n_elem);
4523 qc->orig_n_elem = qc->n_elem;
4524 qc->n_elem = n_elem;
4525 qc->flags |= ATA_QCFLAG_DMAMAP;
4526
4527 return 0;
4528 }
4529
4530 #else /* !CONFIG_HAS_DMA */
4531
ata_sg_clean(struct ata_queued_cmd * qc)4532 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4533 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4534
4535 #endif /* !CONFIG_HAS_DMA */
4536
4537 /**
4538 * swap_buf_le16 - swap halves of 16-bit words in place
4539 * @buf: Buffer to swap
4540 * @buf_words: Number of 16-bit words in buffer.
4541 *
4542 * Swap halves of 16-bit words if needed to convert from
4543 * little-endian byte order to native cpu byte order, or
4544 * vice-versa.
4545 *
4546 * LOCKING:
4547 * Inherited from caller.
4548 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4549 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4550 {
4551 #ifdef __BIG_ENDIAN
4552 unsigned int i;
4553
4554 for (i = 0; i < buf_words; i++)
4555 buf[i] = le16_to_cpu(buf[i]);
4556 #endif /* __BIG_ENDIAN */
4557 }
4558
4559 /**
4560 * ata_qc_new_init - Request an available ATA command, and initialize it
4561 * @dev: Device from whom we request an available command structure
4562 * @tag: tag
4563 *
4564 * LOCKING:
4565 * None.
4566 */
4567
ata_qc_new_init(struct ata_device * dev,int tag)4568 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4569 {
4570 struct ata_port *ap = dev->link->ap;
4571 struct ata_queued_cmd *qc;
4572
4573 /* no command while frozen */
4574 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4575 return NULL;
4576
4577 /* libsas case */
4578 if (ap->flags & ATA_FLAG_SAS_HOST) {
4579 tag = ata_sas_allocate_tag(ap);
4580 if (tag < 0)
4581 return NULL;
4582 }
4583
4584 qc = __ata_qc_from_tag(ap, tag);
4585 qc->tag = qc->hw_tag = tag;
4586 qc->scsicmd = NULL;
4587 qc->ap = ap;
4588 qc->dev = dev;
4589
4590 ata_qc_reinit(qc);
4591
4592 return qc;
4593 }
4594
4595 /**
4596 * ata_qc_free - free unused ata_queued_cmd
4597 * @qc: Command to complete
4598 *
4599 * Designed to free unused ata_queued_cmd object
4600 * in case something prevents using it.
4601 *
4602 * LOCKING:
4603 * spin_lock_irqsave(host lock)
4604 */
ata_qc_free(struct ata_queued_cmd * qc)4605 void ata_qc_free(struct ata_queued_cmd *qc)
4606 {
4607 struct ata_port *ap;
4608 unsigned int tag;
4609
4610 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4611 ap = qc->ap;
4612
4613 qc->flags = 0;
4614 tag = qc->tag;
4615 if (ata_tag_valid(tag)) {
4616 qc->tag = ATA_TAG_POISON;
4617 if (ap->flags & ATA_FLAG_SAS_HOST)
4618 ata_sas_free_tag(tag, ap);
4619 }
4620 }
4621
__ata_qc_complete(struct ata_queued_cmd * qc)4622 void __ata_qc_complete(struct ata_queued_cmd *qc)
4623 {
4624 struct ata_port *ap;
4625 struct ata_link *link;
4626
4627 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4628 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4629 ap = qc->ap;
4630 link = qc->dev->link;
4631
4632 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4633 ata_sg_clean(qc);
4634
4635 /* command should be marked inactive atomically with qc completion */
4636 if (ata_is_ncq(qc->tf.protocol)) {
4637 link->sactive &= ~(1 << qc->hw_tag);
4638 if (!link->sactive)
4639 ap->nr_active_links--;
4640 } else {
4641 link->active_tag = ATA_TAG_POISON;
4642 ap->nr_active_links--;
4643 }
4644
4645 /* clear exclusive status */
4646 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4647 ap->excl_link == link))
4648 ap->excl_link = NULL;
4649
4650 /* atapi: mark qc as inactive to prevent the interrupt handler
4651 * from completing the command twice later, before the error handler
4652 * is called. (when rc != 0 and atapi request sense is needed)
4653 */
4654 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4655 ap->qc_active &= ~(1ULL << qc->tag);
4656
4657 /* call completion callback */
4658 qc->complete_fn(qc);
4659 }
4660
fill_result_tf(struct ata_queued_cmd * qc)4661 static void fill_result_tf(struct ata_queued_cmd *qc)
4662 {
4663 struct ata_port *ap = qc->ap;
4664
4665 qc->result_tf.flags = qc->tf.flags;
4666 ap->ops->qc_fill_rtf(qc);
4667 }
4668
ata_verify_xfer(struct ata_queued_cmd * qc)4669 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4670 {
4671 struct ata_device *dev = qc->dev;
4672
4673 if (!ata_is_data(qc->tf.protocol))
4674 return;
4675
4676 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4677 return;
4678
4679 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4680 }
4681
4682 /**
4683 * ata_qc_complete - Complete an active ATA command
4684 * @qc: Command to complete
4685 *
4686 * Indicate to the mid and upper layers that an ATA command has
4687 * completed, with either an ok or not-ok status.
4688 *
4689 * Refrain from calling this function multiple times when
4690 * successfully completing multiple NCQ commands.
4691 * ata_qc_complete_multiple() should be used instead, which will
4692 * properly update IRQ expect state.
4693 *
4694 * LOCKING:
4695 * spin_lock_irqsave(host lock)
4696 */
ata_qc_complete(struct ata_queued_cmd * qc)4697 void ata_qc_complete(struct ata_queued_cmd *qc)
4698 {
4699 struct ata_port *ap = qc->ap;
4700
4701 /* Trigger the LED (if available) */
4702 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4703
4704 /* XXX: New EH and old EH use different mechanisms to
4705 * synchronize EH with regular execution path.
4706 *
4707 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4708 * Normal execution path is responsible for not accessing a
4709 * failed qc. libata core enforces the rule by returning NULL
4710 * from ata_qc_from_tag() for failed qcs.
4711 *
4712 * Old EH depends on ata_qc_complete() nullifying completion
4713 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4714 * not synchronize with interrupt handler. Only PIO task is
4715 * taken care of.
4716 */
4717 if (ap->ops->error_handler) {
4718 struct ata_device *dev = qc->dev;
4719 struct ata_eh_info *ehi = &dev->link->eh_info;
4720
4721 if (unlikely(qc->err_mask))
4722 qc->flags |= ATA_QCFLAG_FAILED;
4723
4724 /*
4725 * Finish internal commands without any further processing
4726 * and always with the result TF filled.
4727 */
4728 if (unlikely(ata_tag_internal(qc->tag))) {
4729 fill_result_tf(qc);
4730 trace_ata_qc_complete_internal(qc);
4731 __ata_qc_complete(qc);
4732 return;
4733 }
4734
4735 /*
4736 * Non-internal qc has failed. Fill the result TF and
4737 * summon EH.
4738 */
4739 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4740 fill_result_tf(qc);
4741 trace_ata_qc_complete_failed(qc);
4742 ata_qc_schedule_eh(qc);
4743 return;
4744 }
4745
4746 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4747
4748 /* read result TF if requested */
4749 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4750 fill_result_tf(qc);
4751
4752 trace_ata_qc_complete_done(qc);
4753 /* Some commands need post-processing after successful
4754 * completion.
4755 */
4756 switch (qc->tf.command) {
4757 case ATA_CMD_SET_FEATURES:
4758 if (qc->tf.feature != SETFEATURES_WC_ON &&
4759 qc->tf.feature != SETFEATURES_WC_OFF &&
4760 qc->tf.feature != SETFEATURES_RA_ON &&
4761 qc->tf.feature != SETFEATURES_RA_OFF)
4762 break;
4763 fallthrough;
4764 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4765 case ATA_CMD_SET_MULTI: /* multi_count changed */
4766 /* revalidate device */
4767 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4768 ata_port_schedule_eh(ap);
4769 break;
4770
4771 case ATA_CMD_SLEEP:
4772 dev->flags |= ATA_DFLAG_SLEEPING;
4773 break;
4774 }
4775
4776 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4777 ata_verify_xfer(qc);
4778
4779 __ata_qc_complete(qc);
4780 } else {
4781 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4782 return;
4783
4784 /* read result TF if failed or requested */
4785 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4786 fill_result_tf(qc);
4787
4788 __ata_qc_complete(qc);
4789 }
4790 }
4791 EXPORT_SYMBOL_GPL(ata_qc_complete);
4792
4793 /**
4794 * ata_qc_get_active - get bitmask of active qcs
4795 * @ap: port in question
4796 *
4797 * LOCKING:
4798 * spin_lock_irqsave(host lock)
4799 *
4800 * RETURNS:
4801 * Bitmask of active qcs
4802 */
ata_qc_get_active(struct ata_port * ap)4803 u64 ata_qc_get_active(struct ata_port *ap)
4804 {
4805 u64 qc_active = ap->qc_active;
4806
4807 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4808 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4809 qc_active |= (1 << 0);
4810 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4811 }
4812
4813 return qc_active;
4814 }
4815 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4816
4817 /**
4818 * ata_qc_issue - issue taskfile to device
4819 * @qc: command to issue to device
4820 *
4821 * Prepare an ATA command to submission to device.
4822 * This includes mapping the data into a DMA-able
4823 * area, filling in the S/G table, and finally
4824 * writing the taskfile to hardware, starting the command.
4825 *
4826 * LOCKING:
4827 * spin_lock_irqsave(host lock)
4828 */
ata_qc_issue(struct ata_queued_cmd * qc)4829 void ata_qc_issue(struct ata_queued_cmd *qc)
4830 {
4831 struct ata_port *ap = qc->ap;
4832 struct ata_link *link = qc->dev->link;
4833 u8 prot = qc->tf.protocol;
4834
4835 /* Make sure only one non-NCQ command is outstanding. The
4836 * check is skipped for old EH because it reuses active qc to
4837 * request ATAPI sense.
4838 */
4839 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4840
4841 if (ata_is_ncq(prot)) {
4842 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4843
4844 if (!link->sactive)
4845 ap->nr_active_links++;
4846 link->sactive |= 1 << qc->hw_tag;
4847 } else {
4848 WARN_ON_ONCE(link->sactive);
4849
4850 ap->nr_active_links++;
4851 link->active_tag = qc->tag;
4852 }
4853
4854 qc->flags |= ATA_QCFLAG_ACTIVE;
4855 ap->qc_active |= 1ULL << qc->tag;
4856
4857 /*
4858 * We guarantee to LLDs that they will have at least one
4859 * non-zero sg if the command is a data command.
4860 */
4861 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4862 goto sys_err;
4863
4864 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4865 (ap->flags & ATA_FLAG_PIO_DMA)))
4866 if (ata_sg_setup(qc))
4867 goto sys_err;
4868
4869 /* if device is sleeping, schedule reset and abort the link */
4870 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4871 link->eh_info.action |= ATA_EH_RESET;
4872 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4873 ata_link_abort(link);
4874 return;
4875 }
4876
4877 qc->err_mask |= ap->ops->qc_prep(qc);
4878 if (unlikely(qc->err_mask))
4879 goto err;
4880 trace_ata_qc_issue(qc);
4881 qc->err_mask |= ap->ops->qc_issue(qc);
4882 if (unlikely(qc->err_mask))
4883 goto err;
4884 return;
4885
4886 sys_err:
4887 qc->err_mask |= AC_ERR_SYSTEM;
4888 err:
4889 ata_qc_complete(qc);
4890 }
4891
4892 /**
4893 * ata_phys_link_online - test whether the given link is online
4894 * @link: ATA link to test
4895 *
4896 * Test whether @link is online. Note that this function returns
4897 * 0 if online status of @link cannot be obtained, so
4898 * ata_link_online(link) != !ata_link_offline(link).
4899 *
4900 * LOCKING:
4901 * None.
4902 *
4903 * RETURNS:
4904 * True if the port online status is available and online.
4905 */
ata_phys_link_online(struct ata_link * link)4906 bool ata_phys_link_online(struct ata_link *link)
4907 {
4908 u32 sstatus;
4909
4910 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4911 ata_sstatus_online(sstatus))
4912 return true;
4913 return false;
4914 }
4915
4916 /**
4917 * ata_phys_link_offline - test whether the given link is offline
4918 * @link: ATA link to test
4919 *
4920 * Test whether @link is offline. Note that this function
4921 * returns 0 if offline status of @link cannot be obtained, so
4922 * ata_link_online(link) != !ata_link_offline(link).
4923 *
4924 * LOCKING:
4925 * None.
4926 *
4927 * RETURNS:
4928 * True if the port offline status is available and offline.
4929 */
ata_phys_link_offline(struct ata_link * link)4930 bool ata_phys_link_offline(struct ata_link *link)
4931 {
4932 u32 sstatus;
4933
4934 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4935 !ata_sstatus_online(sstatus))
4936 return true;
4937 return false;
4938 }
4939
4940 /**
4941 * ata_link_online - test whether the given link is online
4942 * @link: ATA link to test
4943 *
4944 * Test whether @link is online. This is identical to
4945 * ata_phys_link_online() when there's no slave link. When
4946 * there's a slave link, this function should only be called on
4947 * the master link and will return true if any of M/S links is
4948 * online.
4949 *
4950 * LOCKING:
4951 * None.
4952 *
4953 * RETURNS:
4954 * True if the port online status is available and online.
4955 */
ata_link_online(struct ata_link * link)4956 bool ata_link_online(struct ata_link *link)
4957 {
4958 struct ata_link *slave = link->ap->slave_link;
4959
4960 WARN_ON(link == slave); /* shouldn't be called on slave link */
4961
4962 return ata_phys_link_online(link) ||
4963 (slave && ata_phys_link_online(slave));
4964 }
4965 EXPORT_SYMBOL_GPL(ata_link_online);
4966
4967 /**
4968 * ata_link_offline - test whether the given link is offline
4969 * @link: ATA link to test
4970 *
4971 * Test whether @link is offline. This is identical to
4972 * ata_phys_link_offline() when there's no slave link. When
4973 * there's a slave link, this function should only be called on
4974 * the master link and will return true if both M/S links are
4975 * offline.
4976 *
4977 * LOCKING:
4978 * None.
4979 *
4980 * RETURNS:
4981 * True if the port offline status is available and offline.
4982 */
ata_link_offline(struct ata_link * link)4983 bool ata_link_offline(struct ata_link *link)
4984 {
4985 struct ata_link *slave = link->ap->slave_link;
4986
4987 WARN_ON(link == slave); /* shouldn't be called on slave link */
4988
4989 return ata_phys_link_offline(link) &&
4990 (!slave || ata_phys_link_offline(slave));
4991 }
4992 EXPORT_SYMBOL_GPL(ata_link_offline);
4993
4994 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)4995 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4996 unsigned int action, unsigned int ehi_flags,
4997 bool async)
4998 {
4999 struct ata_link *link;
5000 unsigned long flags;
5001
5002 spin_lock_irqsave(ap->lock, flags);
5003
5004 /*
5005 * A previous PM operation might still be in progress. Wait for
5006 * ATA_PFLAG_PM_PENDING to clear.
5007 */
5008 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5009 spin_unlock_irqrestore(ap->lock, flags);
5010 ata_port_wait_eh(ap);
5011 spin_lock_irqsave(ap->lock, flags);
5012 }
5013
5014 /* Request PM operation to EH */
5015 ap->pm_mesg = mesg;
5016 ap->pflags |= ATA_PFLAG_PM_PENDING;
5017 ata_for_each_link(link, ap, HOST_FIRST) {
5018 link->eh_info.action |= action;
5019 link->eh_info.flags |= ehi_flags;
5020 }
5021
5022 ata_port_schedule_eh(ap);
5023
5024 spin_unlock_irqrestore(ap->lock, flags);
5025
5026 if (!async)
5027 ata_port_wait_eh(ap);
5028 }
5029
5030 /*
5031 * On some hardware, device fails to respond after spun down for suspend. As
5032 * the device won't be used before being resumed, we don't need to touch the
5033 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5034 *
5035 * http://thread.gmane.org/gmane.linux.ide/46764
5036 */
5037 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5038 | ATA_EHI_NO_AUTOPSY
5039 | ATA_EHI_NO_RECOVERY;
5040
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5041 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5042 {
5043 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5044 }
5045
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5046 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5047 {
5048 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5049 }
5050
ata_port_pm_suspend(struct device * dev)5051 static int ata_port_pm_suspend(struct device *dev)
5052 {
5053 struct ata_port *ap = to_ata_port(dev);
5054
5055 if (pm_runtime_suspended(dev))
5056 return 0;
5057
5058 ata_port_suspend(ap, PMSG_SUSPEND);
5059 return 0;
5060 }
5061
ata_port_pm_freeze(struct device * dev)5062 static int ata_port_pm_freeze(struct device *dev)
5063 {
5064 struct ata_port *ap = to_ata_port(dev);
5065
5066 if (pm_runtime_suspended(dev))
5067 return 0;
5068
5069 ata_port_suspend(ap, PMSG_FREEZE);
5070 return 0;
5071 }
5072
ata_port_pm_poweroff(struct device * dev)5073 static int ata_port_pm_poweroff(struct device *dev)
5074 {
5075 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5076 return 0;
5077 }
5078
5079 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5080 | ATA_EHI_QUIET;
5081
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5082 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5083 {
5084 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5085 }
5086
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5087 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5088 {
5089 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5090 }
5091
ata_port_pm_resume(struct device * dev)5092 static int ata_port_pm_resume(struct device *dev)
5093 {
5094 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5095 pm_runtime_disable(dev);
5096 pm_runtime_set_active(dev);
5097 pm_runtime_enable(dev);
5098 return 0;
5099 }
5100
5101 /*
5102 * For ODDs, the upper layer will poll for media change every few seconds,
5103 * which will make it enter and leave suspend state every few seconds. And
5104 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5105 * is very little and the ODD may malfunction after constantly being reset.
5106 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5107 * ODD is attached to the port.
5108 */
ata_port_runtime_idle(struct device * dev)5109 static int ata_port_runtime_idle(struct device *dev)
5110 {
5111 struct ata_port *ap = to_ata_port(dev);
5112 struct ata_link *link;
5113 struct ata_device *adev;
5114
5115 ata_for_each_link(link, ap, HOST_FIRST) {
5116 ata_for_each_dev(adev, link, ENABLED)
5117 if (adev->class == ATA_DEV_ATAPI &&
5118 !zpodd_dev_enabled(adev))
5119 return -EBUSY;
5120 }
5121
5122 return 0;
5123 }
5124
ata_port_runtime_suspend(struct device * dev)5125 static int ata_port_runtime_suspend(struct device *dev)
5126 {
5127 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5128 return 0;
5129 }
5130
ata_port_runtime_resume(struct device * dev)5131 static int ata_port_runtime_resume(struct device *dev)
5132 {
5133 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5134 return 0;
5135 }
5136
5137 static const struct dev_pm_ops ata_port_pm_ops = {
5138 .suspend = ata_port_pm_suspend,
5139 .resume = ata_port_pm_resume,
5140 .freeze = ata_port_pm_freeze,
5141 .thaw = ata_port_pm_resume,
5142 .poweroff = ata_port_pm_poweroff,
5143 .restore = ata_port_pm_resume,
5144
5145 .runtime_suspend = ata_port_runtime_suspend,
5146 .runtime_resume = ata_port_runtime_resume,
5147 .runtime_idle = ata_port_runtime_idle,
5148 };
5149
5150 /* sas ports don't participate in pm runtime management of ata_ports,
5151 * and need to resume ata devices at the domain level, not the per-port
5152 * level. sas suspend/resume is async to allow parallel port recovery
5153 * since sas has multiple ata_port instances per Scsi_Host.
5154 */
ata_sas_port_suspend(struct ata_port * ap)5155 void ata_sas_port_suspend(struct ata_port *ap)
5156 {
5157 ata_port_suspend_async(ap, PMSG_SUSPEND);
5158 }
5159 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5160
ata_sas_port_resume(struct ata_port * ap)5161 void ata_sas_port_resume(struct ata_port *ap)
5162 {
5163 ata_port_resume_async(ap, PMSG_RESUME);
5164 }
5165 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5166
5167 /**
5168 * ata_host_suspend - suspend host
5169 * @host: host to suspend
5170 * @mesg: PM message
5171 *
5172 * Suspend @host. Actual operation is performed by port suspend.
5173 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5174 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5175 {
5176 host->dev->power.power_state = mesg;
5177 return 0;
5178 }
5179 EXPORT_SYMBOL_GPL(ata_host_suspend);
5180
5181 /**
5182 * ata_host_resume - resume host
5183 * @host: host to resume
5184 *
5185 * Resume @host. Actual operation is performed by port resume.
5186 */
ata_host_resume(struct ata_host * host)5187 void ata_host_resume(struct ata_host *host)
5188 {
5189 host->dev->power.power_state = PMSG_ON;
5190 }
5191 EXPORT_SYMBOL_GPL(ata_host_resume);
5192 #endif
5193
5194 const struct device_type ata_port_type = {
5195 .name = ATA_PORT_TYPE_NAME,
5196 #ifdef CONFIG_PM
5197 .pm = &ata_port_pm_ops,
5198 #endif
5199 };
5200
5201 /**
5202 * ata_dev_init - Initialize an ata_device structure
5203 * @dev: Device structure to initialize
5204 *
5205 * Initialize @dev in preparation for probing.
5206 *
5207 * LOCKING:
5208 * Inherited from caller.
5209 */
ata_dev_init(struct ata_device * dev)5210 void ata_dev_init(struct ata_device *dev)
5211 {
5212 struct ata_link *link = ata_dev_phys_link(dev);
5213 struct ata_port *ap = link->ap;
5214 unsigned long flags;
5215
5216 /* SATA spd limit is bound to the attached device, reset together */
5217 link->sata_spd_limit = link->hw_sata_spd_limit;
5218 link->sata_spd = 0;
5219
5220 /* High bits of dev->flags are used to record warm plug
5221 * requests which occur asynchronously. Synchronize using
5222 * host lock.
5223 */
5224 spin_lock_irqsave(ap->lock, flags);
5225 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5226 dev->horkage = 0;
5227 spin_unlock_irqrestore(ap->lock, flags);
5228
5229 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5230 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5231 dev->pio_mask = UINT_MAX;
5232 dev->mwdma_mask = UINT_MAX;
5233 dev->udma_mask = UINT_MAX;
5234 }
5235
5236 /**
5237 * ata_link_init - Initialize an ata_link structure
5238 * @ap: ATA port link is attached to
5239 * @link: Link structure to initialize
5240 * @pmp: Port multiplier port number
5241 *
5242 * Initialize @link.
5243 *
5244 * LOCKING:
5245 * Kernel thread context (may sleep)
5246 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5247 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5248 {
5249 int i;
5250
5251 /* clear everything except for devices */
5252 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5253 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5254
5255 link->ap = ap;
5256 link->pmp = pmp;
5257 link->active_tag = ATA_TAG_POISON;
5258 link->hw_sata_spd_limit = UINT_MAX;
5259
5260 /* can't use iterator, ap isn't initialized yet */
5261 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5262 struct ata_device *dev = &link->device[i];
5263
5264 dev->link = link;
5265 dev->devno = dev - link->device;
5266 #ifdef CONFIG_ATA_ACPI
5267 dev->gtf_filter = ata_acpi_gtf_filter;
5268 #endif
5269 ata_dev_init(dev);
5270 }
5271 }
5272
5273 /**
5274 * sata_link_init_spd - Initialize link->sata_spd_limit
5275 * @link: Link to configure sata_spd_limit for
5276 *
5277 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5278 * configured value.
5279 *
5280 * LOCKING:
5281 * Kernel thread context (may sleep).
5282 *
5283 * RETURNS:
5284 * 0 on success, -errno on failure.
5285 */
sata_link_init_spd(struct ata_link * link)5286 int sata_link_init_spd(struct ata_link *link)
5287 {
5288 u8 spd;
5289 int rc;
5290
5291 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5292 if (rc)
5293 return rc;
5294
5295 spd = (link->saved_scontrol >> 4) & 0xf;
5296 if (spd)
5297 link->hw_sata_spd_limit &= (1 << spd) - 1;
5298
5299 ata_force_link_limits(link);
5300
5301 link->sata_spd_limit = link->hw_sata_spd_limit;
5302
5303 return 0;
5304 }
5305
5306 /**
5307 * ata_port_alloc - allocate and initialize basic ATA port resources
5308 * @host: ATA host this allocated port belongs to
5309 *
5310 * Allocate and initialize basic ATA port resources.
5311 *
5312 * RETURNS:
5313 * Allocate ATA port on success, NULL on failure.
5314 *
5315 * LOCKING:
5316 * Inherited from calling layer (may sleep).
5317 */
ata_port_alloc(struct ata_host * host)5318 struct ata_port *ata_port_alloc(struct ata_host *host)
5319 {
5320 struct ata_port *ap;
5321
5322 DPRINTK("ENTER\n");
5323
5324 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5325 if (!ap)
5326 return NULL;
5327
5328 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5329 ap->lock = &host->lock;
5330 ap->print_id = -1;
5331 ap->local_port_no = -1;
5332 ap->host = host;
5333 ap->dev = host->dev;
5334
5335 #if defined(ATA_VERBOSE_DEBUG)
5336 /* turn on all debugging levels */
5337 ap->msg_enable = 0x00FF;
5338 #elif defined(ATA_DEBUG)
5339 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5340 #else
5341 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5342 #endif
5343
5344 mutex_init(&ap->scsi_scan_mutex);
5345 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5346 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5347 INIT_LIST_HEAD(&ap->eh_done_q);
5348 init_waitqueue_head(&ap->eh_wait_q);
5349 init_completion(&ap->park_req_pending);
5350 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5351 TIMER_DEFERRABLE);
5352
5353 ap->cbl = ATA_CBL_NONE;
5354
5355 ata_link_init(ap, &ap->link, 0);
5356
5357 #ifdef ATA_IRQ_TRAP
5358 ap->stats.unhandled_irq = 1;
5359 ap->stats.idle_irq = 1;
5360 #endif
5361 ata_sff_port_init(ap);
5362
5363 return ap;
5364 }
5365
ata_devres_release(struct device * gendev,void * res)5366 static void ata_devres_release(struct device *gendev, void *res)
5367 {
5368 struct ata_host *host = dev_get_drvdata(gendev);
5369 int i;
5370
5371 for (i = 0; i < host->n_ports; i++) {
5372 struct ata_port *ap = host->ports[i];
5373
5374 if (!ap)
5375 continue;
5376
5377 if (ap->scsi_host)
5378 scsi_host_put(ap->scsi_host);
5379
5380 }
5381
5382 dev_set_drvdata(gendev, NULL);
5383 ata_host_put(host);
5384 }
5385
ata_host_release(struct kref * kref)5386 static void ata_host_release(struct kref *kref)
5387 {
5388 struct ata_host *host = container_of(kref, struct ata_host, kref);
5389 int i;
5390
5391 for (i = 0; i < host->n_ports; i++) {
5392 struct ata_port *ap = host->ports[i];
5393
5394 kfree(ap->pmp_link);
5395 kfree(ap->slave_link);
5396 kfree(ap);
5397 host->ports[i] = NULL;
5398 }
5399 kfree(host);
5400 }
5401
ata_host_get(struct ata_host * host)5402 void ata_host_get(struct ata_host *host)
5403 {
5404 kref_get(&host->kref);
5405 }
5406
ata_host_put(struct ata_host * host)5407 void ata_host_put(struct ata_host *host)
5408 {
5409 kref_put(&host->kref, ata_host_release);
5410 }
5411 EXPORT_SYMBOL_GPL(ata_host_put);
5412
5413 /**
5414 * ata_host_alloc - allocate and init basic ATA host resources
5415 * @dev: generic device this host is associated with
5416 * @max_ports: maximum number of ATA ports associated with this host
5417 *
5418 * Allocate and initialize basic ATA host resources. LLD calls
5419 * this function to allocate a host, initializes it fully and
5420 * attaches it using ata_host_register().
5421 *
5422 * @max_ports ports are allocated and host->n_ports is
5423 * initialized to @max_ports. The caller is allowed to decrease
5424 * host->n_ports before calling ata_host_register(). The unused
5425 * ports will be automatically freed on registration.
5426 *
5427 * RETURNS:
5428 * Allocate ATA host on success, NULL on failure.
5429 *
5430 * LOCKING:
5431 * Inherited from calling layer (may sleep).
5432 */
ata_host_alloc(struct device * dev,int max_ports)5433 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5434 {
5435 struct ata_host *host;
5436 size_t sz;
5437 int i;
5438 void *dr;
5439
5440 DPRINTK("ENTER\n");
5441
5442 /* alloc a container for our list of ATA ports (buses) */
5443 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5444 host = kzalloc(sz, GFP_KERNEL);
5445 if (!host)
5446 return NULL;
5447
5448 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5449 goto err_free;
5450
5451 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5452 if (!dr)
5453 goto err_out;
5454
5455 devres_add(dev, dr);
5456 dev_set_drvdata(dev, host);
5457
5458 spin_lock_init(&host->lock);
5459 mutex_init(&host->eh_mutex);
5460 host->dev = dev;
5461 host->n_ports = max_ports;
5462 kref_init(&host->kref);
5463
5464 /* allocate ports bound to this host */
5465 for (i = 0; i < max_ports; i++) {
5466 struct ata_port *ap;
5467
5468 ap = ata_port_alloc(host);
5469 if (!ap)
5470 goto err_out;
5471
5472 ap->port_no = i;
5473 host->ports[i] = ap;
5474 }
5475
5476 devres_remove_group(dev, NULL);
5477 return host;
5478
5479 err_out:
5480 devres_release_group(dev, NULL);
5481 err_free:
5482 kfree(host);
5483 return NULL;
5484 }
5485 EXPORT_SYMBOL_GPL(ata_host_alloc);
5486
5487 /**
5488 * ata_host_alloc_pinfo - alloc host and init with port_info array
5489 * @dev: generic device this host is associated with
5490 * @ppi: array of ATA port_info to initialize host with
5491 * @n_ports: number of ATA ports attached to this host
5492 *
5493 * Allocate ATA host and initialize with info from @ppi. If NULL
5494 * terminated, @ppi may contain fewer entries than @n_ports. The
5495 * last entry will be used for the remaining ports.
5496 *
5497 * RETURNS:
5498 * Allocate ATA host on success, NULL on failure.
5499 *
5500 * LOCKING:
5501 * Inherited from calling layer (may sleep).
5502 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5503 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5504 const struct ata_port_info * const * ppi,
5505 int n_ports)
5506 {
5507 const struct ata_port_info *pi = &ata_dummy_port_info;
5508 struct ata_host *host;
5509 int i, j;
5510
5511 host = ata_host_alloc(dev, n_ports);
5512 if (!host)
5513 return NULL;
5514
5515 for (i = 0, j = 0; i < host->n_ports; i++) {
5516 struct ata_port *ap = host->ports[i];
5517
5518 if (ppi[j])
5519 pi = ppi[j++];
5520
5521 ap->pio_mask = pi->pio_mask;
5522 ap->mwdma_mask = pi->mwdma_mask;
5523 ap->udma_mask = pi->udma_mask;
5524 ap->flags |= pi->flags;
5525 ap->link.flags |= pi->link_flags;
5526 ap->ops = pi->port_ops;
5527
5528 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5529 host->ops = pi->port_ops;
5530 }
5531
5532 return host;
5533 }
5534 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5535
ata_host_stop(struct device * gendev,void * res)5536 static void ata_host_stop(struct device *gendev, void *res)
5537 {
5538 struct ata_host *host = dev_get_drvdata(gendev);
5539 int i;
5540
5541 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5542
5543 for (i = 0; i < host->n_ports; i++) {
5544 struct ata_port *ap = host->ports[i];
5545
5546 if (ap->ops->port_stop)
5547 ap->ops->port_stop(ap);
5548 }
5549
5550 if (host->ops->host_stop)
5551 host->ops->host_stop(host);
5552 }
5553
5554 /**
5555 * ata_finalize_port_ops - finalize ata_port_operations
5556 * @ops: ata_port_operations to finalize
5557 *
5558 * An ata_port_operations can inherit from another ops and that
5559 * ops can again inherit from another. This can go on as many
5560 * times as necessary as long as there is no loop in the
5561 * inheritance chain.
5562 *
5563 * Ops tables are finalized when the host is started. NULL or
5564 * unspecified entries are inherited from the closet ancestor
5565 * which has the method and the entry is populated with it.
5566 * After finalization, the ops table directly points to all the
5567 * methods and ->inherits is no longer necessary and cleared.
5568 *
5569 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5570 *
5571 * LOCKING:
5572 * None.
5573 */
ata_finalize_port_ops(struct ata_port_operations * ops)5574 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5575 {
5576 static DEFINE_SPINLOCK(lock);
5577 const struct ata_port_operations *cur;
5578 void **begin = (void **)ops;
5579 void **end = (void **)&ops->inherits;
5580 void **pp;
5581
5582 if (!ops || !ops->inherits)
5583 return;
5584
5585 spin_lock(&lock);
5586
5587 for (cur = ops->inherits; cur; cur = cur->inherits) {
5588 void **inherit = (void **)cur;
5589
5590 for (pp = begin; pp < end; pp++, inherit++)
5591 if (!*pp)
5592 *pp = *inherit;
5593 }
5594
5595 for (pp = begin; pp < end; pp++)
5596 if (IS_ERR(*pp))
5597 *pp = NULL;
5598
5599 ops->inherits = NULL;
5600
5601 spin_unlock(&lock);
5602 }
5603
5604 /**
5605 * ata_host_start - start and freeze ports of an ATA host
5606 * @host: ATA host to start ports for
5607 *
5608 * Start and then freeze ports of @host. Started status is
5609 * recorded in host->flags, so this function can be called
5610 * multiple times. Ports are guaranteed to get started only
5611 * once. If host->ops isn't initialized yet, its set to the
5612 * first non-dummy port ops.
5613 *
5614 * LOCKING:
5615 * Inherited from calling layer (may sleep).
5616 *
5617 * RETURNS:
5618 * 0 if all ports are started successfully, -errno otherwise.
5619 */
ata_host_start(struct ata_host * host)5620 int ata_host_start(struct ata_host *host)
5621 {
5622 int have_stop = 0;
5623 void *start_dr = NULL;
5624 int i, rc;
5625
5626 if (host->flags & ATA_HOST_STARTED)
5627 return 0;
5628
5629 ata_finalize_port_ops(host->ops);
5630
5631 for (i = 0; i < host->n_ports; i++) {
5632 struct ata_port *ap = host->ports[i];
5633
5634 ata_finalize_port_ops(ap->ops);
5635
5636 if (!host->ops && !ata_port_is_dummy(ap))
5637 host->ops = ap->ops;
5638
5639 if (ap->ops->port_stop)
5640 have_stop = 1;
5641 }
5642
5643 if (host->ops && host->ops->host_stop)
5644 have_stop = 1;
5645
5646 if (have_stop) {
5647 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5648 if (!start_dr)
5649 return -ENOMEM;
5650 }
5651
5652 for (i = 0; i < host->n_ports; i++) {
5653 struct ata_port *ap = host->ports[i];
5654
5655 if (ap->ops->port_start) {
5656 rc = ap->ops->port_start(ap);
5657 if (rc) {
5658 if (rc != -ENODEV)
5659 dev_err(host->dev,
5660 "failed to start port %d (errno=%d)\n",
5661 i, rc);
5662 goto err_out;
5663 }
5664 }
5665 ata_eh_freeze_port(ap);
5666 }
5667
5668 if (start_dr)
5669 devres_add(host->dev, start_dr);
5670 host->flags |= ATA_HOST_STARTED;
5671 return 0;
5672
5673 err_out:
5674 while (--i >= 0) {
5675 struct ata_port *ap = host->ports[i];
5676
5677 if (ap->ops->port_stop)
5678 ap->ops->port_stop(ap);
5679 }
5680 devres_free(start_dr);
5681 return rc;
5682 }
5683 EXPORT_SYMBOL_GPL(ata_host_start);
5684
5685 /**
5686 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5687 * @host: host to initialize
5688 * @dev: device host is attached to
5689 * @ops: port_ops
5690 *
5691 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5692 void ata_host_init(struct ata_host *host, struct device *dev,
5693 struct ata_port_operations *ops)
5694 {
5695 spin_lock_init(&host->lock);
5696 mutex_init(&host->eh_mutex);
5697 host->n_tags = ATA_MAX_QUEUE;
5698 host->dev = dev;
5699 host->ops = ops;
5700 kref_init(&host->kref);
5701 }
5702 EXPORT_SYMBOL_GPL(ata_host_init);
5703
__ata_port_probe(struct ata_port * ap)5704 void __ata_port_probe(struct ata_port *ap)
5705 {
5706 struct ata_eh_info *ehi = &ap->link.eh_info;
5707 unsigned long flags;
5708
5709 /* kick EH for boot probing */
5710 spin_lock_irqsave(ap->lock, flags);
5711
5712 ehi->probe_mask |= ATA_ALL_DEVICES;
5713 ehi->action |= ATA_EH_RESET;
5714 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5715
5716 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5717 ap->pflags |= ATA_PFLAG_LOADING;
5718 ata_port_schedule_eh(ap);
5719
5720 spin_unlock_irqrestore(ap->lock, flags);
5721 }
5722
ata_port_probe(struct ata_port * ap)5723 int ata_port_probe(struct ata_port *ap)
5724 {
5725 int rc = 0;
5726
5727 if (ap->ops->error_handler) {
5728 __ata_port_probe(ap);
5729 ata_port_wait_eh(ap);
5730 } else {
5731 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5732 rc = ata_bus_probe(ap);
5733 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5734 }
5735 return rc;
5736 }
5737
5738
async_port_probe(void * data,async_cookie_t cookie)5739 static void async_port_probe(void *data, async_cookie_t cookie)
5740 {
5741 struct ata_port *ap = data;
5742
5743 /*
5744 * If we're not allowed to scan this host in parallel,
5745 * we need to wait until all previous scans have completed
5746 * before going further.
5747 * Jeff Garzik says this is only within a controller, so we
5748 * don't need to wait for port 0, only for later ports.
5749 */
5750 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5751 async_synchronize_cookie(cookie);
5752
5753 (void)ata_port_probe(ap);
5754
5755 /* in order to keep device order, we need to synchronize at this point */
5756 async_synchronize_cookie(cookie);
5757
5758 ata_scsi_scan_host(ap, 1);
5759 }
5760
5761 /**
5762 * ata_host_register - register initialized ATA host
5763 * @host: ATA host to register
5764 * @sht: template for SCSI host
5765 *
5766 * Register initialized ATA host. @host is allocated using
5767 * ata_host_alloc() and fully initialized by LLD. This function
5768 * starts ports, registers @host with ATA and SCSI layers and
5769 * probe registered devices.
5770 *
5771 * LOCKING:
5772 * Inherited from calling layer (may sleep).
5773 *
5774 * RETURNS:
5775 * 0 on success, -errno otherwise.
5776 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5777 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5778 {
5779 int i, rc;
5780
5781 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5782
5783 /* host must have been started */
5784 if (!(host->flags & ATA_HOST_STARTED)) {
5785 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5786 WARN_ON(1);
5787 return -EINVAL;
5788 }
5789
5790 /* Blow away unused ports. This happens when LLD can't
5791 * determine the exact number of ports to allocate at
5792 * allocation time.
5793 */
5794 for (i = host->n_ports; host->ports[i]; i++)
5795 kfree(host->ports[i]);
5796
5797 /* give ports names and add SCSI hosts */
5798 for (i = 0; i < host->n_ports; i++) {
5799 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5800 host->ports[i]->local_port_no = i + 1;
5801 }
5802
5803 /* Create associated sysfs transport objects */
5804 for (i = 0; i < host->n_ports; i++) {
5805 rc = ata_tport_add(host->dev,host->ports[i]);
5806 if (rc) {
5807 goto err_tadd;
5808 }
5809 }
5810
5811 rc = ata_scsi_add_hosts(host, sht);
5812 if (rc)
5813 goto err_tadd;
5814
5815 /* set cable, sata_spd_limit and report */
5816 for (i = 0; i < host->n_ports; i++) {
5817 struct ata_port *ap = host->ports[i];
5818 unsigned long xfer_mask;
5819
5820 /* set SATA cable type if still unset */
5821 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5822 ap->cbl = ATA_CBL_SATA;
5823
5824 /* init sata_spd_limit to the current value */
5825 sata_link_init_spd(&ap->link);
5826 if (ap->slave_link)
5827 sata_link_init_spd(ap->slave_link);
5828
5829 /* print per-port info to dmesg */
5830 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5831 ap->udma_mask);
5832
5833 if (!ata_port_is_dummy(ap)) {
5834 ata_port_info(ap, "%cATA max %s %s\n",
5835 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5836 ata_mode_string(xfer_mask),
5837 ap->link.eh_info.desc);
5838 ata_ehi_clear_desc(&ap->link.eh_info);
5839 } else
5840 ata_port_info(ap, "DUMMY\n");
5841 }
5842
5843 /* perform each probe asynchronously */
5844 for (i = 0; i < host->n_ports; i++) {
5845 struct ata_port *ap = host->ports[i];
5846 ap->cookie = async_schedule(async_port_probe, ap);
5847 }
5848
5849 return 0;
5850
5851 err_tadd:
5852 while (--i >= 0) {
5853 ata_tport_delete(host->ports[i]);
5854 }
5855 return rc;
5856
5857 }
5858 EXPORT_SYMBOL_GPL(ata_host_register);
5859
5860 /**
5861 * ata_host_activate - start host, request IRQ and register it
5862 * @host: target ATA host
5863 * @irq: IRQ to request
5864 * @irq_handler: irq_handler used when requesting IRQ
5865 * @irq_flags: irq_flags used when requesting IRQ
5866 * @sht: scsi_host_template to use when registering the host
5867 *
5868 * After allocating an ATA host and initializing it, most libata
5869 * LLDs perform three steps to activate the host - start host,
5870 * request IRQ and register it. This helper takes necessary
5871 * arguments and performs the three steps in one go.
5872 *
5873 * An invalid IRQ skips the IRQ registration and expects the host to
5874 * have set polling mode on the port. In this case, @irq_handler
5875 * should be NULL.
5876 *
5877 * LOCKING:
5878 * Inherited from calling layer (may sleep).
5879 *
5880 * RETURNS:
5881 * 0 on success, -errno otherwise.
5882 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5883 int ata_host_activate(struct ata_host *host, int irq,
5884 irq_handler_t irq_handler, unsigned long irq_flags,
5885 struct scsi_host_template *sht)
5886 {
5887 int i, rc;
5888 char *irq_desc;
5889
5890 rc = ata_host_start(host);
5891 if (rc)
5892 return rc;
5893
5894 /* Special case for polling mode */
5895 if (!irq) {
5896 WARN_ON(irq_handler);
5897 return ata_host_register(host, sht);
5898 }
5899
5900 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5901 dev_driver_string(host->dev),
5902 dev_name(host->dev));
5903 if (!irq_desc)
5904 return -ENOMEM;
5905
5906 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5907 irq_desc, host);
5908 if (rc)
5909 return rc;
5910
5911 for (i = 0; i < host->n_ports; i++)
5912 ata_port_desc(host->ports[i], "irq %d", irq);
5913
5914 rc = ata_host_register(host, sht);
5915 /* if failed, just free the IRQ and leave ports alone */
5916 if (rc)
5917 devm_free_irq(host->dev, irq, host);
5918
5919 return rc;
5920 }
5921 EXPORT_SYMBOL_GPL(ata_host_activate);
5922
5923 /**
5924 * ata_port_detach - Detach ATA port in preparation of device removal
5925 * @ap: ATA port to be detached
5926 *
5927 * Detach all ATA devices and the associated SCSI devices of @ap;
5928 * then, remove the associated SCSI host. @ap is guaranteed to
5929 * be quiescent on return from this function.
5930 *
5931 * LOCKING:
5932 * Kernel thread context (may sleep).
5933 */
ata_port_detach(struct ata_port * ap)5934 static void ata_port_detach(struct ata_port *ap)
5935 {
5936 unsigned long flags;
5937 struct ata_link *link;
5938 struct ata_device *dev;
5939
5940 if (!ap->ops->error_handler)
5941 goto skip_eh;
5942
5943 /* Wait for any ongoing EH */
5944 ata_port_wait_eh(ap);
5945
5946 mutex_lock(&ap->scsi_scan_mutex);
5947 spin_lock_irqsave(ap->lock, flags);
5948
5949 /* Remove scsi devices */
5950 ata_for_each_link(link, ap, HOST_FIRST) {
5951 ata_for_each_dev(dev, link, ALL) {
5952 if (dev->sdev) {
5953 spin_unlock_irqrestore(ap->lock, flags);
5954 scsi_remove_device(dev->sdev);
5955 spin_lock_irqsave(ap->lock, flags);
5956 dev->sdev = NULL;
5957 }
5958 }
5959 }
5960
5961 /* Tell EH to disable all devices */
5962 ap->pflags |= ATA_PFLAG_UNLOADING;
5963 ata_port_schedule_eh(ap);
5964
5965 spin_unlock_irqrestore(ap->lock, flags);
5966 mutex_unlock(&ap->scsi_scan_mutex);
5967
5968 /* wait till EH commits suicide */
5969 ata_port_wait_eh(ap);
5970
5971 /* it better be dead now */
5972 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5973
5974 cancel_delayed_work_sync(&ap->hotplug_task);
5975
5976 skip_eh:
5977 /* clean up zpodd on port removal */
5978 ata_for_each_link(link, ap, HOST_FIRST) {
5979 ata_for_each_dev(dev, link, ALL) {
5980 if (zpodd_dev_enabled(dev))
5981 zpodd_exit(dev);
5982 }
5983 }
5984 if (ap->pmp_link) {
5985 int i;
5986 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5987 ata_tlink_delete(&ap->pmp_link[i]);
5988 }
5989 /* remove the associated SCSI host */
5990 scsi_remove_host(ap->scsi_host);
5991 ata_tport_delete(ap);
5992 }
5993
5994 /**
5995 * ata_host_detach - Detach all ports of an ATA host
5996 * @host: Host to detach
5997 *
5998 * Detach all ports of @host.
5999 *
6000 * LOCKING:
6001 * Kernel thread context (may sleep).
6002 */
ata_host_detach(struct ata_host * host)6003 void ata_host_detach(struct ata_host *host)
6004 {
6005 int i;
6006
6007 for (i = 0; i < host->n_ports; i++) {
6008 /* Ensure ata_port probe has completed */
6009 async_synchronize_cookie(host->ports[i]->cookie + 1);
6010 ata_port_detach(host->ports[i]);
6011 }
6012
6013 /* the host is dead now, dissociate ACPI */
6014 ata_acpi_dissociate(host);
6015 }
6016 EXPORT_SYMBOL_GPL(ata_host_detach);
6017
6018 #ifdef CONFIG_PCI
6019
6020 /**
6021 * ata_pci_remove_one - PCI layer callback for device removal
6022 * @pdev: PCI device that was removed
6023 *
6024 * PCI layer indicates to libata via this hook that hot-unplug or
6025 * module unload event has occurred. Detach all ports. Resource
6026 * release is handled via devres.
6027 *
6028 * LOCKING:
6029 * Inherited from PCI layer (may sleep).
6030 */
ata_pci_remove_one(struct pci_dev * pdev)6031 void ata_pci_remove_one(struct pci_dev *pdev)
6032 {
6033 struct ata_host *host = pci_get_drvdata(pdev);
6034
6035 ata_host_detach(host);
6036 }
6037 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6038
ata_pci_shutdown_one(struct pci_dev * pdev)6039 void ata_pci_shutdown_one(struct pci_dev *pdev)
6040 {
6041 struct ata_host *host = pci_get_drvdata(pdev);
6042 int i;
6043
6044 for (i = 0; i < host->n_ports; i++) {
6045 struct ata_port *ap = host->ports[i];
6046
6047 ap->pflags |= ATA_PFLAG_FROZEN;
6048
6049 /* Disable port interrupts */
6050 if (ap->ops->freeze)
6051 ap->ops->freeze(ap);
6052
6053 /* Stop the port DMA engines */
6054 if (ap->ops->port_stop)
6055 ap->ops->port_stop(ap);
6056 }
6057 }
6058 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6059
6060 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6061 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6062 {
6063 unsigned long tmp = 0;
6064
6065 switch (bits->width) {
6066 case 1: {
6067 u8 tmp8 = 0;
6068 pci_read_config_byte(pdev, bits->reg, &tmp8);
6069 tmp = tmp8;
6070 break;
6071 }
6072 case 2: {
6073 u16 tmp16 = 0;
6074 pci_read_config_word(pdev, bits->reg, &tmp16);
6075 tmp = tmp16;
6076 break;
6077 }
6078 case 4: {
6079 u32 tmp32 = 0;
6080 pci_read_config_dword(pdev, bits->reg, &tmp32);
6081 tmp = tmp32;
6082 break;
6083 }
6084
6085 default:
6086 return -EINVAL;
6087 }
6088
6089 tmp &= bits->mask;
6090
6091 return (tmp == bits->val) ? 1 : 0;
6092 }
6093 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6094
6095 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6096 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6097 {
6098 pci_save_state(pdev);
6099 pci_disable_device(pdev);
6100
6101 if (mesg.event & PM_EVENT_SLEEP)
6102 pci_set_power_state(pdev, PCI_D3hot);
6103 }
6104 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6105
ata_pci_device_do_resume(struct pci_dev * pdev)6106 int ata_pci_device_do_resume(struct pci_dev *pdev)
6107 {
6108 int rc;
6109
6110 pci_set_power_state(pdev, PCI_D0);
6111 pci_restore_state(pdev);
6112
6113 rc = pcim_enable_device(pdev);
6114 if (rc) {
6115 dev_err(&pdev->dev,
6116 "failed to enable device after resume (%d)\n", rc);
6117 return rc;
6118 }
6119
6120 pci_set_master(pdev);
6121 return 0;
6122 }
6123 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6124
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6125 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6126 {
6127 struct ata_host *host = pci_get_drvdata(pdev);
6128 int rc = 0;
6129
6130 rc = ata_host_suspend(host, mesg);
6131 if (rc)
6132 return rc;
6133
6134 ata_pci_device_do_suspend(pdev, mesg);
6135
6136 return 0;
6137 }
6138 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6139
ata_pci_device_resume(struct pci_dev * pdev)6140 int ata_pci_device_resume(struct pci_dev *pdev)
6141 {
6142 struct ata_host *host = pci_get_drvdata(pdev);
6143 int rc;
6144
6145 rc = ata_pci_device_do_resume(pdev);
6146 if (rc == 0)
6147 ata_host_resume(host);
6148 return rc;
6149 }
6150 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6151 #endif /* CONFIG_PM */
6152 #endif /* CONFIG_PCI */
6153
6154 /**
6155 * ata_platform_remove_one - Platform layer callback for device removal
6156 * @pdev: Platform device that was removed
6157 *
6158 * Platform layer indicates to libata via this hook that hot-unplug or
6159 * module unload event has occurred. Detach all ports. Resource
6160 * release is handled via devres.
6161 *
6162 * LOCKING:
6163 * Inherited from platform layer (may sleep).
6164 */
ata_platform_remove_one(struct platform_device * pdev)6165 int ata_platform_remove_one(struct platform_device *pdev)
6166 {
6167 struct ata_host *host = platform_get_drvdata(pdev);
6168
6169 ata_host_detach(host);
6170
6171 return 0;
6172 }
6173 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6174
6175 #ifdef CONFIG_ATA_FORCE
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6176 static int __init ata_parse_force_one(char **cur,
6177 struct ata_force_ent *force_ent,
6178 const char **reason)
6179 {
6180 static const struct ata_force_param force_tbl[] __initconst = {
6181 { "40c", .cbl = ATA_CBL_PATA40 },
6182 { "80c", .cbl = ATA_CBL_PATA80 },
6183 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6184 { "unk", .cbl = ATA_CBL_PATA_UNK },
6185 { "ign", .cbl = ATA_CBL_PATA_IGN },
6186 { "sata", .cbl = ATA_CBL_SATA },
6187 { "1.5Gbps", .spd_limit = 1 },
6188 { "3.0Gbps", .spd_limit = 2 },
6189 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6190 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6191 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6192 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6193 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI },
6194 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI },
6195 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6196 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6197 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6198 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6199 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6200 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6201 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6202 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6203 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6204 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6205 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6206 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6207 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6208 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6209 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6210 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6211 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6212 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6213 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6214 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6215 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6216 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6217 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6218 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6219 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6220 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6221 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6222 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6223 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6224 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6225 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6226 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6227 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6228 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6229 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6230 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6231 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6232 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6233 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6234 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6235 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6236 };
6237 char *start = *cur, *p = *cur;
6238 char *id, *val, *endp;
6239 const struct ata_force_param *match_fp = NULL;
6240 int nr_matches = 0, i;
6241
6242 /* find where this param ends and update *cur */
6243 while (*p != '\0' && *p != ',')
6244 p++;
6245
6246 if (*p == '\0')
6247 *cur = p;
6248 else
6249 *cur = p + 1;
6250
6251 *p = '\0';
6252
6253 /* parse */
6254 p = strchr(start, ':');
6255 if (!p) {
6256 val = strstrip(start);
6257 goto parse_val;
6258 }
6259 *p = '\0';
6260
6261 id = strstrip(start);
6262 val = strstrip(p + 1);
6263
6264 /* parse id */
6265 p = strchr(id, '.');
6266 if (p) {
6267 *p++ = '\0';
6268 force_ent->device = simple_strtoul(p, &endp, 10);
6269 if (p == endp || *endp != '\0') {
6270 *reason = "invalid device";
6271 return -EINVAL;
6272 }
6273 }
6274
6275 force_ent->port = simple_strtoul(id, &endp, 10);
6276 if (id == endp || *endp != '\0') {
6277 *reason = "invalid port/link";
6278 return -EINVAL;
6279 }
6280
6281 parse_val:
6282 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6283 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6284 const struct ata_force_param *fp = &force_tbl[i];
6285
6286 if (strncasecmp(val, fp->name, strlen(val)))
6287 continue;
6288
6289 nr_matches++;
6290 match_fp = fp;
6291
6292 if (strcasecmp(val, fp->name) == 0) {
6293 nr_matches = 1;
6294 break;
6295 }
6296 }
6297
6298 if (!nr_matches) {
6299 *reason = "unknown value";
6300 return -EINVAL;
6301 }
6302 if (nr_matches > 1) {
6303 *reason = "ambiguous value";
6304 return -EINVAL;
6305 }
6306
6307 force_ent->param = *match_fp;
6308
6309 return 0;
6310 }
6311
ata_parse_force_param(void)6312 static void __init ata_parse_force_param(void)
6313 {
6314 int idx = 0, size = 1;
6315 int last_port = -1, last_device = -1;
6316 char *p, *cur, *next;
6317
6318 /* calculate maximum number of params and allocate force_tbl */
6319 for (p = ata_force_param_buf; *p; p++)
6320 if (*p == ',')
6321 size++;
6322
6323 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6324 if (!ata_force_tbl) {
6325 printk(KERN_WARNING "ata: failed to extend force table, "
6326 "libata.force ignored\n");
6327 return;
6328 }
6329
6330 /* parse and populate the table */
6331 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6332 const char *reason = "";
6333 struct ata_force_ent te = { .port = -1, .device = -1 };
6334
6335 next = cur;
6336 if (ata_parse_force_one(&next, &te, &reason)) {
6337 printk(KERN_WARNING "ata: failed to parse force "
6338 "parameter \"%s\" (%s)\n",
6339 cur, reason);
6340 continue;
6341 }
6342
6343 if (te.port == -1) {
6344 te.port = last_port;
6345 te.device = last_device;
6346 }
6347
6348 ata_force_tbl[idx++] = te;
6349
6350 last_port = te.port;
6351 last_device = te.device;
6352 }
6353
6354 ata_force_tbl_size = idx;
6355 }
6356
ata_free_force_param(void)6357 static void ata_free_force_param(void)
6358 {
6359 kfree(ata_force_tbl);
6360 }
6361 #else
ata_parse_force_param(void)6362 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6363 static inline void ata_free_force_param(void) { }
6364 #endif
6365
ata_init(void)6366 static int __init ata_init(void)
6367 {
6368 int rc;
6369
6370 ata_parse_force_param();
6371
6372 rc = ata_sff_init();
6373 if (rc) {
6374 ata_free_force_param();
6375 return rc;
6376 }
6377
6378 libata_transport_init();
6379 ata_scsi_transport_template = ata_attach_transport();
6380 if (!ata_scsi_transport_template) {
6381 ata_sff_exit();
6382 rc = -ENOMEM;
6383 goto err_out;
6384 }
6385
6386 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6387 return 0;
6388
6389 err_out:
6390 return rc;
6391 }
6392
ata_exit(void)6393 static void __exit ata_exit(void)
6394 {
6395 ata_release_transport(ata_scsi_transport_template);
6396 libata_transport_exit();
6397 ata_sff_exit();
6398 ata_free_force_param();
6399 }
6400
6401 subsys_initcall(ata_init);
6402 module_exit(ata_exit);
6403
6404 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6405
ata_ratelimit(void)6406 int ata_ratelimit(void)
6407 {
6408 return __ratelimit(&ratelimit);
6409 }
6410 EXPORT_SYMBOL_GPL(ata_ratelimit);
6411
6412 /**
6413 * ata_msleep - ATA EH owner aware msleep
6414 * @ap: ATA port to attribute the sleep to
6415 * @msecs: duration to sleep in milliseconds
6416 *
6417 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6418 * ownership is released before going to sleep and reacquired
6419 * after the sleep is complete. IOW, other ports sharing the
6420 * @ap->host will be allowed to own the EH while this task is
6421 * sleeping.
6422 *
6423 * LOCKING:
6424 * Might sleep.
6425 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6426 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6427 {
6428 bool owns_eh = ap && ap->host->eh_owner == current;
6429
6430 if (owns_eh)
6431 ata_eh_release(ap);
6432
6433 if (msecs < 20) {
6434 unsigned long usecs = msecs * USEC_PER_MSEC;
6435 usleep_range(usecs, usecs + 50);
6436 } else {
6437 msleep(msecs);
6438 }
6439
6440 if (owns_eh)
6441 ata_eh_acquire(ap);
6442 }
6443 EXPORT_SYMBOL_GPL(ata_msleep);
6444
6445 /**
6446 * ata_wait_register - wait until register value changes
6447 * @ap: ATA port to wait register for, can be NULL
6448 * @reg: IO-mapped register
6449 * @mask: Mask to apply to read register value
6450 * @val: Wait condition
6451 * @interval: polling interval in milliseconds
6452 * @timeout: timeout in milliseconds
6453 *
6454 * Waiting for some bits of register to change is a common
6455 * operation for ATA controllers. This function reads 32bit LE
6456 * IO-mapped register @reg and tests for the following condition.
6457 *
6458 * (*@reg & mask) != val
6459 *
6460 * If the condition is met, it returns; otherwise, the process is
6461 * repeated after @interval_msec until timeout.
6462 *
6463 * LOCKING:
6464 * Kernel thread context (may sleep)
6465 *
6466 * RETURNS:
6467 * The final register value.
6468 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6469 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6470 unsigned long interval, unsigned long timeout)
6471 {
6472 unsigned long deadline;
6473 u32 tmp;
6474
6475 tmp = ioread32(reg);
6476
6477 /* Calculate timeout _after_ the first read to make sure
6478 * preceding writes reach the controller before starting to
6479 * eat away the timeout.
6480 */
6481 deadline = ata_deadline(jiffies, timeout);
6482
6483 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6484 ata_msleep(ap, interval);
6485 tmp = ioread32(reg);
6486 }
6487
6488 return tmp;
6489 }
6490 EXPORT_SYMBOL_GPL(ata_wait_register);
6491
6492 /*
6493 * Dummy port_ops
6494 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6495 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6496 {
6497 return AC_ERR_SYSTEM;
6498 }
6499
ata_dummy_error_handler(struct ata_port * ap)6500 static void ata_dummy_error_handler(struct ata_port *ap)
6501 {
6502 /* truly dummy */
6503 }
6504
6505 struct ata_port_operations ata_dummy_port_ops = {
6506 .qc_prep = ata_noop_qc_prep,
6507 .qc_issue = ata_dummy_qc_issue,
6508 .error_handler = ata_dummy_error_handler,
6509 .sched_eh = ata_std_sched_eh,
6510 .end_eh = ata_std_end_eh,
6511 };
6512 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6513
6514 const struct ata_port_info ata_dummy_port_info = {
6515 .port_ops = &ata_dummy_port_ops,
6516 };
6517 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6518
ata_print_version(const struct device * dev,const char * version)6519 void ata_print_version(const struct device *dev, const char *version)
6520 {
6521 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6522 }
6523 EXPORT_SYMBOL(ata_print_version);
6524